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Abstract 

A large-scale survey was carried out in 336 French fields to investigate the influence of soil 

characteristics, climate conditions, the presence of wireworms and the identity of predominant species, 

agricultural practices, field history and local landscape features on the damage caused by wireworms in 

maize. Boosted regression trees, a statistical model originating from the field of machine learning, were 

fitted to survey data and then used to hierarchize and weigh the relative influence of a large set of 

variables on the observed damage. Our study confirmed the relevance of an early assessment of 

wireworm populations to forecast crop damage. Results have shown that climatic factors were also 

major determinants of wireworm damage, especially the soil temperature around the sowing date, with 

a strong decrease in damage when it exceeds 12°C. Soil characteristics were ranked third in importance 

with a primary influence of pH, but also of organic matter content, and to a lesser extent of soil texture. 

Field history ranked next, in particular our findings confirmed that a long lasting meadow appeared 

favourable to wireworm damage. Finally, agriculture practices and landscape context (especially the 

presence of a meadow in the field vicinity) were also shown to influence wireworm damage but more 

marginally. Overall, the predicted damage appeared highly correlated to the observed one allowing us 

to produce the framework of a decision-support system to forecast wireworm risk in maize crop. 
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Key message 

• Wireworms are generalist herbivore pests causing increasing crop damage in Europe 



• We carried out a large-scale survey in maize fields in France, and analysed data using Boosted 

Regression Trees to investigate the influence of pedoclimatic and agroenvironmental factors on 

the damage caused by wireworms 

• Predicted damage appeared highly correlated to the observed one allowing us to produce a 

decision-support system to forecast wireworm risk on maize crop 

 

Introduction 

 

The mainstream agricultural model involving the use of pesticides is now called into question regarding 

sustainability, environment and human health (Wilson and Tisdell 2001; Tilman et al. 2002; Geiger et 

al. 2010). One of the greatest issues for agriculture over the coming years will be to conciliate 

productivity with other components of sustainability, notably to achieve substantial reductions in the 

level of pesticides use (Foley et al. 2011; Lechenet et al. 2014). Pesticides, whether used in a preventive 

or curative manner, have been for long the only means to protect crops with a total effect, and any 

alternative strategy will require a combination of techniques with partial effect. Hence, facing the 

challenge of a sustainable crop production entails an in-depth analysis of agro-ecological factors and 

biotic interactions that rule crop damage (Médiène et al. 2011). 

Wireworms, the soil-dwelling larvae of click beetles (Coleoptera: Elateridae), are world-wide generalist 

herbivores which attack the below-ground parts of cereal, vegetable and legume crops (Griffiths 1974; 

Furlan 1998, 2004; Traugott et al. 2015; Milosavljević et al. 2016). During many years, crop protection 

against wireworms had involved the use of broad spectrum pesticides such as organochlorines which, 

despite removed from the market since several years, still persist in soils due to their slow degradation 

(Orton et al. 2013). After most molecules able to control wireworms were banned, wireworm 

populations have recovered in most European countries, and the management of crop damage they cause 

has become a prime issue. An increase in yield reduction due to wireworms has been reported in Europe 

on several economically important crops over the past few years, notably in maize (Eizaguirre et al. 

2005; Staudacher et al. 2013b; Saussure et al. 2015). 

Studies and reviews dealing with the biology and ecology of wireworms as well as existing control 

methods (Barsics et al. 2013; Traugott et al. 2015) have highlighted several categories of factors playing 

an important role on wireworm populations. Exploration of the feeding behaviour of wireworms have 

shown that periods of inactivity in deeper soil layers, mainly in winter and summer when soil 

environmental conditions are adverse, alternate with damaging phases in spring and autumn when soil 

conditions become more favourable in upper soil layers (Campbell 1937; Lafrance 1968; Furlan 1998; 

Kovacs et al. 2006). Soil characteristics, climate, and agricultural practices may influence the dynamics 

of these vertical migrations and mediate wireworm damage. Besides, field history as well as landscape 

context, through its effect on click beetles dispersal, may shape the pest abundance at the field scale. 



Due to the multiannual biological cycle of most wireworm species (Evans and Gough 1942; Miles 1942; 

Furlan 1996, 1998), crop rotation could allow controlling damage when it includes non-host plant 

species. It is indeed commonly stated that wireworms preferentially lay eggs and develop in grasslands 

that provide favorable conditions for eggs and larvae (Parker and Howard 2001; Furlan 2004). 

Eventually, identifying which wireworm species are present may be of importance as wireworm damage 

is species-dependent (Furlan 2014; Esser et al. 2015). Predictive models have recently been proposed to 

predict click beetle abundance based on climatic and edaphic factors (Kozina et al. 2015), wireworm 

occurrence based on soil characteristics (Jung et al. 2014), their abundance and community structure 

(Milosavljević et al. 2016), correlation between the damage caused in potato fields and the landscape 

structure (Hermann et al. 2013), or to determine the chief climate and agroenvironmental factors 

impacting wireworm damage (Saussure et al. 2015; Furlan et al. 2016). 

Underlying processes mediating wireworm damage inflicted to crops are multiple and complex. 

Notably, the interactions between various biological processes cannot easily be reduced to a synthetic 

set of relevant and independent factors. Consequently, methods enabling to screen a large number of 

putative relevant variables with possible correlation are very precious. In this study, we took advantage 

of a recent method originating from the field of machine learning, namely boosted regression trees 

(Friedman 2002; Elith et al. 2008; Hastie et al. 2009), to address such questions. We applied this method 

to a large-scale survey carried out in France on 336 maize fields, inventorying their soil characteristics, 

the presence of wireworms and the identity of the predominant species, climate conditions, agricultural 

practices, local landscape features (or landscape context) and damage levels caused by wireworms. Our 

research objectives were twofold: (i) examining the relative influence and the effects of putative key 

drivers on wireworm damage, and (ii) assessing the model’s relevance in providing the cornerstone of 

a decision-support system for the integrated management of damage caused by wireworms in maize 

crops. 

