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Baffle Silencer with Tunable Resonators for Adaptive Control of 
Variable Tonal Noise 
 
 

Abstract 

The article presents a baffle silencer with tunable resonators consisting of two superimposed and 

identically perforated plates associated with a partitioned cavity made of thermoplastic resin. One 

plate is fixed while the other is movable. Displacement of the mobile plate changes the internal 

shapes of the resonator necks and shifts the resonance frequency of the system to lower values. The 

contributions of this paper are firstly, the modeling of a panel with tunable resonators made of 

necks with a variable geometry and a partitioned cavity in resin and, secondly, the use of the model 

to elaborate a control strategy to attenuate variable tonal noise. All of the theoretical studies are 

validated by experimental measurements. Final results show the efficiency of the silencer in 

attenuating a tonal noise that varies between 2000 and 2800 Hz. 

 

Keywords 

Baffle silencer, tunable resonators, neck geometry, partitioned cavities, acoustic impedance, 

adaptive noise control 

 

NOMENCLATURE 

c:  sound speed 

D:  mobile plate displacement 

k: wave number equal to / c  

L:  cavity depth 
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le: short distance between to two holes 

Le: long distance between to two holes 

l1:  thickness of plate 1  

l2: thickness of plate 2 

r:  hole perforation radius  

R: normalized acoustic resistance 

Rs: normalized acoustic resistance per unit of area equal to 0

2
c

 

Scavity:  cavity surface 

Shole:  hole surface 

:  angular frequency pulsation  

X:  normalized acoustic reactance 

Z:  normalized acoustic impedance (Z=R+jX) 

e:  exterior mass end correction equal to 8
3

r


 

i:  interior mass end correction equal to  0.51 1.25e   

 : dynamic viscosity of air 

  open area ratio 

cavity:  open area ratio of the cavity 

plate:  open area ratio of the plate 

 

1. INTRODUCTION 

The article focuses on silencers with acoustic resonators made of perforated sheets bonded onto 

honeycomb cavities for noise reduction. The advantage of these resonators is that they can be used 
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in harsh conditions. Their main drawback is that they are selective in frequency.  They are thus 

efficient for tonal noise reduction.  In the case of variable tonal noise, the efficiency is limited if the 

resonators are not tunable. Many studies have been performed on adaptive resonators and have led 

to patents: Kotera et al. (1994), McLean (1998), Cheng et al. (1999),  Paschereit et al. (2003), Stuart 

(2003), Kotsun et al.(2004), Kudernatsch (2004), Ciray (2005). The reading of these patents enables 

identifying two types of solutions to obtain adaptive resonators: either by the control of the volume 

of the cavities, or by the control of the neck (perforated holes) geometry. 

 

In order to control the volumes of the cavities, Konishi et al. (1998) proposed tunable acoustic 

resonators whose depth is controlled by C-shape micro actuators. De Bedout et al. (1997) used a 

rotating internal radial wall inside the resonator cavity to vary the volumes of the cavities. Kostek et 

al. (2000) studied the robust feedback control of such systems. Kobayashi et al. (2007) successfully 

implemented resonators with tunable cavities in a turbofan.  

 

With respect to the control of the neck geometry and the study of its influence on the resonator 

acoustic behavior, Birnbach et al. (2006) studied a resonator with two perforated plates and an inlet 

air gap. They demonstrated that for a very small distance between the plates from 0.05 mm to 0.1 

mm, the resonators have high acoustic impedance and low absorption and that, by increasing the 

distance, the impedance decreases and the absorption becomes maximum. Chanaud (1997) studied 

the radiation impedance for geometries of non-circular orifices. Tang (2005) studied a resonator 

with a tapered neck. Results show that the resonance frequency increases with the tapering length 

and that absorption increases with the tapered neck slope. Esteve et al. (2004) proposed to tune the 

resonator by using an accordion neck to vary the length of the neck or by using an iris diaphragm to 

vary the resonator opening. 
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As changing the volumes of cavities requires heavy machinery that may be unsuitable for some 

