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Abstract. Electronic cash (e-cash) permits secure e-payments by provid-
ing security and anonymity similar to real cash. Several protocols have
been proposed to meet security and anonymity properties of e-cash. How-
ever, there are no general formal definitions that allow the automatic
verification of e-cash protocols. In this paper, we propose a formal frame-
work to define and verify security properties of e-cash protocols. To this
end, we model e-cash protocols in the applied π-calculus, and we formally
define five relevant security properties. Finally, we validate our frame-
work by analyzing, using the automatic tool ProVerif, four e-cash proto-
cols: the online and the offline Chaum protocols, the Digicash protocol,
and the protocol by Petersen and Poupard.

Keywords: E-Cash, Formal Verification, Double Spending, Exculpabil-
ity, Privacy, Applied π-Calculus, ProVerif.

1 Introduction

Although current banking and electronic payment systems such as credit cards
or, e.g., PayPal allow clients to transfer money around the world in a fraction
of a second, they do not fully ensure the clients’ privacy. In such systems, no
transaction can be made in a completely anonymous way, since the bank or the
payment provider knows all details of the clients’ transactions. By analyzing a
clients payments for, e.g., transportation, hotels, restaurants, movies, clothes,
and so on, the payment provider can typically deduce the client’s whereabouts,
and much information about his lifestyle.

Physical cash provides better privacy: the payments are difficult to trace as
there is no central authority that monitors all transactions, in contrast to most
electronic payment systems. This property is the inspiration for “untraceable”
e-cash systems. The concept of “untraceable” e-cash was introduced by David
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Chaum [Cha83]. The general e-cash system involves three main parties: client,
bank and seller. A client withdraws an electronic coin from the bank, which
blindly signs it. The bank is the only party capable to create coins. The client
then can use the coins to pay a seller. Finally, the seller deposits the coin he
received from client in his bank account. At deposit the bank verifies that the
coin was not deposited before. If the coin was deposited before, the banks verifies
whether the seller deposited the same coin twice, or the client double-spent the
coin. In the former case the bank reject the deposit, while in the latter case
the bank takes actions depending on the type of the system (online or offline).
In online e-cash systems, i.e., those where a seller has to contact the bank at
payment before accepting the coin, the bank acknowledge the seller to reject the
coin at payment. Thus, in such systems normally double spending is not possible.
In contrast, in offline systems the bank runs a procedure to disclose the client’s
identity. This can be achieved due to the fact that offline systems usually support
the encoding of client’s identity into the coin at its withdrawal. To protect the
client, an e-cash system must also ensures that the bank cannot frame a honest
client for double spending. We identify the following main security properties of
e-cash protocols:

– Unforgeability, which says that clients cannot spend more coins than they
withdrew.

– Double Spending Identification ensures that the bank can identify the double
spender.

– Exculpability ensures that an attacker cannot forge a double spend, and
hence incorrectly blame an honest client for double spending.

– Weak Anonymity ensures that the attacker cannot link a client to a payment.
– Strong Anonymity ensures, additionally to weak anonymity, that the attacker

cannot decide whether two payments were made by the same client.

Contributions. In this paper, we propose a general formalization for e-cash
protocols in the applied π-calculus [AF01]. Our definitions are amenable to au-
tomatic verification using ProVerif [Bla01], and cover all the identified unforgery
and privacy properties: Unforgeability, Double Spending Identification, Exculpa-
bility, Weak Anonymity, Strong Anonymity. Finally, we validate our approach
by analyzing the online protocol proposed by Chaum et al. [Cha83], as well as,
a real implementation based on it [Sch97]. We also analyze the offline variant of
this e-cash system [CFN90], and the protocol by Peterson and Poupard [PP97].
Some of the results have been published in a previous paper [DKL15]. This paper
extends our results, and provides an additional case study.

Related Work. Several e-cash protocols have been proposed [CFN90, Dam90,
DC94, Cre94, Bra94, AF96, KO02, FHY13, PP97] since the seminal work by
David Chaum [Cha83], which introduces the blinding signature primitive to al-
low the anonymous withdrawal of coins. Chaum et al. [CFN90] presented an
offline variant of Chaum [Cha83] protocol. Berry Schoenmakers has described a
real e-cash protocol that is implemented by DigiCash based on online Chaum
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protocol [Cha83]. Abe et al. [AF96] have introduced a scheme based on partial
blind signature, which allows the bank to include certain information in the blind
signature of the coin, for example the expiration date or the value of the coin.
Kim et al. [KO02] have proposed an e-cash system that supports coin refund
and assigns them a value, based again on partial blind signature. Peterson and
Poupard [PP97] have proposed a protocol to prevent extortion attacks by relying
on additional party, the trustee, which publishes, in case of coin or key extortion,
some information that can be used by the sellers to reject illegal coins.

However, several attacks have been found against various existing e-cash
protocols: for example Pfitzmann et al. [PW91, PSW95] break the anonymity
of [Dam90, DC94, Cre94]. Cheng et al. [CYS05] show that Brand’s proto-
col [Bra94] allows a client to spend a coin more than once without being identi-
fied. Aboud and Agoun [AA14] show that [FHY13] cannot ensure the anonymity
and unlinkability properties that were claimed. These numerous attacks triggered
some work on formal analysis of e-cash protocols in the computational [CG08]
and symbolic world [LCPD07, SK14]. Canard and Gouget [CG08] provide formal
definitions for various privacy and unforgeability properties in the computational
world, but only with manual proofs as their framework is difficult to automate.
In contrast, Luo et al. [LCPD07] and Thandar et al. [SK14] both rely on au-
tomatic tools (ProVerif [Bla01], and AVISPA [ABB+05] respectively). Yet, they
only consider a fraction of the essential security properties, and for some proper-
ties Luo et al. only perform a manual analysis. Moreover, much of their reasoning
is targeted on their respective case studies, and cannot easily be transferred to
other protocols.