 

Materials and methods 

 

The agro-environmental survey 

 

The dataset examined here was compiled from an extensive survey carried out over three consecutive 

years, from 2012 to 2014. It includes a total of 336 fields primarily located in the western part of France 

(Fig. 1). Field areas ranged between 0.4 and 48 ha (median area: 4.3 ha) and represented a total surface 

area of 2208 ha. The monitored fields were selected in 2011 in farms affected by former or current 

wireworm damage. In order to broaden the range of observed levels of damage, one or two 

supplementary maize fields were randomly chosen in each farm and added to the dataset from 2012 

onwards. This sample design guaranteed to survey a wide range of damage levels, hence it was 

appropriate to identify agricultural and environmental factors influencing local damage levels. 



 

 
Fig. 1: Field locations: 327 of the 336 fields were georeferenced. The townships in which one or more 

surveyed fields were located are indicated by black circles. Red triangles indicate meteorological 

stations.  

 

For each maize field, the presence of wireworms and the identity of predominant species, climate data, 

soil characteristics, agricultural practices, field history, and local landscape features were recorded 

(Table 1). 

 

Table 1: List and description of the explanatory variables included in the model. Main categories of 

features are indicated by the following abbreviations: WW (wireworm assessment), P (precipitation), T 

(soil temperature), SC (soil characterization), FC (field configuration), AP (agricultural practices), H5 

(agricultural practices for a five-year horizon), FH (field history), LC (landscape context) and CP (crop 

protection). 

Short name Description  Type* 
D Level of crop damage (response variable)  Quantitative 
Climatic variables   
P_50BS Mean rainfall over the 50 days before sowing  Quantitative 
P_LS3 Cumulated rainfall between sowing and stage leaf 3  Quantitative 
T_10BS Mean soil temperature over the 10 days before sowing  Quantitative 
T_10PS Mean soil temperature between sowing and 10 days post sowing  Quantitative 

T_80BS_70BS Mean soil temperature between 80 days and 70 days before 
sowing  Quantitative 

Soil characterization   
SC_Texture Soil texture: Clay / Loam / Sand / Silt  Qualitative 
SC_OM Proportion of organic matter content in the soil  Quantitative 
SC_pH pH  Quantitative 



SC_RD Root depth  Quantitative 

SC_FC Field capacity : <70mm , 70mm-120mm , 120mm-170mm , 
>170mm   Qualitative 

SC_WS Water sensitivity: Non drained field / Drained field / 
Hydromorphic field  Qualitative 

Wireworm monitoring    

WW_monit Wireworm presence and identity of the predominant species: 
None§ / A. lineatus / A. obscurus / A. sordidus / A. sputator  Qualitative 

Field configuration   
FC_Topo Topography : Flat / Slope  Qualitative 
FC_Expo Exposition : N / S / E / W  Qualitative 
Agricultural practices   

AP_SD Sowing date : 15 to 31 March / 1 to 15 April / 16 to 30 April / 
1 to 15 May / 16 to 31 May  Qualitative 

AP_SFe Fertilizer application (“Starter”) : Yes / No  Qualitative 
AP_SFeD Fertilizer dose (“Starter”)  Quantitative 
AP_TiD Maximum tillage depth : 0-15cm / 15-20cm / >20cm  Qualitative 
AP_NBTiSp Number of tillage(s) in spring  Quantitative 
AP_NBTiW Number of tillage(s) in winter  Quantitative 
AP_NBTiSu Number of tillage(s) in summer  Quantitative 
AP_Li Liming : Yes / No  Qualitative 
AP_OL Organic loading : Yes / No  Qualitative 
Past practices   
H5_Irrig Number of irrigations over the past 5 years  Quantitative 

H5_TiT Major tillage type used in the past 5 years : Tillage / Superficial 
soil work  Qualitative 

H5_OL Number of organic loadings over the past 5 years  Quantitative 
Field history   
FH_Mead Historic of meadows in the field : Absence / Presence†  Qualitative 

FH_RT Rotation Type : HP‡ / Maize monoculture (MM) / Short 
rotation‡ (SR) / Long rotation‡ (LR)  Qualitative 

FH_IC Type of intercrop: Bare soil (BS) / Green manure (GM) /  
Volunteers (VO)/ Raygrass (RG)  Qualitative 

Landscape context   
LC_WH Wooden hedgerow : Yes / No  Qualitative 
LC_VH Vegetal hedgerow : Yes / No  Qualitative 
LC_Cult Presence of an adjacent crop : Yes / No  Qualitative 
LC_SepCult Presence of an adjacent culture with a separation : Yes / No  Qualitative 
LC_Mead Presence of an adjacent meadow : Yes / No  Qualitative 
LC_SepMead Presence of an adjacent meadow with a separation : Yes / No  Qualitative 
LC_GS Grass strip : Yes / No  Qualitative 
Crop protection   
CP_Pest Chemical Protection against pests : Yes / No  Qualitative 

 

In situ inspection 

In this study, crop damages were directly quantified in situ at an early stage in spring. First, "healthy" 

and "damaged" areas were located in the field. In the "healthy" area, the number of maize plants was 

counted along a 10 m transect. In the "damaged" area, three 10 m transects were randomly selected, and 

for each transect the total number of plants and the number of damaged plants were recorded. Then, the 

rate of wireworm damage was defined as follows: 
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where Nexp is the expected number of maize plants in the healthy area of the field and Nobs is the actual 

number of undamaged plants in the damaged part of the field at the observation date. 

