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Full Length Article

Tar conversion over olivine and sand in a fluidized bed reactor using toluene
as model compound
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A B S T R A C T

The aim of this work is to study the tars conversion in conditions representative of biomass gasification in a
fluidized bed reactor. Experiments are conducted at 850 °C and atmospheric pressure in a fluidized bed reactor
with toluene as tar model. Influences of the nature of the media (sand and olivine) and of the reactive atmo-
sphere (steam and hydrogen partial pressures) on toluene conversion are particularly studied. The steam and
hydrogen partial pressures were varied in the range of 0.05 to 0.4 bars and 0 to 0.2 bars, respectively. Results
showed a strong influence of these parameters on toluene conversion. Olivine was found to have a catalytic
activity towards steam reforming reactions which depends on the ratio P P/H H O2 2 in the reactor. Both thermo-
dynamic equilibrium and surface analyses (EDX and XRD) of olivine particles suggested that this ratio controls
the oxidation/reduction of iron at the olivine surface. Besides, iron is more active towards tars removal when its
oxidation state is low. At 850 °C and >P P/ 1.5H H O2 2 , the iron is reduced to form native iron (Fe0) on the olivine
surface which favors the steam reforming of toluene.

1. Introduction

Biomass gasification is considered as a promising alternative route
to replace fossil energy for the production of syngas. It is a thermo-
chemical conversion occurring at high temperatures with many si-
multaneous reactions. Fig. 1 presents a simplified diagram which de-
scribes the biomass transformations in successive steps according to the
temperature and the reactive atmosphere.

(i) For temperatures above 350 °C, biomass undergoes a fast thermal
conversion. This pyrolysis step converts the biomass into volatile
products, either condensable (steam and primary tars) or non-
condensable (H2, CO, CO2, CH4 and C2Hx) and a solid residue
called char [1].

(ii) For temperatures greater than 700 °C, the gasification step con-
verts the char into synthesis gas by reaction with steam and carbon
dioxide.

(iii) Milne and Evans [2] suggested that tars from biomass pyrolysis can
be classified as primary, secondary and tertiary tars according to
the reactor temperature. Primary tars are a mixture of oxygenated
compounds coming from cellulose, hemicellulose and lignin con-
versions. The decomposition of cellulose and hemicellulose mainly
leads to the formation of levoglucosan, hydroxyaldehydes and
furfurals while methoxyphenols are mostly produced from the

conversion of lignin. Above 500 °C, primary tars are converted into
secondary tars which are characterized by phenolic and olefin
compounds. Finally, for temperatures above 750 °C, the primary
tars are completely destroyed and the tertiary tars appear. They
include methyl derivatives of aromatics and Polycyclic Aromatic
Hydrocarbon (PAH) series without substituents.

The reactive system of biomass conversion (i.e. pyrolysis and gasi-
fication) is an endothermic process. A contribution of energy is neces-
sary in order to maintain the temperature and the different reactions in
the reactor. One of the most promising technologies for biomass gasi-
fication at large-scale is dual fluidized bed (Fast Internally Circulating
Fluidized Bed, FICFB). It consists of two interconnected reactors: a
dense fluidized bed endothermic gasifier (operating around 850 °C)
which produces the syngas from biomass gasification, and an entrained
bed exothermic reactor that burns a part of the residual char to provide
heat to the gasifier. A bed material (sand, olivine or catalyst particles)
circulates between the two reactors to transfer the heat.

During biomass gasification, the high temperature in the gasifier
leads to the presence of refractory tars (tertiary tars) which con-
taminates the finally produced synthesis gas [3]. Indeed, they may lead
to condensation, polymerization and clogging in the exit pipes. For
instance, Table 1 gives the maximum tars concentration acceptable for
different syngas applications. Besides, the works of de Sousa [4]
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showed that, for gasification experiments in a fluidized bed reactor, the
main tertiary tars are benzene, toluene and naphthalene.

The removal of tars is a primordial technological barrier hindering
the development of biomass gasification. Several approaches for tars
removal can be found in the literature and are classified into two types:
treatment inside the gasifier itself (primary methods) or gas cleaning
outside the gasifier (secondary methods) [5]. The secondary methods
include tars removal through chemical treatments either thermally or
catalytically, or physical treatments such as tars condensation, gas/li-
quid separations or filtration [2]. Tars removal by secondary methods
have been widely investigated and are well established in the literature
[2,5]. The primary treatments may have the advantages in eliminating
the use of downstream cleanup processes and depend on the operating
conditions, the type of bed particles and the reactor design.

