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Output Injection Filtering Redesign in High-Gain Observers

Daniele Astolfi1, Marc Jungers1 and Luca Zaccarian2

Abstract— We propose a new paradigm to redesign high-gain
observers in order to improve performances in the presence
of measurement noise. In particular, instead of driving the
observer by means of a standard output injection term, we filter
it with a dynamical system having good filtering properties. In
this first preliminary result we also select the filter in order to
address numerical challenges.

Index Terms— High-gain observers, noise filtering.

I. INTRODUCTION

Among different techniques for the state-estimation of
continuous-time nonlinear systems, high-gain observers are
certainly very popular in nonlinear control theory. After
seminal works at the end of the 80’s, a large number of
researchers devoted their attention to the study of this class
of observers, see, for instance, [1]–[3] and references therein.
The main advantage of a high-gain observer is that it guaran-
tees that the estimation error converges exponentially to zero
with a rate of convergence that can be arbitrarily augmented
by enlarging just one single parameter, denoted as high-
gain parameter. However, because of the fast convergence,
sensitivity to high-frequency measurement noise is made
worst, see [4]–[6]. To address this problem, many techniques
have been developed in the last decades: adaptive techniques,
[7], [8], redesign of the local behaviour by combining differ-
ent observers, [9]–[11], low-power structures, [12]–[16], and
lastly saturation redesign, [17]. In the recent work [18], it
is proposed to filter the measured output by means of a fast
low-pass filter, that is a low-pass filter which is modulated
by the high-gain parameter. The main drawback of this
approach, however, is that asymptotic (possibly practical in
presence of measurement noise) estimation cannot be any
more guaranteed and the proposed scheme guarantees good
performances only with feedback stabilization. Therefore, in
the case where we are interested in purely estimation, that
scheme can not be used any longer.

In this work, inspired by [12] and in the same spirit [18],
we propose to use a low-pass filter in order to improve
performances of high-gain observers in the presence of
measurement noise while retaining the main behaviours.
In the proposed design, the dynamical filter processes the
output injection term of the observer and not the measured
output, as in [18]. Sufficient conditions for design of the
matrix coefficients, ensuring convergence of the observer, are
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provided. The estimation error provided by the new structure
retains the same input-to-state properties of standard high-
gain observers. A special choice of this dynamical filter is
also given, where we exploit the possibility of writing all the
coefficients embedding powers of the high-gain parameter
of order 1 and 2 instead of n, similarly to the low-power
structures presented in [12]–[16]. In this case, the choice of
the matrix coefficients must satisfy a necessary condition,
which is fully exploited. With respect to [12]–[15], the
procedure of selection of the coefficients in the proposed
structure is much simpler. Simulations are enclosed at the
end of the work.

We highlight that the goal of this preliminary work
is to present a new structure for the design of high-gain
observer that aim to address the problem of state observation
in noisy frameworks. For this reason, we are not going
to compare the proposed techniques with other existing
high-gain observer techniques (such as [12], [18]) but we
will show that dynamical filtering may be effective in
improving disturbance rejection properties while inheriting
the asymptotic behaviours of the observers. Optimality-
based tuning for both the gain and the parameters of the
dynamical filter remains an open question for future research.

Notation. We denote with R the set of real numbers and
with Z the set of integers. We denote also Z>0 = {1, 2, . . .}.
We denote with C the set of complex numbers and C<0

the set of complex numbers with strictly negative real part.
We denote with i the imaginary number. Given a complex
number z ∈ C, z = x + iy, with x, y ∈ R, we denote
with <(z) its real part, namely <(z) = x and =(z) its
imaginary part, that is =(z) = y. Given a square matrix F ,
we define with σ(F ) the spectrum of F and with pF (λ) its
characteristic polynomial, namely pF (λ) = det(λI−F ). We
denote with Ii, or simply I , an identity matrix of dimension
i ∈ Z>0. We denote with 0i,j a zero matrix of dimension
i × j, with i, j ∈ Z>0. We denote a triplet in prime form
(Ai, Bi, Ci) of dimension i ∈ Z>0, (or simply (A,B,C) in
the case of no dimension ambiguity), matrices of the form

Ai =

(
0i−1,1 Ii−1

0 01,i−1

)
, Bi =

(
0i−1,1

1

)
, CTi =

(
1

0i−1,1

)
.