 

Damage characterization 

The main symptoms considered were perforated seeds, perforation on the crown of the plant, tillering 

and decoloration of the leaves. The plants exhibiting at least one of those symptoms were considered 

attacked. Though some damage could marginally be due to another pest, the observation of specific 

symptoms, the knowledge of field history (infestation during the previous years) and the sampling of 

numerous wireworm larvae indicated that the counted damage was in all cases actually caused by 

wireworms.  

 

Wireworm monitoring 

Within each field, three soil samples of a standard volume of eight liters (a cube of 20 x 20 x 20 cm3) 

were collected inside the damaged area, in the 20 cm deep upper soil layer around the roots of the 

damaged plants. Wireworm larvae were counted. A sample of 10-12 larvae per field were identified 

using the determination key of Cocquempot et al. (1999). Identification accuracy was confirmed on 

some samples using bio-molecular tools (Pic et al. 2008). 

 

Climate 

Mean air temperature and rainfall were estimated on a daily basis in each field using a network of 94 

meteorological stations (Fig. 1). The distance between each field and the closest station was 11.0±6.2 

km on average, and less than 18.5 km for 90% of the surveyed fields. The soil temperature at a depth of 

10 cm was estimated using a model from the Arvalis Institut du Végétal (unpublished; main features are 

daily surface temperature, computed belowground thermal amplitude, and mean soil temperature over 

past days). A set of climate variables was derived by averaging values on time windows of varying width 

and centred on meaningful dates (e.g. sowing, leaf stage 3, etc.). Those selected for the analysis are 

reported in Table 1. 

 

Soil characteristics 

In each field, the soil texture, proportion of organic matter content and pH were assessed (see below). 

Root depth, field capacity and water sensitivity (i.e. drainage) were provided by the farmers via the 

survey; the consistency of these values was checked by Arvalis experts in relation to the soil types 

existing in the considered region. Regarding the soil texture, size fraction analysis was performed after 

de-carbonation (NF X31.107). Soils were classified using the USDA soil texture triangle based on 



analyses carried out with a sedimentation pipette (Soil Survey Staff 2014) and confirmed with the 

expertise of the farmers. Some soil texture categories were grouped to obtain well-balanced modalities:  

• “clay”, “silty clay” and “sandy clay” classes were grouped as “Clay”  

• “sand”, “loamy sand” and “sandy loam” classes were grouped as “Sand” 

• “silt”, “silt loam” and “silty clay loam” classes were grouped as ”Silt” 

•  “loam”, “clay loam” and ”sandy clay loam” classes were grouped as “Loam”. 

These categories comprised 50, 48, 148 and 88 fields respectively (2 fields could not be appraised). The 

proportion of organic matter content was calculated from organic carbon by spectrometry after oxidation 

in a sulfochromic medium (NF ISO 14235). Finally, soil pH was measured using a glass electrode in a 

1:5 (volume fraction) suspension of soil in water (pH in H2O), in a 0.01 mol/l calcium chloride solution 

(CaCl-2 pH) (NF ISO 10390). 

 

Agricultural practices 

All agricultural practices were collected via the survey filled in by the farmers. The practices selected 

for the analysis are reported in Table 1 and encompass the sowing date, the application of a starter 

fertilizer, the tillage number and depth, liming and organic loading. All forms of tillage were considered 

under the term of tillage including ploughing. The equipment used was not specified. Maize varieties 

were not considered in this study because they were too numerous in the survey, and in most cases 

observed in a unique field. Indeed, there were 197 categories for the variety (a maize cultivar or a 

mixture of maize cultivars) among which 139 were cultivated in a single field. The most abundant 

category included 13 fields sown with the P0725 variety. 

 

Field history 

Field history was characterized using three variables. We first focused on the presence/absence of a 

long-lasting meadow (more than two years) during the rotation. We considered four types of rotation 

according to their duration and the number of different crops over the past five years. Last, we recorded 

the type of intercrop vegetative cover (or its absence). A complete description of all variables is given 

in Table 1. 

 

Landscape context 

Landscape context was described by the presence or absence of some possibly relevant landscape 

elements adjacent to the field. Local landscape elements were considered as possible sources of adult 

click beetles. An element was considered adjacent when it was situated directly along the border of the 

field. When the border consisted in a road, a path, a river, a hedgerow, or a grass strip, the element was 

defined as adjacent with a separation.  

 

 



Crop protection 

Crop protection was implemented in the model according to the presence or absence of an insecticide 

treatment at sowing. Among the 336 fields investigated, 197 (58.6%) were treated with insecticides. The 

main products used for seed treatments were the neonicotinoid CRUISER 350 FS (350 g/l 

Thiamethoxam, Syngenta) accounting for more than half of the treated fields (54%), the pyrethrinoid 

BELEM 0.8 MG (8 g/kg Cyperméthrin, SBM DEVELOPPEMENT) and the neonicotinoid SONIDO 

(400g/l of thiaclopride, BAYER) representing respectively 22% and 13% of the treated fields.   

 

Data analysis 

 

Our study focused on the link between wireworm damage and explanatory variables. All statistical 

analyses were carried out using R 3.0.1 software (R Core Team 2014). 

