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Hybrid framework for consensus in directed and
asynchronous network of non-holonomic agents

T. Borzone∗,†, I.-C. Morărescu∗, M. Jungers∗, M. Boc† and C. Janneteau†

Abstract—The paper presents a hybrid systems strategy for
consensus (or formation realization) for a fleet of non-holonomic
agents. In the proposed model, each agent has a smooth
continuous-time dynamics and a piecewise constant impulsive
reference. The jumps on the reference trajectory take place
at some updating instants that are decided independently by
each agent. The jumps computation is based on the relative
distance with respect to some time-varying neighbors at the
update instants. Between the updates of its reference each robot
will track its own constant reference trajectory. Our results
provide consensus (formation realization) as far as a minimum
dwell-time condition between consecutive updates is satisfied. A
numerical example illustrates the theoretical results.

Index Terms—Agents-based systems; Non-holonomic robots;
Network analysis and control

I. INTRODUCTION

MULTI-AGENT systems received an increasing attention
during the last decades. The most studied problem

within this framework is related to consensus which mathe-
matically formulates the fact that multiple systems with local
sensing and actions have to collaborate in order to reach
a common goal [1]. Among the consensus applications we
are interested here in cooperative control of robotic fleets.
Many results already exist on this topic but the robots are
often considered as single or double integrators that interact
continuously [2], [3], [4], [5], [6]. In reality, most mobile
robots have non-holonomic dynamics, which are nontrivial to
control, as noticed e.g. by [7], [8] and they interact at some
discrete instants of time.

The stabilization and control of unicycle non-holonomic
dynamics received a lot of attention during the past decades
(see [9]). This is partially due to the fact that Brockett’s
necessary condition [10] for smooth stabilization is not met for
this class of vehicles and therefore, no smooth time invariant
state-feedback control law exists to stabilize around a pose
this type of dynamics. For this reason both discontinuous
control laws [11], [12] and time varying [13], [8] control laws
have been studied to stabilize the center of rotation and the
orientation of a single robot. The trajectory tracking control
problem with smooth references has also been considered for
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non-holonomic dynamics via linearization of the error model
[7], [14] or via dynamic feedback linearization [15]. Global
exponential tracking of smooth trajectories is also presented
in [16].

In this work we present a decentralized control strategy for
fleets of non-holonomic robots which cooperate to obtain the
emergent behaviour of realizing a formation. Unlike [17], [18],
the proposed algorithm requires sporadic interactions when the
robots sense other robots in their neighborhood and based on
their relative position with respect to the neighbors they update
their references. This is an important constraint that renders the
proposed algorithm implementable on real devices. Once the
reference is computed, the motion of each robot is completely
decoupled from the motion of the other robots in the fleet
(see Fig. 1). Although decentralized, this strategy results in a
hybrid closed-loop dynamics due to the jumping (non-smooth)
references that agents have to track.

Consensus

Controller

(Decentralized)

Stabilisation

Controller

(Local)

Relative Positioning Sensors

Reference

Fig. 1. Control structure

The main contribution of this paper is related to stabil-
ity analysis of the proposed consensus algorithm that takes
into account communication constraints. Since robots evolve
continuously but they track a reference which is updated at
some discrete instants we end-up with an overall hybrid dy-
namics. Our results provide a sufficient consensus (formation
realization) condition in term of a minimum duration between
consecutive updates of the references. It is noteworthy that
this work represents an extension of our previous results
described in [19]. Unlike [19], the present work considers
the more challenging and realistic framework in which the
interactions are directed and asynchronous. This generates
supplementary difficulties related to the decentralized design
of individual time instants at which each agent updates its
own trajectory. In other words, the tracking control will be
the same, borrowed from [12], but the consensus controller
designing the references will be more complex since it has to
take into account the asynchronous updates of information.