(1)

II. PRELIMINARIES

In this work we consider nonlinear autonomous systems
of the form

ẋ(t) = Ax(t) +Bϕ(x(t)) , y(t) = Cx(t) + ν(t) , (2)

where x ∈ Rn is the state, n ∈ Z>0, y ∈ R is the measured
output, ν : R≥0 → R is some (bounded) measurement noise,



(A,B,C) is a triplet in prime form, see (1), of dimension
n and the function ϕ(·) is at least locally Lipschitz. Note
that the class (2) represents a fairly general class of systems
(e.g. all linear observable and controllable dynamics) due to
the general function ϕ(·). Moreover, we recall that any ob-
servable time-invariant autonomous nonlinear system can be
written in the form (2) after a suitable change of coordinates,
see [1]–[3] and references therein. We suppose that the state
x of (2) evolves in a given compact set X ⊂ Rn for all t ≥ 0.
In the rest of the paper we will drop the time-dependency
(t) on the variable when not useful. High-gain observers for
system (2) can be designed as

˙̂x = Ax̂+Bϕs(x̂) +DkL(y − Cx̂) (3)

where x̂ ∈ Rn is the state of the observer, Dk =
diag(k, . . . , kn), where k ≥ 1 is a real number usually
denoted as high-gain parameter, L = col(`1, . . . , `n) is the
Luenberger gain to be chosen such that (A−LC) is Hurwitz,
and ϕs is a globally bounded and locally Lipschitz function
that agrees with ϕ on X , namely ϕs(x) = ϕ(x) for all x ∈ X
and there exists a number ϕ̄ > 0 such that |ϕs(x)| ≤ ϕ̄ for
all x ∈ Rn. For instance, ϕ can be designed by saturating
the function ϕ outside the compact set X . By using the fact
that the matrix (A− LC) is Hurwitz, it can be shown that,
for a k sufficiently large, the estimation error x̂− x satisfies
the following bound

|x̂(t)− x(t)| ≤ kn−1 exp(−a1kt)a2 + a3k
n−1supt≥0|ν(t)|

(4)
where ai > 0, i = 1, 2, 3 are numbers independent of
k. Bound (4) highlights that the estimation error converges
asymptotically to zero when the measurement noise is not
present. Moreover, observer (3) has good asymptotic proper-
ties with respect to the measurement noise (they can also be
denoted as ISS-gain). On the other hand, the gain between
the measurement noise and the estimation error is in general
proportional to kn−1 showing that the faster is the observer,
the worst will be in general the performances in the presence
of measurement noise. As shown in [6], the low-pass filter
behaviour of the high-gain observer (3) can be captured in
case the measurement noise ν(t) is modelled by a finite
Fourier series, namely

ν(t) :=

N∑
i=1

νi sin
(ωi
ε
t+ φi

)
, (5)

for some N > 0, where the parameter ε > 0 parametrizes
the basic frequencies ωi while νi > 0 and φi characterize
the amplitude and the phase of the single components, re-
spectively. The measurement noise (5) has a high-frequency
behaviour for ε small enough. In this case, the asymptotic
estimation error in (4) can be computed as

lim
t→∞

|x̂(t)− x(t)| ≤ εa4kn sup
t≥0
|ν(t)| ≤ εa4kn sup

t≥0

∑
i

νi

(6)
where a4 > 0 is a number independent of k. It is readily
seen that the bound (6) catches the low-pass filter behaviour

of the high-gain observer (3) since

lim
ε→0

lim
t→∞

|x̂(t)− x(t)| = 0 .

