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Abstract 27	
  

Bacteria have evolved several strategies to survive a myriad of harmful conditions in the 28	
  

environment and in hosts. In Gram-negative bacteria, responses to nutrient limitation, 29	
  

oxidative or nitrosative stress, envelope stress, exposure to antimicrobials and other growth-30	
  

limiting stresses have been linked to the development of antimicrobial resistance. This results 31	
  

from the activation of protective changes to cell physiology (decreased outer membrane 32	
  

permeability), resistance transporters (drug efflux pumps), resistant lifestyles (biofilms, 33	
  

persistence) and/or resistance mutations (target mutations, production of antibiotic 34	
  

modification/degradation enzymes). In targeting and interfering with essential physiological 35	
  

mechanisms, antimicrobials themselves are considered as stresses to which protective 36	
  

responses have also evolved. In this review, we focus on envelope stress responses that affect 37	
  

the expression of outer membrane porins and their impact on antimicrobial resistance. We 38	
  

also discuss evidences that indicate the role of antimicrobials as signaling molecules in 39	
  

activating envelope stress responses.  40	
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Introduction 41	
  

Antimicrobial resistance (AMR) is broadly recognized as a growing threat for human health 42	
  

[1, 2, 3]. As such, increasing antibiotic treatment failures due to multidrug resistant (MDR) 43	
  

bacteria have stirred the urgent need to better understand the underlying molecular 44	
  

mechanisms and promote innovation with the development of new antibiotics and alternative 45	
  

therapies [4, 5]. The efficacy of antibacterial compounds depends on their capacity to reach 46	
  

inhibitory concentrations at the vicinity of their target. This is particularly challenging for 47	
  

drugs directed against Gram-negative bacteria, which exhibit a complex envelope comprising 48	
  

two membranes and transmembrane efflux pumps [6, 7]. The Gram-negative envelope 49	
  

comprises an inner membrane (IM), which is a symmetric phospholipid bilayer; a thin 50	
  

peptidoglycan (PG) layer ensuring the cell shape; and an outer membrane (OM) that is an 51	
  

asymmetric bilayer, composed of an inner leaflet of phospholipids and an outer leaflet of 52	
  

lipopolysaccharide (LPS) [8]. The OM is a barrier to both hydrophobic and hydrophilic 53	
  

compounds, including necessary nutrients, metabolic substrates and antimicrobials, but 54	
  

access is provided by the water filled β-barrel channels called porins [6, 9, 10, 11, 12]. In 55	
  

Escherichia coli, the channels of the general porins OmpF and OmpC are size restricted and 56	
  

show a preference for passage of hydrophilic charged compounds, including antibiotics such 57	
  

as β-lactams and fluoroquinolones. These porins are conserved throughout the phylum of γ-58	
  

proteobacteria [13]. Additionally, tripartite RND (Resistance-Nodulation-cell Division) 59	
  

efflux pumps, such as AcrAB-TolC in E. coli, play a major role in removing antibiotics from 60	
  

the periplasm [7, 12]. Not surprisingly, MDR clinical isolates of Enterobacteriaceae 61	
  

generally exhibit porin loss and/or increased efflux, which act in synergy to reduce the 62	
  

intracellular accumulation of antibiotics below the threshold that would be efficient for 63	
  

activity [10]. 64	
  

Given the importance of the OM in controlling the uptake of beneficial as well as toxic 65	
  

compounds, one can expect that the expression of porins depends on environmental stresses 66	
  

and is well-coordinated at the transcriptional and post-transcriptional levels [10, 14-17]. In 67	
  

this review, we will address the porin-mediated influx of antibiotics and give a perspective on 68	
  

the factors, including major regulatory pathways and antibiotic stresses, which control porin 69	
  

expression in E. coli and closely relative Enterobacteriaceae. Additionally, we will discuss 70	
  

the recent clinical data that illustrate the bacterial strategies using porins modifications to 71	
  