The rest of the paper is organized as follows. In Section II,
we provide some preliminaries related to the network structure
and the non-holonomic dynamics under consideration and
we introduce the main result for the stability of the overall
dynamics. Instrumental results and the proof of the main result



concerning the stability analysis of the hybrid closed-loop
dynamics are proven in Section III. Numerical illustrations
are provided in Section IV before providing some concluding
remarks.

A. Notation

The following standard notation has been used throughout
the paper. The symbols N, R and R+ stand respectively for the
set of non-negative integers, the set of real and non-negative
real numbers. Given a vector x, we denote by ‖x‖ , ‖x‖∞ its
Euclidean and infinity norms, respectively. The transpose of a
matrix A is denoted by A>. The notation A > 0 (A ≥ 0) is used
for a matrix with positive entries; so the symbols > and < are
used to represent element-wise inequalities. The k × k identity
matrix is denoted Ik and x(t−

k
) = lim

t→tk,t≤tk x(t). The column
vector of dimension n with all components equal 1 is denoted
1n. For a vector x = (x1, . . . , xn) we also use Mx = max

1≥i≥n
xi ,

mx = min
1≥i≥n

xi and ∆x = Mx − mx .

II. PROBLEM FORMULATION

A. Non-holonomic dynamics

In the following we assume that a fleet of n non-holonomic
robots have to reach a consensus in the positions without
requiring specific final orientation of the agents. To simplify
the presentation we remove the argument t when it is not
explicitly needed. We denote by ri = (rxi , ryi ) the 2D reference
position for the robot i and we fix rθi = 0 its heading reference.
The Cartesian coordinates of the center of mass of each vehicle
with respect to the fixed inertial frame are denoted using vector
Xi = (xi, yi). Denoting ei = (exi , eyi , eθi )

> the dynamics of the
ith robot is described by the following differential equations

ėi = g(ei)ui, g(ei) =


cos eθi 0
sin eθi 0

0 1


, ui =

[
vi
ωi

]
. (1)

where vi is the linear velocity and ωi is the angular velocity
of the mobile robot; exi and eyi are the Cartesian coordinates
of the center of mass of the vehicle with respect to a frame
positioned on the reference position ri , and eθi is the angle
between the heading direction and the x-axis of this frame.
The point stabilization control considered in this work is the
continuous piecewise smooth control law introduced in [12].
Basically, one considers a map F : R3 7−→ R× (−π, π] relating
ei ∈ R3 to zi = (ai, αi)> ∈ R × (−π, π]. Taking K, γ > 0 the
control law ui = κ(ei) = (−γb1(ei)a,−b2(ei)v − Ka)>, where
b1, b2 are explicitly defined in [12], exponentially stabilizes
the origin of the planning reference frame ei = 0.
In the following, we denote εi = (exi , eyi ) the 2D Cartesian
error coordinates i.e.

εi = Xi − ri . (2)

Following [1], consensus problem is equivalent with the one
of translation invariant formation realization. Consequently,
we will focus only on the rendez-vous or consensus problem
associated with the n non-holonomic robots.

B. Network structure

We assume that the agents interact over a directed and time-
varying network topology described by the digraph G(t) =
(V, E (t)), where the vertex-set V represents the set of robots
and the edge set E (t) ⊂ V × V collects the interactions
between robots at time t.

Definition 1: A path of length p in a digraph Ḡ = (V̄, Ē)
is a union of directed edges

⋃p
k=1(ik, jk ) such that ik+1 =

jk, ∀k ∈ {1, . . . , p − 1}. The node j is connected with node i
in Ḡ = (V̄, Ē) if there exists at least a path in Ḡ from i to
j (i.e. i1 = i and jp = j). A connected digraph is such that
any of its two distinct elements are connected.
We now define the sequence of update instants

T =

{
tk : tk ∈ R+, tk < tk+1,∀k ∈ N, lim

k→∞
tk = ∞

}
. (3)