applications (e.g. aerospace applications), this article proposes to study adaptive resonators whose 

neck geometry can be controlled. An easy way to produce such resonators is to associate two 

superimposed and identically perforated plates with air cavities. One plate is fixed and bonded to 

the cavities and the other plate is movable. This concept enables changing the internal shapes of the 

holes of the perforated layers and the resonance frequency of the system. These tunable resonators 

have already been studied by Powell et al. (2000). They showed that the resonance frequency shifts 

to lower values but they failed to develop a model. A circular silencer with adaptive resonators 

based on the same principle (two inner cylinders, a fixed one and a movable one, associated with a 

cavity) has been developed by Nagaya (2001) in order to reduce a blower noise with two varying 

peaks. He proved the efficiency of the system but did not develop a model for the silencer. In 

Cherrier et al. (2012), we developed a model of such tunable resonators with two perforated plates. 

We now have built a baffle silencer with panels of tunable resonators made with two plates and this 

article proposes the model and the control of this baffle silencer. 

Part 2 of the article develops the geometry of the tunable acoustic resonators and describes the 

baffle silencer. Part 3 deals with the modeling of a silencer panel made of an array of tunable 

resonators. The acoustic impedance at normal incidence of a tunable resonator panel is computed, 

as well as the acoustic absorption coefficient. All computation results are validated by experimental 

results in an impedance tube. Finally, in part 4, the performance of the silencer is evaluated and the 

control of the silencer is demonstrated. The capability of the silencer to track and attenuate a tonal 

noise that varies according to a frequency ramp is measured. 

 

2. BAFFLE SILENCER WITH TUNABLE RESONATORS  

2.1. Description of tunable resonators 
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Helmholtz resonators are characterized by a high absorption coefficient but are selective in 

frequency: such resonators are efficient around a resonance frequency that depends on the size, 

shape and porosity of the necks and on the thickness of cavities. In order to vary the resonance 

frequency, we propose to use tunable resonators whose necks are generated by two perforated 

plates, side by side, one fixed and one mobile (Figure 1). The mobile plate can translate a distance 

that can vary from zero to the hole perforation diameter (2r). These resonators have been studied in 

Cherrier et al. (2012). 

 

Cavity 

2r 

2r 

L 

l1 

l2 

D 

Plate 1 Plate 2 

>2r 
D 

 

Figure 1. Principle of the tunable resonator with two perforated plates and a single cavity 

 

2.2. Description of the baffle silencer 

The silencer is made of three baffles with tunable resonators on each side (Figure 2 and Figure 3). 

There are so six noise absorbent panels. The mobile parts of the three baffles are actuated by a 

single electromechanical linear actuator (Part B). The link between the actuator and the mobile parts 

of baffles is rigid, so the displacement of the actuator is the same as that of the baffles. A 

loudspeaker (Part A) is connected to one end of the silencer to generate noise to test the silencer.  
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Figure 2. Scheme of the silencer 

 

 

Figure 3. Picture of the silencer under manufacturing with 2 baffles inside 

 

Each absorbent panel is composed of two brass plates and of an array of cavities made by rapid 

prototyping in Acrylonitrile Butadiene Styrene (ABS) thermoplastic resin. The cavities are 

distributed in a honeycomb structure as shown in Figure 4 with Le = 7mm and le = 6mm. 

The characteristics of the baffles are as follows: 

- baffle sizes:  

o length: 222mm  

o width:148mm 

- gap between 2 baffles: 22mm 

- resonators sizes: 

o thicknesses of the perforated plates: 1mm 

A 

B 
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o diameter of the holes in the perforated plates: 1.5mm 

o cavity depth: 7.2mm 

o cavity sizes: hexagonal with circumscribed circle of diameter 6mm (Figure 4). 

 

 

Figure 4. Cavities in honeycomb 

 

3. MODEL OF A TUNABLE RESONATORS PANEL WITH AN ARRAY OF 

CAVITIES IN THERMOPLASTIC RESIN 

3.1. Limitation of the previous model  

In Cherrier et al. (2012), we have established a model for a panel of tunable resonators whose necks 

are generated by two perforated plates, one fixed and one mobile, and with a single cavity in metal. 

