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Emulation-based semiglobal output regulation of minimum phase nonlinear
systems with sampled measurements

Daniele Astolfi1, Giacomo Casadei2 and Romain Postoyan1

Abstract— We investigate the semiglobal output regulation
of minimum-phase single-input single-output nonlinear systems
with sampled measurements. We proceed by emulation. We
start by considering a continuous-time regulator, which solves
the problem in the absence of sampling. Then, we consider
sampled measurements and we model the overall system as
a hybrid system. We show that the original continuous-case
properties are preserved when the measurements are sampled
provided that the maximum allowable transmission interval
satisfies a given explicit bound.

Index Terms— Output regulation, nonlinear systems, net-
worked control systems, sampled-data.

I. INTRODUCTION

Networked control systems (NCS) have become a popular
research topic in the last few years. Not surprisingly though,
since in modern applications, controllers and plants often
communicate over a multi-purpose network, which may
be shared with other tasks. It is a well known fact that,
in contrast with point-to-point connections and dedicated
hardwares, sharing the communication channel may have
a major impact in making a control system more flexible,
in reducing the implementation cost and in simplifying the
maintenance. However, the communication channel induces
uncertain transmission intervals, network delays and packet
loss in general, see e.g. [1], [2], which may destroy the
desired control properties, if ignored. There is therefore a
need for adapted control design methodologies, which cope
with these constraints.

The vast majority of the literature on NCS focuses on the
stabilization problem, see e.g. [3]–[6], or on the observer
design problem, see e.g. [7], [8]. Only recently, some re-
searchers have addressed the problem of output tracking, e.g.
[9]–[11], where it is shown that the design and the analysis
exhibit specific problems, which are mainly due to the feed-
forward action of the controller. Very few works, on the other
hand, have investigated the output regulation problem for
NCS, namely the scenario in which we want to regulate some
desired outputs to a given reference while rejecting other
external disturbances. In this framework, output tracking
and disturbance rejection are usually addressed concurrently,
resulting in a problem which is more challenging and harder
to address with respect to the purely output tracking scenario.
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While output regulation has been solved for continuous-
time linear systems by Francis and Wonham with the
celebrated internal model principle [12], this problem is
still largely open for continuous-time nonlinear systems in
general, though remarkable results have been obtained for
minimum-phase nonlinear systems in a semiglobal context
(namely for any arbitrarily large compact set of initial condi-
tions), see e.g. [13]–[17] and in cooperative network contexts
[18]. The scenario where the measurement and the control
input are sampled has been studied mainly for linear systems
assuming periodic sampling. One of the main focus in this
direction was the development of control strategies able to
avoid ripples between inter-sampling times, see for instance
[19]–[21]. A first attempt to address nonlinear systems can
be found in [22], where the authors consider sampled and
quantized measurements, but bounds on the output regula-
tion error and the maximum allowable transmission interval
(MATI) are not explicitly computed. Recently, the nonlinear
output regulation problem has been studied in [23], where
the authors propose an event-triggered law for the case
of sampled inputs and sampled outputs achieving practical
output regulation.

In this work, we consider the scenario where the plant
is nonlinear, single-input single-output, minimum phase and
its output is sampled, not necessarily periodically. We first
design the controller ignoring the sampling by following
[15]. It appears that we cannot apply the results in [15] “off
the shelf”, as we need bounds on the controller parameters,
ensuring output regulation to compute the MATI afterwards,
bounds which are not given in [15]. We therefore slightly
strengthen the assumptions in [15], and revisit the analysis
to obtain the desired bounds, using linear matrix inequalities
(LMI). We then take into account sampling and we model
the overall system as a hybrid system in the formalism of
[24]. We prove that output regulation is solved provided
the gains of the controller are sufficiently large, like in the
continuous-time case [15], and the MATI satisfies a given
explicit bound. The approach we take is inspired by [6],
where the stabilization of the origin problem for nonlinear
sampled-data systems is investigated. While, the model and
the proof techniques we present are similar to those in [6],
the output regulation problem has its features, which makes
the result of [6] not directly applicable. The results are then
illustrated by a nonlinear example for which it appears that
the MATI estimates are reasonably tight.

