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Abstract

Infinite types and formulas are known to have really curious and un-
sound behaviors. For instance, they allow to type Ω, the auto-autoapplication
and they thus do not ensure any form of normalization/productivity. More-
over, in most infinitary frameworks, it is not difficult to define a type R
that can be assigned to every λ-term. However, these observations do not
say much about what coinductive (i.e. infinitary) type grammars are able
to provide: it is for instance very difficult to know what types (besides R)
can be assigned to a given term in this setting. We begin with a discussion
on the expressivity of different forms of infinite types. Then, using the
resource-awareness of sequential intersection types (system S) and tracking,
we prove that infinite types are able to characterize the arity of every
λ-terms and that, in the infinitary extension of the relational model, every
term has a “meaning” i.e. a non-empty denotation. From the technical
point of view, we must deal with the total lack of guarantee of productivity
for typable terms: we do so by importing methods inspired by first order
model theory.

1 Introduction (Infinite types)

1.1 Some semantical aspects of infinite types

It is well-known that the mere fact of allowing infinite formulas gives birth
to unsound/contradictory proof systems. For instance, let A be any formula.
We then define the infinite formula FA by FA := (((. . .) → A) → A) → A i.e.
FA = FA → A (the letter “F” stands for “fixpoint”). The formula FA gives
rise both to a proof of A and—via the Curry-Howard correspondence—to the
typing of a term with A, this term being no other than the auto-autoapplication
Ω := ∆ ∆ (with ∆ = λx.x x). This is given by Fig. 1.

Thus, every type A is inhabited by Ω. But given a λ-term t, what types A
does t inhabit? A first observation is that every λ-term can easily be typed: let

1



ax
x :FA`x :FA

ax
x :FA`x :FA

app
x : FA ` xx : A

abs
` λx.x x : FA → A

ax
x :FA`x :FA

ax
x :FA`x :FA

app
x : FA ` xx : A

abs
` λx.x x : FA

app
` Ω : A

Figure 1: Typing Ω,inferring A

us just define R (standing for “reflexive”) by R = R → R. Thus, R = (R →
R) → (R → R) = . . . Then, it is very easy to type every term with R. In the
inductive steps below, Γ denotes a context that assigns R to every variable of its
domain:

Γ;x:R ` x:R

Γ;x:R ` t:R

Γ ` λx.t:R→R (= R)

Γ ` t:R (=R→R) Γ ` u:R

Γ ` t u : R

Therefore, every λ-term inhabits the type R. Yet, this does not answer the
former question: what types does a term t inhabit? As we will see, this question
has no simple answer and we will chiefly focus on one aspect of this problem,
namely, the typing constraints caused by the arity of the λ-terms. Intuitively,
the arity of a λ-term t (sometimes called its order e.g., in [4]) is the supremal
n such that t→∗β λx1 . . . xn.u (for some term u) i.e. the number of abstractions
that one can output from t. For instance, the arity Ω of 0 (it is a zero term),
the arity of the head normal form (HNF) λx1x2.x u1 u2 u3 (with u1, u2, u3

terms) is 2 and the term Yλ := (λx.λy.xx)λx.λy.xx has an infinite arity, because
Yλ →n

β λy1 . . . λyn.Yλ.
The arity of a type is the number of its top-level arrows e.g., if o1, o2 are type

atoms (or type variables), o1 → o1, o1, o1 → o2 → o1 and (o1 → o2)→ o1 are of
respective arities 1, 0, 2, 1. Via Curry-Howard, the constructor λx corresponds
to the introduction of an implication, and so, in most type systems, a typed
term of the form λx1 . . . xn.u is typed with an arrow of arity > n. For instance,
if λx.λy.u is typed, then it is so with a type of the form A→ B → C.

Moreover, if a type system satisfies subject reduction, meaning that typing
is stable under reduction, the above observation entails that, if a typable term is
of arity n, then it is typable only with types of arity > n (the arity of a term is
a lower bound for the arity of its possible types). Equivalently, if t is typed with
B, then the arity of B statically gives an upper bound to the arity of t (static
meaning without reduction). A finite type has a finite arity (whereas the finite
term Yλ has an infinite arity). Yet, unsurprisingly, an infinite type may have
an infinite arity e.g., R defined by R = R→ R above. This confirms that the
typing of any term t with R is trivial and does not bring any information, since
the arity of a term is of course 6∞. However, the facts that, by allowing infinite
types, (1) one can type every term with R = R → R and (2) one can type Ω
with any type A, do not mean that finding the types that can be assigned to a
given term t is an easy problem in this setting.
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∅ → . . . ∅︸ ︷︷ ︸
q

→ o
x t1

@
tq

@
o

λx1 . . .→ . . .→ . . .︸ ︷︷ ︸
p

→ o

Figure 2: Typing a Head Normal Form in an i.t.s.

1.2 Intersection Types and Arity

We have just seen that subject reduction naturally ensures that simple typing
provides an upper bound to the arity of a typed term. Intersection type systems
(i.t.s.), introduced by Coppo-Dezani [8], generally satisfy subject expansion,
meaning that typing is stable under anti-reduction. Those systems feature a
type constructor ∧ (intersection) and are designed to ensure equivalences of the
form “t is typable iff t is normalizing” and also provide semantical proofs of
non-type-theoretic properties such as “t is weakly normalizing iff the leftmost-
outermost reduction strategy terminates on t” [16]. From subject expansion and
the typing of normal forms (NF) i.e. terminal states, i.t.s. are actually able
to capture the arity of some λ-terms. For instance, if an i.t.s. characterizes
head normalization (HN), then, every HN term t of arity p is typable with
a type whose arity is also equal to p (and not only bounded below by p).

Let us informally explain why and how the arity of the typable terms is
usually captured by i.t.s. For instance, i.t.s. characterizing HN usually feature
arrow types having an empty source1 (that we generically denote by ∅), meaning
that the underlying functions do not look at their argument. Namely, if t : ∅ → B,
then t u is typable with B for any term u. This allows us to easily type any
HNF while capturing its arity: in Fig. 2, one just assigns ∅ → . . .→ ∅ → o (arity
q) to the head variable x, so that x t1 . . . tq is typed with the type atom o and
the HNF λx1 . . . xp.x t1 . . . tq, whose arity is p, is typed with an arrow type of
arity p. Then, by subject expansion, one concludes that every HN term of arity
p is typable with a type of arity p. The same argument can be adapted to i.t.s.
characterizing weak (including infinitary weak) or strong normalization, which
also usually capture the arity of their typable terms.

1.3 In Search for Infinite Denotations

Independently from normalization properties, another important facet of i.t.s.
is that they also provide denotational models for the λ-calculus i.e. they
associate to each λ-term a denotation [[t]] (usually, [[t]] is a morphism in a
category), meaning that [[t]] is invariant under β-conversion (i.e. t1 =β t2 implies
[[t1]] = [[t2]]). For instance, the typing judgments of Gardner-de Carvalho’s

1In this article, we put aside non-strict types systems (e.g., system DΩ [16, 8]), in which
types are less constrained by the arity of terms.

3



system R0 (that we will shortly discuss in § 2.1) correspond to the points of the
relational model [5]: indeed, {�R0Γ ` t : τ | Γ, τ} = [[t]]rel for any term t, where
the left-hand side corresponds to the set of derivable judgments of system R0

typing t and the right-hand side, the denotation of t in the relational model.
Thus, infinite types are a mean to study the infinitary extension of the relational
model.

The (finitary) relational model only gives a (non-empty) denotation to HN
terms. This reflects the fact that non-HN (equivalently, unsolvable) terms have
an infinitary behavior w.r.t. head reduction. In this regard, it is natural to
seek whether such terms have an infinitary semantics, since infinitary models
bring information on asymptotic aspects of terms e.g., in the recent work of
Grellois-Melliès [12, 13]. The first main contribution of this article is to prove
that every term has a non-empty interpretation in the infinitary relational model
Mrel. This furthers the approach of Curry, aiming at finding more and more
“meanings” to λ-terms (see e.g., [8] or § 5.4. on “illative systems” in [7]). One
may thus consider that, in Mrel, every λ-term is meaningful (although we do
not have yet a deep understanding of this model, beyond arity-related aspects).