On the other hand, bound (6) highlights that the asymptotic
gain at high-frequencies is proportional to kn and not to
kn−1. Nevertheless, as showed in [15], it can be shown
that augmenting the relative degree between the measured
output and the state estimations, may improve the asymptotic
estimation (6). For this reason, in this work, we propose to
redesign the observer (3) by augmenting the relative degree
between the measured output and the estimates. This task is
accomplished by filtering the output injection term through
a dynamical linear filter.

III. MAIN RESULTS

A. Observer structure

The high-gain observer (3) can be represented by a block-
diagram scheme as in Figure 1. The main objective of this
work is to modify observer (3) by adding a suitable filter
between the output injection term and the observer, as in
Figure 2. In particular, in this section, we study a high-gain
observer with filtering redesign of the form

˙̂xi = x̂i+1 + `iηi, i = 1, . . . , n− 1
˙̂xn = ϕs(x̂) + `nηn,
η̇1 = −kαη1 + k2β(y − x̂1),
η̇j = −kαηj + k2βηj−1, j = 2, . . . , n,

(7)

where (x̂, η) ∈ R2n is the extended state, ϕs is chosen as for
the standard high-gain observer (3), and α, β, `1, . . . , `n are
positive coefficients to be chosen. We denote with X̂ ×E ⊂
Rn × Rn the compact set of initial conditions of (7). By
inspecting the η-dynamics in (7), it can be noticed that ηi
plays the role of being a filtered version of β

αk
i(y− x̂1), thus

recovering asymptotically the structure of the standard high-
gain observer (3) for low frequencies (in particular when
α = β). In the following we will also use the forthcoming
compact notation , arising from the fact that A is in the prime
form (1),

˙̂x = Ax̂+Bϕs(x̂) + diag(L)η,
η̇ = −k(αI − kβAT )η + βk2CT (y − Cx̂),

(8)

where the Luenberger gain L is defined as in (3). While in the
standard high-gain observer (3), the coefficients `1, . . . , `n
need to satisfy the condition (A − LC) Hurwitz, a more
stringent condition is required for (8), as specified in the
forthcoming section.

Plant y Observer
y − ŷ

x̂

ŷ

−

Fig. 1: Standard observer scheme.
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Fig. 2: Output injection redesign via dynamical filtering.

B. A preliminary Lemma

Let Sα,β ⊂ C<0 be the following set

Sα,β :=
{

(x+ iy) ∈ C : α2x+ βy2 < 0
}
, (9)

whose peculiar parabolic boundary is represented in Fig-
ures 3 and 5. We have then the following lemma instrumental
to the main result of this section.

Lemma 1 Let two positive reals α, β be fixed and consider
the following matrix

M =

 A diag(L)

−βCTC −αI + βAT

 . (10)

The following holds:
(i) The characteristic polynomial of M satisfies

pM (λ) = βnp(A−LC)

(
λ(λ+α)

β

)
. (11)

(ii) If L is chosen such that σ(A−LC) ⊂ Sα,β , with Sα,β
defined in (9), then both (A−LC) and M are Hurwitz.

The proof of Lemma 1 is not detailed here due to space
limits. The sketch of the proof is as follows. Relation (11)
expresses the characteristic polynomial of M , of degree 2n,
in terms of the characteristic polynomial of (A − LC), of
degree n, and parameters α and β. This relation can be
obtained by iterative and suitable row and column expansions
of the determinant det(M − λI) and using the structure of
M . The proof of item (ii) of Lemma 1 exploits equation (11),
that is the link between the roots of pM (·) and p(A−LC)(·).
Roughly speaking, we have λ ∈ σ(M) if and only if
λ(λ+α)

β = µ ∈ σ(A − LC). The set Sα,β defined by (9) is
built as the intersection of two sets: the set of µ ∈ σ(A−LC)
such that <(µ) < 0 and in addition the set of µ ∈ σ(A−LC)
such that both roots λ of the equation λ(λ+α) = βµ verify
<(λ) < 0. We obtain the conclusion that if σ(A − LC) ⊂
Sα,β , then both (A− LC) and M are Hurwitz.