The use of catalytic solids in the gasifier has shown to be one of the
best approaches to reduce tars content in the syngas [6]. Various cat-
alysts were investigated in biomass gasification for tars conversion and
have been discussed in several reviews [5,7–9]. Among them, calcined
dolomite and olivine as well as Ni-based catalysts were found to have a
strong catalytic activity.

A general agreement is drawn in the literature on the significant
effect of dolomite as tars removal catalyst [10–13]. This natural solid is
relatively inexpensive and disposal. Its calcination at high temperatures
leads to the decomposition of the carbonate mineral to form MgO-CaO
which is the main active catalytic component. However, this solid is not

appropriate for use in fluidized bed reactors due to its low attrition
resistance.

Olivine is another natural inexpensive and disposable mineral with
a global formula −(Mg Fe ) SiOx x1 2 4. Many studies were carried out to
determine and understand the catalytic effect of olivine [10,14–23]. For
instance, some authors [12,18–23] compared results obtained from
biomass gasification in a fluidized bed reactor with either olivine or
inert sand particles. They concluded that the presence of olivine in the
reactor leads to a lower tars content, a higher syngas yield, an increase
in the H2 and CO2 content and a decrease in the amount of CO and CH4.
They attributed this effect to the catalytic activity of olivine towards the
tars removal and the Water-Gas-Shift reaction (Reaction (III)). In the
literature [15,24], the catalytic performance of olivine is related to the
presence of segregated iron at the particle surface which may have
different oxidation states (i.e. iron(III), iron(II) and native iron). Devi
et al. [15] mentioned that the calcination of olivine prior to experi-
ments is essential and the presence of segregated iron is optimal for
calcination at 900 °C and 10 h. For olivine calcination between 400 and
1100 °C, a part of the iron is ejected from the olivine structure ac-
cording to the following reaction [24,25]:

+
−

→ + − + −−
x

x x x(Mg Fe ) SiO
1

2
O Mg SiO (1 )Fe O (1 )SiOx x1 2 4 2 2 4 2 3 2

(I)

Under reducing atmosphere, the reduction of Fe O2 3 occurs in two
steps [24,25]:

• the reduction of Fe O2 3 into Fe O3 4 for temperatures between 350 and
500 °C,

• the reduction of Fe O3 4 into FeO and −α Fe between 500 and 900 °C.

Several researchers [11,17,26] concluded that iron is more active
towards tars removal when its oxidation state is low. For instance,

Fig. 1. Diagram of steam gasification of biomass and tars formation.

Table 1

Maximum tars concentration in the syngas for different applications.

Application Maximum concentration Ref.

IC Engines 100 mg.Nm−3 [36]
Methanation process 5 mg.Nm−3 [2,37]
Fischer-Tropsch 0.1 mg.Nm−3 [38]



+ → +C H H O CO H7 7 117 8 2 2 (II)

The Water-Gas-Shift reaction (WGS) occurs simultaneously:

+ ↔ +CO H O CO H2 2 2 (III)

In reality, some works in the literature [14,29] suggested that Re-
action (II) may be divided into two different reactions in series: the
carbonaceous solid deposition on the solid surface by tars polymeriza-
tion or cokefaction followed by the steam gasification/reforming of the
carbonaceous solid.

Other reactions must be considered during toluene conversion in the
presence of steam and hydrogen. Toluene can react with steam to
produce benzene, CO and H2 from the reaction of steam dealkylation
(Reaction (IV)) or with hydrogen to form benzene and methane ac-
cording to the hydrodealkylation reaction (Reaction (V)) [35]:

+ → + +C H H O C H CO H27 8 2 6 6 2 (IV)

+ → +C H H C H CH7 8 2 6 6 4 (V)

The purpose of the present paper is to study the cracking and re-
forming of tar in conditions representative of biomass gasification in a
fluidized bed reactor. Toluene is used as tertiary tar model. The effect of
the solid medium (sand and olivine) and the reactive atmosphere
(steam and hydrogen partial pressures) in the fluidized bed reactor on
toluene conversion is particularly studied. Experiments are carried out
at 850 °C and at atmospheric pressure. Effects of steam partial pressure
ranging from 0.05 to 0.4 bars and hydrogen partial pressure between 0
and 0.2 bars are investigated. The catalytic effect of olivine is high-
lighted by EDX and XRD analyzes combined to the thermodynamic
equilibrium of iron. Finally, a schematic diagram of the catalytic con-
version of tars over olivine is proposed.