 

Regression model description 

We used a gradient boosting method, namely boosted regression trees, to build a stochastic, non-linear 

regression model from our dataset (Friedman 2002; Death 2007; Hastie et al. 2009). Basically, a 

sequence of simple trees was computed, where each successive tree was built from the prediction 

residuals of the preceding tree: the final model can be understood as an additive weighted expansion of 

trees. The boosted regression trees algorithm inherits the strengths of regression trees (e.g. ability to 

handle different types of predictor variables, and accommodating missing data) and boosting (combining 

many simple models to improve prediction) (Elith et al. 2008). To avoid overfitting, regularization 

techniques such as shrinkage and early stopping were applied (Natekin and Knoll 2013). Shrinkage was 

used to reduce the influence of each additional fitted tree by penalizing the importance of each newly 

added term. Early stopping provides guidance as to how many trees can be added before the model 

begins to overfit. There are essentially four control parameters: the number of trees (N), the shrinkage 

parameter (λ), the tree complexity (χ) which expresses the interaction depth (e.g. χ=2 implies a model 

with up to 2-way interactions), and the bag fraction (bf) which introduces some randomness in the model 

fit (Natekin and Knoll 2013). We derived the models using the R packages gbm v2.1.1 (Ridgeway 2015) 

and dismo v1.1.4 (Hijmans et al. 2017). We tuned the control parameters from a grid search (specifying 

sets of candidates), and selected the set of values that minimised the model predictive deviance measured 

on the excluded folds of a cross-validation procedure (Borra and Di Ciaccio 2010; James et al. 2013). 

 

Relative influence of variables 

A measure of the relative influence of predictor variables was proposed by Friedman (2001), which is 

based on the number of times a variable is selected for tree splitting, weighted by the squared 

improvement of the model resulting from each split, and averaged over all trees. This measure is 



implemented in the R gbm library (Ridgeway 2015), and scaled so that the sum of all relative influences 

adds to 100, with higher values indicating stronger influence on the response variable (Elith et al. 2008). 

 

Partial dependence between the response variable and predictors 

Complementary to the measure of variable influence, partial dependence plots are useful for results 

interpretation. These plots provide graphical visualizations of the marginal effect of a set of variables 

on the outcome (here, the predicted level of damage). Partial dependence plots are extremely useful for 

knowledge discovery in datasets, especially when low-order interactions and main effects predominate. 

 

Regression model evaluation 

The prediction performance of the regression model was estimated using a ten-fold cross-validation 

procedure that provides means for testing the model on withheld portions of data (Borra and Di Ciaccio 

2010; James et al. 2013), and expressed in terms of root mean squared error of prediction (RMSEP), 
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This performance criterion illustrates the prediction capacity of the model. Lower the prediction error 

(RMSEP), better the model performance. 

 

Decision-support system 

In our study, wireworm damage was expressed as the proportion of attacked plants, thereby ranging 

between 0 and 1. We defined an economic threshold Deco such that if the observed damage level in a 

field is strictly lower than this value the field is considered as “not damaged”, otherwise “damaged”. 

The economic threshold was set to 0.15, meaning that the field was considered as damaged when the 

proportion of damaged plants exceeded 15%, in accordance with Furlan et al. (2016) who did not 

observe any significant yield reduction below this damage level. This value split our data in two 

balanced subsets, comprising respectively 169 damaged and 167 undamaged fields. The use of the 

regression model as a binary classifier for risk assessment requires the determination of a decision 

threshold Ddec to assign the status “damaged” or “not damaged” to each field based on its predicted 

damage level. The two threshold values may differ due to some bias in predicted damage levels. 

There are four possible outcomes: (i) true positive (TP) when both the predicted and the observed status 

are “damaged”, (ii) false positive (FP) when predicted status is “damaged” while observation status is 

“not damaged”, (iii) true negative (TN) when both the predicted and the observed status are “not 

damaged”, and (iv) false negative (FN) when the predicted status is “not damaged” while the observed 

status is “damaged”. The ROC curve illustrates the performance of the binary classifier as its decision 

threshold is varied. The curve is obtained by plotting the true positive rate (TPR), or probability of 

detection, against the false positive rate (FPR), or probability of false alarm, at various threshold settings. 



The area under the curve (AUC) provides a metric ranging between 0 and 1 for the classifier 

performance: the closer AUC for a model comes to 1, the better it is. We computed the AUC using the 

R package pROC v1.8 (Robin et al. 2011). The expected cost associated with each decision threshold 

Ddec can be written 

C(Ddec) = cFN⋅P(FN) + cFP⋅P(FP) + cTN⋅P(TN) + cTP⋅P(TP)     (3) 

where coefficients ci, i∈{FN,FP,TN,TP} weigh the cost associated to the four possible model outomes 

and P(i), their frequency. Costs usually mostly depend on the monetary value of yield losses caused by 

pests and on the cost of pest control. Equation 3 allows selecting the optimal decision threshold in the 

specified cost context by minimizing the expected cost. 

 

3. Results 

 

Model evaluation 

 

We first selected the set of parameters providing the best model predictive performance. The best model 

was defined by the number of trees N=1850, the shrinkage parameter λ=0.005, the tree complexity χ=7 

and the bag fraction bf=0.75 (see §Regression model description for detailed comments on parameters). 

The model accuracy, as estimated using the root mean square error of prediction (RMSEP, Equation 2), 

equaled 0.19 which can be seen as a moderate performance: the prediction error was 19.2% of the scale 

of the response variable. However, a significant (R²=0.93; F-statistics, p-value<2.2⋅10-16) linear 

relationship was clearly revealed between predicted and observed damage as shown in Figure 2. Overall, 

predictions were biased but strongly (and linearly) related to observations, which we consider as 

satisfactory for our purpose. 

 

 



 
Fig. 2: Predictions of field damage plotted against observed field damage. The blue dashed line is the 

bisector representing perfect prediction. A linear model fit is given by the red line with 95% confidence 

intervals (grey shaded area). Linear regression equation Y=0.04+0.82*X and coefficient of 

determination R²=0.93. 