Outline. In Section 2, we model e-cash protocols in the applied π-calculus.
Then, in Section 3, we formalize the security properties. In Section 4, we validate
our framework by analyzing, using ProVerif [Bla01], the online and the offline
e-cash systems by Chaum et al. [Cha83, CFN90], the implementation based on
the online protocol [Sch97], and the protocol by Peterson and Poupard [PP97].
Finally, in Section 5, we discuss our results and outline future work.

2 Modeling E-cash Protocols in The Applied π-Calculus

An e-cash system involves at least the following parties: the client C who has an
account at the bank B, the seller S who accepts electronic coins, and the bank,
which certifies the electronic coins. A protocol can has several authorities that
run in parallel with the bank. A typically e-cash protocol runs in three phases:

1. Withdrawal: the client withdraws an electronic coin from the bank, which
debits the client’s account.

2. Payment: the client spends the coin by executing a transaction with a seller.

3. Deposit: the seller deposits the transaction at the bank, which credits the
seller’s account.
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In addition to these three main phases, some systems allow the clients to return
coins directly to the bank without using them in a payment, or to restore coins
that have been lost. As these functionalities are not implemented by all protocols,
our model does not require them. Moreover, we assume that the coins are neither
transferable nor divisible.

We model e-cash protocols in the applied π-calculus. We refer to the original
paper [AF01] for a detailed description of its syntax and semantics. We assume
a Dolev-Yao style attacker [DY83], which has a complete control to the network,
except the private channels. He can eavesdrop, remove, substitute, duplicate
and delay messages that the parties are sending to one another, and even insert
messages of his choice on the public channels.

Parties other than the attacker can be either honest or corrupted. Honest par-
ties follow the protocol’s specification, do not reveal their secret data (e.g., ac-
count numbers, keys etc.) to the attacker, and do not take malicious actions
such as double spending a coin or generating fake transactions. Honest parties
are modeled as processes in the applied π-calculus. These processes can exchange
messages on public or private channels, create fresh random values and perform
tests and cryptographic operations, which are modeled as functions on terms
with respect to an equational theory describing their properties. Corrupted par-
ties are those that collude with the attacker by revealing their secret data to him,
taking orders from him, and also making malicious actions. We model corrupted
parties as in Definition 15 from [DKR09]: if the process P is an honest party,
then the process P c is its corrupted version. This is a variant of P which shares
with the attacker channels ch1 and ch2. Through ch1, P c sends all its inputs and
freshly generated names (but not other channel names). From ch2, P c receives
messages that can influence its behavior. We define an e-cash protocol as a tuple
of processes each representing the role of a certain party.

Definition 1. (E-cash protocol). An e-cash protocol is a tuple (B,S,C, ñp),
where B is the process executed by the bank, S is the process executed by the
sellers, C is the process executed by the clients, and ñp is the set of the private
channel names used by the protocol.

To reason about privacy properties we use runs of the protocol, called e-cash
instances.

Definition 2. (E-cash instance). Given an e-cash protocol, an e-cash in-
stance is a closed plain process:

CP = νñ.(B|Sσids1 | . . . |Sσidsl |(Cσidc1σc11σids11 | . . . |Cσidc1σc1p1σids1p1 )|
...

|(Cσidckσck1
σidsk1

| . . . |Cσidckσckpk
σidskpk

))

where ñ is the set of all restricted names which includes the set of the protocol’s
private channels ñp; B is the process executed by the bank; Sσidsi is the pro-
cess executed by the seller whose identity is specified by the substitution σidsi ;
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Cσidciσcijσidsij is the process executed by the client whose identity is specified
by the substitution σidci , and which spends the coin identified by the substitution
σcij to pay the seller with the identity specified by the substitution σidsij .

Note that, idci can spend pi coins. Note also that, the bank process B can be
structurally equivalent to B1, . . . , Bk, thus several authorities can be captured
by our definition.

To improve the readability of our definitions, we introduce the notation of
context CPI [ ] to denote the process CP with “holes” for all processes executed
by the parties whose identities are included in the set I. For example, to enumer-
ate all the sessions executed by the client idc1 without repeating the entire e-cash
instance, we can rewrite CP as CP{idc1}[Cσidc1σc11σids11 | . . . |Cσidc1σc1p1σids1p1 ].

Finally, we use the notation Cw to denote a client that withdraws a coin, but
does not spend it in a payment: Cw is a variant of the process C that halts at
the end of withdrawal phase, i.e., where the code corresponding to the payment
phase is removed.

3 Formalizing Security Properties

In this section, we propose formal definitions for the three forgery-related prop-
erties: Unforgeability, Double Spending Identification, and Exculpability, as well
as, for the two privacy properties: Weak Anonymity and Strong Anonymity.

3.1 Forgery-Related Properties

In an e-cash protocol only the bank should be able to create coins. A client must
not be able to forge a coin, or to double spend a valid coin. This is ensured by
Unforgeability, which we define using the following two events:

– withdraw(c): is an event emitted when the coin c is withdrawn. This event
is placed inside the bank process just before the bank outputs the coin’s
certificate (e.g., a signature on the coin).

– spend(c): is an event emitted when the coin c is spent. This event is placed
inside the seller process just after he receives and accepts the coin.

Note that, events are annotations that mark important steps in the protocol
execution, but do otherwise not change the behavior of processes.

Definition 3 (Unforgeability). An e-cash protocol ensures Unforgeability if,
for every e-cash instance CP, each occurrence of the event spend(c) is preceded
by a distinct occurrence of the event withdraw(c) on every execution trace.

If a fake coin is successfully spent, the event spend will be emitted without any
matching event withdraw, violating the property. Similarly, in the case of a suc-
cessful double spending the event spend will be emitted twice, but these events
are preceded by only one occurrence of the event withdraw. Since a malicious
client might be interested to create fake coins or double spend a coin, it is par-
ticularly interesting to study Unforgeability with an honest bank and corrupted

5



clients. A partially corrupted seller, which e.g., gives some information to the
attacker but still emits the event spend correctly, could also be considered to
check if a seller colluding with the client and the attacker can results in a coin
forging. Note that, if the seller is totally corrupted then Unforgeability will be
trivially violated, since a corrupted seller can simply emit the event spend for a
forged coin, although there was no transaction.