2. Experimental section

2.1. Solid media

The physicochemical properties of the solid particles used as flui-
dized media are given in Table 2. The apparent and true densities were
determined from mercury porosimetry and helium pycnometry, re-
spectively. εp corresponds to the porosity of a single particle (sand or
olivine) and was calculated from values of the apparent and the true
density.

Olivine was purchased from the Austrian company Magnolithe
Gmbh. After receipt, the particles were calcined at 900 °C for 4 h in a
fluidized bed reactor before being sieved between 200 and 300 μm. Its
composition were characterized after calcination by 19.4 wt% of Si,
31.4 wt% of Mg, 41.9 wt% of O and 6.8% of Fe [14]. In the following,
this olivine will be referred to “calcined olivine”. The minimum flui-
dization velocity (Umf) of olivine was measured experimentally with
nitrogen and is equal to 3.7 cm/s at 850 °C.

Sand was calcined following the same procedure and sieved to ob-
tain particles size between 200 and 300 μm.

2.2. Experimental setup

The experimental setup is shown in Fig. 2. The fluidized bed reactor
consists of a tube of internal diameter of 5.26 cm and a height of 94 cm
heated by an electric furnace delivering 2.6 kW of electric power. About
580 g of solids particles (sand or olivine) are used as fluidized solids.

The reactor is supplied with N2, H2, H2O and toluene. The nitrogen
and hydrogen flow rates are carefully regulated by two mass flowmeters
Aera FC-7700-CD. H2O is fed by a pump Gilson 305 100SC. The feeding
gases are preheated between 200 and 300 °C in a stainless steel tube
forming a coil around the reactor. The coil is supplied with liquid water
which is continuously vaporized. Then, preheated gases enter in a wind
box beneath the reactor in which the toluene is continuously injected by
a pump Gilson 305 25SC. The wind box is partially filled with porous
silicon carbide (SiC). This structure is used as a mixing zone and favors
the toluene vaporization. The gas distribution in the bed is done by a
perforated plate of 19 orifices equipped at its base by a stainless steel
sieve with 30 μm of mesh.

The temperature inside the fluidized bed is controlled by two
thermocouples located at 5 and 25 cm above the distributor. The former
is used to regulate the temperature of the reactor using a PID controller.
A differential pressure transmitter is connected at 5 and 500 mm above
the distributor in order to follow the pressure drop of the bed. At the
reactor outlet, the elutriated particles and the condensable gases are
collected by a cyclone and a condenser, respectively.

2.3. Sampling method and gas analysis

The sampling of gases is carried out by a stainless steel mobile probe
located at the fluidized bed surface. A thermocouple is placed inside the
mobile probe to measure the precise temperature at the entrance of the
probe. The gas sample is sucked by a vacuum pump connected to a
flowmeter (constant volume flow rate of 100 mL.min−1 at STP). At the
mobile probe outlet, the pumped gas passes through a cyclone and a
filter to separate gas from particles and through a wash-bottle cooled at

Table 2

Physicochemical properties of the solid media.

Particles type d32 True density ρt Apparent
density ρp

Porosity εp Umf (850 °C)

(μm) (kg.m−3) (kg.m−3) (%) (m.s−1)
Sand 246 2650 ± 2 2400 ± 20 9 2.9
Olivine 264 3265 ± 2 2965 ± 20 9 3.7

~

metal iron (α−Fe) was found to be an active phase for CeC and CeH 

bonds breaking in hydrocarbons [25,27,28]. Hence, the reactive gas 
atmosphere (i.e. oxidizing or reducing) is a key parameter for the cat-
alytic activity of olivine. During phenol-based tars conversion over 
olivine and sand at 850 °C, Nitsch et al. [14] concluded that high steam 

partial pressures promote the oxidation of olivine and hinders its cat-
alytic activity while low pressures give reduced active sites and a high 

activity in steam reforming of tars. Consequently, the authors described 

a mechanism of the catalytic decomposition of tars over olivine similar 
to the one proposed by Uddin et al. [29]. The reaction scheme sug-
gested that reduced irons on the olivine surface yield to tars poly-
merization by cracking or cokefaction reactions followed by the steam 