limit antibiotic entry.  72	
  

 73	
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Antibiotic stresses 74	
  

Bacteria are present in a wide range of environments in which they are exposed to diverse 75	
  

toxic compounds or growth-limiting conditions. These include antibiotics used in the medical 76	
  

environment and agricultural settings. The last few decades have been marked by the constant 77	
  

increase of (multi)drug resistant clinical isolates to which we responded by increasing 78	
  

antibiotic dosing. Therefore, antibiotics are present almost everywhere at different 79	
  

concentrations [18]. Although MDR still emerges from bacterial exposure to antibiotic 80	
  

concentrations that are higher than the minimal inhibitory concentrations (MIC, defined as 81	
  

the lowest concentration of a drug that inhibit bacterial growth in defined laboratory 82	
  

conditions), the effects of subinhibitory concentrations on bacterial physiology and AMR was 83	
  

mostly disregarded. Importantly, studies in this field have shown that low antibiotic 84	
  

concentrations affect bacteria at least at four different levels: as selectors of resistance (by 85	
  

enriching resistant bacteria within populations and selecting for de novo resistance mutations) 86	
  

[19]; (ii) as contributors of genetic and phenotypic heterogeneity [20]; (iii) as intercellular 87	
  

signals [21]; (iv) as inducers of persistence [22]. In this regard, Viveiros and colleagues have 88	
  

demonstrated the induction of high-level resistance to tetracycline (TET) in susceptible E. 89	
  

coli K12 obtained by gradual, step-wise increase exposure to subinhibitory concentrations of 90	
  

the antibiotic [23]. Increased expression of the AcrAB efflux pump was found responsible for 91	
  

resistance to TET, which could also be reversed by the use of the efflux pump inhibitor 92	
  

phenylalanine-arginine-β-naphthylamide (PAβN). Interestingly, the TET-resistant strain also 93	
  

exhibited MDR due to repression of OmpF and OmpC expression [24]. Important questions 94	
  

arise from this and other related studies. First is whether the target for signaling resistance is 95	
  

the same as the target that is inhibited by the antibiotic. In case the antibiotic itself but not a 96	
  

secondary metabolite is the signaling molecule, this could be determined by examining 97	
  

whether the response is alleviated by a target mutation that prevents drug binding. Second is 98	
  

whether and how the antibiotic (or a secondary metabolite) interferes with the ESRs 99	
  

described above. Here, comparative transcriptomics between susceptible and resistant strains 100	
  

would be a valuable tool to answer this question. 101	
  

 102	
  

Global regulators 103	
  

In Enterobacteriaceae, the development of MDR is under positive regulation by global 104	
  

transcriptional activators that include members of Ara/XylS superfamily such as MarA, 105	
  

RamA (absent in E. coli) and Rob as well as the oxidative stress regulon SoxSR [10, 25-29]. 106	
  

Mutations in the corresponding genes are well-documented and induce the overproduction of 107	
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efflux pumps with concomitant repression of porin expression both directly and indirectly 108	
  

[10]. These mechanisms are reviewed in details in Davin et al. [10]. Negative regulation by 109	
  

repressors of porins also plays a major role. OmpX is a small OM channel [30], of which 110	
  

overexpression is associated with a decreased expression of Omp36 (the OmpC ortholog of 111	
  

Enterobacter aerogenes) and a decreased susceptibility to β-lactams [31, 32]. Studies have 112	
  

indicated that expression OmpX itself is controlled by a number of environmental factors 113	
  

including salicylate via MarA and paraquat via SoxS [33] A very rapid MarA-dependent 114	
  

response pathway for upregulation of ompX has been shown to occur within 60-120 min upon 115	
  

cell exposure to salicylate [32]. This work by Dupont et al. identified dramatic decrease in 116	
  