 

Relative influences and effects of variables 

 

The relative influences of variables on the level of wireworm damage D (Equation 1) are shown in 

Figure 3, and the main effects considered here were derived from partial dependence plots illustrated in 

Figure 4. Figure 3 shows the set of variables whose influences sum up to 95%, ranked by decreasing 

order of influence, with the total influence being normalized to 100. Influences were also classified into 

three groups (high, medium, low) using the method of hierarchical clustering on principal components 

(Lê et al. 2008; Husson et al. 2010) to facilitate the visualisation of results. 

 



 
Fig. 3: Relative influences of explanatory variables in decreasing order. Only the first variables whose 

relative influences sum up to 95% are represented. The colour code distinguishes three classes of 

variable influence: high (light blue), medium (medium blue) and low (dark blue).  

 

 
 

Fig. 4: Marginal effects of the main influential variables on the wireworm damage level. Detailed 

description of variables and their units are reported in Table 1.  

 

The most important predictor of crop damage was the presence of wireworms and the identity of the 

predominant species in soil samples coming from the monitoring procedure implemented in this study; 

it accounted for 12% of the total influence (Fig. 3). Next, listed in descending order of relative influence, 



climate, soil characteristics and field history were the main factors explaining damage. All climate 

variables included in the model ranked among the first factors and were graded as highly or moderately 

influential. Together, they accounted for 39% of the total influence on crop damage. Soil characteristics 

(SC), especially pH, also notably influenced crop damage and sumed to 20% of the total influence. Field 

history (FH) was represented by three moderately influential variables which accounted for 11.2% of 

the total influence. Agricultural practices (AP) and landscape context (LC) also influenced damage but 

to a lesser extent than previously mentioned categories. Finally, 17 variables did not belong to the set of 

predictors whose relative influences sum up to 95%. 

 

Wireworm monitoring 

The monitoring procedure allowed to detect the presence of wireworms in 183 maize fields out of 336, 

while no larvae were found in 153 fields. When detected, wireworms belonged to four different Agriotes 

species: A. lineatus, A. sordidus, A. sputator and A. obscurus. Among these species, A. sordidus and A. 

lineatus were the most present and neatly predominant in 87 and 62 fields (respectively 47.5% and 

33.9% of colonised fields). A. sputator and A. obscurus were predominant in 29 and 5 fields 

(respectively 15.8% and 2.7% of colonized fields). The mean number of larvae per field were 5.4, 8.0, 

11.6 and 15.8 when the prevalent species were A. sordidus, A. lineatus, A. obscurus and A. sputator 

respectively. The partial dependence plot (Fig. 4a) shows that the damage level drastically increased 

when wireworms were detected in soil samples, switching from 0.17 to 0.25, 0.27, 0.29 or 0.35 

(respectively for A. sordidus, A. lineatus, A. obscurus and A. sputator). 

 

Climate variables 

Soil temperatures around the sowing date showed a noticeable importance (Fig. 3). Mean soil 

temperature during the 10 days post sowing (T10_PS) accounted for 11.7% of the influence on crop 

damage while mean soil temperature during the 10 days before sowing (T10_BS) accounted for about 

5.8%. Dependence plots shown in Fig. 4b and Fig. 4h pointed out a threshold temperature around 12°C 

above which the damage level was remarkably reduced, falling from about 0.36 to 0.20 in the case of 

the variable T_10PS. As for the mean soil temperature between 80 days and 70 days before sowing 

(T_80BS_70BS), it represented about 5.9% of the total influence (Fig. 3). A less pronounced 

temperature threshold value for this period arised at approximately 5°C (Fig. 4g): below this 

temperature, the damage level increased from 0.21 to 0.26. The pattern associated with these three 

variables was quite similar, higher temperatures leading to lower damage. 

Rainfall variables encompassed about 16% of the total relative influence (Fig. 3) but with opposite 

effects (Fig. 4d and 4e). Mean rainfall over the 50 days before sowing (P50_BS) represented 8.3% of 

the total influence, however its effect on damage was moderate (Fig. 4d), the drier conditions leading to 

the reduction of damage levels of about 0.05 on the response variable scale. Cumulated rainfall between 

sowing and stage leaf 3 (P_LS3) accounted for 8.0% of the total influence and showed a marked effect 



on the damage level as illustrated in Fig. 4e. Below 50mm, damage dramatically increased until 0.36, 

then it fell down to 0.20 between 80mm and 140mm, and finally reached a plateau at about 0.23 over 

150mm.  

 

Soil characteristics 

Soil pH (SC_pH) accounted for 10.5% of the total influence and ranked as highly influential (Fig. 3). 

Higher pH (i.e. more basic soils) was associated with lower damage, with nearly half damage over the 

4.8-8.5 range under study (Fig. 4c). The level of damage substantially decreased between pH 5.4 and 

pH 6.4, otherwise following plateaus. Root depth (SC_RD) represented 3.4% of the total influence, but 

with a minor effect on the damage level (Fig. 4i). Soil organic matter (SC_OM) encompassed 3.4% of 

the related influence. Higher percentage of organic matter content in soil was associated to higher 

damage levels, with an effect corresponding to approximately 0.08 on the response variable scale (Fig. 

4j). Soil texture (SC_Texture) ranked next with a 2.4% relative influence (Fig. 3). Though the effect is 

low, it appears that loam soils, referring to soils with comparable proportions of sand, silt and clay, 

exhibited lower level of damage (Fig. 4l).  Finally, field capacity (SC_FC) encompassed only 1.9% of 

the total influence (Fig. 3). The dependence plot shown in Fig. 4o highlights a 0.03 increase of the 

damage level between soil with low reserve (SC_FC<70mm) or very high capacity (SC_FC>170mm) 

and soil with a field capacity comprised between 120 and 170mm. 

