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The dynamic behavior of a periodic ribbed plate with local resonance is investigated. The behavior of

the cell made of a beam clamped along a plate edge analyzed through multi-scale asymptotic method

enables to derive the governing equations of the effective mechanical behavior. This approach allows ob- 

taining a full homogenized analytical model that provides a relevant representation of the flexural and

torsional mechanisms at both global and local scales. The complex dynamic behavior is shown to en- 

compass several mechanisms associated with enriched kinematics. Two types of flexural and torsional

waves are evidenced and governed by two distinct differential equations that describes (i) waves where

both beam and plate moves, and (ii) guided waves where the plate only is set in motion. The inner res- 

onance of the plate induces unconventional dispersion features, with singularities associated either with

the symmetric eigenmodes for the bending waves or the antisymmetric modes for the torsional waves.

The guided waves are alternatively related to the symmetric and antisymmetric modes of the bended

plate and are propagative above the corresponding eigenfrequencies. The predictions of the homogenized

model are successfully compared to numerical calculations conducted using Wave Finite Element based

methods, for two realistic examples of ribbed plates. The study provides design rules to tailor ribbed

plate panels having specific atypical features in a given frequency range.

1. Introduction

Composite panels with optimized vibroacoustic features prac- 

tically lead to highly heterogeneous structures made of different 

components, often periodically distributed e.g . honeycombs, sand- 

wich panels, ribbed plates, beam truss/slats. Such structures are 

widely used in automotive and aerospace industry, civil engineer- 

ing, where a planar structure may be stiffened by a periodic layout 

of beams. The prediction of their dynamic behavior is then of in- 

terest from theoretical and practical point of view. 

The classical plates models are well suited for homogeneous 

structures or moderately heterogeneous structures. However dif- 

ficulties appear when attempting to extend classical theories to 

composite structures with significantly contrasted properties. For 

instance, when considering ribbed plates, in the case where the 

stiffeners present similar rigidity and size characteristics than that 

of the plate, then the global behavior will be that of a classical 

anisotropic plate. Conversely, if the stiffeners are much stiffer than 

the plate, the global behavior of will be that of a set of parallel 
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beams. In intermediary situations a specific beam/plate coupled 

behavior should exist. The present paper focuses on this specific 

situation in dynamic regime, in which the beam/plate contrasts in- 

duce inner resonance phenomena. 

Several semi-analytical and numerical models have been de- 

veloped to study the dynamics of stiffened plates. The common 

ribbed plate model given by an equivalent orthotropic plate with 

mean mass density and effective stiffnesses applies in quasi-statics 

but fails to describe the specific features of the plate dynamics 

( Ichchou et al., 2008a ). In dynamics, a reference study on sig- 

nificantly heterogeneous uni-directionally ribbed panels has been 

conducted by Fahy and Lindqvist (1976) following the assump- 

tion that a pure flexural motion exists in the plates and pure 

flexural/torsional motion exist in the ribs ( Ungar, 1961 ). This ap- 

proach does not provides a plate model but yields the dispersion 

equations analytically, that can be solved numerically, and it has 

been validated experimentally that this method predicts reliably 

the dispersion properties of waves in uni-directionally ribbed plate 

( Ichchou et al., 2008b ). In the same spirit, a numerical model based 

on a modal expansion technique that takes into account the mo- 

ment and force coupling between the ribs and the plate is pro- 

posed by Mejdi and Atalla (2010) to compute the mechanical and 

acoustical frequency response of orthogonally ribbed plate. At the 
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same time, numerical approaches based on the Floquet–Bloch the- 

ory has been developed to obtain the propagation features of pe- 

riodic ribbed plates. This method called WFEM ( Mead, 1973; Waki 

et al., 2009 ), has been used by Ichchou et al. (2008b) to recover 

(i) the results of the Fahy’s approach ( Fahy and Lindqvist, 1976 ), 

and (ii) experimental dispersion curves. Recently, energetic method 

based on a semi-analytical variational formulation has also been 

considered ( Trévisan et al., 2016 ). Numerous other methods such as 

the plane-wave expansion method, finite elements based methods, 

transfer matrix method, are reviewed in Hussein et al. (2014) in 

the framework of mechanical metamaterials. 

The above mentioned studies provide accurate numerical re- 

sults for given designs. However, these formulations do not en- 

able to identify the underlying model that arises from the physics 

involved within the cell. Moreover, the numerical modeling of 

large structures with high mechanical and geometrical contrasts 

are facing to ill-conditioned problems ( Waki et al., 2009 ) that 

leads to discretization errors ( Mace et al., 2005 ) or aliasing effect 

( Ichchou et al., 2007 ). 