In the rest of the paper, we illustrate all our notions with the “real cash”
system (mainly coins and banknotes) as a running example. We hope that it
helps the reader to understand the properties but also to feel the difference
between real cash and e-cash systems.

Example 1 (Real cash). In real cash, unforgeability is ensured by physical mea-
sures that make forging or copying coins and banknotes difficult, for example by
adding serial numbers, using special paper, ultraviolet ink, holograms and so on.

In case of double spending, the bank should be able to identify the responsible
client. This is ensured by Double Spending Identification (in short, DSI), which
says that a client cannot double spend a coin without revealing his identity. To
deposit a coin at the bank the seller has to present a transaction which contains,
in addition to the coin, some information certifying that he received the coin
in a payment. A valid transaction is a transaction which could be accepted by
the bank, i.e., it contains a correct proof that the coin is received in a correct
payment. The bank accepts a valid transaction if it does not contain a coin that
is already deposited using the same or a different transaction. In the following,
we denote by TR the set of all transactions, and we define the function transId

which takes a transaction tr ∈ TR and returns a pair (s, c), where s identifies
tr and c is the coin involved in tr. Such a pair can usually be computed from
a transaction. We also denote by ID the set of all client identities, and by D a
special data set that includes the data known to the bank after the protocol
execution, e.g., the data presents in the bank’s database.

Definition 4 (Double Spending Identification). An e-cash protocol ensures
DSI if there exists a test TDSI : TR × TR × D 7→ ID ∪ {⊥} satisfying: for any
two valid transactions tr1 and tr2 that are different but involve the same coin
(i.e., transId(tr1) = (s1, c), and transId(tr2) = (s2, c) for some coin c with
s1 6= s2), there exists p ∈ D such that TDSI(tr1, tr2, p) outputs (idc, e) ∈ ID × D,
where e is an evidence that idc withdrew the coin c.

DSI allows the bank to identify the double spender by running a test TDSI on
two different transactions that involves the same coin. For example, consider a
protocol where after a successful transaction the seller gets x = m.id+ r where
id is the identity of the client (e.g., his secret key), r is a random value (identifies
the coin) chosen by the client at withdrawal, and m is the challenge of the seller.
So, if the client double spends the same coin then the bank can compute id and
r using the two equations: x1 = m1.id+ r and x2 = m2.id+ r. The data p could
be some information necessary to identify the double spender or to construct
the evidence e. This data is usually presented to the bank at withdrawal or
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at deposit. The required evidence depends on the protocol. Note that, e is an
evidence from the point of view of the bank, and not necessarily a proof for an
outer judge. Thus, the goal of DSI is to preserve the security of the bank by
enabling him to identify the responsible of a double spending. Note also that,
if a client withdraws a coin and gives it to an attacker which double spends it,
then the test returns the identity of the client and not the attacker’s identity.

Example 2 (Real cash). In real cash, double spending is prevented by ensuring
that notes cannot be copied. However, DSI is not ensured: even if a central bank
is able to identify copied banknotes using, e.g., their serial numbers, this does
not allow it to identify the person responsible for creating the counterfeit notes.

DSI gives rise to a potential problem: what if the client is honest and spends
the coin only once, but the attacker (e.g., a corrupted seller) is able to forge a
second spend, or what if a corrupted bank is able to simulate a coin withdrawal
and payment, i.e., to forge a coin withdrawal and payment that seems to be
made by a certain client. For instance, in the example mentioned above, the
two equations are enough evidence for the bank. However, if the bank knows
id he can generate the two equations himself and blame the client for double
spending. So, to convince a judge, an additional evidence is needed, e.g., the
client’s signature.

If any of the two situations mentioned above is possible, then a honest client
could be falsely blamed for double spending, and also it gives raise to a corrupted
client which is responsible of double spending to deny it. To solve this problem
we define Exculpability which says that the attacker, even when colluding with
the bank and the seller, cannot forge a double spend by a certain client in order
to blame him. More precisely, provided a transaction executed by a client idc,
the attacker cannot provide two different valid transactions which involves the
same coin, and the data p necessary for the test TDSI to output the identity idc
with an evidence. Note that Exculpability is only relevant if DSI holds: otherwise
a client cannot be blamed regardless of the ability to forge a second spend or to
simulate a coin withdrawal and payment, as his identity cannot be revealed.

Definition 5 (Exculpability). Assume that we have a test TDSI as specified in
Definition 4, i.e. DSI holds, and that the bank is corrupted. Let idc be a honest
client (in particular he does not double spend a coin), and ids be a corrupted
seller. Then, Exculpability is ensured if, after observing a transaction made by
idc with ids, the attacker cannot provide two valid transactions tr1, tr2 that are
different but involve the same coin c, and some data p such that TDSI(tr1, tr2, p)
outputs (idc, e) where e is an evidence that idc withdrew the coin c.

The intuition is: if after observing a transaction executed by a client idc, the
attacker can provide a different valid transaction which involves the same coin,
and the required data p, then the test will return the identity idc with the
necessary evidence, thus the property will be violated. Similarly, in the case
where the attacker can forge a coin withdrawal and payment seems to be made
by a client idc, together with the necessary data p. Then the attacker can obtain
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two transactions satisfying the required conditions, and the test will return the
identity idc with an evidence.

Note that, Double Spending Identification and Exculpability are only relevant
in case of off-line e-cash systems where double spending might be possible.

3.2 Privacy Properties

We define the privacy properties using observational equivalence, a standard
choice for such kind of properties. We use the labeled bisimilarity (≈l) to express
the equivalence between two processes [AF01]. Informally, two processes are
equivalent if an attacker interacting with them has no way to tell them apart.

To ensure the privacy of the client, the following two notions have been
introduced by cryptographers, e.g., [CG08, Fer94, Sch97].

1. Weak Anonymity : the attacker cannot link a client to a spend, i.e., he cannot
distinguish which client makes a payment.

2. Strong Anonymity : a stronger notion than weak anonymity, which addition-
ally requires that the attacker cannot decide whether two spends were done
by the same client.