 

Field history 

Interculture (FH_IC) and rotation type (FH_RT) accounted for 6.9% and 2.4% of the total influence 

respectively (Fig. 3). Damage levels around 0.20 were obtained when green manure (mustard, phacelia) 

or bare soil (involving tillage) preceded maize implantation (Fig. 4f), while volunteers and, more 

importantly, ray-grass increased damage by up to 0.07. Regarding the crop rotation system (Fig. 4k), 

the most detrimental situation appears when a recent maize crop (i.e. implanted in the past 2 years) was 

following a long meadow (i.e. more than 3 years long). Short rotations (i.e. only 2 different crops over 

the past 5 years) were associated with the lowest damage level. Finally, the presence of at least one 

meadow during the rotation (FH_Mead) and the number of organic loadings (H5_OL) increased the 

damage level (Fig. 4p and Fig. 4q). 
 

Agricultural practices 

Agricultural practices influenced damage but to a lesser extent than the categories previously mentioned. 

The “Starter” fertilizer dose (AP_SFeD) encompassed 2.3% of the total influence (Fig. 3). The input of 

18-46 fertilizer (i.e. 18% nitrogen, 46% phosphorous) slightly decreased the damage level when the 

applied dose exceeded 110 kg/ha (Fig. 4m). The sowing date (AP_SD) accounted for 1.9% of the total 

influence and showed a marginal effect of 0.01 on the response variable scale (Fig. 4n). Finally, liming 



(AP_Li) slightly increased damage (Fig. 4t), but this counter-intuitive result may be explained by the 

fact that liming occurred in low pH contexts. 
 

Landscape context 

Field exposition (FC_Expo) accounted for 1.2% of the total influence and produced only a weak 

discrepancy (about 0.03) in terms of damage level (Fig. 4r). The relative influence of a meadow in the 

immediate vicinity of the field under consideration (LC_Mead) amounted to 1.5% (Fig. 3). The presence 

of a meadow entailed a 0.02 decrease in the observed damage level (Fig. 4s).  

 

Risk assessment 

 

We simplified our prediction model as a binary classifier to assign any field an outcome featuring the 

damage risk. The ROC curve for the classifier is shown in Figure 5a. The area under the curve, AUC, is 

0.97 with the 95% confidence interval 0.95-0.98, confirming that our model differs significantly from a 

random predictor. 

 

 
 

Fig. 5: (a) ROC curve of the prediction model. The solid blue line corresponds to a random predictor. 

Dashed lines highlight the coordinate values associated to the optimal decision threshold whith costs of 

an inaccurate decision cFN=cFP=1 and costs of an accurate decision cTN=cTP=0. (b) Expected total cost as 

a function of the decision threshold Ddec for the same cost values. The color scale relates to the value of 

the expected cost, from low (green) to high (black). 

 



In the absence of accurate estimates of the economical costs associated to the four different model 

outcomes, the coefficients weighting the cost associated to the model outcomes were set to the following 

values: 
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Choosing such cost values would be to consider that the accuracy of the model is simply assessed on 

the basis of the frequency of accurate decisions whatever their economic consequences. More realistic 

values could obviously be determined, however we considered it beyond our purpose (see §Discussion). 

Figure 5b shows the expected cost issued from model predictions, and defined in Equation 3, as a 

function of the decision threshold Ddec. Cost is minimal when the decision threshold sets to 0.14, leading 

to a sensitivity (TPR, or probability of detection) of 0.93 (95% CI: 0.88-0.96) and a specificity (1-FPR) 

of 0.85 (95% CI: 0.79-0.90), which corresponds to a false positive rate (FPR, or probability of false 

alarm) c.a. 0.15. Overall, our risk status (i.e. prediction stating “damaged” or “not damaged”) estimator 

presents fairly good sensitivity and specificity (Fig. 6). We found 12 false negative cases and 25 false 

positive cases, resulting in a 11% classification error. 

 

 
Fig. 6: Outcomes of the decision-support model obtained with the optimal decision threshold Ddec=0.14. 

Boxplots depict the distributions of the observed damage disaggregating by the predicted risk status, 

“damaged” or “not damaged”.  Symbol colors indicate the four possible classifier outcomes. The dashed 

dark grey line highlights the economic threshold (Deco=0.15) discriminating the observed “damaged” 

and “not damaged” fields out of the 336 fields under study. 

 

 

 

 



4. Discussion 

 

The current study falls within the framework of integrated production management, focusing on the 

identification of putative key drivers for pest control. We considered crop damage as a response variable, 

that depended both on wireworm life history traits but also on crop needs and its pest tolerance. We 

fitted a nonlinear model to regress the level of wireworm damage in a maize field on a set of variables 

for the twofold purpose of (i) understanding the relative influence of these variables on damage, and (ii) 

using the model as the cornerstone of a decision-support system for risk assessment. We found a strong 

linear relationship (R²=0.93) between predicted and observed damage from the survey dataset, meaning 

a high goodness of fit. The prediction capacity of the model was estimated at 19% of the response 

variable scale which is satisfactory regarding the numerous sources of variability encompassed in the 

survey data, including for example those sources associated to the observation process (random process 

of observation from which we infer the damage level, measurement error, etc.). Such variability is 

highlighted by the density distribution in figure 2. Building from this model, we first analysed the 

relative influence (Fig. 3) as well as the marginal effect of each variable on the predicted damage level 

(Fig. 4). Then we simplified our prediction model as a binary classifier to assign any field an outcome 

featuring the damage risk. 