Lemma 1 requires further comments. The design of L
such that both matrices (A − LC) and M be Hurwitz will
start by selecting the spectrum σ(A− LC) ⊂ Sα,β and in a
second step by computing L related to this desired spectrum
by exploiting the companion structure of matrix (A− LC).
This procedure is detailed in Remark 1 at the end of this
section.

We provide now two numerical examples illustrating the
main features of Lemma 1.
Numerical example 1. Consider the case of a system of
dimension n = 8 and fix α = 0.1 and β = 0.1. We select in

this first example L such that the eigenvalues of (A− LC)
lay inside the set Sα,β defined in (9). In particular we choose

σ(A−LC)={−2.5±0.3i,−2,−1.3,−1±0.2i,−0.1,−0.4}.

Figure 3 shows the placement of the eigenvalues (A− LC)
and the parabola

α2<(µ) + β=2(µ) < 0 , (12)

corresponding to the boundary of set Sα,β . The eigenvalues
of the closed-loop matrix M in (10) are shown in Figure 4.
It can be noticed that all the 16 eigenvalues have strictly
negative real part and that they are symmetric with respect
to the vertical axis <(λ) = −α/2 = −0.05, highlighted in
red in Figure 4. This symmetric placement of the eigenvalues
λ of M is a direct consequence of property (i) of Lemma 1.

Numerical example 2. We select, as in the previous Example
1, n = 8, α = 0.1 and β = 0.1. We select now L such that
two eigenvalues of (A−LC) lay outside the set Sα,β defined
in (9). In particular we choose

σ(A−LC)={−2.5±0.3i,−2,−1.3,−1±0.6i,−0.1,−0.4}.

Figure 5 shows the placement of the eigenvalues (A− LC)
and the parabola (12). It can be noticed that the eigenvalues
in −1 ± 0.6 are not inside the parabola defined by Sα,β .
These two defective eigenvalues are highlighted in magenta
squares. The eigenvalues of the closed-loop matrix M in
(10) are shown in Figure 6. It can be noticed that now 2
eigenvalues have positive real part, namely they are unstable.
These eigenvalues are highlighted in magenta in Figure 6.
Nevertheless, it can be remarked that the symmetry with
respect to the vertical axis <(λ) = −α/2 = −0.05,
highlighted in red in Figure 6, is still respected.

C. Asymptotic properties of the estimation error

By direct application of Lemma 1 of the previous section,
we obtain the following result.

Theorem 1 Consider system (2) and observer (7). Let
α, β > 0 be fixed and let L be chosen such that σ(A−LC) ⊂
Sα,β . Then, there exists a real number k∗ ≥ 1, such that, for
any k > k∗, the following bound holds

|x̂(t)− x(t)| ≤ kn−1 exp(−b1kt)b2 + b3k
n−1supt≥0|ν(t)|

(13)
for all t ≥ 0, for all initial conditions (x(0), x̂(0), η(0)) ∈
X × X̂ × E and for some constants bi > 0, i = 1, 2, 3
independent of k.

Proof. By considering the change of coordinates e :=
kD−1k (x̂ − x), η̃ := D−1k η, and using D−1k A = kAD−1k
and kD−1k AT = ATD−1k , system (7) reads as

ė = kAe+B∆(e, x) + kdiag(L)η̃
˙̃η = −k(αI − βAT )η̃ − kβCTCe+ βkCT ν

(14)

where ∆(e, x) is computed as

∆(e, x) := k−(n−1)[ϕs(Dkk
−1e+ x)− ϕs(x)]. (15)