Canard et al. [CG08], have defined Weak Anonymity using the following game:
two honest clients each withdraw a coin from the bank. Then one of them (ran-
domly chosen) spends his coin to the adversary. The adversary already knows
the identities of these two clients, and also the secret key of the bank. It wins
the game if it guesses correctly which client spends the coin. Inspired by this
definition, we define Weak Anonymity in the applied π-calculus as follows.

Definition 6 (Weak Anonymity). An e-cash protocol ensures Weak Anonym-
ity if for any e-cash instance CP, any two honest clients idc1, idc2, any corrupted
seller ids, we have that:

CPI [Cσidc1σc1σids|Cwσidc2σc2 |Scσids|Bc]

≈l

CPI [Cwσidc1σc1 |Cσidc2σc2σids|Scσids|Bc]

where c1, c2 are any two coins (not previously known to the attacker) withdrawn
by idc1 and idc2 respectively, I = {idc1, idc2, ids, idB}, idB is the bank’s identity,
and Cw is a variant of C that halts at the end of the withdrawal phase.

Weak anonymity ensures that a process in which the client idc1 spends the coin c1
to a corrupted seller ids1, is equivalent to a process in which the client idc2 spends
the coin c2 to a corrupted seller ids1. We assume a corrupted bank represented
by Bc. Note that, the client that does not spend his coin still withdraws it.
This is necessary since otherwise the attacker could likely distinguish both sides
during the withdrawal phase, as the bank is corrupted and typically the client
reveals his identity to the bank at withdrawal. We also note that, we do not
necessarily consider other corrupted clients, however this can easily be done by
replacing some honest clients from the context CPI (i.e., other than idc1 and
idc2) with corrupted ones.

8



Example 3 (Real cash). Real coins ensure weak anonymity as two coins (as-
suming the same value and production year) are indistinguishable. However,
banknotes do not ensure weak anonymity according to our definition, as they
include serial numbers. Since the two clients withdraw a note each, the notes
hence have different serial numbers which the bank can identify. In reality this
is used by the bank to trace notes and detect suspicious activities, e.g., money
laundering. Note however that banknotes ensure a weaker form of anonymity: if
two different clients use the same note, one cannot distinguish them.

Strong Anonymity is defined in [CG08] using the same game as for Weak
Anonymity, with the difference that the adversary may have previously seen
some coins being spent by the two honest clients explicitly mentioned in the
definition. We define Strong Anonymity as follows.

Definition 7 (Strong Anonymity). An e-cash protocol ensures Strong Anony-
mity if for any e-cash instance CP, any two honest clients idc1, idc2, any cor-
rupted seller ids, we have that:

CPI [|0≤i≤m1
Cσidc1σci1σids|0≤i≤m2

Cσidc2σci2σids|
Cσidc1σc1σids|Cwσidc2σc2 |Scσids|Bc]

≈l

CPI [|0≤i≤m1
Cσidc1σci1σids|0≤i≤m2

Cσidc2σci2σids|
Cwσidc1σc1 |Cσidc2σc2σids|Scσids|Bc]

where c1 and c11 . . . c
m1
1 are any coins withdrawn by idc1, c2 and c12 . . . c

m2
2 are

any coins withdrawn by idc2, I = {idc1, idc2, ids, idB}, idB is the bank’s identity,
and Cw is a variant of C that halts at the end of the withdrawal phase.

Strong Anonymity ensures that the process in which client idc1 spends m1 +
1 coins, while idc2 spends m2 coins and additionally withdraws another coin
without spending it, is equivalent to the process in which client idc1 spends m1

coins and withdraws an additional coin, while idc2 spends m2 + 1 coins. The
definition assumes that the bank is corrupted, and that the seller receiving the
coins from the two clients idc1 and idc2 is also corrupted. Note that, we consider
Cw to avoid distinguishing from the number of withdrawals by each client. Again,
we can replace some honest clients from CPI by corrupted ones.

Example 4 (Real cash). Again, real coins ensure strong anonymity as, assuming
the same value and production year, two coins are indistinguishable. Yet, for the
same reason as in weak anonymity, banknotes do not ensure strong anonymity
according to our definition: the serial numbers allow an attacker to identify the
different clients.

We note that any protocol satisfying Strong Anonymity also satisfies Weak
Anonymity, as Weak Anonymity is a special case of Strong Anonymity for m1 =
m2 = 0, i.e. when the two honest clients do not make any previous spends.
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4 Case Studies

In this section, we describe and analyze the online [Cha83] and the offline [CFN90]
variants of the protocol, the online protocol implemented by DigiCash [Sch97],
and the protocol by Peterson and Poupard [PP97]. To perform the automatic
protocol verification we use Proverif [Bla01]. ProVerif uses a process description
based on the applied π-calculus, but has syntactical extensions, for example its
language is enriched by events to check reachability and correspondence proper-
ties; besides it can check observational equivalence properties. All the verification
presented in the paper are carried out on a standard PC (Intel(R) Pentium(R)
D CPU 3.00GHz, 2GB RAM).

4.1 Chaum Online Protocol

The Chaum Online Protocol was proposed in [Cha83] and detailed in [CFN90]. It
allows a client to withdraw a coin blindly from the bank, and then spend it later
in a payment without being traced even by the bank. The protocol is “online”
in the sense that the seller does not accept the payment before contacting the
bank to verify that the coin has not been deposited before, to prevent double
spending. We start by giving a description of the protocol.

Withdrawal Phase. To obtain an electronic coin, the client communicates with
the bank using the following protocol:

1. The client randomly chooses a value x, and a coefficient r. The client then
sends to the bank his identity u and the value b = blind(x, r), where blind

is a blinding function.

2. The bank signs the blinded value b using a signing function sign and his
secret key skB, then sends the signature bs = sign(b, skB) to the client.
The bank also debits the amount of the coin from the client’s account.

3. The client verifies the signature and removes the blinding to obtain the
bank’s signature s = sign(x, skB) on x. The coin consists of the pair
(x, sign(x, skB)).