 

Factors driving the risk of wireworm damage in maize crops 

 

Wireworm infestation and species composition 

In our survey, the wireworm population was monitored by counting larvae and identifying species in 

standard field samples collected in an area expertised as “damaged” (when damage occurred). 

Wireworms were detected in 55% of the maize fields. The main species were A. sordidus, A. lineatus, 

A. sputator and A. obscurus which are widespread in France (Cocquempot et al. 1999; Larroudé et al. 

2015). In the fields where wireworms were found, the damage level sharply increased respectively from 

0.17 to 0.26, 0.27, 0.35 and 0.29 depending on the identity of the predominant species. A. sputator 

appeared more harmful than the other species identified, but we remain cautious because of a possible 

interaction between species prevalence and larvae abundance. As a matter of fact, infestation was 

generally more important in fields where A. sputator was the prevalent species. Overall, these results 

confirm that a successful implementation of an integrated pest management strategy implies a pest 

population monitoring (Furlan and Kreutzweiser 2015; Barzman et al. 2015). This is also in line with 

Furlan (2014) and Furlan et al. (2017) who recommended an identification of the species present in soil 

and of the infestation level to assess the damage risk.  

 

 

 



Climate 

Climate conditions, i.e. soil temperatures but also rainfall, prior to and at the period of sowing 

significantly influenced the wireworm damage risk in maize crop and should be considered as key 

drivers in crop protection management. Our findings confirmed that, over a ten days period covering 

sowing date, the soil temperature threshold of 12°C previously described by Jung et al. (2014) 

significantly determines the damage level. Particulary after the sowing date, above this threshold, 

damage level remarkably decreases, falling from about 0.36 to 0.20. Those results may be explained on 

one side by the effect of soil conditions driving the feeding behaviour of wireworms and their vertical 

migration as described by Lees (1943), Lafrance (1968) and Furlan (1998). On the other side, those 

conditions accelerating maize growth rate shorten the period of sensitivity to wireworm attacks. Our 

results also brought to light that if soil did not warm up reaching a minimum of 5°C between 80 and 70 

days before sowing, damage increased. We assume that spring climatic conditions delaying the 

wireworm overwintering termination increase the risk that the feeding phase coincide with the period of 

plant vulnerability (i.e. seedling stage). Rainfall also proved to notably influence the damage level, but 

with opposite effects depending on the period relative to sowing. Our results demonstrated that, over the 

period of 50 days before sowing, higher soil moisture increased damage level, confirming that wet 

ground conditions in spring potentially promote wireworms and their rising toward upper soil layer 

(Furlan 1998). On the contrary, after sowing, driest conditions, while supposed to be harmful for 

wireworms, increased damage level. This is probably because such soil conditions penalized first maize 

crop for which the seedling stage is a sensitive period to shortage of water. Another hypothesis is that 

wireworms may stay in the close vicinity of the rhizosphere during drought, the rhizosphere providing 

food and conditions less prone to desiccation. 

 

Soil characteristics 

This study also confirmed previous published findings in particular risk associated with soil 

characteristics (pH and organic matter). The survey data covered a wide range of soil pH values ranging 

from 4.8 to 8.5 homogeneously distributed and enabled to highlight a strong effect of this factor on 

damage level. Fields with pH value under 5.5 should be considered as risky environment and those with 

pH value above 6.5 as safest. This result is consistent with previous works, which took into account 

larval abundance and species distribution as response variables (Ibbotson 1958; Staudacher et al. 2013a). 

In particular, Staudacher et al. (2013a) showed that lower pH value promotes wireworm’s infestation of 

A. obscurus and A. lineatus. Previous studies dealing with adult click beetle abundance (Kozina et al. 

2015) also brought to light the importance of pH as a key driver for the abundance of A. obscurus and 

A. ustulatus. As expected, soil organic matter content appeared influencing damage level. And as 

previously demonstrated (Furlan 1998, 2004; Traugott et al. 2008; Kozina et al. 2015; Furlan et al. 

2016), we found that high percentage of organic matter content in the soil increased damage. Soil with 

organic matter content above 5.5% should be considered as risky. Finally, field capacity and soil texture 



also influenced damage level. The link between soil type and larval activity has not yet been fully 

clarified, and is likely to interact with climatic conditions as shown by Jung et al. (2014) who 

demonstrated that larval movement and ability to harm maize roots were influenced by soil moisture 

and texture resulting from an interaction between climate and soil. 

 

Field history and landscape context 

Field history and landscape context appeared also influential. We evidenced the influence of the 

presence of grassland both in space (through their presence in the surrounding landscape) and in time 

(through their presence in the field history). The presence of grassland in the history or in the vicinity 

of the investigated fields, which is known as a favourable and stable environment for wireworms (Parker 

and Howard 2001; Blackshaw and Vernon 2006; Schallhart et al. 2011; Hermann et al. 2013), increased 

the damage level. 

 

Crop protection 

Across the 37 explanatory variables, crop protection is conspicuous by its absence among the set of 

variables representing 95% of the total influence and with significant effect on damage. Among the 

panel of maize fields investigated, almost 60% were treated with insecticides. The results of this study 

emphasize that molecules used for controlling wireworms were not effective enough to drive damage 

levels. In short, if maize crop was sown in a potentially harmful situation as defined by Furlan et al. 

(2016), the seed treatment with neonicotinoid or pyrethrinoid did not protect the crop. 