OmpF levels, as a first line of defense, with simultaneous development of resistance to β-117	
  

lactams and fluoroquinolones by altering OM permeability.  118	
  

 119	
  

Envelope stress responses 120	
  

All living organisms have stress responses that allow them to sense and respond to 121	
  

environmental damaging conditions by remodeling gene expression. As such, Gram-negative 122	
  

bacteria possess stress responses that are uniquely targeted to the cell envelope, including 123	
  

membranes and cell wall. These envelope stress responses (ESRs) are the EnvZ/OmpR, 124	
  

CpxAR (Cpx), BaeRS, and Rcs phosphorelays, the stress responsive alternative sigma factor 125	
  

σE, and the phage shock response [34-37] in E. coli and closely related Enterobacteriaceae. 126	
  

Each of these ESRs is activated following the perturbation of particular components of the 127	
  

envelope or exposure to particular environmental stresses. Although ESRs are important for 128	
  

reacting to damaging conditions, stress proteins also play important roles in the maintenance 129	
  

of basic cellular physiology [38, 39]. This is particularly true for the σE-dependent stress 130	
  

response in E. coli, as the rpoE gene, which encodes σE, is essential for viability [40]. Here, 131	
  

we will essentially focus on ESRs that impact on AMR by regulating porin expression 132	
  

together with many other targets (regulons) — namely EnvZ/OmpR, Cpx and σE (see below 133	
  

and key figure). Additionally, with the recent highlights and advances in RNA-based 134	
  

techniques [41], the repertoire of small regulatory RNAs (sRNAs) has vastly increased so as 135	
  

to and their impact on the OM is continuously emerging [15, 17]. sRNAs alter gene 136	
  

expression, allowing fast adjustment to different growth conditions [42]. Noteworthy, ESRs 137	
  

are often interconnected, regulate and are regulated by sRNAs in order control target genes 138	
  

both at the transcriptional and post-transcriptional levels [15-17, 43, 44] (see below and key 139	
  

figure). 140	
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Osmolarity was one of the earliest stresses described to influence OmpF and OmpC 141	
  

expression via the EnvZ/OmpR two-component system (TCS) [45, 46]. EnvZ is a membrane-142	
  

bound sensor kinase, and OmpR is a cytosolic response regulator, which binds to the 143	
  

promoter region of the porin genes. Upon activation, EnvZ autophosphorylates and the high 144	
  

energy phosphoryl group from EnvZ is subsequently transferred to a conserved Asp residue 145	
  

on OmpR. Phosphorylated OmpR (OmpR~P) serves as a transcription factor that 146	
  

differentially modulates the expression of the ompF and ompC porin genes [45]. At low 147	
  

osmolarity, high levels of OmpR~P activates ompF transcription, whereas at high osmolarity, 148	
  

low levels of OmpR~P represses ompF transcription and activates ompC transcription [47]. 149	
  

This differential production of OmpF and OmpC is consistent with that in high osmolarity 150	
  

environments, such as in the hosts where nutrients are abundant the least permeable pore 151	
  

channel OmpC is predominant, thus limiting the uptake of toxic bile salts; whereas in low 152	
  

osmolarity environments where nutrients are scarce, the most permeable pore channel OmpF 153	
  

is expressed [6]. OmpF and OmpC transcriptional regulation by EnvZ/OmpR is also triggered 154	
  

by local anesthetics, pH, and nutrient limitation [46].  155	
  

Accumulation of misfolded OM proteins in the periplasm, presumably reflecting problems in 156	
  

protein assembly or transport across the IM, can be detected by regulatory sensors that 157	
  

activate either the Cpx TCS or the alternative sigma factor σE. σE and Cpx are the two major 158	
  

regulation pathways that control the envelop integrity with overlapping regulon members 159	
  

[48-51] but respond to different inducing cues [35]. It is possible that these poorly defined 160	
  

signals (see below) act by causing accumulation of misfolded proteins. However, misfolded 161	
  

proteins are not the inducing signal per se, as some induce σE but not Cpx and vice versa. 162	
  