The paper is organized as follows. In Section II,
the required results on the continuous-time problem
are provided. In Section III, we present the hybrid system



model of the continuous-time nonlinear system with sampled
measurements and we provide the main contribution of this
paper. Finally, a numerical example is given in Section V.

Notations and definitions. R denotes the set of real numbers,
Z the set of integers, Z>0 := {1, 2, . . .} and Z≥0 :=
{0, 1, 2, . . .}. For x ∈ Rn, |x| denotes the standard Euclidean
norm, while |x|A := infa∈A |x−a| denotes the distance from
x to a set A ⊆ Rn. Given an open set B ⊆ Rn containing a
compact set A, a function ω : B → R≥0 is a proper indicator
for A on B if ω is continuous, ω(x) = 0 if and only if x ∈ A,
and ω(xi)→∞ when xi approaches the boundary of B. We
define (see [17, Appendix A])

|x|A/B :=

Å
1 +

1

|x|∂B

ã
|x|A

for any x ∈ B, where ∂ denotes the boundary of a set
and B denotes the closure of B. The function | · |A/B is
a proper indicator for A on B. Given two functions f, h,
we denote with Lfh(x) the Lie derivative of h along f ,
namely Lfh := 〈∇h(x), f(x)〉 where, given two vectors
a, b ∈ Rn, 〈a, b〉 := aT b, and given a scalar field h, we define
∇h(x) := ∂h(x)/∂x. Throughout the paper, the matrices
(A,B,C) are in prime form of suited dimension, namely

A =

Å
0(n−1)×1 In−1

0 01×(n−1)

ã
, B =

Å
0(n−1)×1

1

ã
,

C =
(
1 01×(n−1)

)
,

where n ∈ Z>0, In denotes the identity matrix of dimension
n, and 0n×m denotes a zero matrix of dimension n×m. The
symbol ? stands for the symmetric entries in a matrix.

In this work, we consider hybrid systems of the form [24]

ẋ = F (x), x ∈ C, x+ = G(x), x ∈ D,

where x ∈ Rnx is the state, C is the flow set, F is the
flow map, D is the jump set and G is the jump map. We
assume that the hybrid model satisfies the basic regularity
conditions, see Section 6.2 in [24], which will be the case in
our study. We recall some definitions from [24]. Solutions to
system (1) are defined on so-called hybrid time domains. A
set E ⊂ R≥0 × N is a compact hybrid time domain if E =⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times 0 =

t0 ≤ t1 ≤ . . . ≤ tJ and it is a hybrid time domain if for all
(T, J) ∈ E, E ∩ ([0, T ]×{0, 1, . . . , J}) is a compact hybrid
time domain. Given two hybrid times (t0, j0), (t1, j1) ∈ E,
we denote (t0, j0) ≤ (t1, j1) if t0 ≤ t1 and j0 ≤ j1. Given an
initial condition x◦ ∈ C ∪D, we denote by x(t, j) a solution
to the hybrid system starting at x◦ at time (t, j) if (t, j) ∈
domx. Throughout the text, we will refer to solutions as
maximal solutions, see Definition 2.7 in [24].

II. PROBLEM STATEMENT

Consider the system

ż = f(w, z, x)
ẏ = q(w, z, y) + u

(1)

where (z, y) ∈ Rn × R is the state, y ∈ R is the measured
output to be regulated to zero and u ∈ R is the control input1.
We suppose the initial conditions of the (z, y)-system range
in some arbitrarily large given compact set Z×Y ⊂ Rn×R.
The bounded exogenous input w ∈ W ⊂ Rr, represents a
disturbance to be rejected or a reference to be tracked and
it is supposed to be generated by an exosystem which is
Poisson stable2 of the form

ẇ = s(w) . (2)

Finally, the functions f, q, s are smooth enough.
In this work we consider the scenario depicted in Figure

1 in which a network is used to connect the sensor to the
regulator. We focus on the effect of sampling, and ignore
delays and quantization. Transmission over the networks
occur at times times ti, i ∈ Z≥0, satisfying

0 < υ ≤ ti+1 − ti ≤ T

where T is the MATI and υ is the lower bound on the mini-
mum achievable transmission interval given by the hardware
constraints. The inter-transmission times ti+1 − ti may be
time-varying and uncertain. In the following, the sampled
version of y is denoted as ŷ and it corresponds to the
most recently transmitted output value. The case where u
is sampled will be addressed in future works as it leads to
some non-trivial technicalities, similar to those encountered
in the tracking control of NCS [11].