gasification/reforming of the carbonaceous solid deposit. Overall, bib-
liographic works concluded that olivine has a higher mechanical re-
sistance but a slightly lower activity in tars removal compared to do-
lomite [9,12,18]. For instance, in the case of biomass gasification with 

air in a fluidized bed reactor, Corella et al. [10] reported that dolomite 

is 1.4 times more effective for in-bed tars removal than olivine but it 
generates 4–6 times more fine particulates in the gasification gas. In the 

case of gasification in FICFB process, the solid medium resistance to 

attrition phenomena is a key parameter. Therefore, olivine seems to be 

the best compromise compared to dolomite.
Ni-based catalysts were widely investigated in the literature for tars 

conversion from biomass gasification [18,30–32]. This material showed 

a strong catalytic effect in steam reforming of both hydrocarbons and 

methane. Besides, at high temperatures, nickel may favor the formation 

of hydrogen and carbon monoxide in the exiting gas. The two major 
problems with Ni-based catalysts are the fast deactivation due to carbon 

deposition on the solid surface and its lower resistance to attrition in 

fluidized bed reactors compared to olivine.
During toluene conversion, many parallel and consecutive reactions 

can take place [30,33,34]. Toluene may react with steam to produce H2 

and CO according to the global steam reforming reaction:



0 °C to remove any traces of water. At this temperature, the theoretical
condensation of toluene occurs when its partial pressure exceeds
0.0093 bars. To prevent any condensation of steam, all of the lines from
the reactor to the entrance of the condensation system are heated to a
temperature of 150 °C.

The sample is sent online to a Gas Chromatograph (GC)
Thermoscience Trace GC Ultra equipped with a 30 m× 0.53 mm ID
0.5 μm capillary TR-5 column with 5% Phenyl Methylpolysiloxane he-
ated at 60 °C for 6 min. A Flame Ionization Detector (FID) enables to
quantify both benzene and toluene.

A micro Gas Chromatograph (micro GC) is used to online analyze
the non-condensable gases. It is equipped with a Poraplot U
10 m× 0.25 mm ID column connected to a Thermal Conductivity
Detector (TCD) calibrated for CO2 quantification. A CP-Molsieve 5 A
10 m× 0.25 mm column connected to a TCD is calibrated for the

analyses and quantification of N2, H2, O2, CH4 and CO. The time-lapse
between two quantifications is about 3 min.

2.4. Operating conditions and data treatments

The tests were conducted at atmospheric pressure and a tempera-
ture of 850 °C. The total molar flow rate at the entrance of the reactor
was kept constant and equal to 0.35 mol.min−1 so that the gas velocity
was set to 7 times the minimum fluidization velocity of olivine at
850 °C. In this case, the bed porosity has been determined experimen-
tally and is equal to 0.6. Based on literature data regarding the amount
of tars during biomass gasification [2,4], the toluene partial pressure in
the reactor was fixed to 0.005 bar which corresponds to 20.3 g.Nm−3.
The effect of solid media was studied using sand and olivine particles
while the influence of steam and hydrogen partial pressures was
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Fig. 2. Experimental setup used for toluene conversion.



investigated in the range of 0 to 0.4 bars and 0 to 0.2 bars, respectively.
The different operating conditions of each experiment are presented

in Table 3.
For each experiment, the composition of both the non-condensable

gases and the tars are analyzed as a function of time. The nitrogen is not
involved during the toluene conversion and is only used as an inert gas
for mass balances. Once a steady state is achieved (i.e. no variation in
the molar fractions of each component), the molar fractions of each
component are averaged and the total molar flow rate is calculated
according to the following expression:

=n
n

x
̇

̇
t

N

N

2

2 (1)

where nṫ is the total molar flow rate (mol.min−1), n ̇N2 represents the
molar flow rate of nitrogen at the entrance of the reactor (mol.min−1)
and xN2 is the averaged measured molar fraction of nitrogen at the
reactor outlet.

The partial molar flow rate of each component is calculated as
follows:

=n x ṅ · ̇i i t (2)

where ni̇ and xi are the partial molar flow rate and the averaged molar
fraction of component i at the reactor outlet, respectively
( =i C H CO CO CH C H, , , and6 6 2 4 7 8).