This model allows one to compute the normalized reactance and the normalized resistance in 

normal incidence, as well as the sound absorption coefficient for different displacements D of the 

mobile plate. It is then possible to deduce the resonance frequency for each case of displacements 

and thus to evaluate the useful frequency range of tunable resonators. When applying the proposed 

model to our silencer panel and when comparing modeling results and experimental results from 

measurements made in an impedance tube, differences appeared as shown in Figure 5. The 

le=6 

 

 

Le=7 
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estimation of the resonance frequencies is accurate but the thicknesses and the amplitudes of the 

resonance peaks are either much lower or greater than the measured ones. 

 

Figure 5. Absorption coefficient at normal incidence for displacements D of the mobile plate 

(D=0mm, D=0.78mm, D=1.38mm): computed with the model of Cherrier et al. (2012) (- - - ) and 

measured (
_____

) 

 

The differences can be explained by two facts: 

1 - Compared to the resonators studied in Cherrier et al. (2012), the cavity of the silencer panel is 

partitioned in several small cavities and, because of the manufacturing method, the thickness of the 

cavities wall is not negligible (1mm). 

2 – The silencer cavities are made of ABS resin, and therefore the acoustic impedance of the bottom 

of the cavity cannot be regarded as infinite, as opposed to the bottom of a cavity in metal. 

Moreover, the surface of the cavities is rough because of the manufacturing process (3D printing) 

and there may be traces of glue in the cavities due to the bonding of the fixed perforated plate onto 

the cavities. This increases the acoustic resistance of the silencer panel. 
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3.2. Up-dating the model  

The model proposed in Cherrier et al. (2012) can be improved to take into account the repartition of 

the resonators, the wall thickness and the influence of the cavities material. 

 

To model the repartition of the resonators and the wall thickness, it is necessary to define another 

open area ratio as proposed in Allard et al. (2009). It corresponds to the open area ratio of the plate:  

       
     
    

  (1) 

 

To model the losses in the ABS material and on its surface, an acoustic normalized resistance at the 

interface of the cavities and of the perforated plate 1 (Figure 1) must be added to the model. It has 

been measured on a sample in ABS material in an impedance tube and its mean value on the 

frequency range of the model is: 

11lossR    (2) 

Finally, the normalized impedance at normal incidence of the panel with tunable resonators in 

plastic resin can be expressed as: 

panel panel panelZ R jX    (3) 

with normalized acoustic resistance Rpanel: 

1 2l l1 2 22 1 2 1 2 1
4

E E

hole E E E
panel loss s s s

plate E E hole

S P SR R R R R
r S S S r

    
      

            
         

    

  (4) 

and normalized acoustic reactance Xpanel: 

1 2
1 cot( ) l l

2 2
holeE E

panel cavity i E e
plate E

SX kL k k k
S

  


    
            

    
  (5) 

that are both functions of the geometry and of mobile plate translation D.  
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In equation (5), interior mass end correction i equals to  0.51 1.25e plate  .  

 

Note: PE, SE and E  were defined in Cherrier et al. (2012) as the perimeter, the surface and the 

length of an elliptic piston created by the overlapping of the two perforated plates and representing 

an additional mass of air in motion near the orifice lips of the tunable resonator. 

 

3.3. Model validation 

The new model is validated by comparing simulation results with experimental results obtained in 

an impedance tube with a sound level of 110dB. Figure 6 to Figure 8 show respectively the 

absorption coefficient, the normalized reactance and the normalized resistance for different 

displacements D in mm of the mobile plate. Figure 6 shows that the amplitudes of the resonance 

peaks and their thicknesses are now closer to the measurements results. Figure 7 shows that the 

estimation of the resonance frequency of the panel (frequency for which one reactance is null) is 

very accurate.  