Exosystem Systemw Network
Controller

y ŷ

u

Fig. 1. Output regulation with sampled measurements.

In this context, the problem of output regulation under
sampling measurements amounts to design a controller of
the form

ξ̇ = %(ξ, ŷ), u = k(ξ, ŷ) , (3)

with initial conditions ranging in a compact set Ξ, such
that the trajectories of the closed-loop system originating
from W × Z × Ξ × Y are bounded (namely, there exists
a compact set D such that (w(t), z(t), y(t), η(t)) ∈ D for
all t ≥ 0) and limt→∞ y(t) = 0 uniformly in the initial
conditions. Since the initial conditions of system (1) ranges
in any arbitrarily large compact set, the problem is cast in a
semiglobal framework, see [13]–[16].

In order to address this problem, we follow the so-called
emulation approach. First we design the output regulator
while ignoring the network. Then, we take the latter into
account and a hybrid model is derived. Afterwards, we give
conditions on the network, in terms of the MATI.

1In view of [16], we could also consider a more generic class of systems
by considering ẏ = q(w, z, y) + b(w, z, y)u where b(w, z, y) > b > 0
for any w, z, y ∈ Rr ×Rn ×R. However, to keep the notation as clear as
possible, we will not address this class of nonlinear systems.

2See [14], [15] for a detailed definition of Poisson stability.



III. SOLUTION IN THE CONTINUOUS-TIME CASE

A. Main assumptions and regulator design

In this section we detail the structure of the regulator (3)
solving the output regulation problem in the case in which
the output y is continuously measured. For this, we follow
the framework proposed in [14]–[16]. We refer to these
references for more details. We start by making the next
assumption.

Assumption 1 There exists a function π : Rr → Rn smooth
enough, a C1 function V0 and an open set B ⊂ Rr×n
containing W × Z such that the following holds.

(i) The function π satisfies Lsπ(w) = f(w, π(w), 0) for
all w ∈W .

(ii) The set A := {(w, z) ∈ W × Rn : z = π(w)} is
compact3 and A ⊂ B.

(iii) There exist α0, α0 ∈ K∞ such that, for any (w, z) ∈ B,

α0(|(w, z)|A/B) ≤ V0(w, z) ≤ α0(|(w, z)|A/B) .

(iv) For any c > 0, there exist v > 0 such that, for any
(w, z) satisfying V0(w, z) ≤ c

v|(w, z)|2A/B ≤ V0(w, z) .

(v) For any c, ȳ > 0 there exist d, β > 0 such that, for any
(w, z) satisfying V0(w, z) ≤ c and |y| ≤ ȳ,

〈∇V0(w, z), col(s(w), f(w, z, 0))〉 ≤ −d V0(w, z)+β|y|2.

Assumption 1 states that system (1) is (strongly)
minimum-phase, namely the set A is exponentially stable
for the zero-dynamics of (1) with a domain of attraction B.
Assumption 1 is stronger than the conditions in [15], where
only asymptotic stability and local exponential stability of
A are required in order to solve the problem of semiglobal
output regulation. This is due to the fact that, similarly to
[23], we need refine conditions in order to be able to compute
explicit bounds of the parameters of the regulator proposed
in [15]. Finally, the next extra assumption is stated, see [15].

Assumption 2 There exist an integer d > 0 and a locally
Lipschitz function ϕ fulfilling

Lds σ(w) = ϕ
(
σ(w), Lsσ(w), . . . , Ld−1s σ(w)

)
for all w ∈W , where σ(w) := −q(w, π(w), 0).

By following the design proposed in [15], the semiglobal
output regulation problem can be solved in the case of con-
tinuous measurements by means of the following regulator

ξ̇ = Aξ +Bϕs(ξ)− κDgK y
u = Cξ − κ y (4)

where ξ ∈ Rd is the controller state with initial condition
ranging in some compact set Ξ ⊂ Rd, (A,B,C) is a
triplet in prime form of dimension d, K is a matrix to be
chosen such that A − KC is Hurwitz, ϕs is any bounded

3See Assumption 1 in [15].

function that agrees on W with the function ϕ defined in
Assumption 2, Dg is a diagonal matrix of dimension d
defined as Dg = diag (g, . . . , gd) and g, κ ≥ 1 are positive
high-gain parameters. It turns out that, if g, κ are chosen
large enough, namely g ≥ g? and κ ≥ κ? with g?, κ? ≥ 1,
output regulation is achieved according to [15, Proposition
1], and as shown below.