Payment (and Deposit) Phases. To spend a coin:

1. The client sends the pair (x, sign(x, skB)) to the seller.

2. After checking the bank’s signature, the seller sends the coin (x, sign(x, skB))
to the bank to verify that it is not deposited before.

3. The bank verifies the signature s, and that the coin is not in the list of
deposited coins. If these checks succeed the bank credits the seller’s account
with the amount of the coin and informs him of acceptance. Otherwise, the
payment is rejected.
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getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), k), r) = sign(m, k)

Table 1. Equational theory for Chaum Online Protocol.

Modeling in ProVerif. The equational theory depicted in Table 4.1 models the
cryptographic primitives used within Chaum on-line protocol. It includes well-
known model for digital signature (functions sign, getmess, and checksign). The
functions blind/unblind are used to blind/unblind a message using a random
value. We also include the possibility of unblinding a signed blinded message, so
that we obtain the signature of the message – the key feature of blind signatures.

Analysis. The result of the analysis is summarized in Table 4.1. We model
Unforgeability as an injective correspondence between the events withdraw and
spend, they are placed in their appropriate positions, according to the Defini-
tion 3, inside the bank and seller processes respectively. We consider a honest
bank and honest seller but corrupted clients. We assume that the bank sends
an authenticated message through private channel to inform the seller about a
coin acceptance. Otherwise, the attacker can forge a message which leads the
seller to accepting an already deposited coin. However, ProVerif still finds an
attack against Unforgeability when two copies of the same coin spent at the
same time. In this case the bank makes two parallel database lookups to check
if the coin was deposited before. If the parallel deposit was not finished yet and
thus the coin is not yet inserted in the database, then each lookup confirms that
the coin was not deposited before which results in acceptance of two spends
of the same coin. This attack may be avoided with some synchronization like
locking the table when a coin deposit is initiated and then unlocking it when
the operation is finished. ProVerif does not support such an feature. Protocols
that rely on state could be analyzed using the Tamarin Prover7 thanks to the
SAPIC8 tool. However, it is difficult to model, using Tamarin, rewriting rules
that are not subterm-convergent, which is the case of the equation that supports
blind signature primitive. Note that corrupted clients cannot create a fake coin
as the correspondence holds without injectivity. Double Spending Identification
and Exculpability are not relevant in the case of on-line protocols as their coun-
termeasure against double spending is the online calling of the bank at payment,
and thus they do not have any kind of test to identify double spenders.

For privacy properties, we assume a corrupted bank and a corrupted seller,
but honest clients. ProVerif confirms that the privacy of the client is preserved,
as both Weak Anonymity, and Strong Anonymity are satisfied. This due to the

7 http://www.infsec.ethz.ch/research/software/tamarin.html
8 http://sapic.gforge.inria.fr/
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Property Result Time

Unforgeability × < 1s

Weak Anonymity X < 1s

Strong Anonymity X < 1s

Table 2. Analysis of the Chaum online protocol. A (X) indicates that the property
holds. A (×) indicates that it fails (ProVerif shows an attack).

fact that the coin is signed blindly during the withdrawal phase, and thus cannot
be traced later by the attacker even when colludes with the bank and the seller.
Note that, for Strong Anonymity, we consider an unbounded number of spends
by each client and one spend that is made by either the first client or by the
second one.

4.2 DigiCash Protocol

The online Chaum protocol has been implemented by DigiCash9. Latter, the
specifications of the DigiCash protocol outlined in [Sch97]. It has the same with-
drawal phase as Chaum online protocol, except that the client sends an authen-
ticated coin to be signed by the bank, however the paper does not specify the
way of authentication. We ignore this authentication as its purpose is to ensure
that the bank debits the correct client account. Hence, we believe that it does
not effect the privacy and unforgeability properties (analysis confirms that as we
can see in Table 4.1). The payment and deposit phases are different from those
of Chaum online protocol. They are summarized as follows.

Payment (and Deposit) Phases in DigiCash.

1. The client sends the seller pay = enc((ids, h(pay-spec), x, sign(x, skB)), pkB)
which is the encryption, using the public key of the bank pkB , of the seller’s
identity ids, hash of the payment specification pay-spec (specification of the
sold object, price etc), and the coin (x, sign(x, skB)).

2. The seller signs (h(pay-spec), pay) and sends it along with his identity ids
to the bank.

3. The bank verifies the signature, decrypts pay then verifies the value of
h(pay-spec) and that the coin is valid and not deposited before. If so it
informs the seller to accept the coin, and to reject it otherwise.

Modeling in ProVerif. Additionally to the equational theory of the Chaum online
protocol (Table 4.1), the equational theory of DigiCash protocol includes well-
known model of the public key encryption represented by the following equation:
dec(enc(m, pk(k)), k) = m.

9 DigiCash declared bankruptcy in 1998, and was sold to Blucora.
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Property Result Time

Unforgeability × < 1s

Weak Anonymity X < 1s

Strong Anonymity X < 1s

Table 3. Analysis of DigiCash protocol. A (X) indicates that the property holds. A
(×) indicates that it fails (ProVerif shows an attack).

Analysis. The result of analysis of DigiCash protocol using ProVerif is sum-
marized in Table 4.2. ProVerif shows the same results as obtained for Chaum
online protocol. Namely, it shows that Weak Anonymity, and Strong Anonymity
are satisfied, and it outputs the same attack presented in Section 4.1 against
Unforgeability. Again Double Spending Identification and Exculpability are not
relevant. Note that, obtaining the same result for the two protocols, even that
they have different payment and deposit phases, confirms that the blinding sig-
nature used during the withdrawal phase plays the key role in preserving the
privacy of the client, as claimed by David Chaum.

4.3 Chaum Offline Protocol

The offline variant of the Chaum protocol is proposed in [CFN90]. It removes
the requirement that the seller must contact the bank during every payment.
This introduces the risk of double spending a coin by a client.