Recent studies rather suggest that Cpx responds to IM perturbations, while σE is activated by 163	
  

signals at the OM. The Cpx system comprises the CpxA sensor kinase and response regulator 164	
  

CpxR. Envelope stresses including alkaline pH, periplasmic protein misfolding, IM 165	
  

abnormalities such as misfolded transporters or accumulation of the lipid II precursor, induce 166	
  

the dissociation of the accessory protein CpxP from CpxA, trigger CpxA-mediated 167	
  

phosphorylation of CpxR, and altered expression of protein foldases and proteases, 168	
  

respiratory complexes, IM transporters, and cell wall biogenesis enzymes [37, 48, 49], all of 169	
  

which affect resistance to a number of antibiotics, particularly aminoglycosides and β-170	
  

lactams [37, 49, 52-54]. The Cpx-mediated regulation of porins occurs at several levels. At 171	
  

the transcriptional level, CpxR~P has been shown to bind directly the ompF and ompC 172	
  

promoters [55]. More recently, it has been found that the small IM protein MzrA connects 173	
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Cpx and EnvZ/OmpR [56]. In this pathway and upon the activation of Cpx, MzrA interacts 174	
  

directly with EnvZ, which in turn, stabilizes OmpR~P [57]. In sensing different signals, the 175	
  

interconnection between Cpx and EnvZ/OmpR allows cells to adapt to diverse environmental 176	
  

stresses. Finally, although Cpx contributes to AMR by regulating a number of genes [37, 49, 177	
  

52-54], its precise role and that of other TCSs in the development of MDR in clinical isolates 178	
  

are still poorly documented [58]. On the other hand, the stress responsive sigma factor σE is 179	
  

induced by stresses that disturb the OM and its regulon members comprise genes that 180	
  

facilitate the biogenesis of OM components, including proteins, lipoproteins and LPS [59-181	
  

67]. In the absence of inducing signals, σE is held at the cytoplasmic side of the IM by the 182	
  

anti-sigma factor RseA. At the periplasmic side of the IM, RseB binds to RseA, thus 183	
  

enhancing the inhibition of σE. Upon activation, σE is released from RseA by a proteolytic 184	
  

cascade that starts with the sequential degradation of the periplasmic and transmembrane 185	
  

domains of RseA by DegS and RseP, respectively, followed by the degradation of the 186	
  

cytoplasmic domain of RseA by ClpXP [68]. Interestingly, proteolysis of RseA is triggered 187	
  

by the binding of a conserved peptide found at the C-terminus of OM proteins, which is 188	
  

normally buried in folded porin trimers, to DegS in conjunction with the release of RseB 189	
  

from RseA upon binding of LPS intermediates [69, 70]. Of note, the σE-dependent repression 190	
  

of porin synthesis only occurs at the post-transcriptional level, wherein base-paring sRNAs 191	
  

inhibits translation of omp mRNAs (see below) in order to maintain the envelope homeostasis 192	
  

under stress conditions, as porins are major abundant proteins under normal growth 193	
  

conditions [6]. 194	
  

The post-transcriptional repression of OmpF by the sRNA MicF has been discovered in 1984 195	
  

[71-73]. This 93-nucleotide (nt) RNA is transcribed in the opposite direction to the ompC 196	
  

gene and acts by direct base-pairing to a region that encompasses the ribosome binding site 197	
  

(RBS) and the start codon of the ompF mRNA, thus preventing translation initiation [74]. 198	
  

The expression of the MicF sRNA itself is subjected to multiple signals and regulatory 199	
  

pathways [75]. Positive regulation includes EnvZ/OmpR in high osmolarity conditions [76], 200	
  

SoxS in response to oxidative stress [77] and MarA in response to antibiotic stress [25]. The 201	
  

