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Antoine Perquin1, Gwénolé Lecorvé1, Damien Lolive1, and Laurent Amsaleg2

1 Univ Rennes, CNRS, IRISA
2 Univ Rennes, CNRS, INRIA, IRISA

{antoine.perquin, gwenole.lecorve, damien.lolive,

laurent.amsaleg}@irisa.fr

Abstract. Deep neural networks have become the state of the art in
speech synthesis. They have been used to directly predict signal pa-
rameters or provide unsupervised speech segment descriptions through
embeddings. In this paper, we present four models with two of them
enabling us to extract phone-level embeddings for unit selection speech
synthesis. Three of the models rely on a feed-forward DNN, the last one on
an LSTM. The resulting embeddings enable replacing usual expert-based
target costs by an euclidean distance in the embedding space. This work
is conducted on a French corpus of an 11 hours audiobook. Perceptual
tests show the produced speech is preferred over a unit selection method
where the target cost is defined by an expert. They also show that the
embeddings are general enough to be used for different speech styles with-
out quality loss. Furthermore, objective measures and a perceptual test
on statistical parametric speech synthesis show that our models perform
comparably to state-of-the-art models for parametric signal generation,
in spite of necessary simplifications, namely late time integration and
information compression.

1 Introduction

Unit selection speech synthesis concatenates pre-existing segments of recorded
speech, producing high-quality, natural sounding, oral renderings of sentences [2].
This process optimises a target cost function selecting the units that best match
the linguistic descriptions of the phonemes to synthesize. Quality results from
the involvement of linguistic experts who carefully design that function. These
methods, however, suffer from concatenation errors and cannot generalize outside
the pre-recorded units. Furthermore, they necessitate extremely costly human
expertise, which might not exist when targeting or adapting to other domains or
languages.

Instead, this paper proposes an embedding-based method allowing to rely on
euclidean distances between units when optimizing their selection. Not only is
this cheap compared to human expertise, but embeddings also facilitate domain
adaptation. This paper presents four models, with two of them resulting in phone-
level embeddings for unit selection. Three of them rely on a feed-forward Deep
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Neural Network (DNN) whereas the last one uses a Long Short Term Memory
layer (LSTM). Experiments using a large French speech corpus show that the
use of the embeddings outperforms expert-based unit selection.

A few remarks are in order. One, temporal information can be integrated in
different ways. We compare its early or later integration in DNNs, and study the
use of temporal dependencies brought by an LSTM layer. Two, in an attempt
to understand if mitigating the effects of the curse of dimensionality on the
embeddings is beneficial, three models use varying layers sizes at their core.
Three, as far as we know, no objective metrics for assessing the quality of such
embeddings exist. As a proxy, we evaluate their ability to predict appropriate
acoustic features. Four, in contrast to state of the art contributions that work
for English, we work with French. This is the opportunity to assess how the
embedding-based approach performs on French.

The remainder of this paper is as follows. Section 2 presents related work.
Section 3 discusses the handling of time and dimensionality in the embeddings.
Finally, Section 4 compares our approach to an expert unit selection system.

2 Related Work

The Statistical Parametric Speech Synthesis (SPSS) approach uses vocoders to
synthesize speech from acoustic parameters predicted by a so-called acoustic model
based on linguistic features [1]. Recent models are now based on DNNs [13]. Beside
pros and cons of this approach (good flexibility but low quality), the resulting
prediction models are interestingly independent of any linguistic expertise.

This approach gave rise to different extensions. On the one hand, the Wavenet
model proposes to integrate vocoding in the prediction model, i.e., the raw
waveforms are directly predicted [6]. End-to-end approaches such as [9] go further
by predicting these waveforms directly from text, that is linguistic features are
removed.

On the other hand, prediction models have also been used to transform
linguistic features into other representations, based on which a new target cost for
unit selection can be defined. In turn, the new representation space can be handled
more easily than the symbolic space of the linguistic features. In [12], linguistic
features are converted into acoustic ones based on hidden Markov models. The
Kullback-Leibler divergence is then used as a target cost. Alternatively, [4, 8] have
proposed intermediate representations extracted from hidden layers of DNNs,
also called embeddings.

In [4], each phone is divided into 4 sections for which the mean and variance
of the embedding of each frame is computed. The target cost function is the sum
of the Kullback-Leibler divergence on the mean and variance of the 4 sections.
This showed that there is no loss in the quality of speech when using embeddings
instead of acoustic features. The subdivisions, however, still involve some human
expertise.