The normalized distribution of carbon-containing species at the
reactor outlet is given by the following expression:

=X
n γ

n

̇ ·

7· ̇
i

i i

C H
in
7 8 (3)

where γi represents the number of carbon atoms in the component i and
n ̇C H

in
7 8

is the toluene molar flow rate at the entrance of the reactor
(mol.min−1).

It is important to note that Xtoluene given in Eq. (3) corresponds to the
amount of toluene which was not converted during the experiment.

The toluene conversion, noted Xc, is defined as the ratio between
the total carbon molar flow rate of produced species C6H6, CO, CO2 and
CH4 and the carbon molar flow rate of introduced C7H8.

= − =
+ + +

X X
n n n n

n
1

6· ̇ ̇ ̇ ̇

7· ̇
c toluene

C H CO CO CH

C H
in

6 6 2 4

7 8 (4)

Finally, selectivities of carbon-containing products are defined ac-
cording to the equation below:

=
−

S
n γ

n n

̇ ·

7·( ̇ ̇ )
j

j j

C H
in

C H7 8 7 8 (5)

where Sj is the selectivity of component =j j C H CO CO CH( , , and )6 6 2 4 .
Each experiment obtained a total molar carbon balance between 91

and 104%. These small deviations may originate from two different
phenomena:

• the small variation in the piston pumps which supply liquid toluene
and water to the reactor;

• the carbon formation on the solid surface by tars polymerization or
cokefaction. However, some authors in the literature [14] reported
that carbon deposition remains low in the presence of steam.

Therefore, carbon deposition on the solid surface was not con-
sidered in the carbon balance calculation.

Besides, some experiments (i.e. experiments S_1c and S_2a, O_1c and
O_2a, and O_2d and O_3c, see Table 3) have been repeated with a time
lapse of 2 months. The results showed a very good repeatability of the
replicate experimental measurements. Besides, for these replicate ex-
periments, an average value of Xi, Xc and Sj has been taken into ac-
count.

2.5. Characterization techniques

Samples of calcined olivine and olivine recovered after the experi-
ment O_3d were analyzed in order to identify iron-rich zones and to
determine the oxidation state of the free iron at the solid surface. These
olivine particles have a spheroidal shape with a diameter between 200
and 300 μm. The samples were characterized through different tech-
niques:

• Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray
spectroscopy (EDX) on a SEM FEG JSM 7100 FTTLS apparatus,

• X-ray diffraction (XRD) on a Bruker instrument using Cu Kα radia-
tion with a wavelength of 1.5418 Å in order to observe the presence
of crystalline phase. The diffractograms were recorded between 10
and 50°.

2.6. Thermodynamic equilibrium of iron

The thermodynamic equilibrium of iron was calculated with the
software HSC Chemistry 5.11 in order to highlight the effect of H2O and
H2 on the oxidation and reduction of iron. At the initial state, the
presence of Fe, O and H elements is considered. The amount of H2O is
fixed while the one of H2 continuously increased. Besides, H2 and H2O
are taken in large excess compared to iron. Toluene is not considered in
the reactive gases since its presence leads to the formation of CO and
H2.

The calculation is based on the minimization of the Gibbs free en-
ergy. For a closed system with Nc compounds, this energy is calculated
as:

∑= +
=

G n µ RTln a·( ( ))
i

N

i i i

1

0
c

(6)

With G the Gibbs energy (J), ni the amount of i in the system (mol), µi
0

is the standard chemical potential of i (J.mol−1), R is the universal gas
constant (J.mol−1.K−1) and ai is the activity of i.

Table 3

Operating conditions of each experiment, 850 °C and Ftotal = 0.35 mol.min−1, (experi-
mental error on Xc corresponds to the uncertainty due to replicate experimental mea-
surements).

Exp. PH2 PH O2 PN2 PC7H8 Medium P P/H H O2 2 Xc

– (bar) (bar) (bar) (bar) – (–) (%)
S_1a 0 0.4 0.595 0.005 Sand 0 3.9
S_1b 0 0.2 0.795 0.005 Sand 0 3.7
S_1c 0 0.1 0.895 0.005 Sand 0 4.3 ± 0.5
S_1d 0 0.05 0.945 0.005 Sand 0 4

S_2a 0 0.1 0.895 0.005 Sand 0 4.3 ± 0.5
S_2b 0.05 0.1 0.845 0.005 Sand 0.5 17.8
S_2c 0.1 0.1 0.795 0.005 Sand 1 24.6
S_2d 0.2 0.1 0.695 0.005 Sand 2 33.9