109-nt MicC sRNA has been identified more recently and shown to repress OmpC by direct 202	
  

base-pairing to a 5’ untranslated region of the ompC mRNA [78]. Interestingly, micC is 203	
  

transcribed in the opposite direction to the ompN gene that encodes a quiescent porin 204	
  

homologous to OmpF and OmpC [79]. We have recently shown that ompN and micC are 205	
  

subjected to dual regulation upon exposure to certain antimicrobials such as β-lactams in a 206	
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σE-dependent manner [80]. This is consistent with that ompN-micC and ompC-micF share 207	
  

similar genetic organization and that ompC and micF are co-induced under specific 208	
  

conditions (i. e. high osmolarity via EnvZ/OmpR). The last decade has been marked by the 209	
  

identification and characterization of several sRNAs. These are differentially expressed and 210	
  

have been assigned to various important regulatory pathways in E. coli and Salmonella. 211	
  

Interestingly, many pathways regulate and are regulated by sRNAs [43, 44]. A prime 212	
  

example is EnvZ/OmpR, which activates the expression of MicF (that target ompF), OmrA 213	
  

and OmrB (that target ompT and mRNA of OM channels for iron-siderophore complexes) 214	
  

[81]; OmrA and OmrB, in turn, repress the translation of the ompR mRNA, creating a 215	
  

negative feedback loop [82]. Others examples include the well-conserved σE-regulated 216	
  

sRNAs RybB (that target ompC and lamB in E. coli; ompN and ompW in Salmonella), MicA 217	
  

(ompA), RseX (ompC and ompA), CyaR (ompX) and MicL (that represses translation of the 218	
  

major OM lipoprotein Lpp) [43, 66, 83-90] (key figure). Of note all these sRNAs are trans-219	
  

acting, function by imperfect base pairing with multiple mRNA targets and require the help 220	
  

of the RNA chaperone Hfq [15-17].  221	
  

 222	
  

Porin alterations in clinical isolates 223	
  

Combined regulations contributed by different stressors leads to hampering of the drug 224	
  

accumulation inside cells under the threshold for bacterial death. In one such study in K. 225	
  

pneumoniae, preferential expression of OmpK37 was detected in porin-deficient strains [92]. 226	
  

Amino acid sequencing showed that OmpK37 is highly homologous to quiescent porins 227	
  

OmpS2 from Salmonella enterica serovar Typhimurium and OmpN from E. coli. Liposome 228	
  

swelling assay with purified porins determined that OmpK37 also has a narrower pore, which 229	
  

was responsible for higher MICs of cefotaxime and cefoxitin antibiotics because of lower 230	
  

drug diffusion. A very recent study identified mutation in the pho regulon of an extensively 231	
  

drug resistant strain of K. pneumoniae demonstrating downregulation of phoE gene by 232	
  

mutations in phoR and phoB. Here the PhoE porin, which is normally involved in phosphate 233	
  

transport, promotes restoration of cefoxitin and carbapenem resistance [93]. This is an 234	
  

interesting example of a regulatory mutation that effects porin expression, and clinically 235	
  

favors AMR under antibiotic therapy.  236	
  

A wide array of chemicals including disinfectants and antibiotics has been shown to modulate 237	
  

the OM permeability including expression of porins [94]. In addition, several studies have 238	
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described the effect of imipenem on porin loss or loss of function mutations in clinical 239	
  

isolates of Enterobacteriaceae [58, 95-100].  240	
  

Porins are trimers of 16-stranded β-barrels, each monomer formed of a central channel 241	
  

constricted by loop 3 that folds inward, thereby restricting the size of the channel. The 242	
  

presence of acidic residues in loop 3 facing a cluster of basic residues on the opposite side of 243	
  

the pore creates a strong transversal electric field [6, 101, 102]. This so-called eyelet or 244	
  

constriction region determines the channel size and ion selectivity, with OmpF being more 245	
  

permeable than OmpC. This latter observation was first attributed to the OmpC pore being 246	
  

slightly more constricted in this porin compared to OmpF [101, 102]. Although the two 247	
  

porins share high sequence similarity, the pore interior is more negative in OmpC than in 248	
  