Characterizing the vertex i with a generic state si ∈ Rns , ns ∈
N, a discrete-time linear consensus algorithm is defined by

s(tk+1) = (P(tk ) ⊗ Ins )s(tk ), for tk ∈ T , (4)

where s(tk ) = (s1(tk )>, . . . , sn(tk )>)> and P(tk ) ∈ Rn×n is
a row stochastic matrix associated with the digraph G(tk ) =
(V, E (tk )) i.e. for all tk ∈ T




Pi, j (tk ) = 0, if (i, j) < E (tk ),
Pi,i (tk ) > β, ∀i = {1, · · · , N } ,

Pi, j (tk ) > α, if (i, j) ∈ E (tk ),
n∑
j=1

Pi, j (tk ) = 1, ∀i = {1, · · · , n} .

(5)

The corresponding individual dynamics of each agent is:

si (tk+1) = si (tk ) +
∑
j,i

Pi, j (tk )(s j (tk ) − si (tk )), for tk ∈ T .

Throughout the paper we impose the following assumptions.
Assumption 1 (Minimal Influence and Diagonal Domi-

nance): There exist constants α ∈ (0, 1) and β ∈
(

1
2, 1

)
such

that, ∀tk ∈ T , Pi,i (tk ) ≥ β and, if Pi, j (tk ) , 0 and thus
(i, j) ∈ E (tk ) then Pi, j (tk ) > α.

Assumption 2 (Connectivity): The digraph G =
⋃

k≥k0 G(tk )
is strongly connected for all k0 ∈ N.

Assumption 3 (Bounded Intercommunication Interval): If i
communicates with j an infinite number of times (that is, if
(i, j) ∈ E (tk ) infinitely often), then there is some l ∈ N such
that, for all tk ∈ T , (i, j) ∈ E (tk )

⋃
E (tk+1)

⋃
· · ·

⋃
E (tk+l−1).

Under Assumption 1-3 it is well-known ([20], [21]) that the
discrete-time updating rule (4) ensures asymptotic consensus.

C. Main Result

To describe the behavior of the entire fleet it is worth
introducing r = (r>1 , · · · , r

>
n )> and ε = (ε>1 , · · · , ε

>
n )>, with

r, ε ∈ R2n and ri, εi related by (2). The goal of the paper is
to show the global asymptotic stability (GAS) of the set A
defined as

A =
{
ε, r ∈ R2n : ε = 0, ∆rx = 0, ∆ry = 0

}
. (6)

The first requirement in (6) is equivalent to state that each
robot reaches its own reference and the second and third



requirements mean that all the references achieve consensus
both over the x and y component.

In the sequel we suppose that each robot implements the
following updating rule:

ri (tk ) = Xi (t−k ) +
∑
j,i

Pi, j (tk )(X j (t−k ) − Xi (t−k )), ∀tk ∈ Ti, (7)

where Ti is the infinite countable subset T collecting the
update instants for the reference ri . Therefore, mixing (1) and
(7), ∀ i ∈ {1, . . . , n} we end up with the following hybrid
dynamics (see [22] for an exhaustive presentation of hybrid
dynamics):{

ėi (t) = g(ei (t))κ(ei (t))
ṙi (t) = 0

for t ∈ R+ − Ti, (8)




ri (tk ) =
n∑
j=1

Pi, j (tk )ε j (t−k ) +
n∑
j=1

Pi, j (tk )r j (t−k )

εi (tk ) = εi (t−k ) + ri (t−k ) − ri (tk )

eθi (tk ) = eθi (t−k )

for tk ∈ Ti . (9)

Remark 1: Note that flow dynamics (8) is completely
decentralized meaning that each robot tracks its reference and
no interaction with other robots is required. Let us also note
that the jump map (9) of one robot requires only information
from the neighboring (in the interconnection graph) robots.