Withdrawal Phase. To obtain an electronic coin, the client randomly chooses a,
c and d, and calculates the pair H = (h(a, c), h(a ⊕ u, d)), where u is the client
identity and h is a hash function. The client then proceed as in the Chaum
online protocol, but with x (the potential coin) replaced by the pair H. Namely,
the client blinds the pair H and sends it to the bank. Then the bank signs and
returns it to the client. The main difference from the Chaum online protocol is
that the coin has to be of the following form

(h(a, c), h(a⊕ u, d))

where the client identity is masked inside it. This aims to reveal the identity if
the client double spends the coin. In order for the bank to be sure that the client
provides a message of the appropriate form, Chaum et al. used in [CFN90] the
well known “cut-and-choose” technique. Precisely, the client computes n such a
pair H where n is the system security parameter. The bank then selects half of
them and asks the client to reveal their corresponding parameters (a, b, c and
r). If n is large enough the client can cheats with a low probability.

At the end of this phase the client holds the electronic coin composed of the
pair H, and the bank’s signature S = sign(H, skB). The client also has to keep
the random values a, c, d which are used later to spend the coin.
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Payment Phase. For a client to spend a coin to a seller:

1. The client presents the pair H and the bank’s signature S to the seller. The
seller checks the signature, if it is correct then he chooses and sends a random
binary bit y, a challenge, to the client. The client returns to the seller:
– The values a and c if y is 0.
– The values a⊕ u and d if y is 1.

2. The seller checks the compliance of the values sent with the pair H. If ev-
erything (the signature and the values) is correct, the payment is accepted.

At the end of the payment phase, the seller holds the pair H, the signature S, the
values of either (a, c) or (a⊕ u, d), and the challenge y. All these data together
compose the transaction that the seller has to present to the bank at deposit.

Note that, in case where n pairs are used for the coin, the challenge y will be
n bit string and for each bit either the corresponding values of (a, c) or (a⊕u, d)
are revealed to the seller.

Deposit Phase. To deposite a coin at the bank:

1. The seller contacts the bank and provides it with the transaction (H, S, y,
(a, c)) or (H, S, y, (a⊕ u, d)).

2. The bank checks the signature and also whether the values (a, c) or (a⊕u, d)
correspond to their hash value in H. If any of these values is incorrect,
the fault is on the seller’s part, as he was able to independently check the
regularity of the coin at payment. If the coin is correct, the bank checks its
database to see whether the same coin had been used before. If it has not, the
bank credits the seller’s account with the appropriate amount. Otherwise,
the bank rejects the transaction.

Chaum offline protocol does not prevent double spending, however it preserve
client’s anonymity only if he spend a coin once. Note that, a double spender can
be identified when the coin has the form (h(a, c), h(a⊕u, d)). However, the bank
can simulate the coin withdrawal and payment (as the bank knows the identities
of all the clients), thus the bank can blame a honest client for double spending.
As a countermeasure, the authors propose to concatenate two values z and z′

with u inside the pair H to have (h(a, c), h(a⊕ (u, z, z′), d)) and provide to the
bank, at withdrawal, additionally the client’s signature on h(z, z′).

Modeling in ProVerif. To model the Chaum off-line protocol in ProVerif, in
addition to the equational theory used for the Chaum online protocol (Table 4.1),
we use the function xor to represent the exclusive-or (⊕) of two values. Given
the first value, the second value can be obtained using the function unxor . Such
an – admittedly limited – modeling for ⊕ operator is sufficient to catch the
functional properties of the scheme required by Chaum offline protocol, but does
not catch all algebraic properties of this operator. However, there are currently no
tools that support observational equivalence – which we need for the anonymity
properties – and all algebraic properties of ⊕. Kuesters et al. [KT11] proposed a
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way to extend ProVerif with ⊕. Their tool translates a model of the protocol to
a ProVerif input where all ⊕ are ground terms to enable automated reasoning.
However, this tool can only deal with secrecy and authentication properties,
and does not support equivalence properties. The xor function is only used to
hide the client’s identity u using a random value a (a ⊕ u), which we model as
xor(a, u). The bank then uses a to reveal the client’s identity u if he double
spends a coin. This is modeled by the following two equations

unxor(xor(a, u), a) = u

unxor(a, xor(a, u)) = u

which represents the various ways: ((a ⊕ u) ⊕ a) = u, or (a ⊕ (a ⊕ u)) = u. We
always assume that identity is the second value, and this is how we model it
inside honest processes.

Analysis. As expected ProVerif confirms that Unforgeability is not satisfied, a
corrupted client can double spend a coin. In fact the seller cannot know whether
a certain coin is already spent or not, he accepts any coin that is certified by
the bank. However, a collusion between the client and the attacker cannot lead
to forging a coin.

In case of double spending, the bank may receive two transactions of the form
tr1 = (h, hx, sign((h, hx), skB), 0, a, c) and tr2 = (h, hx, sign((h, hx), skB), 1,
xor(a, u), d). Then, the bank can apply a test to obtain the identity u. This is
done using the unxor function as unxor(xor(a, u), a) = u. The evidence here is
showing that the identity of the client is masked inside the coin. This can be
done thanks to the values of (a, c, xor(a, u), d) which are initially known only to
the client. Spending the coin only once reveals either (a, c) or (xor(a, u), d) which
does not allow to obtain the identity u. Note that, if the two sellers provide the
same challenge, the two transactions will be exactly equal. In this case no double
spending is detected, and the second transaction will be rejected by the bank
which considers it as a second copy of the first transaction. In practice this can
be avoided with high probability if n pairs coin is used and thus n bits challenge.
Note that ProVerif consider all the possibilities.