O_1a 0 0.4 0.595 0.005 Olivine 0 32.7
O_1b 0 0.2 0.795 0.005 Olivine 0 30.9
O_1c 0 0.1 0.895 0.005 Olivine 0 33 ± 3.5
O_1d 0 0.05 0.945 0.005 Olivine 0 27.1

O_2a 0 0.1 0.895 0.005 Olivine 0 33 ± 3.5
O_2b 0.05 0.1 0.845 0.005 Olivine 0.5 36.4
O_2c 0.1 0.1 0.795 0.005 Olivine 1 42.6
O_2d 0.2 0.1 0.695 0.005 Olivine 2 90 ± 1

O_3a 0.2 0.4 0.395 0.005 Olivine 0.5 40.0
O_3b 0.2 0.2 0.595 0.005 Olivine 1 40.9
O_3c 0.2 0.1 0.695 0.005 Olivine 2 90 ± 1
O_3d 0.2 0.05 0.745 0.005 Olivine 4 99.5

M. Morin et al.



3. Results and discussion

3.1. Experiments with sand particles

Toluene degradation in the fluidized bed reactor was investigated at
850 °C for different steam and hydrogen partial pressures with sand as
fluidized particles.

Fig. 3 presents the effect of steam partial pressure between 0.05 and
0.4 bars on toluene conversion. It can be seen that 96% of the toluene
introduced in the reactor is not converted. The toluene conversion Xc

less than 4% gave rise to the formation of a very small amount of
benzene and CO. This formation may originate from the reaction of
steam dealkylation (Reaction (IV)). Besides, an increase in the steam
partial pressure does not reveal any influences on toluene conversion.

The effect of hydrogen partial pressure was studied in the range of
0–0.2 bars for a constant steam partial pressure of 0.1 bars. The results
are given in Fig. 4. It emphasizes that an increase in the hydrogen
partial pressure leads to a higher toluene conversion. For instance, the
toluene conversion is equal to 4, 18, 25 and 34% for a hydrogen partial
pressure of 0, 0.05, 0.1 and 0.2 bars, respectively. Besides, this figure
shows that the main carbonaceous produced compounds are benzene,
CO, CO2 and CH4. Fig. 5 presents the produced molar flow rates of both
benzene and CH4 versus hydrogen partial pressure. The two molar flow
rates were found to be very close to each other. This indicates that the
presence of C6H6 and CH4 are the results of the hydrodealkylation of
toluene in the presence of hydrogen according to Reaction (V). The
small interval observed in Fig. 5 may originate from Reaction (IV)

which is thermodynamically favored at low hydrogen partial pressures.

3.2. Experiments with olivine particles

Three sets of experiments were conducted with olivine as fluidized
medium (i.e. experiments O_1, O_2 and O_3, see Table 3).

Fig. 6 (A) illustrates the influence of steam partial pressure on the
normalized distribution of carbon-containing species during the
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conversion of toluene (experiment O_1). The results show that, in the
presence of olivine particles, about 30% of the introduced toluene is
converted into carbonaceous compounds such as C6H6, CO, CO2 and
CH4. Besides, it was found that the toluene conversion is independent of
the steam partial pressure. The very small amount of CH4 in the pro-
duced gases indicates that benzene is mainly formed according to Re-
action (IV). Fig. 6 (B) shows the selectivities of both CO and CO2 versus
steam partial pressure. It was found that the CO selectivity decreases by
raising the steam partial pressure while the CO2 selectivity increases.
This evolution is due to the effect of the WGS reaction (Reaction (III))
which is thermodynamically favored when the steam partial pressure
increases.

In the second set of experiments, the effect of hydrogen partial
pressure on the toluene conversion is examined between 0 and 0.2 bars
for a constant steam partial pressure of 0.1 bars. The results are high-
lighted in Fig. 7. It can be observed that the toluene conversion in-
creases by raising the hydrogen partial pressure. For instance, with 0.2
bars of hydrogen partial pressure and 0.1 bars of steam partial pressure,
91% of toluene is converted essentially into CO and CO2 while a very
small amount of benzene is detected. This indicates that Reactions (IV)
and (V) are no longer favored with this operating condition. The pro-
duced CO and CO2 are mainly from the reactions of steam reforming of
toluene and the WGS reaction.