B. Computation of the bounds

In this section we provide explicit bounds for g?, κ?.
Some steps are needed for this purpose. First, we will
make a change of coordinates that allows to find an explicit
Lyapunov function V for the closed-loop system (1), (2),
(4). Next, by using the Lipschitz constants of the nonlinear
functions computed on a level set of V0 containing the initial
conditions, we explicitly provide bounds g?, κ? via LMI
conditions.

Let, for any w ∈W ,

Σ(w) := col
(
σ(w), Lsσ(w), . . . , Ld−1s σ(w)

)
.

By Assumption 2, the function Σ(·) satisfies

LsΣ(w) = AΣ(w) +Bϕ(Σ(w))

for any w ∈ W . Consider the following change of coordi-
nates

ξ 7→ η := D−1g
(
ξ − Σ(w)

)
−Ky . (5)

For the sake of convenience, we define p := col(w, z) and,
with some abuse of notation, we rewrite the (w, z)-system
as ṗ = f(p, y). The overall (p, η, y)-system reads as

ṗ = f(p, y)
η̇ = g(A−KC)η +B∆ϕ + gLy −Kq̃(p, y)
ẏ = q̃(p, y)− (κ− gCK)y + gCη

(6)

where L := AK −KCK and

∆ϕ(p, η, y) :=
1

gd−1

ï
ϕs

Å
Dg

g
η + Σ(w) +Ky

ã
−ϕ(Σ(w))

ò
q̃(p, y) := q(w, z, y) + CΣ(w)

= q(w, z, e)− q(w, π(w), 0).

Since the initial conditions of (1) and (4) range in the
compact set W ×Z×Ξ×Y , the initial conditions of (6) also
range in some given compact set W × Z × E × Y which,
for g ≥ 1, does not depend on g itself. For (6), we define V
as, for p ∈ B, η ∈ Rd, y ∈ R,

V (p, η, y) := V0(p) + ηTPη +
1

2
y2 (7)

where V0 is the function given in Assumption 1 and P =
PT > 0 is computed as the solution of P (A−KC) + (A−
KC)>P = −R for some R = RT > 0. Let c > 0 be such
that V = {V (p, η, y) ≤ c} satisfies V ⊃W ×Z×E×Y . In
view of item (i) of Assumption 1, such c > 0 always exists
since V is radially unbounded. Let `ϕ, `q > 0 be such that

|∆ϕ(p, η, y)| ≤ `ϕ(|η|+ |Ky|)
|q̃(p, y)| ≤ `q(|p|A/B + |y|) (8)

for all (p, η, y) ∈ V . The existence of `ϕ, `q is guaranteed
by the fact that the set V is compact and the functions ϕ, q



are locally Lipschitz. Then, let β in item (iii) of Assumption
1 be computed with ȳ :=

√
2c. Finally, we define the matrix

S = ST as follows

S :=

Ñ
vd −s0 − 1

2s1
? gρ− s2 −s3 − gs4
? ? κ− gCK − s5

é
(9)

where ρ denotes the minimum eigenvalue of R, s0 :=
`q|PK|, s1 := `q , s2 := 2`ϕ|PB|, s3 := `ϕ|PB| |K| +
`q|PK|, s4 := ( 1

2 + |L|), s5 := β + `q . We have the
next lemma, which follows from application of the Schur
complement to S.

Lemma 1 There exists g? ≥ 1 such that for any g > g?

there exists κ? ≥ 1, such that, for any κ > κ?, the matrix S
defined in (9) satisfies S > 0.

We are now ready to establish the following result stating
that output regulation is achieved if g, κ are taken as in
Lemma 1. Though the bounds of g and κ are subject to some
conservatism, this allows us to compute explicitly g?, κ?.