An interesting aspect of models is that they allow us to statically discriminate
terms from one another, meaning that if [[t1]] 6= [[t2]] then t1 6=β t2 i.e. two terms
that do not have the same denotation do not represent two different states of a
same program. For instance, the i.t.s. that are able to assign a type of arity n to
any (e.g., HN) term of arity n (but not to one of arity n+ 1) can be regarded as
arity-discriminating for HN terms. This holds for system R0. We prove that
the infinitary extension of system R0, that we denote R, is arity-discriminating
for all λ-terms (not just the HN ones). This second main contribution of the
paper (Theorem. 2) extends a feature of system R0 concerning HN terms to the
whole λ-calculus.

1.4 Stability and the Difficulty of Infinitary Typing

We saw above how i.t.s. capture the arity of the typed terms in finite/productive
case (productive cases include infinitary normalizing terms). Let us now under-
stand why the method of § 1.2 fails while studying full infinitary typing. Fig. 2
shows well that typing in a given i.t.s. (and in particular, capturing the arity)
reduces to typing the “partial” normal forms (e.g., HNF or β-NF). Intuitively,
the nodes corresponding to the normalized parts of a term cannot be affected
by reduction e.g., the nodes labelled with λxi, @ and x in Fig. 2 (the “spine”
of the HNF). Such nodes are stable. In contrast, some terms (the so-called
mute terms [3]) do not ever give rise to stable positions and are thus totally
unproductive e.g., the term Ω.

Thus, there is no clear way to capture the arity of any typable term: the
example of Ω shows that the case of totally unstabilizable term must be handled
when considering infinite types. Note that Ω is just an example of a mute term,
that happens to satisfy the nice fixpoint equation Ω →β Ω and has a simple
parsing tree. This partially explains why Ω was easily typable. In general, there
is no method to type generic mute terms that do not satisfy an equation.
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1.5 Infinitary Typing and Klop’s Problem

Let us say a few words about the questions raised by infinitary typing in the
non-idempotent intersection type framework i.e. by the interpretation of terms
in the infinitary relational model.

• One of the fundamental interests of non-idempotent intersection (A∧A 6= A)
is that, in this setting, a type is a resource that cannot be duplicated or
merged/contracted and that is possibly consumed under reduction.

• Moreover, non-idempotent i.t.s. are often relevant, meaning that weaken-
ing is not allowed.

An i.t.s. that forbids duplication and weakening can be qualified as linear, which
is the case of system R0 that we hinted at in § 1.3, and its infinitary version R.
As we will see in § 2.1, relevance disables the argument proving that every term is
typable with ρ, the non-idempotent counterpart of the type R considered above.
However, while trying to characterize a form of infinitary weak normalization, we
noticed in [17] that Ω is also typable in R. We recovered soundness by defining
a validity criterion, discarding degenerate typing derivations, which was possible
by introducing a rigid variant of system R, namely system S. System S has
many nice features e.g., tracking (motivated in § 2.2).

Still, these observations raise the problem of characterizing the set of typable
terms (without validity criterion) in the coinductive relevant and non-idempotent
framework. In particular, is every term R-typable? Or is there a term t that is
not R-typable? Observe that such a term t would not be linearizable, even in an
infinite way (since a R/S-derivation typing t induces a linear representation of
t). The existence of non-linearizable terms would be very surprising. Therefore,
it must be investigated. Since our main theorem (Theorem 1) states that system
R actually types every term, we actually prove that every term is linearizable,
as expected.

Note again that the method described at the end of § 1.2 does not work for
non-normal terms: naively, when xu occurs in t, we would like to assign to x a
type of the form A → B, where A is the type of u, and proceed by induction.
However, x may be substituted in the course of a reduction sequence, and so,
typing constraints on x are not easily readable. Thus, in the productive case, in
the purpose of proving that the terms of a given set (e.g., the set of HN terms
above) are typable, we escape this problem by typing normal forms (e.g., HNF)
and then proceeding by expansion. But, by § 1.4, this cannot work when we
want to type every term.

To sum up, due to full resource-awareness (including relevance), typing in the
coinductive systems R and S is intrinsically non-trivial. But the same reason (full
resource-awareness) make linear intersection type systems the good framework
to study the expressive power of infinite types and to capture the arity of every
λ-term. Thus, besides our first goal. . .

Goal 1. Capturing the arity of every λ-term with infinite types.
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. . . we have now a second one, narrowly related to the first:

Goal 2. Proving that every term is R-typable.

1.6 A Technical Contribution

We have not addressed yet the way we can study unproductive/mute terms,
despite the fact that all the known techniques of intersection type theory fail: we
propose a solution to overcome this difficulty, inspired by (a simplified form of)
first order model theory, that we mix with techniques specific to the λ-calculus.
This is our main technical innovation, since it enables the study of unproductive
reduction. Thus, beyond the relational model, this work proposes the first use
of first order model theory to study an infinitary extension of a finitary model of
the λ-calculus and to generalize properties coming from the finite model to every
λ-term (e.g., capturing their arity). The proof that every term is R-typable has
three main stages: (1) reducing the problem to a set of stability relations (§ 3) (2)
describing the possible interactions between these relations (§ 4.2) (3) describing
a procedure of partial (but more importantly finite) normalization (§ 5). The
same ingredients allow us to capture the arity. The italicized words, as well as
the tools of the proof and how they arise, are gradually explained in the paper
but we refer to § 3.1, 3.2 and the introduction of § 4 for some high-level input.

1.7 Outline

To sum up, our main contributions in this article consist of (1) proving that
every term has a non-empty denotation in the infinitary relational model (2)
the arity of terms can be captured by infinitary type systems (3) introducing a
method giving rise to semantic descriptions of λ-terms, whether they normalize
or not.

In § 2, we present two non-idempotent i.t.s. and the notions of relevance
and tracking. In § 3, we explain why describing the “form” of the derivations in
system S (presented in § 2.2) may help us to prove that every term is S-typable
and we characterize these forms. The key notion of thread is defined. In § 4, we
define, for a given term t, a nihilating chain as a proof that t is not S-typable.
Proving that every term is typable reduces to proving that nihilating chains
do not exist (Prop. 2). We prove that, under a positivity condition involving
threads, nihilating chains indeed do not exist (Prop. 3). In § 5, we prove that
the positivity condition can be assumed without loss of generality, by means of a
finite normalization procedure. Thus, no proof of untypability exists and every
term is typable. We conclude in § 6 by notably sketching the adaptation of the
previous steps giving the expected type-theoretic arity-capture.
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2 Infinitary Relevant and Non-Idempotent In-
tersection

2.1 System R

We now define more formally system R, the coinductive version of the finite
system R0, independently introduced by Gardner and de Carvalho [11, 10]. See
[6] for a general presentation of R0. System R is of good help to understand
relevant intersectionbut, as we shall see in § 2.2 and 3.1, it is unfit to express
the techniques yielding Theorems 1 and 2, and we refer to it only for heuristic
purposes.

The set of R-types is coinductively defined by.

σ, τ ::= o ∈ O | [σi]i∈I → τ

We call I := [σi]i∈I a multiset type. The multiset types represent intersection
in system R0 and the intersection operator ∧ is the multiset-theoretic sum:
∧i∈IIi = +i∈IIi (i.e. ∧i∈I [σij ]j∈J(i) := +i∈I [σ

i
j ]j∈J(i)). We assume I to be

countable, the empty multiset type is denoted by [ ] and [σ]ω := [σi]i∈ω with
∀i ∈ ω, σi = σ.

An R-context (metavariables Γ,∆) is a total function from V (the set of
term variables) to the set of multiset types. The domain of Γ is given by
{x |Γ(x) 6= [ ]}. The intersection of contexts +i∈IΓi is defined point-wise. We
may write Γ; ∆ instead of Γ+∆ when dom(Γ)∩dom(∆) = ∅. Given a multiset type
[σi]i∈I , we write x : [σi]i∈I for the context Γ s.t. Γ(x) = [σi]i∈I and Γ(y) = [ ]
for all y 6= x. An R-judgment is a triple Γ ` t : σ where Γ is an R-context, t a
term and σ an R-type.