Model reduction through periodic homogenization method 

( Sanchez-Palencia, 1980; Auriault et al., 2009 ) is a way to over- 

come these issues. Precisely, this technique allows to up-scale the 

physics at microscale into a macroscopic model, in which the ef- 

fective parameters are fully determined from the periodic cell. The 

relevancy of the up-scaled description is insured by taking into ac- 

count the key physical phenomena at local and global scales. The 

strategy consists in considering domains made of a large number 

of periods, and phenomena evolving at a macroscopic length char- 

acterized by the dimension L significantly larger than the size l of 
the cell. Hence, the principle is to perform the asymptotic expan- 

sions of the fields involved in the problem in terms of the dimen- 

sionless scale parameter ǫ = l/L . Numerous usual composites have 

a periodic configuration with a period much smaller than their 

global dimensions therefore asymptotic homogenization appears to 

be an appropriate method for analysis. 

A decisive advantage of this approach is to build-up the macro- 

scopic model without making a priori conjectures on the model 

to be found. In particular, it enables to handle the case of highly 

contrasted composites or structures and to point out their un- 

conventional behavior as higher-order gradient generalized media 

( Soubestre and Boutin, 2012 ), or inner resonance media. For ex- 

ample, in 3D composites, due to the inner resonance of soft in- 

clusions, the effective mass becomes tensorial and takes nega- 

tive values over bands centered around the inner resonance fre- 

quencies ( Auriault and Bonnet, 1985; Boutin, 1996; Auriault and 

Boutin, 2012 ). Such an effect can also appears in reticulated media 

( Chesnais et al., 2012 ). 

Asymptotic methods has been extensively applied to de- 

velop plate theories considering homogeneous plates, ( Trabucho 

and Viaño, 1996; Ciarlet, 1997 ), plates made of periodic com- 

posite ( Caillerie, 1984 ), thin homogeneous plates with rapidly 

varying thickness ( Kohn and Vogelius, 1984 ). One may refer 

to Lewi ́nski and Telega (20 0 0) , Altenbach et al. (2010) , and 

Kalamkarov et al. (2009) for comprehensive reviews on plates and 

shells. The aspect of highly contrasted constituents has been han- 

dled for laminates ( Berdichevsky, 2010; Viverge et al., 2016 ), how- 

ever up to our knowledge, the case of highly contrasted ribbed 

plate is not yet addressed by homogenization in the literature. 

The purpose of the present work is to derive asymptotic ho- 

mogenized models for periodic uni-directionally ribbed plates with 

strong mechanical contrast as illustrated in Fig. 1 . This work 

uses the ideas of beam/plate coupling ( Fahy and Lindqvist, 1976 ), 

homogenization of inner resonance media ( Auriault and Bon- 

net, 1985 ), together with asymptotic modeling of beams and 

plates ( Trabucho and Viaño, 1996; Ciarlet, 1997 ), and numeri- 

cal procedure WFEM ( Ichchou et al., 2008b ). The paper is di- 

Fig. 1. Periodic ribbed plate under study with constitutive cell � and local coordi- 

nates associated with the beam B and the plate P clamped on their interfaces Ŵ±
b , 

Ŵ±
p . 

vided into six sections. Section 2 describes the physical mecha- 

nisms, assuming that the size of the cell is short with respect to 

the wavelength. From the dimensional analysis, the possible con- 

trasts suitable for the existence of inner resonance are discussed. 

Section 3 presents the asymptotic homogenization procedure and 

details the beam/plate coupling. Sections 4 and 5 focus respec- 

tively on the flexural and torsional behaviors. One derives an ho- 

mogenized analytical model encompasses the mechanisms at both 

global and local scales. The complex dynamic behavior is shown to 

involve enriched kinematics. Actually, two types of flexural and tor- 

sional waves are evidenced, governed by two distinct differential 

equations that describes (i) waves where both beams and plates 

move, and (ii) guided waves where the plates only are set in mo- 

tion. It is shown that the inner resonance of the plate induces un- 

conventional dispersion features with singularities associated ei- 

ther with the symmetric eigenmodes for the bending waves or the 

antisymmetric modes for the torsional wave. The guided waves are 

alternatively related to the symmetric and antisymmetric modes 

of the bended plate and are propagative above the correspond- 

ing eigenfrequencies. Finally, in Section 6 , the predictions of the 

homogenized model are successfully compared to numerical cal- 

culations conducted using WFEM based method, for two realistic 

examples of ribbed plates. By principle, the WFE method predicts 

reliably the dispersion properties of waves propagating in ribbed 

plates but the obtained dispersion diagram is somehow difficult 

to understand. The proposed model brings a physical interpreta- 

tion by analyzing the kinematics and deriving explicit dispersion 

equations associated with the various branches. In conclusion, it 

is stressed that the study yields design rules to tailor ribbed plate 

panels having atypical features in a given frequency range. 