Theorem 1 Consider system (1), (2), (4) and suppose As-
sumptions 1 and 2 hold. Then, for any g, κ satisfying S > 0,
output regulation is achieved, namely the trajectories of (1),
(2), (4) are bounded for all t ≥ 0 and limt→∞ y(t) = 0 for
all initial conditions in W × Z × Ξ× Y .

Sketch of proof. By computing the derivative of the Lya-
punov function (7) and by using standard Young’s inequality,
we obtain 〈∇V, f̃(χ)〉 ≤ −ψTS ψ for all χ ∈ V , where we
used the compact notation χ̇ = f̃(χ), with χ := col(p, η, y)
and ψ := col(|p|A/B, |η|, |y|). The proof concludes by using
standard Lyapunov arguments and by noting that ψ = 0
implies y = 0. �

IV. EMULATION-BASED SOLUTION

A. Hybrid model

When the output y is sampled, the regulator (4) becomes

ξ̇ = Aξ +Bϕs(ξ)− κDgK ŷ
u = Cξ − κ ŷ . (10)

By following [6], we introduce the sampling induced error
e defined as

e := y − ŷ .

In this work, we consider the simple case in which the
sampled value ŷ is kept constant during the transmission
intervals, namely ˙̂y = 0 for t ∈ (ti, ti+1), i ∈ Z≥0, and it
is reset to y at transmission instants, namely ŷ(t+i ) = y(ti)
for any i ∈ Z≥0. In other words, a zero-order-hold device
is used. As in [4], [5], [11], we introduce the clock τ to
measure the time elapsed since the last transmission,

τ̇ = 1 τ ∈ [0, T ]
τ+ = 0 τ ∈ [υ, T ]

(11)

where τ ∈ R. By using the definition of e and τ , the system
(1), (2) in closed-loop with the regulator (10) reads

ẇ = s(w)
ż = f(w, z, y)

ξ̇ = Aξ +Bϕs(ξ)−DgKκ(y − e)
ẏ = q(w, z, y) + Cξ − κ(y − e)
ė = q(w, z, y) + Cξ − κ(y − e)
τ̇ = 1


τ ∈ [0, T ]

w+ = w
z+ = z
ξ+ = ξ
y+ = y
e+ = 0
τ+ = 0


τ ∈ [υ, T ]

(12)
with initial conditions ranging in the set W ×Z ×Ξ× Y ×
[−δ, δ]× [0, T ] for some δ > 0 which describe the maximum
allowed initial error transmission. Clearly, if we suppose that
a transmission occurs at the initial time, e(0, 0) = 0, and
hence e(0, 0) ∈ [−δ, δ].

Our goal is to determine an explicit bound on T so that
the output regulation problem for system (12) is addressed,
namely the solutions to (12) are complete, bounded and
satisfy limt+j→∞ y(t, j) = 0.

B. Main Result

Let γ > 0 and

Q :=

Ç
S − 1

γH −κB3

? γ

å
(13)

where B3 = (0, 0, 1)T , and

H :=

Ñ
s21 gs1 s1(κ− gCK + s1)
? g2 g(κ− gCK + s1)
? ? (κ− gCK + s1)2

é
, (14)

where S and s1 are defined as in (9). We have the next result
which follows by applying the Schur complement to Q.

Lemma 2 Let g, κ be fixed according to Lemma 1 such that
S > 0. There exists a γ? > 0 such that Q > 0 for any
γ > γ?, with Q defined in (13).

We define the MATI as

T ?(κ, γ) :=



1

κ r
arctan(r) γ > κ

1

κ
γ = κ

1

κ r
arctanh(r) γ < κ,

(15)

where

r =

 ∣∣∣∣(γκ)2 − 1

∣∣∣∣.
The next theorem states that, if the parameters T, κ, g are
properly chosen, the trajectories of the closed-loop system
(12) are bounded and the regulated output y converges



asymptotically to zero, namely the problem of semiglobal
output regulation under sampling measurements is solved.

Theorem 2 Suppose that Assumptions 1, 2 hold and con-
sider system (12) with g, κ ≥ 1 fixed according to Theorem
1 and let γ > 0 be chosen such that the matrix Q defined
in (13) satisfies Q > 0. There exists δ > 0 such that, for
any T ∈ (0, T ?(κ, γ)), with T ?(κ, γ) defined in (15), the
solutions to (12), starting in W×Z×Ξ×Y ×[−δ, δ]×[0, T ],
are complete, bounded and satisfy limt+j→∞ y(t, j) = 0.