Theorem 1: Let Assumptions 1-3 hold. If there exist two
constants cε and λε such that ∀t ∈ [tk, tk+1)

‖ε(t)‖∞ ≤
√

ncε ‖ε(tk )‖∞ e−λε (t−tk ), (10)

then A is GAS for the overall dynamics of n systems defined
by (8)-(9), if tk+1 − tk ≥ τ∗, ∀k ∈ N with

τ∗ >
1
λε

max
{

ln
√

nγ13cε
1 − γ11

, ln
√

nγ33cε
1 − γ31 − γ32

}
> 0, (11)

for some given γi j that will be explicitly defined later.
Proof: See the Proof in Section III-C.

Note that Theorem 1 does not define the instants of references’
updates but it gives a lower bound between these instants.

III. STABILITY ANALYSIS

A. Analysis of the flow dynamics

The flow dynamics is related to the local stabilization of
the vehicles with respect to their relative origins given by the
reference state i.e. (rxi (tk ), ryi (tk )). This follows closely the
results in [19] and consequently we do not enter into details.
We just recall the following instrumental result.

Lemma 1: There exists positive constants cε and λε such
that ∀ k ∈ N and for t ∈ [tk, tk+1) ⊂ Ti ⊂ T

‖ri (t)‖ = ‖ri (tk )‖ (12)
‖εi (t)‖ ≤ cε ‖εi (tk )‖ e−λε (t−tk ) (13)

We can now state the following Corollary that is a direct
consequence of Lemma 1.

Corollary 1: There exist positive constants cε and λε such
that ∀ k ∈ N and for t ∈ [tk, tk+1)

∆rx (t) =∆rx (tk ), ∆ry (t) = ∆ry (tk )

‖ε(t)‖∞ ≤
√

ncε ‖ε(tk )‖∞ e−λε (t−tk ) .
(14)

Proof: The first two expressions come trivially from the
fact that the reference r is constant for t ∈ [tk, tk+1) as
described in Lemma 1, then the Mrx and mrx (equivalently
Mry and mry ) do not change and consequently the diameter
∆rx (∆ry ) does not change either.
As for the third statement, starting from inequality (13) in
Lemma 1 we extend it to the whole error vector ‖ε(t)‖ ≤
cε ‖ε(tk )‖ e−λε (t−tk ) for all t ∈ [tk, tk+1) and thanks to the
norms inequality ‖ε‖∞ ≤ ‖ε‖ ≤

√
n ‖ε‖∞ we obtain the final

expression in (1).
Corollary 1 basically states that, as far as the reference is fixed,
one can design a decentralized controller that exponentially
stabilizes system (8) for all i ∈ {1, . . . , n}. Furthermore the
constants cε and λε correspond to those in Theorem 1 and
they are directly related to the control gains and parameters
K , γ and b1, b2 (see also [19] and [12]).

B. Analysis of the jump map

We start introducing the vectors εx = (εx1, · · · , εxn )> and
εy = (εy1, · · · , εyn )>, with εx, εy ∈ R

n which collect the x
and y components of the errors.

In the previous subsection, we have shown that for t ∈
[tk, tk+1) the Cartesian positioning error of the vehicles con-
verges toward ε = 0 but nothing can be said about the
reference r which is kept constant during the flow. In order
to achieve the global asymptotic stability of A defined in
(6), let us investigate the behavior of system (9). First, let us
notice that eθi does not change during the jumps defined by (9)
and therefore we can neglect this variable in the subsequent
analysis. Moreover, by rewriting all the dynamics in (9) one
obtains for tk ∈ T

ri (tk ) =
n∑
j=1

Pi, j (tk )ε j (t−k ) +
n∑
j=1

Pi, j (tk )r j (t−k ) (15)

εi (tk ) = εi (t−k ) −
n∑
j=1

Pi, j (tk )ε j (t−k ) + ri (t−k )

−

n∑
j=1

Pi, j (tk )r j (t−k ). (16)

We start with an instrumental result concerning equation (15).
Lemma 2: Let Assumptions 1-3 hold. For all (i, h) ∈ E (tk )

and for all tk ∈ Ti the following holds

ri (tk ) ≥mr (t−k ) + α
(
rh (t−k ) − mr (t−k )

)
+mε (t−k ) + α

(
εh (t−k ) − mε (t−k )

) (17)

and

ri (tk ) ≤Mr (t−k ) − α
(
Mr (t−k ) − rh (t−k )

)
+Mε (t−k ) − α

(
Mε (t−k ) − εh (t−k )

)
,

(18)

where Mr = (Mrx , Mry )>, Mε = (Mεx , Mεy )>, mr =

(mrx ,mry )> and mε = (mεx ,mεy )>.