The set of R-derivations is defined inductively by:

ax
x : [τ ] ` x : τ

Γ;x : [σi]i∈I ` t : τ
abs

Γ ` λx.t : [σi]i∈I → τ
Γ ` t : [σi]i∈I → τ (∆i ` u : σi)i∈I

app
Γ + (+i∈I∆i) ` t u : τ

As announced in § 1.5, system R is not only non-idempotent, but also relevant.
For instance, the K-term λx.y can only be assigned types of the form [ ] → τ .
Indeed, λx.y can only by typed by:

ax
x : [τ ] ` x : τ

abs
x : [τ ] ` λy.x : [ ]→ τ

This comes from the fact that y does not occur in x, and thus, by relevance, the
constructor λy cannot invoke a (non-empty) type on the left-hand side of the
arrow type.

Fig. 1 can adapted and we can type Ω with τ for all R-types τ , by just
defining φτ by φτ = [φτ ]ω → τ . However, defining ρ by ρ = [ρ]ω → ρ does not
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allow us to type every term with ρ in system R. To understand why, note
first that relevance can be disabled, by replacing ax par axw:

i0 ∈ I
axw

Γ;x : [σi]i∈I ` x : σi0

We call Rw the type system thus obtained. Then, the proof on p. 2 can be
adapted to Rw, by considering only contexts Γ,Γt,Γu assigning [ρ]ω to all the
variables in their domains:

ax
x:[ρ]ω ` x:ρ

Γ;x : [ρ]ω ` t:ρ
abs

Γ ` λx.t : ρ

Γt ` t:ρ (Γu ` u:ρ)ω
app

Γt + Γu ` t u : ρ

Thus, every term is Rw-typable. But note that, by relevance, this proof by
induction on the structure of t fails for R. For instance, if x is not in t, Γ ` t : ρ
yields Γ ` λx.t : [ ]→ ρ ( 6= ρ!) and since the empty multiset type may occur in
unpredictable places in a term, finding an R-typing of any term t is non-trivial.
In some sense, R-typability is about capturing the way relevance constrains
emptiness to occur! But since a variable x can be substituted under reduction
as observed in § 1.5, [ ] may occur in unpredictable places.

2.2 Towards Tracking and Sequential Intersection

Unfortunately, resource-awareness of system R is not enough to process the
proof techniques to be developed here: we also need tracking. Let us just give
an example to show what the impossibility of tracking means:

ax
x : [[σ, σ]→τ ]` x : [σ, σ]→τ

ax
x : [σ]` x :σ

ax
x : [σ]` x :σ

app
x : [[σ, σ]→ τ, σ, σ] ` xx : τ

In this derivation, in the context x : [[σ]→ τ, σ, σ] of the conclusion, one cannot
know which particular axiom rule, each red occurrence of σ comes from: there
is no possible notion of pointer with multiset intersections, which is one thing
that we absolutely need to capture the key notion of support candidate in
§ 3.1.

Tracking can be retrieved while keeping most of system R0’s nice features (e.g.,
syntax-direction) by considering system S, that we introduced in [17]. System S

uses sequence types instead of multiset types to represent intersection. For
instance, instead of having a cardinal 3 intersection [o, o′, o], system S considers
a cardinal 3 sequence (2 · o, 5 · o′, 8 · o). Sequences come along with a disjoint
union operator e.g., (2 · o, 5 · o′, 8 · o) = (2 · o, 5 · o′) ] (8 · o): in this equality, the
occurrence of o in the left-hand side annotated with 2 unambiguously comes
from that which is also annotated with 2 in the right-hand side. We call these
annotations tracks. In contrast, [o, o′, o] = [o, o′] + [o], but there is no way to
unambiguously associate to an occurrence of o in the left-hand side the one of
[o, o′] or the one of [o] in the right-hand side.

Formally, the set of S-types is defined coinductively by:

8



T, Sk ::= o ‖ F → T
F ::= (k · Sk)k∈K (K ⊆ N \ {0, 1})

The empty sequence type is denoted ( ) and we often write (Sk)k∈K instead of
(k ·Sk)k∈K . The set of top-level tracks of a sequence type is called its set of roots
and we write e.g., Rt(F ) = {2, 5, 8} when F = (2 · S, 5 · S′, 8 · S). Note that the
disjoint union operator can lead to track conflict e.g., , if F1 = (2 · o, 3 · o′) and
F2 = (3·o′, 8·o), the union F1]F2 is not defined, since Rt(F1)∩Rt(F2) = {3} 6= ∅.

An S-context C (or D) is a total function from V to the set of S-types. The
operator ] is extended point-wise. An S-judgment is a triple C ` t : T , where
C, t and T are respectively an S-context, a term and T an S-type. A sequence
judgment is a family of judgments (k · (Dk ` u : Sk))k∈K (with K ⊆ N \ {0, 1})
that all type the same term u, often just written (Dk ` u : Sk)k∈K . For instance,
if 5 ∈ K, then the judgment on track 5 is C5 ` u : S5.

The set of S-derivations is defined inductively by:

x : (k · T ) ` x : T
ax

C;x : (Sk)k∈K ` t : T

C ` λx.t : (Sk)k∈K → T
abs

C ` t : (Sk)k∈K → T (Dk ` u : Sk)k∈K

C ] (]k∈KDk) ` t u : T
app

The app-rule can be applied only if there is no track conflict in the context
C ] (]k∈KDk). In an ax-rule concluding with x : (k · T ) ` x : T , the track k
is called the axiom track of this axiom rule. We refer to § III and IV of [17]
for additional examples and figures for all what concerns the basics of system S

sketched here and thereafter.
Let Sex = (2 · o, 7 · o′)→ o′′. To gain space, we write k ` x : T (with k > 2,

x ∈ V , T S-type) instead of x : (k · T ) ` x : T in ax-rules. We also indicate the
track of argument derivations between square brackets e.g., x : (3 · o) [5] means
that the argument judgment x : (3 · o) ` x : o is on track 5):

ax
3 ` y : Sex

ax
3 ` x : o [5]

ax
9 ` x : o′ [6]

app
x : (3 · o, 9 · o′), y : (3·Sex) ` y x : o′′

ax
y : (3 · (2 · o, 7 · o′)→ o′′) ` λx.y x : (3 · o, 9 · o′)→ o′′

As expected:

Property 1. Systems S and R enjoy subject reduction and expansion

If tracks are erased, a sequence becomes a multiset and S-derivations collapse
on R-derivations (e.g., Pex on Pex), so that an S-typable term is also R-typable.
We may thus replace Goal 2 by Goal 3.

Goal 3. Proving that every term is S-typable.

9



We reduce the problem (i.e. proving that a term t is typable in system S) into
a first order theory, that we call Tt. We actually prove that Tt indeed captures
the problem, by means of a proposition that can be interpreted as a (simplified)
completeness theorem (see Corollary 1): we show that if Tt is coherent, then
t is S-typable. Then we prove that Tt is coherent for all terms t. Go to the
introduction of § 3.2 and 4 to have a closer descriptions of the proof of the
coherence of Tt and of its main stages.

2.3 Parsing, Pointing

In this technical section, we explain how we may point inside an S-type or an
S-derivation, thanks to tracking. We define the support of an S-type and an
S-derivation, and also the key notions of biposition and bisupports. Let N∗
denote the set of the finite words on N, the operator · denotes concatenation, ε
the empty word and 6 the prefix order e.g., 2 · 1 · 3 · 7 ∈ N∗, 2 · 1 6 2 · 1 · 3 · 7.
Moreover, the collapse k of a track k is defined by k = min(k, 2). This notation
is extended letter-wise on N∗ e.g., 0·5·1·3·2 = 0·2·1·2·2. The support of term is
defined by induction as expected: supp(x) = {ε}, supp(λx.t) = {ε} ∪ 0 · supp(t)
and supp(t u) = {ε} ∪ 1 · supp(t) ∪ 2 · supp(u). If a ∈ N∗ and a ∈ supp(t), we
denote by t|a the subterm of t rooted at position a whereas t(a) is the constructor
(@, x or λx) of t at position a e.g., t|0 = y x and t(0 · 1) = y with t = λx.y x.