Sketch of proof. Let g, κ, γ > 0 be fixed according to
Theorem 1 and Lemma 2 so that Q > 0. By using the
function V in (7), let b := sup(p,η,y)∈W×Z×E×Y V (p, η, y).
By construction, b < c, with c defined after (7). Let tmax =
T ?(κ, γ). In view of the results in [5], [6, Claim 1], there
exist λ ∈ (0, 1) and a function φ : [0, tmax]→ R solution to

φ̇ = −2κφ− γ(φ2 + 1), φ(0) = λ−1

so that φ(t) ∈ [λ, λ−1] for all t ∈ [0, tmax]. Select δ =√
λ(c− b). Finally, fix any T ∈ (0, T ?(κ, γ)).
Let x = col(p, η, y, e, τ). We write system (12) as

ẋ = F (x) if x ∈ C, x+ = G(x), if x ∈ D, (16)

where C := B × Rd × R × R × [0, T ] and D := B × Rd ×
R×R× [υ, T ]. For the sake of compactness, we denote the
set of initial conditions of (16) as X := W ×Z ×E × Y ×
[−δ, δ] × [0, T ]. The rest of the proofs follows by applying
the same type of arguments as in [5], [6]. with the Lyapunov
function function U(x) := V (p, η, y) + φ(τ)|e|2 where V is
the function defined in (7). In particular, we have U := {x :
U(x) < c} ⊃ X and %0(ω(x)) ≤ U(x) ≤ %1(ω(x)) for
some %0, %1 ∈ K∞ and for all x ∈ (C ∪ D ∪ G(D)) ∩ U ,
where

ω(x) := |p|A/B + |η|+ |y|+ |e|+ |τ |[0,T ] .

The function ω is a proper indicator for the compact set

I := A× {0} × {0} × {0} × [0, T ]

on (C ∪ D ∪ G(D)) ∩ U . By evaluating U at jumps we
have U(G(x)) ≤ U(x) for all x ∈ U . Similarly, during
flows we obtain (by applying standard Young’s inequalities)
〈∇U(x), F (x)〉 ≤ −ψTe Qψe for all x ∈ U , where we used
the compact notation ẋ = F (x), ψe := col(ψ, |e|), with
ψ defined in the proof of Theorem 1. The latter inequality
implies 〈∇U(x), F (x)〉 ≤ −ρ̃(U(x)) for some function ρ̃,
quadratic around the origin. As a consequence by applying
of [24, Proposition 3.27], we conclude that the set I is pre-
asymptotically stable on U . In view of the definition of the
τ -dynamics, system (16) satisfies the viability condition [24,
Proposition 6.10], and solutions cannot jump out of C ∪ D.
Moreover, since the set I is compact and pre-asymptotically
stable with a domain of attraction containing X , solutions to
(16) starting in X cannot have finite escape time. As a result,
according to [24, Proposition 6.10], solutions are complete
(recall that we call solutions, maximal solutions). In addition,
we have the guarantee that solutions to (16) starting in X
are bounded. This shows boundedness of solutions to (12)

in view of (5). Finally, because of the asymptotic stability
of the set I and the completeness of solutions, we have
limt+j→∞ ω(x(t, j)) = 0. By definition of ω, this implies
limt+j→∞ y(t, j) = 0, concluding the proof. �

Theorem 2 states that output regulation can be achieved in
case of sampled measurements if the transmission intervals
are small enough. Note that the domain of attraction cannot
contain arbitrarily large initial error transmissions e(0, 0) as
must lie in the bound [−δ, δ]. As previously remarked, if a
transmission occurs at the initial time, this condition holds
for free. The bound in (15) depends on the parameters κ and
γ and thus on g, since so does κ. In view of this expression,
we obtain that, in general, the larger κ, the smaller T ?,
though transient effect may occur, as shown on an example
in Section V, see Figure 2.