We model the output of an identity and an evidence of the test TDSI by
an emission of the event OK. The test emits event KO otherwise. To say that
Double Spending Identification is satisfied, (i) the test TDSI should not emit the
event KO for every two valid transactions tr1, tr2 that are different but involves
the same coin, i.e., it always emits event OK for such transactions; (ii) the
test should not emit the event OK for any two transactions that do not satisfy
these conditions. ProVerif shows that the test can emit the event KO for certain
two transactions satisfy the required conditions. Actually, a corrupted client
can withdraw a coin that does not have the appropriate form (e.g., client’s
identity is not masked inside it), thus the bank cannot obtain the identity in
case of double spending. Note that, if the bank only certifies coins with the
appropriate form at withdrawal (i.e., of the form (h(a, c), h(a⊕ u, d))), then the
property holds, ProVerif confirms that. Again, in practice applying the “cut-
and-choose” technique can guarantee with high probability that the coin is in
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Property Result Time

Unforgeability × <1s

Double Spending Identification × <2s

Double Spending Identification∗ X <2s

Exculpability∗ × < 6s

Exculpability† X < 6s

Weak Anonymity X <1s

Strong Anonymity X <1s

Table 4. Analysis of Chaum offline protocol. A (X) indicates that the property holds.
A (×) indicates that it fails. (∗) Only coins with the appropriate form are considered.
(†) After applying the countermeasure.

the appropriate form. However, applying this technique using Proverif does not
make any difference since ProVerif works under symbolic world, which deals
with possibilities and not with probabilities. For instance, the attacker still can
guess the pairs that the bank will request to reveal and construct them in the
appropriate form, but cheat with the others which will compose the coin.

We analyze Exculpability in case where only coins of appropriate forms are
considered i.e., the case where Double Spending Identification holds. ProVerif
confirms that a corrupted bank can blame a honest client. The bank can simulate
the withdrawal and the payment since the bank knows the identity of the client.
Thus it can obtain two transactions satisfying the required conditions. This is
due to the fact that the evidence obtained by the test, which is showing that the
client’s identity is masked inside the coin, is not strong enough to act as a proof.
However, the attacker cannot re-spend a coin withdrawn and spent by a honest
client. After applying the countermeasure that is including some terms z and
z′ so that the client signs h(z, z′), ProVerif confirms that Exculpability holds.
Applying the countermeasure results in a new test which takes, in addition to
the two transactions, the client’s signature on h(z, z′). The test shows, in case of
double spending, that the identity u and the preimage (z, z′) of the hash signed
by the client are masked inside the coin. This represents a stronger evidence
which acts as a proof that the client withdrew the coin since the bank cannot
forge the client’s signature.

We note that, Ogiela et al. [OS14] show an attack on Chaum offline protocol:
when a client double spends a coin, the sellers can forge additional transactions
involving the same coin, so that the bank cannot know how many transactions
are actually result from spends made by the client and how many are forged by
the sellers. In such a case, according to our definition, Unforgeability does not
hold since the client has to spend the coin at least twice. Moreover, the bank
can still identify the client and punish him as the bank can be sure that he at
least spend the coin twice. Yet, corrupted sellers can blame a corrupted client
who double spends a coin for further spends.
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Concerning privacy properties, ProVerif shows that Chaum off-line protocol
still satisfies both Weak Anonymity and Strong Anonymity.

To sum up, ProVerif confirms the claim about preserving client’s anonymity.
ProVerif also was able to show that a client can double spend a withdrawn coin
but cannot forge a coin, and that the bank can identify the double spender if
the coin is in the appropriate form. ProVerif also shows, in case of coin with
appropriate form, that the bank can simulate a withdrawal and payment, and
thus can blame him for double spending. After applying the countermeasure no
attack against Exculpability is found.

4.4 Protocol by Peterson and Poupard

In this section, we give the description of the protocol due to Peterson and
Poupard [PP97], which we call concisely P&P protocol. Then, we present the
results of our analysis. The protocol has two variants for electronic purse pay-
ments and internet payments, which are slightly differ in few steps. We analyze
the internet payments schemes.

The protocol aims, to met the usual security properties, and to prevent ex-
tortion attacks, in which a criminal forces the bank to issue coins or reveal secret
keys through kidnapping. To this end, the protocol consider an additional author-
ity, the trustee, at which a client has to register using a pseudonymous keypair
(PSx, PSy). Then, public part of the client’s pseudonym PSy is embedded into
the coin. The main rule of the trustee is to take some actions (e.g., publishes
list of illegal coins) when an extortion attack is reported. Accordingly, the pro-
tocol has an additional phase, Registration Phase, in which the client open an
account at the bank and registers at the trustee. Note that similar to Chaum
protocols, P&P protocol uses a blind signature scheme in order to withdraw
anonymous coins, and uses a “challenge-and-response” procedure at payment.
In the following, we provide the description of the P&P protocol.

Registration Phase. To open an account:

1. The client idC registers at the bank and obtains an account number accC ;
2. The bank stores (idC , accC) in his database.

For the client to identify himself to the trustee:

1. The client and the trustee obtain an authentic session key kCT using an
authentic key exchange protocol.

2. The client generates a pseudonymous keypair (PSx, PSy), computes the
signature σC = sign((idC , PSy), skC), and sends enc((idC , PSy, σC), kCT )
to the trustee, where enc is a symmetric encryption function.

3. The trustee verifies the signature σc, calculates σT = sign(PSy, skC), and
sends enc(σT , kCT ) to the client. The trustee also stores (idC , PSy, σC) in
his database.

4. The client verifies the signature σT , and stores all the values.

These steps might be processed several times to obtain several pseudonymous
keypairs (PSx, PSy).
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Withdrawal Phase. The client can withdraw a coin from the bank according to
the following steps:

1. The client and the bank first obtain an authentic session key kCB using an
authentic key exchange protocol.

2. The client generates random coin c, computes bc = blind(h(c, PSy)) and
eT = aenc(h(c, PSy), pkT ) where h is a hash function and aenc is a proba-
bilistic asymmetric encryption function, and sends bc and eT to the bank.
Note that, eT is mainly used in case of an extortion attack against the bank
which then sends all the stored values eT to the trustee.

3. The bank signs the blinded coin by computing σ̃B = sign(bc, skB) and sends
it to the client. The bank also subtracts the value of the coin from the client’s
account accC and stores (idC , bc, eT ).

4. The client unblind the signature σ̃B to obtain σB and verifies it. The client
keeps (c, σB) as his coin and notices the relation to the tuple (PSx, σT ).

Payment Phase. To spend a coin, the client communicates with the seller ac-
cording to the following steps:

1. The seller sends the client a uniquely generated message mess.
2. The client generates the signature σcoin = sign((c, idS ,mess, PSy), PSx),

and sends the payment transcript (c, PSy, σT , σB , aenc(σcoin, pkS)).
3. The seller verifies σT , σB , and σcoin, and stores the payment transcript

together with mess in his database.