In [8], a phone level embedding is obtained with a multi-modal model composed
of an acoustic encoder and a linguistic encoder. The target cost is the euclidean
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Fig. 1. Architecture of the 4 models. Layer sizes are reported. `̀̀ denotes the vector of
linguistic features, d the phone duration, ti the time position in the phone for the i-th
frame, ai the corresponding acoustic features, and N is the total number of frames in
the phone.

distance in the embedding space. This work is very similar to ours, and was
actually conducted at the same time as [7]. Our work focuses on the effect of
various time integration and information compression schemes, rather than those
of multi-modality.

3 Handling of time and dimensionality

A key assumption in our work is that the quality of an embedding is correlated
to the quality of the model from which it is derived, in our case acoustic models.
In this section, different variants of acoustic models are studied, among which
those proposed for unit selection. These models are objectively and perceptually
evaluated to assess the behaviour of embeddings with respect to information
compression and different strategies for time integration. This section first presents
the models under study before describing the experimental dataset, then the
objective and perceptual tests.

3.1 Models

Four models are studied, see Figure 1. The first model is a standard acoustic
model (DNN-S), a simple feed-forward DNN, comparable to the one proposed
in [10]. For a given phoneme, the model predicts acoustic features ai of the
i-th frame based on the linguistic feature vector `̀̀. Those linguistic features
provide information about the phoneme, e.g., its identity, the one of its close
neighbours, its position in the syllable/word/utterance it belongs to, etc. The
timing information is encoded as two numerical features: the phone duration d in
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seconds and the relative position ti of the frame i inside the phone. This timing
information is useful to take into account the dynamics of acoustic features when
realising a phone. For the frame i, the output of the middle layer can be seen as
the frame embedding ei.

The second model, DNN-B, has a similar architecture as DNN-S but introduces
a bottleneck layer. This bottleneck is obtained by gradually decreasing then
increasing the size of the hidden layers. ei is then a compression of the linguistic
features `̀̀. As a side effect, compressing the embedding space avoids the curse of
dimensionality and allows for tractable similarity measures.

The limitation of both models is that the resulting embeddings would only
represent the frame currently predicted, whereas phone-level embeddings are
needed for unit selection. To solve this problem, we propose to postpone making
use of the timing information (d and ti) until after the embedding layer, as in [8].
Applying this principle on DNN-B gives the model DNN-BP, P for Phone-level.
For a given linguistic feature vector `̀̀, we obtain a phone-level embedding e.

Finally, to attempt to model the timing dependency across frames, we propose
to replace the layer after the embedding layer with an LSTM in DNN-BP to obtain
the model LSTM-BP. While the previous models are trained on independent
frames, LSTM-BP is trained on the full frame sequence of the considered phone.
This method decreases the shuffling possibilities over the training set but could
lead to better predictions, and thus better embeddings.

The implementation details of the different models are as follows:

– DNN-S: 5 hidden layers of size 1024. The total number of parameters is 4,75
millions.

– DNN-B: The bottleneck scheme is symmetrically designed: 9 hidden layers
of size 1024, 512, 256, 128, 64, 128, 256, 512, 1024. The total number of
parameters is 1.95 millions.

– DNN-BP: Same as DNN-B, except timing is postponed. The total number of
parameters is 1.95 millions.

– LSTM-BP: Same as DNN-BP, except the second 128 dimensional layer is
replaced with an LSTM layer of size 128 too. The total number of parameters
is 2.04 millions.

All hidden layers rely on the hyperbolic tangent (tanh) activation function. For
all models, the output layer is with a linear activation.

3.2 Dataset and experimental setup

Our models were trained on a corpus corresponding to the reading of a French
audio-book by a professional French speaker resulting in approximately 11 hours
of speech for a total of 3300 utterances (approximately 390 000 phonemes).
Speech is expressive (narration, acted dialogues), and sentences are complex (long
sentences, formal register) due to the style of the audiobook’s author (Marcel
Proust). 105 utterances were held out for the listening test, while the rest was
shuffled at the frame level (or phone level for model LSTM-BP) and then split
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into three sets : 90% for the training set and 5% each for the validation set and
test set.

About 110 linguistic features are considered for each phone. Categorical
attributes represent information about quinphones, syllables, articulatory features,
and part of speech for the current, previous and following words. They are encoded
in one-hot. 34 other features are numerical, such as the position of the phone
inside the word or the utterance. After encoding, the overall linguistic vector is
of size 341. The linguistic features and the timing information were normalised
to the range [0.01, 0.99]. Each linguistic feature was manually extracted, without
automatic annotation.