Table 1 gives the percentage error between computed and measured resonance frequencies. The 

estimation of the resistive effects that come from the viscous interaction between acoustic 

flow and structure (Figure 8) is less accurate. The behavior is not well-characterized in low 

frequencies. Modeling these phenomena is more difficult. 
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Figure 6. Absorption coefficient at normal incidence for displacements D of the mobile plate 

Curves computed with the new model: D=0mm (
_____

) , D=0.78mm (-  -  -  -), D=1.38mm (- - - -) 

Measured curves: D=0mm (    ) , D=0.78mm ( -  -  -  - ), D=1.38mm ( - .  - . - . - ) 

 

 

Figure 7. Normalized reactance at normal incidence for displacements D of the mobile plate 

Curves computed with the new model: D=0mm (
_____

) , D=0.78mm (-  -  -  -), D=1.38mm (- - - -) 

Measured curves: D=0mm (    ) , D=0.78mm ( -  -  -  - ), D=1.38mm ( - .  - . - . - ) 
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Figure 8. Normalized resistance at normal incidence for displacements D of the mobile plate 
 
Curves computed with the new model: D=0mm (

_____
) , D=0.78mm (-  -  -  -), D=1.38mm (- - - -) 

Measured curves: D=0mm (    ) , D=0.78mm ( -  -  -  - ), D=1.38mm ( - .  - . - . - ) 

 

 

 

Mobile place 

displacement 

Computed resonance 

frequencies (Hz) 

Measured resonance 

frequencies (Hz) 

Percentage error 

D =0mm 2773 2775 0.07% 

D=0.78mm 2408 2420 0.5% 

D=1.39mm 1675 1740 3.73% 

 
Table 1. Comparison of computed and measured resonance frequencies 
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4. CONTROL OF THE BAFFLE SILENCER 

4.1. Silencer attenuation 

Before tackling the issue of control, the attenuation of the silencer is measured on the frequency 

range 1800-2800Hz with a step of 100Hz. An input tonal noise that consists of a single sine wave at 

fixed frequency is generated by the loud speaker and then the acoustic sound power of the source is 

measured with and without the silencer. The acoustic attenuation is the difference between these 

two acoustic sound powers. 

For each frequency, the mobile plates of all panels are moved of the same displacement in order to 

get the best attenuation. The experimental results are given in Figure 9 and correspond to the legend 

“silencer in active mode”. 

The acoustic attenuation is also measured when there is no displacement of the mobile plates. The 

silencer is then said to be in “passive mode”. 

For frequencies around 2800 Hz, the silencer has the same behavior in active and passive mode 

since the displacement of the mobile plates is null. The maximum gain is obtained at 2400 Hz: the 

attenuation is increased by 20 dB with the silencer in active mode compared with the silencer in 

passive mode. Below 1800 Hz, the attenuation produced by the silencer is weak or null, even in 

active mode, since the maximum displacement of the mobile plates is reached. 

 

Figure 9. Silencer attenuation 
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4.2. Control strategy  

The control strategy is synthetized by the diagram of Figure 10.  

 

Displacement 
D 

Voltage  
U 
 

Electro-
mechanical 

actuator 

PI 
controller 

Silencer 

Input 
Noise 

+ 
 
    - 

Output 
Noise 

Required 
Displacement 

FFT 
+ 

identification 
of tonal noise 

Tonal noise of 
frequency f Polynomial 

expression 
D(f) 

 

Figure 10. Control strategy of the silencer 

 

The electromechanical actuator that enables the displacement of the mobile plates is controlled in 

position with a proportional-integral controller in order to ensure good accuracy. The displacement 

of the actuator rod is supposed to be equal to that of the mobile plates since the connection between 

the mobile plates and the actuator is rigid. 