The support of a type (resp. a sequence type), which is a tree of N∗
(resp. a forest), is defined by mutual coinduction: supp(o) = {ε}, supp(F →
T ) = {ε} ∪ supp(F ) ∪ 1 · supp(T ) and supp((Tk)k∈K) = ∪k∈Kk · supp(Tk) e.g.,
supp(Sex) = {ε, 1, 2, 7}. We can define the support of a derivation P�C ` t : T :
supp(P ) = ε if P is an axiom rule, supp(P ) = {ε}∪ 0 · supp(P0) if t = λx.t0 and
P0 is the subderivation typing t0, supp(P ) = {ε}∪1 ·supp(P1)∪k∈K k ·supp(Pk)
if t = t1 t2, P1 is the left subderivation typing t1 and Pk the subderivation
typing t2 on track k. The Pk (k ∈ K) are called argument derivations. For
instance, supp(Pex) = {ε, 0, 0·1, 0·5, 0·6}, P (0 · 1) = y : (3·Sex) ` y : Sex and
P (0·6) = x : (9·o′) ` x : o′.

Choice function for axiom tracks: Note that, to define an S-derivation
typing a term t (thus fulfilling Goal 3), one must one choose an axiom track in
every axiom rule so that no conflict arise. In this short article, let us just say
that we can escape this problem by resorting to an arbitrary injection from N∗
to N \ {0, 1}, that chooses axiom tracks for us: we say that an S-derivation P is
a b·c-derivation if P (a) = (x : (k · T ) ` x : T ) (i.e. a is the position of an ax-rule
typing x in P ), then k = bac. If t is b·c-typable, then t is in particular S-typable,
so that we now replace Goal 3 with Goal 4:

Goal 4. Given an injection b·c : N∗ → N \ {0, 1}, proving that every term is
b·c-typable.

The injectivity hypothesis allows us to stop bothering about track conflict
any further while achieving Goal 4. It is also w.r.t. the function b·c that we will
capture where emptiness occurs (see § 3.2).
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We explain now how to point inside types nested in S-derivations, or to
axioms typing a given variable, and formalize the associated pointers. If P is
an S-derivation and a ∈ supp(P ), then the judgment at position a is denoted
CP (a) ` t|a : TP (a) e.g., CPex(0 · 6) = x : (9 · o′) and TPex(0 · 6) = o′. Let P be an
S-derivation. A right biposition is a pair of the form (a, c), where a ∈ supp(P )
and c ∈ supp(TP (a)), we write bisupp(P ) for the (right) bisupport of P i.e.
its set of (right) bipositions. If (a, c) ∈ bisupp(P ), then P (a, c) denotes TP (a, c)
e.g., Pex(0·6, ε) = o′ and Pex(0 · 1, ε) = o, Pex(0 · 1, 1) = o′′ and Pex(ε, 9) = o′.
Note that, contrary to [17], we only consider right bipositions. For this article,
we think a biposition as type symbol (o ∈ O or→) nested in a given S-derivation
P and we often use this heuristic identification implicitly, most notably when
describing Fig. 4.

Assume that P types t. We set A = supp(P ) and B = bisupp(P ). If
x ∈ V , a ∈ A, we set AxPa (x) = {a0 ∈ A | a 6 a0, t(a) = x, @a′0, a 6 a′0 6
a0, t(a

′
0) = λx} (occurrences of x in P above a, that are not bound w.r.t. a) e.g.,

AxPex
ε (x) = ∅ (x is bound at the root), but AxPex

0 (x) = {0 · 5, 0 · 6} (x is not bound
at position 0). Technically, this notation is crucial to harness relevance (see
polar inversion, § 3.3) but the important thing to remember is that, thanks to
tracking, in system S, one can unambiguously designate the axiom rules typing
the variable of a λx.

2.4 Typing some Notable Terms in System R

We now use system R to type a few terms satisfying fixpoint equations. Some
of them are not head normalizing. Let ∆f = λx.f(xx), Y = λf.∆f∆f (Y
is Curry fixpoint combinator). Moreover, if I = λx.x and K = λxy.x, then
Y I → Ω (satisfying Ω→β Ω), Y f → Yf := ∆f ∆f (satisfying Yf →β f(Yf )) and
YK →β Yλ := (λx.λy.xx)λx.λy.xx (satisfying Yλ →β λy.Yλ).

Iterating reduction on Yf and Yλ infinitely many times, we see that Yf (resp.
Yλ) strongly converges to the infinitary term fω := f(f(...)) (resp. λy.λy....) in
the sense of [15, 9]. Thus, Ω and Yf are both zero terms (§ 1.1) and Yλ a term
of infinite arity. The term Ω is actually a mute term (see § 1.4) and Yf is a term
whose Böhm tree (see [1], chapter 10) fω does not contain ⊥.

Because of rule abs and subject reduction, a term of arity n may only be typed
with a type of arity > n, as explained in § 1.1. However, some R-derivations
can capture more precisely the arity of terms. For each R-type τ , we define
coinductively φτ by φτ = [φτ ]ω → τ . For instance, we consider the following
typing of Y (omitting left-hand sides of ax-rules):

Π∆f
=

ax
f : [τ ]→ τ

ax
x : φτ

( ax
x : φτ

)
ω app

x : [φτ ]ω ` xx : τ
app

f : [[τ ]→ τ ];x : [φτ ]ω ` f(xx) : τ
abs

f : [[τ ]→ τ ] ` ∆f : φτ (= [φτ ]ω → τ)

11



ΠY =

Π∆f
(Π∆f

)ω
app

f : [[τ ]→ τ ]ω ` ∆f ∆f : τ
abs

` Y : [[τ ]→ τ ]ω → τ

Thus, Y is R-typable with [[τ ]→ τ ]ω → τ for any type τ .
Using suitable instances or variants of ΠY, we can build ΠΩ� ` Ω : τ (for any

τ) and Πλ� ` Yλ : [ ]→ [ ]→ . . . By instantiating τ with a type variable o, we
get ` Ω : o and ` Yf : o. Thus, the zero terms Ω and Yf are typed2 with types of
arity 0 whereas Yλ (whose arity is infinite) is typed with a type of infinite arity,
as it was constrained to be.

We will generalize this result (not only for terms built from a fixpoint
combinator like Ω or λx.Ω) and show that, for all pure terms t of arity n, there
is an R-derivation typing t with a type of arity n (Theorem 2).

3 Bisupport Candidates

In this section, we characterize, for a given term t, its bisupport candidates i.e.
the (potential) forms of the derivations typing t. By “form”, we intuitively mean
a set of unlabelled positions (that must be stable under some suitable relations).
We make explicit that idea by studying first the possible forms of an S-type in
§ 3.1. The notion of unlabelled position has a meaning only because tracks of S
allow us to define suitable pointers. It would be impossible in system R.

3.1 A Toy Example: Support Candidates for Types

In this section, we explain how the notion of “form” of a support can be
formalized by giving a characterization of the supports of S-types in terms of
stability conditions.

The definition of a particular S-type T can be understood as a two-step
process: first, we choose the support C := supp(T ), next, we choose the type
labels T (c) (in the signature O ∪ {→}) given to the positions c ∈ C. However,
not all the subsets C ⊆ N∗ are fit to be the support of a type, and not all the
possible decorations of a suitable set C yield a correct type.

For instance, let us consider the two sets of positions C1 and C2 below. Do
they define the supports of some types T1 and T2?

14

138

C1 = {ε, 1, 4, 4·1, 4·3, 4·8}

14

3

C2 = {ε, 1, 4, 4·3}
As it turns out, C1 is the support of a type e.g., (4 · (8 · o3, 3 · o1)→ o2)→ o1

(figure below). By contrast, no type T may satisfy supp(T ) = C2, because a
non-terminal node of a type (necessarily an arrow) should have a child on track
1 (by convention, its right-hand side), but 4 ∈ C2 and 4 · 1 /∈ C2.

2Note that Yf → f(Yf ) (Yf is HN) and Yf is typable with o in the finite system R0.
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→ 1
o1

4
→ 1

o2

3
o1o3

8

Type (4·(8·o3, 3·o1)→ o2)→ o1

o 1
o1

4
→ 1

→o3

3
o3

8

Wrong decoration

This motivates the following notion: a support candidate of type is a subset
C ⊆ N∗ such that there exists a type T satisfying C = supp(T ). Given a support
candidate C, it is easy to define a correct type whose support is C:

• The label of non-terminal nodes of C should be arrows.