Proof: Since P(tk ) is stochastic one has∑n
j=1, j,h Pi, j (tk ) + Pi,h (tk ) = 1, thus from (15) one obtains

ri (tk ) − mr (t−k ) − mε (t−k ) ≥
n∑

j=1, j,h
Pi, j (tk )

(
r j (t−k ) − mr (t−k )

)
+

Pi,h (tk )
(
rh (t−k ) − mr (t−k )

)
+

n∑
j=1, j,h

Pi, j (tk )
(
ε j (t−k ) − mε (t−k )

)
+ Pi,h (tk )

(
εh (t−k ) − mε (t−k )

)
. (19)

From Assumption 1 both
∑n

j=1, j,h Pi, j (tk )
(
r j (t−k ) − mr (t−

k
)
)

and
∑n

j=1, j,h Pi, j (tk )
(
ε j (t−k ) − mε (t−

k
)
)

are always positive
quantities and Pi, j (tk ) > α then, (17) holds. Inequality (18) is
proved by a symmetrical argument.
We shall now use the previous result in order to show the
boundedness of the reference diameters ∆rx and ∆ry during
the jumps. They will depend on the norm of the Cartesian
error ε as pointed out below.

Proposition 1: Under Assumptions 1-3, for all tk ∈ T one
has

∆rx (tk ) ≤(1 − α)∆rx (t−k ) + 2(1 − α) 


ε(t−k )


∞ ,
∆ry (tk ) ≤(1 − α)∆ry (t−k ) + 2(1 − α) 


ε(t−k )


∞ .

(20)

Proof: We first notice that since Lemma 2 is true for all
i ∈ V , then (17) is a valid lower bound also for mr (tk ) itself
and equivalently (18) is an upper bound for Mr (tk ). We can
then write

Mr (tk ) ≤Mr (t−k ) − α
(
Mr (t−k ) − rh (t−k )

)
+Mε (t−k ) − α

(
Mε (t−k ) − εh (t−k )

)
,

mr (tk ) ≥mr (t−k ) + α
(
rh (t−k ) − mr (t−k )

)
+mε (t−k ) + α

(
εh (t−k ) − mε (t−k )

)
.

(21)

Subtracting these two expressions and manipulating the result
we then obtain

Mr (tk ) − mr (tk ) ≤(1 − α)
(
Mr (t−k ) − mr (t−k )

)
+(1 − α)

(
Mε (t−k ) − mε (t−k )

)
.

(22)

We now express (22) only for the x component (for the y

component the argument will be equivalent) and thus introduce
∆rx = Mrx − mrx

∆rx (tk ) ≤ (1−α)∆rx (t−k )+(1−α)
(
Mεx (t−k ) − mεx (t−k )

)
. (23)

Using the modulus and noticing that ��Mεx
�� = ‖εx ‖∞ we finally

write

∆rx (tk ) ≤ (1 − α)∆rx (t−k ) + (1 − α) ���Mεx (t−k ) − mεx (t−k )���
≤(1 − α)∆rx (t−k ) + (1 − α)

(���Mεx (t−k )��� +
���mεx (t−k )���

)
≤(1 − α)∆rx (t−k ) + (1 − α)

(���Mεx (t−k )��� +
���Mεx (t−k )���

)
≤(1 − α)∆rx (t−k ) + 2(1 − α) 


ε(t−k )


∞ .