The mobile plates displacement required to best attenuate a tonal noise is computed from a FFT 

analysis of the measured noise. The FFT enables the determination of the frequency of the most 

disturbing tonal noise (tonal noise with the highest magnitude). The displacement required to 

attenuate the tonal noise is then computed by using a relation between the displacement of the 

mobile plates and the resonance frequency of the absorbent panels in the silencer. This relation has 

been extracted from the panel model of section 3.2. Indeed, for frequencies between 1800 and 

3000Hz, the displacement for which the attenuation is the highest has been computed and a 

polynomial expression of the silencer acoustic behavior has been established. The polynomial that 

gives displacement D (in meter) versus frequency f (in Hz) is: 

  ( )                                     (6) 
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Figure 11. Acoustic behavior of the silencer 

 

4.3. Experimental results 

Some experimental tests are performed to validate the proposed adaptive noise control system. The 

silencer is placed in the middle of a room of large volume where reflection from the walls has been 

reduced with absorbent materials. The distance between the noise source and the floor is 1.2m. The 

distance between the microphone and the silencer output is 1m. The measurements are performed in 

the output axis of the silencer. 

The silencer is first used to reduce a pure variable tonal noise consisting of a sine wave whose 

frequency varies as a ramp between 2800Hz and 2000 Hz in 10s. Figure 12(a) represents the 

frequency sweep of the sine wave. Figure 12(b) shows the sound level in dB at the output of the 

silencer when the silencer is in passive mode (no displacement of the mobile plates) and in active 

mode. The displacement of the mobile plates measured when the silencer is in active mode is shown 

in Figure 12(c). 

In passive mode, as the displacement of the mobile plates is null, the silencer is configured to 

attenuate mainly the frequencies around 2800Hz. So the output noise is minimal at the beginning of 
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the test that starts at 2800 Hz and increases as the frequency of the input tonal noise decreases. In 

active mode, the displacement of the mobile plates increases as the frequency decreases. The output 

noise is also increasing but much less than in passive mode. For 2400Hz, the gain between the 

silencer in passive and active mode is of 20dB, which is consistent with the results of Figure 9. 

 

Figure 12. Experimental results of the baffle silencer with tunable resonators with a swept sine 
wave 

 

The silencer is then tested where the noise consists of a stepped sine wave whose frequency varies 

between 2400Hz and 2800 Hz in 8s. Figure 13(a) represents the frequency step of the sine wave. 

Figure 13(b) gives the sound level in dB at the output of the silencer in active mode and Figure 

13(c) the displacement of the mobile plates. This test shows that the control is efficient and allows 

evaluating the dynamics of the silencer under these conditions. It takes 1.6s for the plates to reach 
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the good position when the frequency of the sine wave varies from 2800Hz to 2400Hz and 0.9s 

when the frequency of the sine wave varies from 2400Hz to 2800Hz.  

 

Figure 13. Experimental results of the baffle silencer with tunable resonators with a stepped sine 
wave 

 

5. CONCLUSION  

This article presents a baffle silencer with tunable resonators for the adaptive noise control of 

varying tonal noise. The tunable resonators consist of two superimposed and identically perforated 

plates associated with cavities. One plate is mobile and when it is moving, the necks of the 

resonators are restricted. The resonance frequency then shifts to lower values. 
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A model of a tunable resonator panel is proposed and validated by experimental measurements. 

This model is used to determine the frequency range at which the silencer will be efficient. It is also 

used to elaborate a strategy to control the silencer. Results show the efficiency of the silencer to 

attenuate a tonal noise that varies between 2000 and 2800 Hz. 

The proposed adaptive noise control system is easy to implement and different from active noise 

control systems based on the interference with secondary noise sources. It can be used for machines 

with variable tonal noises such as fans of aircraft engines and rotating machines controlled at 

variable speed. 

In reference to the model of the tunable resonators baffle, as some of the foreseen applications (e.g. 

fans controlled at variable speed) are exposed to flow, it would be relevant in future work to take 

into account the flow over the perforated interface. It could also be useful to build a model that 

includes high acoustic excitation levels. 

With respect to the silencer, improvements can be made to the system by choosing a smaller 

actuator with a better dynamics to get a more compact solution and to improve the response time of 

the silencer. The control strategy can also be improved by regularly measuring the behavior of the 

silencer and by calculating from these measurements the polynomial used in the control law. This 

update of the polynomial would make the silencer less sensitive to system changes during its use. 
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