OmpF [102]. This can also account for the low permeability of OmpC for anionic β-lactams 249	
  

[103, 104]. Moreover, the replacement of all ten titratable residues that differ between OmpC 250	
  

and OmpF in the pore-lining region leads to the exchange of antibiotic permeation properties 251	
  

[105]. Together, these structural and functional data clearly demonstrate that the charge 252	
  

distribution at pore linings, but not pore size, is a critical parameter that physiologically 253	
  

distinguishes OmpC from OmpF. 254	
  

Functional mutations in porin genes leading to reduced permeability are another strategy 255	
  

found in MDR bacteria. In two documented cases, β-lactam-resistant clinical isolates of E. 256	
  

aerogenes contained Omp36 (an OmpC homologue) that carried the mutation G112D in L3 257	
  

[106, 97]. The homologous mutation G119D in OmpF of E. coli narrows the size of the 258	
  

channel as the large side chain of Asp protrudes into the channel lumen and confers a drastic 259	
  

reduction in β-lactam susceptibility [107]. Consistently, the Omp36 G112D mutant of E. 260	
  

aerogenes was characterized by a 3-fold decrease in ion conductance and a significant 261	
  

decrease in cephalosporin sensitivity (e. g. MICs of cefotaxime, cefpirome, cefepime and 262	
  

ceftazidime were 7 to 9 fold higher in the clinical isolate as compared to that in a sensitive 263	
  

reference strain) and a cross resistance to carbapenems [106, 97]. Recent studies also found a 264	
  

series of OmpC mutants that were isolated from a patient with chronic E. coli infection and 265	
  

additive mutations that conferred increased resistance to a variety of antibiotics, including 266	
  

cefotaxime, ceftazidime, imipenem, meropenem and ciprofloxacin [108, 109].	
   Low et al. 267	
  

demonstrated that subtle changes in OmpC in clinical isolates of E. coli altered antibiotic 268	
  

permeability and thus cell viability [108]. Seven isolates collected over a two year clinical 269	
  

treatment exhibited increased levels of antibiotic resistance. These isolates exhibited the same 270	
  

two mutations (D18E and S274F) in the OmpC porin with increased levels of antibiotic 271	
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resistance, thus pointing towards the possible functional role of these mutations in antibiotic 272	
  

influx.  273	
  

It is worthwhile to note that from our knowledge, porin mutations causing reduced 274	
  

permeability have only been described in OmpC-type porins in E coli and E aerogenes. 275	
  

Interestingly, this type of porin is expressed under high osmolarity, the same environment the 276	
  

bacteria encounters the hosts. This gives an essential outlook on the host induced 277	
  

modifications that possibly occurs in these pathogens during infection. Heeding to this sort of 278	
  

information can be highly beneficial for designing drugs with an improved diffusion across 279	
  

the bacterial outer membrane.   280	
  

 281	
  

Conclusion 282	
  

It is noteworthy that the sRNA-mediated stress response mechanism has multiple benefits for 283	
  

bacteria as compared to regulation by protein. Since sRNAs are produced during 284	
  

transcription, the later stages of translation and post translational modification processes in 285	
  

the cell is completely skipped proving to be time and energy efficient for the cell. Not to 286	
  

forget the energy saved in porin assembly and discarding of misfolded proteins, which in 287	
  

itself can induce another stress response mechanism.  288	
  

Decreased porin expression has been observed as a rapid response to toxic molecules and 289	
  

antibiotics within less than 60 minutes. Many sRNAs act at the post-transcriptional level, 290	
  

which ensures a rapid response to stressful conditions. In addition, the versatility of sRNAs 291	
  

ensures another level of gene regulation along with protein transcriptional regulators, thus 292	
  