• the leaves of C should be decorated with type atoms o ∈ O.

So was done for the decoration on the left-hand side, representing the type
(4 · (8 · o3, 3 · o1)→ o2)→ o1. In contrast, the decoration on the right-hand side
is incorrect: ε (non-terminal) is labelled with o ∈ O and 4 · 1 (leaf) with →.

The observations about C1 and C2 above suggest considering two relations
→t1 and→t2 defined by:

• For all c ∈ N∗, k ∈ N, c · k→t1 c.

• For all c ∈ N∗, k > 2, c · k→t2 c · 1.

A set of positions C is closed under→t1 (i.e. c1 ∈ C and c1→t1 c2 entails c2 ∈ C)
iff it is a tree. Stability under condition→t2 means that if a node c is not
terminal, then it has a child on track 1.

Lemma 1. Let C ⊆ N∗. Then C is a type support candidate (i.e. there exists a
type T s.t. C = supp(T )) iff C is non-empty and is closed under→t1 and→t2.

Thus, relations→t1 and→t2 are enough to characterize support candidates.
We call them stability relations e.g., the good candidate support C1 is stable
under→t1 and→t2, whereas 4 · 3 ∈ C2, 4 · 3→t2 4 · 1 but 4 · 1 /∈ C2, so that the
bad candidate support C2 is not stable under→t2.

When c1 →t1 c2 or c1 →t2 c2, we say that c1 subjugates c2, because c1
demands c2 to ensure a correct formation of the support.

3.2 Toward the Characterization of Bisupport Candidates

For the remainder of this paper, we fix an injection b·c : N∗ → N \ {0, 1}. By
Goal 4, we want to prove that every term t is b·c-typable. By analogy with
the notion of candidate supports for types (previous section), the idea is to
characterize the bisupport candidates for the b·c-derivations typing a given
term t i.e. sets B ⊆ N∗×N∗ s.t. there exists a b·c-derivation P typing t satisfying
B = bisupp(P ) (Prop. 1 to come). We proceed by defining in § 3:

• Bt, the set of the potential bipositions of a derivation typing a term t (in
this Section 3.2).

13



• On Bt, we define a relation→• (which is actually the union of 7 stability
relations). More precisely:

– There is a special constant symbol p⊥ in Bt, that roughly indicates
“untypability” or “emptiness”.

– The term t is typable iff there is a non-empty subset B of Bt, such that
B is stable under→• and does not contain p⊥ (compare this statement
with Lemma 1). Such a B is the support of a derivation typing t.
This equivalence is given by the “completeness-like” statement of
Corollary 1.

Let us now define Bt by first noticing that not every position a ∈ N∗ (or
biposition (a, c) ∈ N∗ × N∗) may be in a derivation typing a given term t. For
instance, we have supp(λx.y x) = {ε, 0, 0 · 1, 0 · 2}, so, if P types λx.x x, then
a ∈ supp(P ) implies a = ε, 0, 0 · 1 or 0 · 2 i.e. supp(P ) ⊆ {ε, 0, 0 · 1, 0 · 2}.
For instance, supp(Pex) = {ε, 0, 0 · 1, 0 · 2, 0 · 5, 0 · 6}. More generally, if t is
a term, we set At = {a ∈ N∗ | a ∈ supp(t)} and Bt = (At × N∗) ∪ {p⊥} (where
p⊥ is an “empty biposition” constant), so that, if P is a b·c-derivation typing t,
then a position (resp. a biposition) of P must be in At (resp. in Bt \ {p⊥}) i.e.
supp(t) ⊆ At and bisupp(P ) ⊂ Bt \{p⊥}. The constant p⊥ roughly materializes
emptiness and will be used to describe how “relevance-related emptiness” is
constrained to occur in b·c-derivations (see polar inversion in § 3.3).

We omit P and t from some notations. We set Aa(x) = {a0 ∈ A | a 6
a0, t(a0) = x, @a′0, a 6 a′0 < a0, t(a

′
0) = λx}. Thus, with the notation AxPa of

§ 2.3, if P is a b·c-derivation, then AxPa (x) ⊂ Aa(x) for all a ∈ supp(P ), x ∈ V
and Aa(x) may be considered as the set of position candidates for ax-rules typing
x above a.

Now, remember that the function b·c has been fixed to choose axiom tracks
for us (§ 2.3): if x a variable and a0 an axiom position candidate for x (i.e.
t(a0) = x), then a potential b·c-derivation P containing a0 has an axiom of the
form P (a0) = x : (k · T ) ` x : T with k = ba0c. Thus, if t(a) = λx and we set
Trλ(a) = {ba0c | a0 ∈ Aa·0(x)}, then Trλ(a) is the set of axiom tracks dedicated
to x above the abs-rule at position a by the function b·c. It is interesting in
that, e.g., if t(a) = λx and 8 /∈ Trλ(a), then we can assert that, if there exists
a b·c-derivation P and a ∈ supp(P ), then P (a) = (Sk)k∈K → T with 8 /∈ K.
Indeed, by definition of Trλ(a), there is no axiom position candidate a0 for x
above a whose axiom track is 8.

Thus, when a variable x is not at some places in t, b·c constrains emptiness
to “occur” at some particular tracks if we perform an abstraction λx, and then,
we informally say e.g., that emptiness occurs on track 8 w.r.t. position a
under the above assumption. This give us more fine-grained information about
occurrences of emptiness in a derivation typing t: system S (enriched with b·c)
will provide us information about emptiness track by track. This is precisely
what we need to understand typability in the relevant and non-idempotent
framework (remember § 1.5) in that, we have to ensure that emptiness does not
compromise typability: intuitively, emptiness must not propagate everywhere
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in the derivations typing a given term t. If it did, a derivation typing t would
be empty (i.e. t would not be typable) and we want to show that this does not
happen, in the purpose of proving that every term is typable in S

3.3 Tracking a Type in a Derivation

Let us now express the stability conditions (as in § 3.1) that a b·c-bisupport
candidate for a derivation typing t should satisfy. We will need to ensure the
points below:

• Identification of the components (i.e. the bipositions) of a same type T in
a derivation from bottom to top (see Fig. 3): relation of ascendance→asc.

• Identification of the components of type given in an ax-rule to a variable
x (S5 in Fig. 3) and its occurrence called by the abstraction λx: relation
of polar inversion→pi.

• Identification of the matching components of the types of u and v in
the app-rule typing u v (types Sk in the app-rule of Fig. 3): relation of
consumption →.

• Correct type formation, as in Sec. 3.1: extensions of relations→t1 and→t2.

• The type of a subterm of the form λx.u is an arrow type (and not a type
variable): relation→abs.

Abstraction rule

ax
x : (5·S5) ` x : S5 〈pos(5)〉

C; x : (Sk)k∈K ` u : T 〈a·0〉
(with 5 ∈ K, 8 /∈ K)abs

C ` λx.u : (Sk)k∈K → T 〈a〉
Application rule

C ` u : (Sk)k∈K→T 〈a·1〉 (Dk ` v : Sk 〈a·k〉)k∈Kapp
C ] (]k∈KDk) ` u v : T 〈a〉

Figure 3: Ascendance, Polar Inversion and Consumption

By lack of space, most of the proofs are omitted for the remainder of the
paper and we can only give a few details on the concepts that we use. We refer
to the webpage of the author, or Chapters 11 and 12 of [18] for all the details
and more examples and heuristics.

In Fig. 3, we indicate the position of a judgment between angle ( 6=square)
brackets e.g., C;x : (Sk)k∈K ` t : T 〈a · 0〉 means that judgment C;x : (Sk)k∈K `
t : T is at position a · 0. We denote by pos the (partial) converse of b·c e.g., if
a0 := pos(7) exists, then a0 is the axiom position candidate whose axiom track
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is 7: concretely, this just means that, if there exists a b·c-derivation P typing t
s.t. a0 ∈ supp(P ), then P (A) = x : (7·S) ` x : S for some type S and x.