The acoustic features, extracted using the WORLD vocoder [5], consist of a
60 dimension Mel-Generalized Cepstral coefficients (MGC) vector, a 5 dimension
band-aperiodicity (BAP) vector and the fundamental frequency F0. Those features
were extracted every 5 ms. The F0 coefficient was linearly interpolated on unvoiced
parts, a boolean attribute keeps track whether the frame was voiced or not and the
logarithm was applied to F0. Finally, the deltas and delta-deltas were computed
for MGC, BAP and F0. In total, the acoustic vector is of size 199. The acoustic
features were centered and normalized to unit variance.

The implementation was done using Keras with TensorFlow. Training was
done on a GTX 1080 Ti, over 100 epochs using RMSPROP with the mean square
error as a loss function. The model weights with the best performance on the
validation set were saved. Those models were trained using the true duration
values.

3.3 Objective Evaluation

The 4 models were evaluated in an acoustic modelling perspective. Table 1 reports
the quality of the predicted acoustic features according to the following measures:

– MCD : Mel-Cepstral Distortion on MGC coefficients.
– BAP : a distortion measure on BAPs.
– V/UV : Voiced/unvoiced error rate.
– RMSE(F0) : Root mean squared error on F0.

Those measures are computed between the acoustic features predicted by the
DNNs and the reference acoustic features. The results from a state of the art
acoustic model are also directly reported from [11]. They were not trained on
the same data, nor even the same language. They are presented for the sake of a
sanity check.

First, our measures are higher than those from [11], especially regarding F0

and voicing error. We believe the high error on those two aspects is due to
the high expressiveness of our speech corpus. Taking this into account, these
results can be considered as acceptable. Second, by comparing model DNN-B
and DNN-BP, we can see that the displacement of the timing information raises
the error for all measures by only a small margin. Then, while one would expect
DNN-S to lead to the best results, it appears that its performance is a bit worse
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Table 1. Objective evaluation of the predictions of our models.

MCD BAP V/UV RMSE(F0)
(dB) (dB) (%) (Hz)

DNN-S 5.22 0.48 17.2 18.3
DNN-B 5.06 0.35 12.6 17.9

DNN-BP 5.09 0.36 13.7 18.2
LSTM-BP 5.80 0.49 19.7 19.5

DNN
4.54 0.36 11.38 9.57

(reported from [11])

than for DNN-B and DNN-BP. Possible explanations are the larger number of
parameters for model DNN-S (more difficult to reach the global optimum for
weights) or the larger number of layers in the DNN-B and DNN-BP. At least,
the results show that the bottleneck does not hurt. On the contrary, LSTM-BP
leads to the worst results. This is surprising since adding extra information about
the previous frames should not degrade the prediction. In our opinion, these
results mainly come from the fact that training data are organised as sequences
of frames, thus reducing the diversity of observations during training, whereas
the other models are trained on shuffled frames. Despite those bad results, we
chose to keep LSTM-BP to evaluate the effect of an acoustic model quality on
its embeddings and on the resulting synthesized speech.

3.4 Perceptual Evaluation

The previous objective measures are not perfect estimators of the overall speech
quality. For example, a significant improvement in MCD does not necessarily
translate to a perceptual improvement of the synthesized speech. Thus we want
to observe the perceptual impact of embeddings on SPSS.

For each model, synthetic speech has been generated based on the predicted
acoustic features using an SPSS approach. In practice, the WORLD vocoder is
used. Long utterances were split into breath groups of 4-5 seconds. The timing
information (d and ti) was derived from a duration model (DNN with 6 hidden
layers and tanh activation) predicting the number of frames N of a phone based
on its linguistic feature vector `̀̀. The mean absolute error of this model is 3.7
frames. d is derived by multiplying N by the sampling rate, ti is simply i

N . A
listening test was conducted with 21 French native speakers. They were asked
to rate between 0 and 10 the overall quality of speech utterances. Synthetic
speech coming from the 4 models was presented along with natural speech (NAT)
and utterances vocoded based on the reference acoustic features (VOC). Each
listener was given 10 in-domain utterances and 10 out-of-domain utterances. For
in-domain evaluation, we used the 105 sentences left-out from the dataset, while
for out of domain evaluation we used 100 phonetically balanced French sentences.
Thus, every utterance was rated by at least two different listeners.