By setting ε := col(e, η̃), system (14) can be compactly
written

ε̇ = kMε+ B̄∆(e, x) + kβC̄ν, (16)

where M is given in (10), B̄ := col(B, 0), C̄ = col(0, CT ).
Since ϕs is globally bounded and ϕ,ϕs are locally Lipschitz,
we have that |∆(e, x)| ≤ δ|e| ≤ δ|ε| for some δ > 0 for all
x ∈ X and all e ∈ Rn. As a consequence, since the matrix M
is Hurwitz by construction (see in particular Lemma 1), by
using the Lyapunvo function V = εTPε, with P = PT > 0
solution of PM + MTP = −I , and by applying standard
Lyapunov arguments (see for instance [3] or [12]), which are
here omitted for the sake of compactness, we can conclude
that the following inequality

|ε(t)| ≤ exp(−b1kt)b2 + b3supt≥0|ν(t)|,

holds for all t ≥ 0, for all k > k∗, where k∗ ≥ 1 is large
enough, and for some bi > 0, i = 1, 2, 3, independent of
the parameter k. Finally, by using the previous bound and
by recalling the inequality |x̂− x| ≤ kn−1|e| ≤ kn−1|ε| we
obtain the bound (13), which concludes the proof. �

Remark 1 A nice feature to be highlighted is the design of
observer (7) and in particular how to choose the coefficients
α, β, `1, . . . , `n characterizing the gains of the observer. In
particular, in view of Lemma 1, one can simply follow these
steps:
• choose any α, β > 0;
• choose n stable poles λi (that can be real or complex

conjugate) lying inside Sαβ of (9);
• compute the resulting characteristic polynomial∏n

i=1(λ−λi) = λn+a1λ
n−1 + . . .+an−1λ+an; note

that, in light of the Routh-Hurwitz necessary condition
for the stability of a polynomial, we have ai > 0 for
all i = 1, . . . , n;

• assign `i = ai for all i = 1, . . . , n.
As it can be noticed, the procedure is substantially the one
used to select the gain of a standard high-gain observer, but
with the additional constraint that the poles of (A−LC) lay
inside Sα,β ⊂ C<0.

The proposed observer (7) ensures asymptotic convergence
to zero of the estimation error |x̂ − x|. Even if the bound
(13) has the same form as (4), the presence of the additional
dynamics η may improve the performances of the overall
observer in the presence of measurement noise with respect
to the standard high-gain observer (3). A detailed charac-
terization of these performances is out of the scope of this
preliminary work. However, we may note that the relative
degree between the measured output y and the estimation x̂
is in general at least 2, so better performances in presence of
high-frequency measurement noise are in general expected.
In particular, by following the computation in [6], it is
expected that when the measurement noise ν(t) is modelled
as in (5), the asymptotic behaviour of the estimation error
for (7) can be characterized by

lim
t→∞

|x̂(t)− x(t)| ≤ ε2b4knsupt≥0|ν(t)|, (17)

for some b4 > 0 independent of k. We remark that in view of
the special structure of the dynamical filter in (7), the bound
(17) could be refined by inspecting all its components x̂i−xi,
i = 1, . . . , n, as done for instance in [6], [15]. However,
because of space reasons, in this work we limit ourselves
to show the effectiveness of the scheme in the numerical
example in Section V.

Finally, we remark that the proposed structure (7) has
the desirable feature of having the high-gain parameter k
which is powered up to 2 regardless of the dimension of
the system state n. On the contrary, standard high-gain
observers embed coefficients which are proportional to kn.
This feature may be of particular interest in case of a large
state-dimension n for numerical implementation purposes, as
already highlighted in [12]–[16].
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Fig. 3: Numerical example 1. Choice of the stable eigenval-
ues of (A− LC).
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Fig. 4: Numerical example 1. Eigenvalues of the closed-loop
matrix M defined in (10).