� Assume that, in a b·c-derivation P , we find an abs-rule at position a as in Fig 3:
the judgment C;x : (Sk)k∈K ` u : T (pos. a · 0) yields C ` λx.u : (Sk)k∈K → T
below (pos. a). The occurrence of T in the conclusion of the rule is intuitively
the same as that in its premise: we say the former is the ascendant of the
latter, since it occurs above in the typing derivation. Likewise, in the app-
rule, the occurrence of T in C ]k∈K Dk ` u v : T stems from that of premise
C ` u : (Sk)k∈K → T : the first occurrence of T is also the ascendant of T in the
conclusion of the rule. Ascendance induces a stability relation→asc on the set
of type elements i.e. on Bt, the set of candidate bipositions of t, that can be
formally defined by:

• (a, c)→asc (a · 1, 1 · c) if t(a) = @.

• (a, 1 · c)→asc (a · 0, c) if t(a) = λx.

For instance, in Fig 4, the red (resp. the blue) occurrences of o′ are ascendants
of one another. They correspond to bipositions (ε, 12)→asc (0, 1)→asc (02, ε)→asc

(02 · 1, 1) (resp. (ε, 1 · 4 · 1)→asc (0, 4 · 1)) from bottom to top.

� Assume that 5 ∈ K in the abs-rule at position a in Fig. 3. Then the
occurrence of S5 in (Sk)k∈K → T at pos. a stems from an axiom rule concluding
with x : (5 · S5) ` x : S5 at pos. pos(5): we say that the occurrence S5 (in
(Sk)k∈K → T ) is the polar inverse of the occurrence of S5 in the axiom rule.
Assume on the contrary that 8 /∈ K. So S8 does not exist and there is no ax-rule
typing x and using axiom track 8 above a. Morally, S8 is empty.

More generally, if t(a) = λx and k0 > 2, the function b·c. . .

• . . . either gives a unique axiom position candidate for the type on track
k in (Sk)k∈K : this happens when ∃a0 > a · 0 s.t. ba0c = k0 (i.e. , when
k0 ∈ Trλ(a) by construction of Trλ(a)). In that case, a0 = pos(k0).

• . . . or tells us that k0 /∈ K i.e. there cannot be a (top-level) type on track
k0 in (Sk)k∈K → T . In other words, this indicates that emptiness on track
k0 w.r.t. position a, which formally happens whenever no a0 > a ·0 satisfies
ba0c (i.e. k0 /∈ Trλ(a)). In that case, pos(k0) is undefined. We consider
the type Sk0 (that intuitively does not exist) be the polar inverse of an
empty type.

Polar inversion also induces a stability relation→pi on Bt, that can be formally
defined by:

• (a, k · c)→pi (pos(k), c) if k ∈ Trλ(a) (first case)

• (a, k · c)→pi p⊥ if k /∈ Trλ(a) (second case)
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For instance, in Fig. 4, the top blue occurrence of o′ is the polar inverse of the
top red one: formally, (0, 4 · 1)→pi (02 · 1, 1). Now, we may understand the use of
constant p⊥: it indicates biposition that cannot be in any potential b·c-derivation
typing t. More precisely, p⊥ is here to play the role of the polar inverse of all the
bipositions that cannot exist, because of the choices made by the function b·c.

3.4 Type Formation, Type Consumption

In this subsection, we conclude the definitions of the stability relations that
characterize the form of S-derivations, yielding the notion of subjugation (as
in § 3.1), between candidate bipositions.

� The notion of consumption is related to rule app. Assume t(a) = @, t|a =
u v with u : (Sk)k∈K → T and v : Sk for all k ∈ K as in Fig. 3 so that u v can
be typed with T . Each type Sk occurs in (Sk)k∈K → T and v : Sk. However, it
is absent in the type of u v: we say it has been consumed. Formally, we set,
for all (a, c) ∈ Bt, k > 2 s.t. t(a) = @:

• (a · 1, k · c)→a (a · k, c)

In Fig. 4, the orange and the purple occurrences of o are consumed in the
app-rule: formally, (02 · 1, 8)→02 (02 · 8, ε).

We set→= ∪{→a | a ∈ A, t(a) = @} and write← for the symmetric relation.

Let P be a b·c-derivation typing a term t. If p1 →asc p2 or p1 →pi p2 or
p1 → p2, then p1 ∈ bisupp(P ) iff p2 ∈ bisupp(P ) (by construction of those
relations).

� Relations→t1 and→t2 ensure that the types are correctly defined and are
natural extensions of those of Sec 3.1:

• For all (a, c) ∈ Bt and k ∈ N, (a, c · k)→t1 (a, c).

• For all (a, c) ∈ Bt and k > 2, (a, c · k)→t2 (a, c · 1).

� The relation below→abs ensures that, if λx.u is a typed subterm of t, then
its type T is an arrow type.

• if t|a = λx.u, then(a, ε)→abs (a, 1)

� The “big-step” stability relation→down below roughly states that the support
of a potential derivation is a tree:

• (a′, c)→down (a, ε)

• p⊥→down (a, ε)
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ax
4`x : (8·o, 3·o′, 2·o)→o′

ax
9`x : o [2]

ax
2`x : o′ [3]

ax
5`x : o [8]

app
. . . ` xx : o′

abs
` λx.x x : (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o)→ o′

abs
` λyx.xx : ( )→ (2 · o′, 4 · (8 · o, 3 · o′, 2 · o)→ o′, 5 · o, 9 · o)→ o′

Figure 4: Threads, Ascendance and Consumption

Note that Lemma 7 would not hold without considering→down.

� We set→•=→ ∪ ← ∪→t1 ∪→t2 ∪→abs∪→down. If p1→• p2, notice that, by
construction, p1 ∈ bisupp(P ) implies p2 ∈ bisupp(P ). We say then that p1

subjugates p2, generalizing § 3.1.

3.5 Characterizing Bisupport Candidates with Threads

We prove now that the relations above are indeed enough to express a sufficient
condition of typability (Corollary 1).

As we have seen, if P is a b·c-derivation, then bisupp(P ) is closed under
→asc, asc←, →pi, pi←, →, ←, →t1, →t2, →abs and →down. Of course, p⊥, the
empty biposition, cannot be in P . It turns out that it is enough to characterize
candidate bisupports (Prop. 1). Let ≡ be the reflexive, transitive, symmetric
closure of→asc∪→pi. We have:

Proposition 1. Let B ⊆ Bt. Then B is a b·c-candidate bisupport for a deriva-
tion typing t (i.e. there exists a b·c-derivation s.t. B = bisupp(P )) iff (1) B is
non-empty, (2) B is closed under ≡ and→•, and (3) B does not contain p⊥.

In other words, a set of real bipositions (i.e. excluding p⊥) is the bisupport
of an actual b·c-derivation typing t when it is closed under the relations ≡ and
→•. If such a set exists, then t is typable.

Proof sketch. The necessity of these conditions has been discussed in § 3.3 and
3.4. Conversely, assume that ∅ 6= B ⊂ Bt \ {p⊥} is closed under ≡ and→•. We
want a derivation P s.t. bisupp(P ) = B. For that, we need to suitably decorate
the p ∈ B. Mainly, a non-terminal biposition must be labelled with → and a
terminal one with a fixed type atom o, in order to get correct types (as in § 3.1).
On can check that P is a correct S-derivation using the definition of ≡ and→•.

From now on, it will be better to reason modulo ≡ (it may already be guessed
that ≡ should commute with →,→t1, . . ., which is made explicit in § 4.2) and to
focus on subjugation.

Definition 1. Let t be a term and b·c : N∗ → N \ {0, 1} an injection, and→asc,
→pi the relations of ascendance and polar inversion in Bt defined w.r.t. b·c.
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• An ascendant thread is an equivalence class of relation ≡asc, the reflexive,
transitive, symmetric closure of→asc.

• A thread (metavariable θ) is an equivalence class of relation ≡ (see Fig. 4
).

• The quotient set Bt/≡ is denoted Thr.

In Fig. 4, the red occurrences of o′ correspond to an ascendant thread and the
blue one to another. Their union constitutes a (full) thread, that we denote θa.
Likewise, the green and the orange occurrences of o respectively correspond to
the negative and the positive part of a thread θb. The unique purple occurrence
of o corresponds to a singleton thread θc.