contributing to an additional layer of tighter regulation. Taking into account the major role of 293	
  

the CpxAR and EnvZ/OmpR regulators in response to stressors such as antibiotics, it will be 294	
  

interesting to develop some assays allowing the detection of these kinds of mutations inside 295	
  

clinical isolate. This original diagnostic maybe used for determining the prevalence of these 296	
  

regulation events in clinical strain that have undergone antibiotic stress.  297	
  

Targeting the early transcriptional step of antibiotic stress response regulatory mechanism is 298	
  

much more logical, especially when we have reports of OMP expression being regulated 299	
  

(both up and downregulation) within 60 minutes of stress appearance [32]. This will 300	
  

especially promote bypassing of aforementioned mutations in porins in clinical strains that 301	
  

are selected during antibiotic treatment.  Targeting of sRNA or sRNA regulators such as 302	
  

MicF or Hfq can rejuvenate failing antimicrobial therapies in regards with membrane 303	
  

impermeability. They can be original targets for increasing the efficiency of existing drugs by 304	
  

providing fitness reduction in bacteria. As of now, a cyclic peptide RI20 has been identified 305	
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to inhibit Hfq-mediated repression of gene, by binding with proximal binding site of Hfq 306	
  

[110]. Another approach will be to inhibit sRNA interfering with porin expression that is 307	
  

involved in drug translocation. Recently, a small molecule was used to target human 308	
  

microRNA (miR)-525 precursors as an anti-cancer strategy [111]. This promising discovery 309	
  

can be repeated in bacteria for manipulating sRNA levels, which may save the failing 310	
  

antibiotic therapies.   311	
  

Predictability of an efficient drug based on the SICAR (Structure Intracellular Concentration 312	
  

Activity Relationship) concept, is a step up to efficient drug designing. Briefly, SICAR 313	
  

connects the physicochemical drug properties to the efficacy of translocation through the 314	
  

bacterial membrane and the resulting intracellular accumulation. To achieve this goal, an 315	
  

extensive knowledge of the OM permeability control, including the contribution of sRNAs, is 316	
  

required.   317	
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Key figure: Major regulatory pathways of porin regulation in E. coli: EnvZ/OmpR [46], 608	
  

CpxAR and sigma E (σE) [35] stress response systems are shown, along with known inducing 609	
  

cues and targets relevant to porin regulation. The upregulation is shown with thick green 610	
  

arrows, while the downregulation is shown with red lines. In the EnvZ/OmpR TCS, 611	
  

activation of the response regulator OmpR results in phosphorylated and OmpR∼P 612	
  

downregulates the expression of OmpF both at the transcriptional and post-transcriptional 613	
  

levels, the latter via the MicF sRNA. The mar-sox-rob regulons also downregulate OmpF 614	
  

expression via MicF. Both the CpxAR and σE responses are activated by a variety of 615	
  

envelope stresses. For clarity, only periplasmic misfolded OMPs are represented here. On one 616	
  

hand, CpxR∼P alters expression of multiple genes, including that of micF. On the other hand, 617	
  

the anti-sigma factor RseA is degraded by the successive action of two proteases, DegS and 618	
  

RseP at the periplasmic and the cytoplasmic site. Another protease, ClpXP specifically 619	
  

degrades the cytoplasmic RseA portion bound to σE, leading to its release. A number of σE-620	
  

regulated sRNAs are indicated: MicC [78] downregulates OmpC and is coupled with ompN 621	
  

upregulation [80]; sRNA regulation of porins via CyaR [90], IpeX [91], RseX [86] and RybB 622	
  

[84, 88] are shown accompanied by their activators and porin targets; CyaR negatively 623	
  

regulates the expression of single channeled porin OmpX [30], which in turn negatively 624	
  

regulates the major porin OmpC. The details of all these interconnected pathways are 625	
  

discussed thoroughly in the text.  626	
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