(24)

where we also used the property that ‖εx ‖∞ ≤ ‖ε‖∞ since εx
collects the x components of vector ε (the same holds for the
y components).
As it has been done for the reference diameters we analyze
the update law (16) to show the boundedness of the error ε
during the jump instants with the following result

Proposition 2: Under Assumptions 1-3, for all tk ∈ T one
has

‖ε(tk )‖∞ ≤ (1 − β)
(
∆rx (t−k ) + ∆ry (t−k ) + 4 


ε(t−k )


∞

)
. (25)

With β chosen as described in Assumption 1.
Proof: We shall decompose the update law (16) in

εi (tk ) =
(
1 − Pi,i (tk )

)
ri (t−k ) −

n∑
j=1, j,i

Pi, j (tk )r j (t−k )

+
(
1 − Pi,i (tk )

)
εi (t−k ) −

n∑
j=1, j,i

Pi, j (tk )ε j (t−k ).
(26)

We use the fact that thanks to Assumption 1 the quantity∑n
j=1, j,i Pi, j (tk ) is positive and Pi,i (tk ) ≥ β together with the

stochasticity of the matrix P(tk ) to write

εi (tk ) ≤
(
1 − Pi,i (tk )

)
Mr (t−k ) −

n∑
j=1, j,i

Pi, j (tk )Mr (t−k )

+
(
1 − Pi,i (tk )

)
εi (t−k ) −

n∑
j=1, j,i

Pi, j (tk )mε (t−k )

≤
(
1 − Pi,i (tk )

)
Mr (t−k ) −

(
1 − Pi,i (tk )

)
mr (t−k )

+
(
1 − Pi,i (tk )

)
εi (t−k ) −

(
1 − Pi,i (tk )

)
mε (t−k )

≤ (1 − β)
(
Mr (t−k ) − mr (t−k ) + εi (t−k ) − mε (t−k )

)
.

(27)

Inequality (27) can be written with respect to x and y

components. Thus, one has

εxi (tk ) ≤ (1 − β) ∆rx + (1 − β)
(
εxi (t−k ) − mεx (t−k )

)
. (28)

Since the previous inequality holds ∀i ∈ V it holds also for
the maximum element Mεx

Mεx (tk ) ≤ (1 − β) ∆rx + (1 − β)
(
Mεx (t−k ) − mεx (t−k )

)
. (29)

Passing to modulus and recalling the fact that ��Mεx
�� = ‖εx ‖∞

we can write

‖εx (tk )‖∞ ≤ (1 − β) ∆rx + (1 − β) ���Mεx (t−k ) − mεx (t−k )���
≤ (1 − β) ∆rx + (1 − β)

(���Mεx (t−k )��� +
���mεx (t−k )���

)
≤ (1 − β) ∆rx + (1 − β)

(���Mεx (t−k )��� +
���Mεx (t−k )���

)
≤ (1 − β) ∆rx + 2 (1 − β) 


ε(t−k )


∞

(30)
Following the same argument we write the bound for the y

components too



εy (tk )


∞ ≤ (1 − β) ∆ry + 2 (1 − β) 


ε(t−k )


∞ . (31)

Finally we put all together with the following inequality

‖ε(tk )‖∞ ≤ ‖εx (tk )‖∞ +



εy (tk )


∞ .

to get (25).
Under Assumption 1 the following quantities are defined:

γ11 = γ22 = (1 − α), γ31 = γ32 = (1 − β),
γ13 = γ23 = 2(1 − α), γ33 = 4(1 − β). (32)

We use those constants to condense the results expressed in
Proposition 1 and 2 in the following lemma.



Lemma 3: Under Assumption 1, ∀ tk ∈ T , one has that:

∆rx (tk ) ≤ γ11∆rx (t−k ) + γ13



ε(t−k )


∞ ,

∆ry (tk ) ≤ γ22∆ry (t−k ) + γ23



ε(t−k )


∞ ,

‖ε(tk )‖∞ ≤ γ31∆rx (t−k ) + γ32∆ry (t−k ) + γ33



ε(t−k )


∞ .