The notation Thr implicitly depends on t and b·c. The thread of (a, c) ∈ B is
written thr(a, c) and we set:

θε = thr(ε, ε) θ⊥ = thr(p⊥)
“root thread” “thread of emptiness”

If thr(p) = θ, we say that θ occurs at biposition p, also written θ : p or p : θ
e.g., θa : (ε, 12) or θa : (0, 4·1).

We consider now the extension of every other relation modulo ≡. Namely, we
write θ1→̃aθ2 if ∃p1, p2, θ1 = thr(p1), θ2 = thr(p2), p1 →a p2. Thus, θ1→̃aθ2

iff θ1 : p1 →a p2 : θ2 for some p1, p2. In that case, we say that θ1 (resp. θ2) has
been left-consumed (resp. right-consumed) at biposition p1 (resp. p2) e.g.,
in Fig. 4, θb : (02·1, 8)→̃02(02·8, ε) : θc . We do likewise for→t1,→t2,→abs,→down,
→•, thus defining →̃t1, →̃t2, →̃abs, →̃down, →̃•, whose reflexive transitive closure
of relation →̃• is denoted →̃∗•.

Corollary 1. If θ⊥ is not in the transitive closure of {θε} by →̃•, then t is
typable in S (by means of a b·c-derivation).

Proof. Let Bmin = {p ∈ B | θε →̃∗• thr(p)} i.e. Bmin is the union of the reflexive
transitive closure of θε under →̃•. If θε→• ∗θ⊥ does not hold, then Bmin satisfies
the hypotheses of Prop. 1. So there is a derivation P s.t. bisupp(P ) = Bmin

and thus, t is typable.

Analogies with first order model theory: given t ∈ Λ and b·c and keeping
in mind the intuition of bisupport candidates, let Tt,b·c be the first order theory
whose set of constants is Thr(P ), that features one unary predicate symbol
inBis (standing for “is in bisupport”) and whose set of axioms is {inBis(θ1) ≡
inBis(θ2) | θ1, θ2 ∈ Thr(P ), θ1→̃•θ1} ∪ {¬inBis(θ⊥)}. Then Corollary 1 states
that there exists a b·c-derivation P typing t iff Tt,b·c is not contradictory: this is
a sort of completeness result. Of course, it remains to be proved that Tt,b·c is
not contradictory (given any t). And this will be done using a technique closely
associated to the λ-calculus: a finite reduction strategy (presented in § 5).
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4 Nihilating Chains

We begin § 4 with a global description of the key steps leading to the fulfillment of
Goal 4 (every term is b·c-typable) giving the final result (every term is R-typable)
and a presentation of the central notion of nihilating chain.

For the purpose of proving that every term is typable, we want to prove
that, for each term t and injection b·c : N∗ → N \ {0, 1}, there is a b·c-derivation
typing t. According to Corollary 1, we must show that θ⊥ is not in the reflexive
transitive closure of θε by →̃•. A proof of θε→̃∗•θ⊥ would involve a nihilating
chain:

Definition 2.

• A chain is a finite sequence of the form θ0→̃•θ1→̃• . . . →̃•θm.

• When θ0 = θε, θm = θ⊥, the chain is said to be nihilating.

In order to apply Corollary 1, we must then prove that there are no nihilating
chains. In other words, this corollary implies:

Proposition 2. If the nihilating chains do not exist, then every term is b·c-
typable, and thus, also R-typable.

We proceed ad absurdum and consider θ0→̃•θ1→̃• . . . →̃•θm with θ0 = θε and
θm = θ⊥. However, →̃• can be →̃, ←̃, →̃t1, →̃t2, →̃abs or →̃down. The structure
of the proof is the following:

• We define (Definition 3) the notion of polarity for bipositions: a biposition
is negative when it is created by an abs-rule (modulo→asc) and positive
otherwise.

• The termination of a finite collapsing strategy (Sec. 5.2) guarantees that
positivity can be assumed to only occur at suitable places in the chain
without loss of generality. In that case, we say that the chain is normal
(Definition 4).

• In normal chains, the different cases of subjugation interact well (§ 4.2),
so that, from any normal chain, we may build another that begins with
θε→̃•θ1. This is easily shown to be impossible, which entails that nihilating
chains do not exist and that every term is S-typable.

4.1 Polarity and Threads

In this section, we define the key notion of syntactic polarity.
If p→asc pi (i = 1, 2) then p1 = p2 (→asc is functional) and we write p1 =

p2 = asc(p). We set, for all p ∈ B, Asc(p) = asci(p), where i is maximal (i.e.
asci(p) is defined, but not asci+1(p)). Thus, Asc(p) is the top ascendant of
p e.g., in Fig. 4, the top red (resp. blue) occurrence of o′ is the top ascendant
of the other ones (resp. one). A top ascendant is either located in an ax-node
(e.g., the top red ascendant in Fig. 4) or in an abs-node (e.g., the blue ones),
motivating:

20



Definition 3.

• Let p ∈ Bt \ {p⊥} and (a0, c0) = Asc(p). We define the polarity of p

as follows: if t(a0) = x for some x ∈ V , then we set Pol(p) = ⊕ and if
t(a0) = λx, then we set Pol(p) = 	. We also set Pol(p⊥) = 	.

• If thr(p) = θ and Pol(p) = ⊕/	, we say that θ occurs positively/negatively
at biposition p.

• If θ is left/right-consumed at p and Pol(p) = ⊕ (resp. Pol(p) = 	), we
say that θ is left/right-consumed positively (resp. negatively) at biposition
p.

Then, we write for instance θ1
⊕→̃a

	 θ2 to mean that θ1 is left-consumed
positively and θ2 is right-consumed negatively in the app-rule at position a. In
Fig. 4, the blue occurrences of o′ are negative, the red ones are positive and
θb
⊕→̃12

⊕θc.

4.2 Interactions in Normal Chains

In § 4.2, we present the notion of normal chain and explicit some interaction
properties that allow us to simplify/rewrite them.

As it has been discussed in § 1.5 and 2.1, the possibility for a variable x (of a
redex or of a redex to be created later) to be substituted in a reduction sequence
is problematic. Intuitively, a biposition is negative when it was “created” in
an abstraction λx and that left-consumption is associated to left-hand sides of
application. Thus, a negative left-consumption hints at the presence of redex
(this intuition will be made more explicit in Sec. 5.2). More precisely, it indicates
the presence of what we will call a redex tower. This suggests the following
notion:

Definition 4. A chain is normal if no thread is left-consumed negatively in it
(there is no link of the form θi

	→̃θi+1 or θi←̃	 θi+1).

Normal chains can be handled! The interaction lemmas below describe
some commutations between stability relations.

Lemma 2. If θ1→̃t1θ2 and θ2→̃θ4, then, ∃θ3, θ1 → θ3 and θ3→̃t1θ4.

Lemma 3. If θ⊕→̃θ′, there is no θ0 s.t. θ0→̃absθ or θ0→̃downθ.

Lemma 4. If θ1→̃t2θ2 and θ2
⊕→̃θ4, then, ∃θ3, θ1

⊕→̃θ3 and θ3→̃t2θ4.

Lemma 5.

• If thr(p) = θ⊥, then Pol(p) = 	.

• If θ→̃t1θ⊥ or θ→t2 θ⊥, then θ = θ⊥.

• We cannot have θ→̃absθ⊥ or θ→̃downθ⊥.

21



u

λx(Sk)k∈K → T

λ3(∗)→(Sk)k∈K→T
@(Sk)k∈K → T

λ2(∗)→(Sk)k∈K→T

λ1(∗)→(∗)→(Sk)k∈K→T
@(∗)→ (Sk)k∈K→ T

@(Sk)k∈K → T

@T

The Sk are
consumed
there

v
(Sk)k∈K

step 1

u1

λx

λ3

@

λ2

@

@

v
u2

λx

λ3

@

@

v

step 2 step 3 step 4

u3

(Sk)k∈K → Tλx

@T

v
(Sk)k∈K

u3[v/x]

T

Figure 5: Collapsing a Redex Tower

Goal 4 (almost) at Hand Using Lemmas 2, 3, 4, 5, it is not difficult to define an
algorithm taking a normal nihilating chain as input (if one exists) and outputting
a chain of the form θε = θ0

⊕→̃θ1
⊕→̃...⊕→̃θ` = θ⊥. See § 12.3.3 in [18] for

details.
Then, one proves that there is no θ such that θε

⊕→̃θ. This implies that there is
no chain of the form θε = θ0

⊕→̃θ1
⊕→̃...⊕→̃θ` = θ⊥, and then, that there is no

normal nihilating chain:

Proposition 3. There is no normal nihilating chain.