IV. A GENERAL FORMULATION

By following the general scheme of Figure 2, it can be
noticed that the observer structure (8) presented in Section III
can be further generalized as follows

˙̂x = Ax̂+Bϕs(x̂) +DkNHη,
η̇ = kFη + kG(y − Cx̂),

(18)

where x̂ ∈ Rn is the estimate of the state x of (2), η ∈ Rm
is the state of the filter, with m ∈ Z>0. We denote with
X̂ × E ⊂ Rn × Rm the compact set of initial conditions
of (18). Matrices N,F,G,H are now degrees of freedom
to be properly chosen. It is readily seen that the structure
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Fig. 5: Numerical example 2. Choice of the stable eigenval-
ues of (A− LC).
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Fig. 6: Numerical example 2. Eigenvalues of the closed-loop
matrix M , (10). Two eigenvalues are unstable.

(8) is recovered from (18) by selecting m = n, N = D−1k ,
H = diag(L), F = (αI − kβAT ) and G = βkCT . By
analysing the dynamics of system (3) and the observer (18),
we can establish the following result.

Theorem 2 Consider system (2) and observer (18). Let
N,F,G,H be chosen such that the following matrix

Q :=

(
A NH
−GC F

)
(19)

is Hurwitz. Then, there exists a k∗ ≥ 1, such that, for any
k > k∗, the following bound holds

|x̂(t)− x(t)| ≤ kn−1 exp(−b1kt)b2 + b3k
n−1supt≥0|ν(t)|,

(20)
for all t ≥ 0, for all initial conditions (x(0), x̂(0), η(0)) ∈
X × X̂ × E and for some constants bi > 0, i = 1, 2, 3
independent of k.

Proof. By applying the change of coordinates e :=
kD−1k (x̂ − x) and by denoting ε := col(e, η), system (18)
reads

ε̇ = kQε+ B̄∆(e, x) + kḠν (21)

where B̄ := col(B, 0), Ḡ = col(0, G) and ∆ is computed as
in (15). The end of the proof follows by following the same
steps used in the proof of Theorem 1, and by recalling that
the matrix Q is Hurwitz by assumption. �

Theorem 2 states that observer (18) guarantees asymptotic
estimation of system (2) in nominal condition and moreover
that the estimation error is input-to-state stable with respect
to the measurement noise. This result may be seen as a

generalization of Theorem 1. Furthermore, in view of the
mild condition Q Hurwitz, we believe that all the degrees of
freedom, namely the dimension m of the filter and the ma-
trices F,G,N,H , could be selected in order to improve the
behaviour of the observer in presence of measurement noise
with some optimality criteria (deterministic or stochastic).

Remark 2 In this work we have not investigated the use
of the new observer structure (18) in output feedback sta-
bilization. However, in light of the properties highlighted in
(20), it is expected that observers of the form (18) can be
used in place of standard high-gain observers (3) without
loss of generality since the same main features are retained
(arbitrarily fast exponential convergence of the estimation
error and input-to-state stability properties with respect to
the measurement noise). Finally, we remark that also some
robustness properties with respect to model uncertainties of
the function ϕ of the plant (2) are also expected, as in the
case of standard high-gain observers.

V. SIMULATION

We consider the following nonlinear system

ẋ = A4x+B4ϕ(x), y = C4x+ ν (22)

where x ∈ R4 is the state, (A4, B4, C4) is a triplet in prime
form of dimension 4, and the function ϕ(x) is chosen as

ϕ(x) = −x4 − 5.2x3 − 2.7x2 + 4.5(x21 − 1) .

This system, for initial conditions x = col(0.9, 0, 0, 0), has
a chaotic attractor and bounded trajectories for all t ≥ 0,
see [19]. Furthermore, it can be numerically verified that
solutions converge to a set where |xi(t)| ≤ 6 and |ϕ(x(t))| <
25 for all t ≥ 0. The measurement noise is modelled as
ν(t) = ν̄ sin(ωt) with ν̄ = 0.1 and ω ≥ 50.