Remark. Since the MATI depends directly on the param-
eters of the controller (4), one could ask if it is possible
to compute the controller gains g, κ that give the largest
MATI. However, this issue, which is somehow dual to the
problem investigated in this paper, is very difficult, since we
would need tighter bounds on g and κ in the continuous
time case. This is in general not possible since the stability
analysis of the system (6) is too coarse, and therefore the
bounds provided in Theorem 1 are often subject to some
conservatism. This is confirmed by the fact that, to the best
of authors knowledge, no explicit bounds for g, κ are given
in literature and a finer analysis is unknown in the considered
framework. Nevertheless, the bounds on S and Q could be
probably refined by considering the vector states z, η and not
their norms.

V. EXAMPLE

We consider system (1) with

f(w, z, y) = −2z + α(y), q(w, z, y) = 2y − 2z − w1.

where α(·) is any globally Lipschitz functions satisfying
|α(y)|2 ≤ |y|2. We suppose that exosystem (2) is generated
by the following nonlinear oscillator (see [25])

s(w1, w2) =

Å
−w1 + arctan(βw1 − w2)

ε(w1 − w2)

ã
where β > 1 and ε ∈ (0, 1). In the simulations, we have
chosen β = 1.2 and ε = 0.1. It can be verified by simulations
that with such values, system (2) admits a limit cycle
contained in a compact set W satisfying supw∈W |w| ≤ 0.6.
Assumption 1 holds with V0(z) = 1

2z
2, v = 1

2 , d = 1, β = 1,
`q = 2. Concerning Assumption 2, it is verified with d = 2
and ε given by

ϕ(ξ) = −ξ2 +
ε(β − 1)ξ1 + βξ2 − ε tan(ξ1 + ξ2)

1 + tan(ξ1 + ξ2)2
.

Function ϕ is globally Lipschitz with Lipschitz constant
`ϕ = 1 + β = 2.2. Finally, we take K,P as K = col(3, 2)

and P =

Å
0.5 −0.5
−0.5 1

ã
. As a result, the elements of S

in (9) are s0 =
√

2, s1 = 2, s2 = 4.9193, s3 = 10.2827,



s4 = 9.7195, s5 = 3.2. We select different values of g, κ
satisfying S > 0 to investigate their impact on the MATI
bound, and we select the minimum value of γ, denoted as
γ?, such that the matrix Q defined in (13) satisfies Q > 0.
Finally, we compute T ?(κ, γ?) using (15).

Figure 2 shows the dependency of T ? and γ? on κ for
a fixed g, exhibiting a “parabola” effect and suggesting that
an optimal tuning of the high-gain parameters g, κ should be
followed in order to maximize the MATI. We compared those
values with the maximum allowed time interval Tsimu found
by simulating the closed-loop system with a fixed sampling
interval. The values are reported in Table I. We can see that
the ratio between the MATI Tsim computed by simulations
and the MATI T ∗(κ, γ?) is always of the order of 10. This
suggests that the analysis in Section IV-B provides a good
approximation of the MATI, when the parameters g, κ, γ are
chosen according to Lemmas 1 and 2.
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Fig. 2. Figure a: plot of γ? as a function of κ for a fixed g. Figure b: plot
of T ?(κ, γ?) as a function of κ and γ?(κ), for a fixed g.

g 19.2 19.2 19.2 40 40 40

κ (·103) 3.98 4.2 5 5.34 5.8 6.2

γ? (·104) 3.53 3.09 2.5 9.37 6 4.9

T ∗ (·10−5) 4.15 4.68 5.59 1.62 2.46 2.95

Tsim (·10−4) 5 4 3.5 3.5 2 3

Tsim/T ∗ 12 8.5 6.62 21.6 8.1 10.1

TABLE I
Values of T ?(κ, γ) in (15) and Tsim for some values of g, κ, γ?.

VI. CONCLUSION

We studied the properties of nonlinear internal model
regulators for minimum-phase systems with sampled mea-
surements. We showed that if the sampling time is small
enough, the classical design introduced in [15] guarantees
that the tracking error converges to zero, despite the sam-
pling. An explicit formula for the maximum allowed time
interval (MATI) is provided. Optimal choice of the values of
g, κ to maximize the value of the MATI is a future research
direction, as suggested by the interpretation of Figure 2.
Another natural extension of this work is to consider the
case in which also the input is sampled. In this case, we
expect that asymptotic output regulation may not be achieved
in general, while practical regulation could be ensured. This
problem is not a trivial extension of the sampled-output case
and it is currently under investigation.
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