Proposition 3 almost proves that every term is b·c-typable (by Proposition 2).
Almost, because only the non-existence of normal nihilating chains is ensured
for now (and not that of nihilating chains in general). The only point that will
remain to be verified is that normal nihilating chains can be considered without
loss of generality (which is the object of § 5).

5 Normalizing Nihilating Chains

5.1 Residuation and Subjugation

In this section, we explain why negative left-consumption in a nihilating chain
can be avoided (without loss of generality). By Prop. 2 and 3, this will allow
us to prove that every term is typable. The fact that system S is relevant,
non-idempotent, rigid and syntax-directed entails that if P � C ` t : T and

t
b→β t′, then, there is a unique derivation P ′ � C ` t′ : T obtained from P

by subject reduction (thus, subject reduction is deterministic in system S).
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Moreover, intuitively, every part of P ′ comes from a part of P and so, every
position and right biposition of P ′ can be thought as the (quasi-)residual of
position or (right) biposition of P ′. We do not give details (that can be found
in § IV and Fig. 1 in [17]), but this induces a function QResb from the right
bisupport of P to that of P ′. The function QResb turns out to be compatible
with thread-membership:

Lemma 6. If p1 ≡ p2 in P , then QResb(p1) ≡ QResb(p2) in P ′.

This Lemma allows us to define (quasi-)residuals for threads. We set Resb(θ) =
thr′(QResb(p)) for any p : θ (where thr′(·) denotes threads in Bt′). By case
analysis, we have:

Lemma 7. Let θ1, θ2 ∈ Thr. We set θ′i = Resb(θi) (i = 1, 2).

• If θ1→̃θ2, then θ′1→̃θ2 or θ′1 = θ′2.

• If θ1→̃t1θ2, then θ′1→̃t1θ
′
2 or θ′1 = θ′2.

• If θ1→̃t2θ2, then θ′1→̃t2θ
′
2, θ

′
1→̃downθ

′
2 or θ′1 = θ′2.

• If θ1→̃absθ2, then θ′1→̃absθ
′
2 or θ′1 = θ′2.

• If θ1→̃downθ2, then θ′1→̃downθ
′
2 or θ′1 = θ′2.

See § 12.4.1 in [18] for the proofs of Lemmas 6 and 7.
Finally, Resb(θε) = θε and Resb(θ⊥) = θ⊥ as expected, so Lemma 7 implies

that, if there is a nihilating chain for t of length m, then there is one for t′ of
length 6 m (whenever t→∗ t′).

5.2 The Collapsing Strategy

We explain now how to normalize a chain i.e. discard negative left-consumption.
This will allow us to use Proposition 3 to finally conclude that nihilating chains
do not exist.

The idea is that if θL
	→̃aθR, then either t|a is a redex and we have Resb(θL) =

Resb(θR) (i.e. θ1 and θ2 are collapsed by the reduction step) or θL passes through
a redex. When we reduce this redex, the “height” of θL will decrease. More
precisely, the 2nd case is associated with the notion of redex tower, which
is more or less a finite nesting of redexes, that can – more importantly – be
collapsed in a finite number of steps. A case of negative left-consumption of a
sequence type (Sk)k∈K (which is the domain of the abstraction λx.u), coming
along with a redex tower, is represented in Fig. 5 (we write λi instead of λxi
and (∗) for matterless sequence types). The sequence type (Sk)k∈K of negative
polarity is “called” by the node λx at the top of the figure and consumed at
the bottom app-rule. The initial redex tower is reduced in 4 steps, so that its
height decreases and finally, the types Sk, that were left-consumed negatively,
are destroyed in the final term u3[v/x]. .
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Lemma 8. If θ1
	→̃θ2, then there is a reduction path rs such that Resrs(θ1) =

Resrs(θ2) (residuation naturally extends along with rs).

This Lemma, along with the conclusion of § 5.1, yields:

Proposition 4. There is a reduction strategy (the “collapsing strategy”)
producing a normal nihilating chain from any nihilating chain.

6 Applications

We can now prove that every term is b·c-typable (and thus, also R-typable, by
Goal 4), using Prop. 2, the residuation of threads (S 5.1), the collapsing strategy
(Prop. 4) and the non-existence of normal threads (Prop. 3), which is ensured by
the Interaction Lemmas.

Theorem 1. Every λ-term is typable in the relevant and non-idempotent inter-
section type system R.

By the same techniques (the complete proofs are in § 12.4.5 of [18]), system R
discriminates terms w.r.t. their arities, as claimed:

Lemma 9. Let t be a zero term and o a type atom, then there is context C such
that C ` t : o is S-derivable.

Proof sketch. Let t be a term s.t. θε→̃∗•thr(ε, 1) i.e. s.t. (ε, 1) ∈ Bmin (see
Corollary 1), which implies that the type of t cannot be a type atom by the
proof of this same corollary. We prove that t is of arity > 1, which is enough to
conclude.

For that, we consider a λ-chain i.e. a chain of the form θε = θ0→̃• . . . →̃•θm =
thr(ε, 1), of minimal length. The notion of normal chains extends to λ-chains
and by the collapsing strategy, we can replace t by a reduct t′ s.t. the considered
chain is normal.

Using ad hoc interaction lemmas, we prove that the normality of the chain
entails θε→̃absthr(ε, ε). Collapsing then redex towers, we may reduce t′ to an
abstraction λx.t′′. Q.E.D.

Theorem 2. Let t be a term of arity n. Then there is a context Γ and a type τ
of arity n (see Sec. 2.4) such that Γ ` t : τ is R-derivable.

Proof sketch. When n =∞, this comes from Theorem 1, subject reduction and
the abs-rule. When n ∈ N, we use Lemma 9 and (finite) subject expansion
(Proposition 1).

Conclusion: We proved that every term is typable in a reasonable relevant
intersection type system (Theorem 1). If we take the typing rules of S coin-
ductively (and not only the type grammar), we can also type every infinitary
λ-term [15].

The techniques that we have developed here build, to the best of our knowl-
edge, the first bridge between first-order model theory and the study of models
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of the pure λ-calculus. They are actually modular: we also use them, in a
companion paper, to prove that every multiset-based derivation is the collapse
of a sequential derivation [19]. This suggests that these techniques could be used
to study the coinductive version of finitary models of the λ-calculus and extend
some of their semantical properties to all λ-terms.

By setting, for each term t, [[t]]rel∞ = {�RΓ ` t : τ | Γ, τ} (cf. § 1.3), one
defines the infinitary version of the relation model, in which, by Theorem
1, no term has a trivial denotation, including the mute terms. This model is thus
non-sensible [2] since it does not equate all the non-head normalizing terms
(e.g., Ω and λx.Ω of respective arities 0 and 1) by Theorem 2.

We presented a first semantical result about this model (Theorem 2), but its
equational theory has yet to be studied. According to the same theorem, this
model equates all the closed zero terms. It then differs both from the non-sensible
model of Berarducci trees and that of Lévy-Longo trees, respectively related to
Λ111 and Λ001 in [15]. This work may suggest a new notion of tree, that could
shed some light on Open Problem # 18 of TLCA (the problem of finding trees
related to various contextual equivalences).

The study of infinitary models (beyond infinite tree models) is at its early
stages, but it already provides descriptions of the infinitary behaviors of λ-
terms (cf. Grellois-Melliès’ infinitary model of Linear Logic in [12, 13]). The
semantical implications of the main theorem (every term is R-typable) remain
to be understood and the proof techniques presented here can certainly be used
to study infinitary models or coinductive/recursive type systems before they are
endowed with some validity or guard condition, or maybe to build other models
of pure λ-calculus, for instance, to get some semantical proof of the easiness [14]
of sets of mute terms, as in [4].
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