 

Decision-support system for risk assessment 

 

Stating the satisfactory performance of our nonlinear regression model, we used it as a binary classifier 

to promote a decision-support system for the risk assessment of wireworm damage. We applied it to the 

336 surveyed fields which were labelled as “damaged” or “not damaged” depending on whether the 

observed damage level exceeded the economic threshold value 0.15. This threshold value was chosen 

following Furlan et al. (2016) who did not observe any yield reduction below this wireworm damage 

level. Our risk estimator performed well as evidenced by the area under the ROC curve (AUC=0.97). 

The classifier produces four possible outcomes, depending on whether a field is accurately assigned to 

one of the two status. In our study, the associated cost function was computed by setting null cost to the 

true outcomes (i.e. true positive and true negative cases), and unit cost to the false outcomes (i.e. false 

positive and false negative cases). The cost function (Fig. 5b) shows the existence of a minimum value 

for a decision threshold, Ddec, about 0.14: cost is then valued 37 whereas it is 167 at Ddec=0 and 169 at 

Ddec=1. Indeed, choosing Ddec=0 amounts to assign all fields to the class “damaged”, leading to the 

wrong affectation of the 167 fields observed as “not damaged”, hence 167 false positive cases. This may 

correspond to the situation where farmers have adopted a strategy which consists in treating all fields 



by default (referred to as a “prophylactic spraying strategy” by Fabre et al. (2003)), assuming that 

treatment fully protects the field crop. Given that treatment efficacy is partial, an additional cost stems 

from the fraction of true positive cases for which the crop protection is expected to fail. At the other 

extreme, choosing Ddec=1 amounts to assign all fields to the class “not damaged”, leading to the wrong 

affectation of the 169 fields observed as “damaged”, hence 169 false negative cases. This may 

correspond to the situation where farmers have adopted a strategy which consists in never treating.  

Hence, in the specific cost context highlighted here, using our decision-support model would allow 

reducing by more than four the frequency of wrong decision when compared to systematic strategies. 

At the optimal decision threshold (Ddec=0.14), our decision-support system features good scores in terms 

of sensitivity (0.93) and specificity (0.85). In particular, high sensitivity indicates that the system 

predicts reasonably well the situation at risk, i.e. the assignment to the status “damaged”. Selecting the 

optimal decision threshold lead to the result shown in figure 6 where model outcomes are depicted by 

colors. In the context of pest management, the key issue consists in minimising the number of false 

negative cases (here 12 out of 169 actual “damaged” fields); false positive cases entail a lower incidence 

on decision in the common situation of prophylactic strategies. Beyond our results, it is clear that a 

benefit analysis can be conducted with values arising from the real cost of treatment and loss due to 

damage. Our decision-support system brings a stone for the identification of situations at risk, and could 

then contribute to evaluate strategies depending on the cost context, essentially specified here by the 

economic threshold and the cost coefficients associated to the model outcomes.  

 

Avenues for future research  

 

Forecasting crop damage caused by wireworms is a challenging task as underlying processes mediating 

crop damage caused by wireworms are multiple and complex. In the absence of a theoretical framework 

expliciting the link between processes and damage, survey data inventorying damage and their putative 

drivers are the major resource for investigation. In this study we applied a method originating from 

machine learning, namely boosted regression trees (Friedman 2002; Elith et al. 2008; Hastie et al. 2009), 

to model the relationship between damage and a set of predictors. Practical advantages of this method 

are that it can handle different types of variables without data transformation, fit potentially nonlinear 

relationships, accommodate missing data, and does not need variable pre-selection as non-informative 

predictors are ignored (Death 2007). Our nonlinear model fitted particularly well observed data (Fig. 2), 

and we quantified its predictive performance (RMSEP=0.19 on the scale of the response variable) on 

withheld portions of data using a cross-validation procedure. Next step lies in testing the model on new 

data. An exciting development would consist in evaluating the outputs of our modelling approach on 

other available datasets, e.g. those discussed in earlier work (Hermann et al. 2013; Furlan et al. 2016; 

Milosavljević et al. 2016), and appraise consensus with previous analyses. More broadly, our work 



highlights a relevant approach to analyse a wide range of similar situations involving other crops and 

pests. 

Damage is driven by two main features: (1) the potential for wireworm infestation, which is mainly 

driven by colonization process and local population development, and thus particularly sensitive to 

agricultural practices, field history and landscape context, and (2) the pedoclimatic conditions which 

govern the vertical movements of larvae and the vulnerability of the crop. Disentangling the effects of 

variables on these two main features would undoubtedly enhance our understanding of the risk factors. 

Thus, one research strategy involves monitoring population dynamics to assess dispersal, colonization 

and persistence of click beetles, and their link to landscape elements and agricultural practices. Some 

studies have already brought significant contributions (Toepfer et al. 2007; Schallhart et al. 2009; Burgio 

et al. 2012; Hermann et al. 2013; Blackshaw et al. 2017) but knowledge remains partial. Knowledge is 

especially scarce regarding the foraging behaviour of adult click beetles though it could possibly provide 

a new opportunity for pest management. Indeed, the spatial arrangement of potentially competing 

resources (e.g. feeding and laying sites) at the landscape scale may affect the pest foraging efficiency 

and designing and implementing pest suppressive landscapes could allow reducing the damage risk 

(Bourhis et al. 2017). 

Other studies are needed to develop a better evaluation of the effect of the interactions between soil 

characteristics and climate on larvae upwelling by, for example, extending preliminary results (Jung et 

al. 2014) to a wider range of soils and climatic conditions.  

Finally, another research perspective to better understand and forecast wireworm damage on crops 

consists in developing mechanistic models embedded in frameworks appropriate for parameter inference 

on heterogeneous data, e.g. data collected in fields under contrasted contexts regarding climate and soil 

characteristics. This would offer a suited way to handle measurement errors and uncertainties inherent 

to survey data. 
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