We implement the filtered high-gain observer (7) by
selecting ϕs(x) = sat25(ϕ(x)) where satr(s) =
max(−r,min(r, s)), α = 3, β = 1 and the poles of (A−LC)
are placed in (−1±i,−2±i), which corresponds to selecting
L = col(6, 15, 18, 10). It can be verified numerically that
the poles of M are complex conjugates with real part placed
between −2.7 and −0.3. Asymptotic estimation is achieved
in nominal conditions, namely when there is no measurement
noise, for k ≥ 5.

As a comparison, we run the simulation in the same
conditions while considering a standard high-gain observer
of the form (3). In this case, L is taken as before, but
we choose k = 4 which is large enough to guarantee
convergence of the observer in nominal conditions, namely
when ν = 0. Figure 7 shows convergence of the estimation
errors |x(t)− x̂(t)| of the two observers. For both observers
the estimation error convergences asymptotically to zero
with a convergence rate which is of the same order. It can
be noticed that the presence of the filters in observer (7)
attenuates the peaking phenomena during the transient.

Table I contains the data concerning the normalised
asymptotic estimation errors

‖x̃i‖a := lim sup
t→∞

|x̂i(t)− xi(t)|
ν̄

(23)



for various values of ω when k = 10. Improvement of
the performances is achieved when ω is taken higher. On
the other hand it can be seen that the effect of the mea-
surement on the last components of the estimation error is
not amplified as in the case of standard high-gain observer.
Finally, Table II shows the effect of the measurement noise
on the asymptotic estimation errors (values are normalised
with respect to ν as in Table I). It can be noticed that the mea-
surement noise is amplified on the lower components and in
general the estimation error provided by the filtered high-gain
observer (7) has lower bounds (see Table I) even though the
high-gain parameter is larger. An exact comparison between
the two observers is however very hard to address since the
dynamics are different because of the different dimension and
eigenvalues of the closed-loop rescaled matrices (A − LC)
and M .
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Fig. 7: Convergence of the estimation error |x(t) − x̂(t)|.
Dotted blue line: standard high-gain observer (3). Red line:
high-gain observer with filtering redesign (7).

TABLE I: Normalized asymptotic estimation error (23) of
the filtered high-gain observer (7).

ω = 50 ω = 100 ω = 300

‖x̃1‖a 2 0.6 0.07

‖x̃2‖a 10 1.4 0.07

‖x̃3‖a 22 1.6 0.02

‖x̃4‖a 18 0.8 0.01

TABLE II: Normalized asymptotic estimation error (23) of
the standard high-gain observer (3).

ω = 50 ω = 100 ω = 300

‖x̃1‖a 5 2.5 0.9

‖x̃2‖a 50 25 8

‖x̃3‖a 230 120 40

‖x̃4‖a 500 260 90

VI. CONCLUSION

We proposed to modify the standard high-gain observer
structure by adding a dynamical filter processing the output
injection term. We proved that the obtained observer inherits
the asymptotic behaviour of the high-gain observer, namely
asymptotic estimation can be achieved in nominal conditions,
and input-to-state properties with respect to measurement
noise are retained. We expect that the effect of augmenting

the relative degree between estimates and measurements, and
the choice of the dynamical filter, may improve the sensitivity
with respect to measurement noise. This fact is confirmed
by simulations although a rigorous proof is not provided. A
particular choice of the filter allows to implement coefficients
that are proportional to powers of the high-gain parameter
equal to one or two, thus resulting in numerical benefits when
the system’s dimension is large or fast convergence is sought
for (see [12], [16]).

This work proposes a different route for the problem of
state estimation of nonlinear systems in the presence of
measurement noise, which mainly combines a Luenberger
observer with a dynamical filter in a feedback form (and
not in cascade) and sufficient conditions for the stability
of the composed observer are given. A full characterization
of the behaviour of the proposed technique in presence of
measurement noise and optimality-based tuning for both the
gain and the parameters of the dynamical filter remains an
open question for future research.
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