From results given in Fig. 7, it seems that both steam and hydrogen
partial pressures play a significant role in toluene conversion over oli-
vine. Therefore, experiments O_2 and O_3 were combined in order to
emphasize the effect of P P/H H O2 2 on toluene conversion at 850 °C with
olivine. The results are given in Fig. 8(A) and (B). Several conclusions
can be drawn:

• For ⩽P P/ 1H H O2 2 , a constant toluene conversion of about 40% is
obtained with the presence of a non-negligible amount of benzene in
the output gas. The reactions of hydrodealkylation and steam
dealkylation as well as the WGS reaction are favored and lead to the
formation of C6H6, CO, CO2 and CH4.

• For =P P/ 2H H O2 2 , a toluene conversion of 90% is obtained. A very
small amount of benzene and CH4 is produced which emphasizes
that olivine catalyzes the reaction of steam reforming (Reaction
(II)).

• Finally, for =P P/ 4H H O2 2 , less than 1% of toluene is not converted.
The carbonaceous products detected are CO and CO2 and a very
small amount of CH4. Besides, the selectivity of benzene strongly
decreases to 0.

3.3. Characterization of olivine particles

In order to highlight the catalytic effect of olivine, characterization
of this material after a test with PH2 = 0.2 bars and PH O2 = 0.05 bars
(experiment O_3d) was performed using EDX and XRD analyses. In this
condition, P P/H H O2 2 is equal to 4. According to Fig. 8, olivine showed a
strong catalytic activity towards toluene conversion. In the following,
this olivine sample will be referred to “reduced olivine”. The results are
compared to those obtained with calcined olivine.

3.3.1. EDX analysis

Fig. 9 presents a SEM picture of a calcined olivine particle in which
EDX analysis is performed on the surface of a grain. The atomic dis-
tribution of iron, oxygen, magnesium and silicon is given along a line
and shows a significant variation of each compound. However, oxygen
is always present in large excess which suggests that, in the case of
calcined olivine, iron is mainly oxidized.

The EDX analysis along a line of the reduced olivine particle is given
in Fig. 10. It can be seen that, on the first 10 µm along the line, iron is
the only detected element without any oxygen traces. From 10 µm to
25 µm, magnesium, silicon and iron are detected but oxygen is no
longer in large excess compared to Fig. 9. Therefore, the reduced oli-
vine sample may contain some traces of native iron (Fe0) on its surface.
This Fe0 might be formed by iron reduction on olivine surface under
reducing atmosphere with ⩾P P/ 2H H O2 2 .

3.3.2. XRD analysis

Fig. 11 presents the comparison between the XRD spectra of cal-
cined and reduced olivine in the 2θ= 10–50° range. The data indicate
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that the main diffraction peaks of both calcined and reduced olivine are
characteristic of the forsterite phase (Mg2SiO4). Additional peaks were
also observed which correspond to secondary crystalline phases in-
cluding enstatite (Mg2Si2O6) observed at 2θ = 28.1° and 31.1° [39] and
hematite (Fe2O3) at 2θ = 33.2°. A moderate peak at 42° also appears on
both the reduced and the calcined olivine spectra which can be at-
tributed to the presence of FeO [17]. Michel et al. [39] also mentioned
that, after olivine calcination, numerous phases of iron oxide are pre-
sent such as γ-Fe2O3, α-Fe2O3, Fe3O4, or MgFe2O4 which are difficult to
distinguish by X-ray diffraction.

The feature of interest in these spectra is the strong peak at
2θ= 44.5° observed on the reduced olivine sample. This band corre-
sponds to metallic iron ( −α Fe) [40,41] and is associated with the pre-
sence of native iron (Fe0) on the particle surface.

Therefore, the comparison between XRD spectra of calcined and
reduced olivine highlighted the presence of characteristic peaks of
olivine structure on both spectra. However, a strong peak corre-
sponding to metallic iron ( −α Fe) was detected for the reduced olivine
which suggests that this sample contains a large amount of native iron
Fe0 on its surface.

3.3.3. Thermodynamic equilibrium of iron

The thermodynamic equilibrium of iron versus P P/H H O2 2 ratio is
given in Fig. 12 for a constant temperature of 850 °C. Two zones can be
emphasized in the figure. First, for a P P/H H O2 2 ratio up to 1.5, FeO is the
main oxidized specie. In this case, olivine showed a low catalytic ac-
tivity. For P P/H H O2 2 ratios above 1.5, native Fe (Fe0) becomes the
predominant element and olivine has a very significant catalytic effect.
These results are in good agreement with experimental data given in
Fig. 8 and XRD spectra of Fig. 11 which report that, for a P P/H H O2 2 ratio
higher than 2, native iron is present on the olivine surface and catalyzes
the steam reforming reaction of toluene.