In accordance with the objective results, the listening test shows that our
models do not perform well in SPSS mode, as can be seen on Figure 2. While our
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Fig. 2. Results of the listening test for the models in statistic parametric mode for
in-domain utterances.

listeners reacted well to perfect SPSS (analysis-synthesis), giving a 7.2 mean score
to the system VOC, they gave a mean score of around 3 to our first 3 models,
and agreed that system LSTM-BP’s productions were incomprehensible with a
mean score of almost 0. This is not surprising since this system had a higher
MCD than other systems, which is measured on a log-scale. There is no real
statistically significant (p-value greater than 0.05) difference between systems
DNN-S, DNN-B and DNN-BP which proves that the displacement of the timing
information does not cause any perceptual loss in quality. Surprisingly, the natural
speech received a couple of marks below 7. The corresponding utterances were
perceived as having unnatural prosody because they were cut to be shortened.

4 Comparison with Expert Unit Selection

In this section, the proposed unit selection method is compared to a system
where the target cost is defined based on expert knowledge.

4.1 Unit Selection Engine

Once phone-level embeddings have been extracted, we use them to guide the
unit selection process. Before synthesis, for each phone in the database, the
corresponding embedding is computed and stored. At synthesis time, a pre-
selection reduces the set of candidate units to those corresponding to the same
phoneme as the target, in order to reduce the computation time. The number of
candidate units is reduced further by searching the 25 nearest neighbours of the
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Fig. 3. Results of the listening test for the models working in unit selection mode for
in-domain utterances.

target phone in the embedding space among the pre-selected units. Finally, the
lattice of these nearest neighbours for each phone is decoded to find the sequence
of units minimizing the sum of the target and concatenation cost.

The target cost is defined as the euclidean distance in the embedding space
between the candidate and target phone. For the expert system, the target cost
was originally defined as a weighted sum of linguistic features and has since been
improved over the years. The join cost for all systems is the same as in [3], defined
as a sum of euclidean distances on acoustic features between following candidate
units.

4.2 Perceptive Evaluation

Since there is no proposed measure in the literature to evaluate the quality of
an embedding in relation to speech synthesis, we directly address the subjective
evaluation of the embeddings with listening tests. The results for in-domain and
out-of-domain utterances can be found on Figure 3 and Figure 4 respectively.

For in-domain utterances, the 3 proposed models were all awarded really
high grades (multiple times rated with a 10/10 score for each system) but also
really low notes (up to 0 for system DNN-BP). However, on average, the expert
system received a mean score of 5.4, system DNN-BP received 6.8 and system
LSTM-BP received 6.6. While we cannot statistically distinguish the two systems
with embeddings (p-value greater than 0.05), both are a statistically significant
improvement over the expert system. Interestingly, even if the system LSTM-BP
performed really poorly for SPSS, it receives good results for the unit selection
paradigm.
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Fig. 4. Results of the listening test for the models working in unit selection mode for
out-of domain utterances.

For out-of-context utterances, natural speech from the same voice as the one
used in the database was unavailable. The expert system received a mean score of
5.9, system DNN-BP received 7.0 and system LSTM-BP received 6.4. This time,
the difference between the two systems using embeddings is significant. However,
they both perform without significant loss over in-domain synthesis. Surprisingly,
the expert system appears to have been better rated on out-of-domain utterances.
A probable explanation is the absence of natural speech as a higher baseline
during the MUSHRA test. Still, the embedding systems remain significantly
better than the expert one proving that the embeddings are general enough to
be used in other domains.

5 Conclusion

In this paper, we proposed two models to extract phone-level embeddings in
the context of DNN-driven unit selection. The models were compared to other
DNNs on the task of acoustic modeling. The experiments highlighted that late
integration of time and information compression (bottleneck) do not impact the
quality of feature prediction, even though the use of LSTM did not seem conclusive
yet. Then, experiments on unit selection showed that quality of synthesized speech
based on embeddings resulting from our models is perceptually preferred over an
approach with an expertly defined target cost. They also demonstrated that the
proposed embeddings are general enough to be used in multiple domains.

Besides these results, our study also highlights the fact that the link between
the acoustic feature prediction and the quality of unit embeddings is not clear.
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For instance, the LSTM-BP model led to good unit selection results whereas
it was very bad for SPSS. It would thus be interesting to further study how
embeddings could be evaluated with objective measures, e.g. by analyzing the
topological properties of the embedding spaces. Then, extensions of the proposed
models should be tested to produce better embeddings, and to better understand
dependencies across different types of information. Multi-modality, as in [8], is a
first direction. The integration of duration into the embeddings is another. Finally,
our objective in the long term is to deal with large heterogeneous speech databases
(different speakers, different languages, etc.). Apart from the previously raised
questions, this would require to study the compliance of the embeddings with
fast database searches, especially in regard to approximate nearest neighbours
techniques.
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