(33)

Proof: The proof is straightforward from inequalities (20)
and (25) and from the definition of γi j constants in (32).

C. Overall hybrid system stability analysis
In the sequel we consider the following matrices

Γ =
*.
,

γ13 0 γ13
0 γ22 γ23
γ31 γ32 γ33

+/
-
, Mτ =

*.
,

1 0 0
0 1 0
0 0

√
ncεe−λετ

+/
-
.

We emphasize that the behavior of ∆rx (t), ∆ry (t) and ‖ε(t)‖∞
is characterized within [tk, tk+1) by Corollary (1) in term of
the matrix Mtk+1−tk . On the other hand Lemma 3 gives an
upper-bound, in term of Γ, on the jumps that ‖ε(t)‖∞ and the
two reference diameters suffer at time tk ∈ T .

Lemma 4: Under Assumption 1, let τ∗ ≥ 0 such that the
positive matrix ΓMτ∗ is Schur. Then, for all sequences T =
(tk )k≥0 of jump times satisfying the dwell-time property tk+1−
tk ≥ τ∗, ∀k ∈ N, A is GAS with respect to dynamics (8)-(9).

Proof: From Corollary 1 and Lemma 3, it follows that
for all k ∈ N,

*.
,

∆rx (tk )
∆ry (tk )
‖ε(tk )‖∞

+/
-
≤ ΓMτk−1 . . . ΓMτ0

*.
,

∆rx (t0)
∆ry (t0)
‖ε(t0)‖∞

+/
-
,

where τk = tk+1 − tk, ∀k ∈ N. Remarking that the coefficients
of the positive matrix Mτ are non-increasing with respect to
τ, it follows that

*.
,

∆rx (tk )
∆ry (tk )
‖ε(tk )‖∞

+/
-
≤

(
ΓMτ∗

)k *.
,

∆rx (t0)
∆ry (t0)
‖ε(t0)‖∞

+/
-
,

Hence, if the positive matrix ΓMτ∗ is Schur, then the sequences
(∆rx (tk ))k≥0, (∆ry (tk ))k≥0 and (‖ε(tk )‖∞)k≥0 go to 0, and the
system (8)-(9) converges to some point in A.
Hence, the stability of A with respect to the overall hybrid
dynamics of the fleet of robots can be investigated by studying
the spectral properties of the positive matrix ΓMτ∗ . Let us
remark that values τ∗ such that ΓMτ∗ is Schur provide upper
bounds on the minimal dwell-time between two events that
ensures A is GAS. In the following we provide the proof of
our main result previously stated as Theorem 1, establishing
sufficient conditions for deriving such values τ∗.
At this point, it is interesting to emphasize that we have
transformed the problem of stability analysis of the overall
hybrid system in a problem of stabilization of a positive
system.

Proof of Theorem 1: First of all let us notice that the
assumption expressed in inequality (10) is perfectly fulfilled
thanks to the exponential stability of the origin ε = 0 showed
in Corollary 1. Now let us remark that

ΓMτ∗ =
*..
,

γ11 0 γ13
√

ncεe−λετ
∗

0 γ22 γ23
√

ncεe−λετ
∗

γ31 γ32 γ33
√

ncεe−λετ
∗

+//
-
.

Moreover, the positive matrix ΓMτ∗ is Schur if and only if
there exists z ∈ R3

+, such that
(
ΓMτ∗

)
z < z (see e.g. [23]).