3.4. Mechanism of toluene decomposition and olivine oxidation/reduction

At 850 °C, olivine showed a strong catalytic activity in steam re-
forming of toluene for a P P/H H O2 2 ratio higher than 2. Characterization

Fig. 9. SEM picture and EDX analysis of an iron-rich zone
along a line on the calcined olivine surface.

Fig. 10. SEM picture and EDX analysis of an iron-rich zone
along a line on the olivine surface particle recovered after
experiment O_3d.
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of olivine by EDX and XRD analyses combined to the thermodynamic
equilibrium of iron revealed that the presence of native iron Fe0 is re-
sponsible of the catalytic activity of olivine. Besides, several works in
the literature [14,29] mentioned that tars conversion over an iron
catalyst occurs in two steps: the tars polymerization on the catalyst
surface followed by the steam gasification/reforming of the carbonac-
eous deposit.

Fig. 13 presents a schematic diagram of the catalytic mechanism of
tars conversion over olivine. It can be divided into four steps.

(i) Reduction step: for P P/H H O2 2 ratios higher than 1.5, the reactive
atmosphere is reducing enough to form native iron on the olivine
surface. FexOy is then reduced to native Fe0. This reduction step
may also take place in the presence of carbon monoxide.

(ii) Polymerization step: the reduced iron active sites at the olivine
surface catalyze the reaction of polymerization of toluene which
leads to a carbonaceous solid deposition on the catalyst. This step
yields to a large formation of hydrogen.

(iii) Steam reforming/gasification step: The produced carbonaceous
deposit reacts with steam to produce CO and H2 by steam re-
forming or gasification of carbon. The WGS reaction may also
occur in the gas phase to produce CO2.

(iv) Finally, in the presence of oxidizing atmosphere (i.e. large amount
of H2O or oxygen), the native iron is oxidized which gives rise to
iron with different oxidation step (Fe(III), Fe(II) and Fe0).

Consequently, during biomass gasification in FICFB process, it is
essential to carefully control the amount of H2O and H2 in the gasifier in
order for the gas atmosphere to be reducing enough to form native iron
on the olivine surface. In this case, tars conversion in the gasifier would
be catalyzed by olivine particles and would reduce the amount of tars in
the process output. This might be carried out by reinjecting the product
syngas in the gasifier which would lead to an increase in the reducing
gas atmosphere and a decrease in the steam partial pressure.

4. Conclusion

This paper presented a study of tar conversion over olivine and sand
in a fluidized bed reactor using toluene as tar model. The effect of the
solid medium (sand or olivine) and of the reactive atmosphere was
investigated in order to understand the influence of H2 and H2O on the
catalytic activity of olivine.

Experiments were performed at 850 °C and atmospheric pressure for
steam partial pressures between 0.05 and 0.4 bars and hydrogen partial
pressures in the range of 0 to 0.2 bars.

Results showed that, in the presence of sand particles in the reactor,
the steam partial pressure has no effect on toluene conversion. The
addition of hydrogen in the reactive atmosphere leads to a partial

toluene conversion by hydrodealkylation reaction to produce large
amounts of benzene. In the presence of olivine particles in the fluidized
bed, the steam partial pressure gave rise to toluene conversion by steam
dealkylation reactions.

Besides, it was found that toluene conversion was substantially
improved by adding hydrogen in the gas atmosphere. In particular, the
catalytic effect of olivine was related to the P P/H H O2 2 ratio in the re-
actor. When >P P/ 1.5H H O2 2 , the gas is reducing enough to form re-
duced iron active sites (Fe0) on the olivine surface which catalyzes the
steam reforming of toluene. For a =P P/ 4H H O2 2 , 99.5% of the carbon
content in the introduced toluene is converted into CO and CO2.

Finally, on the basis of literature data, a schematic diagram of the
catalytic mechanism of tars conversion over olivine was proposed. It
indicates that steam reforming of toluene is catalyzed by the presence of
native iron and is divided into two steps: the tars polymerization at the
olivine surface leading to the formation of a carbonaceous solid fol-
lowed by the steam reforming or gasification of the solid deposit.
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