Note that in addition the protocol consider three extortion cases: extortion of
client’s secret key PSx, extortion of bank’s secret key skB , and extortion of
trustee’s secret key skT . In case of extortion of PSx, the trustee distributes the
corresponding key PSy among the sellers so that the seller rejects all the coins
withdrawn under PSy. The trustee also issues the signature sign((idC , PSy), skT )
which allows the client exchange unspent coins withdrawn under PSy at the
bank. In case of extortion of bank’s secret key, he sends eT to the trustee which
in turn decrypts it and publishes the legal coins among the sellers so that they
can verify the coin at payment. In case of extortion trustee’s secret key , he signs
PSy and publishes it, then the seller verifies the signature and check if PSy is
among the published list before accepting. We consider these additional checks
in our model.

Deposit Phase. To deposite a coin at the bank:

1. The seller sends the tuple (c, PSy, idS , accS ,mess, σB , σT , σcoin) to the bank.
2. The bank verifies the signatures σB , σT and checks whether the coin was

already deposited under the same PSy. If it is the case, then:
– If σ′coin = σcoin, the seller is accused for double deposite. The bank sends

the tuple (c, σ′coin) to the seller as a proof.
– If σ′coin 6= σcoin, the bank verifies σcoin. If it is valid, then the coin has

been overspent. In this case, the bank sends the trustee the transcripts

18



getmess(sign(m, k)) = m

checksign(sign(m, k), pk(k)) = m

dec(enc(m, k), k) = m

adec(aenc(m, pk(k), r), k) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), k), r) = sign(m, k)

Table 5. Equational theory for P&P Protocol.

(c, PSy,mess1, σB , σT , σcoin,1) . . . (c, PSy,messk, σB , σT , σcoin,k).
To prove that the coin c was overspent, the trustee verifies all transcripts.
If they are correct, he looks for the tuple (idC , PSy, σC) in his database
and sends (idC , σC) to the bank. The bank checks the signature σC .

Otherwise, If every thing is okay the bank stores the payment transcript in
his database and credits the seller’s account accS by the value of c.

Modeling in ProVerif. To model the P&P protocol in ProVerif, we use the equa-
tional theory depicted in Table 4.4. It includes the well-known equational theory
for digital signature (functions sign, getmess, and checksign), symmetric encryp-
tion (functions enc and dec), and asymmetric encryption (functions aenc and
adec). We also use two equations for the blinding function (blind and unblind)
similar to the one we use for previous protocols.

Analysis. The result of the analysis is summarized in Table 4.4. Similarly to
the previous protocols, we model Unforgeability as an injective correspondence
between the two events withdraw and spend. We consider a honest bank and
honest seller but corrupted clients. As expected for offline protocols, ProVerif
finds an attack against Unforgeability. A corrupted client can double spend a
coin, However, a collusion between the client and the attacker cannot lead to
forging a coin as the correspondence holds without injectivity.

In case of double spending, the bank may receive two transactions of the
form (c, PSy,mess1, σB , σT , σcoin,1) and (c, PSy,mess2, σB , σT , σcoin,2), and ad-
ditionally he receives from trustee (idC , σC). Then bank checks that the two
transactions are valid and that the signature σC is computed by the client on
(idC , PSy). Thus linking PSy (under which the coin is withdrawn) to the client
identity idC . To verify Double Spending Identification, similar to the Chaum
offline protocol, we model the test outputs event OK when it finds an identity
and an evidence, and event KO when it fails. ProVerif shows that P&P satisfies
Double Spending Identification. ProVerif also shows that Exculpability is satisfied
as the bank cannot forge the client signature σC .

For privacy properties, we assume a corrupted bank and a corrupted seller,
but honest clients. ProVerif confirms that Weak Anonymity is satisfied by P&P
protocol. However, Strong Anonymity is satisfied only if the client use a distinct
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Property Result Time

Unforgeability × < 1s

Double Spending Identification X < 1s

Exculpability X < 1s

Weak Anonymity X < 1s

Strong Anonymity × < 1s

Strong Anonymity∗ X < 2s

Table 6. Analysis of P&P protocol. A (X) indicates that the property holds. A (×)
indicates that it fails. (∗) Only one coin was withdrawn per a pseudonymous keypair.

pseudonymous keypair for each coin. Otherwise, the seller can easily links two
payments to the same client since PSy is revealed to him at payment.

5 Conclusion

E-cash protocols aim at emulating real cash by offering anonymous payments.
Several protocols have been proposed to ensure client’s anonymity, as well as,
the standard forgery-related properties. However, multiple flaws were discovered
on claimed secure protocols. To avoid further bad surprises, formal verification
can be used to improve confidence in e-cash protocols.

In this paper, we proposed a formal framework to automatically verify e-
cash protocols with respect to multiple essential privacy and forgery-related
properties. Our framework relies on the applied π-calculus and uses ProVerif as
the verification tool. As a case study, we analyzed the online protocol proposed by
Chaum, as well as a real implementation based on it (the DigiCash protocol). We
also analyze the offline variant of this system, and the protocol due to Peterson
and Poupard. For Chaum online protocol and DigiCash protocol, we found a
weakness concerning Unforgeability : the attacker can double spend a valid coin
when there is a lack of synchronization. Concerning Chaum offline protocol, we
re-discover some known attacks which confirms the correctness of our model.
Namely we re-discover, the attack against Unforgeability (double spending), the
attack against Double Spending Identification when the coin does not have the
proper form, and the attack against Exculpability when the counter-measure is
not considered. With respect to P&P protocol, we found an expected attack on
Unforgeability as double spending is usually possible in case of offline protocols.
We also found an attack on Strong Anonymity when more than one coin is
withdrawn under the same pseudonymous keypair.

As future work, we would like to investigate further case studies and to extend
our model to cover transferable protocols with divisible coins. Also we would like
to use the tool SAPIC, which is based on Tamarin, in order to see how it can
help to analyze e-cash protocols.
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