Choosing z = 13 one obtains that
(
ΓMτ∗

)
z < z is equivalent

with



γ11 +
√

nγ13cεe−λετ
∗

< 1
γ22 +

√
nγ23cεe−λετ

∗

< 1
γ31 + γ32 +

√
nγ33cεe−λετ

∗

< 1
(34)

From (32) we notice that γ11 = γ22 and γ13 = γ23 thus one
of the rows will be neglected from the rest of the analysis
since they are equivalent (the sufficient dwell-time τ∗ for the
convergence of ∆rx will be the same as for ∆ry ).
We pick for instance the first and the third inequality. The first
inequality in (34) has the solution

τ∗ >
1
λε

ln
√

nγ13cε
1 − γ11

while the second one is solved by

τ∗ >
1
λε

ln
√

nγ33cε
1 − γ31 − γ32

.

Combining the two conditions above one obtains the first
inequality in (11). We still have to prove that γ11 < 1 or
γ31 + γ32 < 1. From Assumption 1 one has α ∈ (0, 1) and
thus γ11 = 1 − α < 1. As for the second inequality we
use the diagonal dominance in Assumption 3 to show that
γ31 + γ32 = 2(1 − β) < 1 is verified for all β ∈ ( 1

2, 1).

IV. NUMERICAL EXAMPLE

In this section we consider a set of 5 robots that have to
realize the formation specified by the set of positions Π =
((2, 0), (3.90, 1.38), (3.18, 3.62), (0.82, 3.62), (0.10, 1.38))>.
The interaction between the agents switches randomly
between the ones described by the three graphs represented
in Fig. 2 following a switch function σ : T → {1, 2, 3}. The
three digraphs topology have been chosen such that the union
digraph G = G1

⋃
G2

⋃
G3 is strongly connected, in order to

comply with Assumption 2.

1

2

3

5

4

(a) σ(tk ) = 1

1

2

3

5

4

(b) σ(tk ) = 2

1

2

3

5

4

(c) σ(tk ) = 3

Fig. 2. Directed graphs used to implement the communication.

To each digraph corresponds a different Laplacian matrix
Lσ(tk ) obtained in the classical way as the difference between
the degree matrix and the adjacency matrix of the digraph
Lσ(tk ) = Dσ(tk ) − Aσ(tk ) . The discrete interaction matrix of
the global network P(tk ) = Pσ(tk ) = I5 − εLσ(tk ) , where ε
is a gain chosen as 0.1 to comply with Assumption 1 with
α = 0.1 and β = 0.8. Nevertheless, in general it is always
possible to find interaction matrices P(tk ) which fulfill the



requirements of Assumption 1 picking β ∈
(

1
2, 1

)
and, for

instance, α = 1−β
1−n .

A dwell-time τ∗ = 4.59 s has been used as lower bound
for the intervals between a reset and the following, where the
value of τ∗ has been evaluated using expression (11).

The initial positions of the 5 agents are X1(0) = (−6,−1),
X2(0) = (−9,−4), X3(0) = (−6, 3.5), X4(0) = (0,−2) and
X5(0) = (−11, 5) where the coordinates are expressed in
meters; the initial heading angle are θ1(0) = −1.5, θ2(0) = −3,
θ3(0) = −0.9, θ4(0) = −0.3 and θ5(0) = 1.5, all expressed
in radians. The values of k and γ for the point stabilization
controller of each robot are respectively 0.8 and 1. In Fig. 3 we
plot the trajectories of the robots, the sequence of reference
positions ri emphasizing in green the final positions of the
agents that realize the formation defined by Π.

-10 -8 -6 -4 -2 0 2

-4

-2

0

2

4

6

Fig. 3. Robots reaching the pentagon formation.

V. CONCLUSIONS

The paper proposed and analyzed a decentralized consen-
sus/formation realization strategy for a fleet of non-holonomic
robots. The strategy under consideration requires sporadic
interactions between robots. These interactions can be di-
rected and asynchronous. At the interaction instants the robots
update their reference based on some relative inter-distance
measurements easy to obtained from onboard sensors. The
resulting closed-loop dynamics is hybrid and our sufficient
stability condition is formulated in term of a minimum dwell-
time condition. A numerical example illustrates the theoretical
development.
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