2. Physical analysis

2.1. Studied structure 

The periodic ribbed plate under study is depicted in Fig. 1 and 

comprises identical plate elements (denoted P) rigidly connected 

to regularly spaced identical straight beams (denoted B). Thus, the 

period � consists in a beam and a plate element, i. e. � = B ∪ P, 

both being assumed homogeneous. The beam B is characterized by 

its length L , thickness l and width b , with b = O (l) . The plate P is 
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of length L , thickness d , width D . The constituting material of B

and P is isotropic elastic, having a Young’s modulus E b , Poisson’s 
ratio νb , and density ρb for the beam, and respectively ( E p , νp , ρp ) 

for the plate. 

The boundary of the beam section S b is denoted ∂S b and Ŵb = 

Ŵ−
b ∪ Ŵ+ 

b is the beam/plate interface (where + and − refer to the 

normal orientation along a 2 and −a 2 respectively). Similarly the 

plate/beam interface is Ŵp = Ŵ−
p ∪ Ŵ+ 

p . Hence, the interface of �

with the two adjacent period is Ŵ� = Ŵ−
b ∪ Ŵ+ 

p , and the inner in- 

terface is Ŵ+ 
b that coincides with Ŵ−

p with opposite normal orien- 

tation. 

From the geometry of the beam B and of the plate P we are 

lead to identify three small parameters related to the beam, to the 

plate and to the ribbed plate: 

• for the beam B, ǫb is the inverse of its slenderness ǫb = l/L ≪ 1
• for the plate P, ǫp is the inverse of its flatness ǫp = d/D ≪ 1
• for the ribbed plate , ε is the inverse of the �-cell’s slender- 

ness, i.e., the ratio between the plate width D and L , that is
ε = D/L ≪ 1

The contrasts of mechanical properties of the constituting ma- 

terials of the beam B and plate P are specified by E p / E b and ρb / ρp . 

To sum up, the ribbed plate is characterized by the set of five di- 

mensionless parameters, { ǫb , ǫp , ε, E p / E b , ρb / ρp }. 

The model is developed considering harmonic regimes at angu- 

lar frequency ω, and, by linearity, the time dependence exp ( i ωt ) is 
omitted hereinafter. 

2.2. Physical insight into the inner resonance in ribbed plates 

The present analysis of ribbed plates is inspired from the study 

of inner resonance in periodic elastic composites as developed in 

Auriault and Bonnet (1985) and Auriault and Boutin (2012) . The 

inner resonance corresponds to situations where dynamic phe- 

nomena co-exist at both the micro-scale of the period and the 

macro-scale of the structure. It has been shown that such a spe- 

cific regime, named ‘co-dynamics’ regime, occurs only in hetero- 

geneous materials with sufficiently contrasted properties. For in- 

stance, in a bi-composite, a stiff and connected constituent con- 

veys the long wavelength – and then undergoes a local quasi-static 

regime – while, at the same frequency, the other constituent ex- 

periences a local dynamic regime. This description highlights the 

two main distinctive features of the inner resonance regime, that 

are (i) the co-existence at the same frequency of long and short 

wavelengths in the different constituents, and, as a corollary, (ii) 

a specific static-dynamic regime at the period scale that generates 

an non-conventional inhomogeneous kinematics in the sense that 

the displacements of the two constituents differ at the leading or- 

der. These peculiarities clearly indicate that both constituents play 

a different role and therefore that their coupling is not symmet- 

ric. This asymmetry implies that one constituent is forcing and the 

other one is forced. In actual fact, the forcing constituent is the 

stiff one that carries the long wavelength while the forced one ex- 

periences short waves inducing the local resonance. 

In ribbed plates undergoing out-of-plane vibrations the same 

principles apply. The stiff beam plays the role of the forcing con- 

stituent that conveys the large wavelength, while the soft plate 

acts as the forced constituent that experiences the local resonance. 

Conducting a dimensional analysis based on these basic ideas en- 

ables to express, in terms of geometrical and mechanical parame- 

ters, the conditions to reach a co-dynamic regime. However they 

are no so straightforward as in the case of the elastic composites, 

because (i) the different small parameters related to the beam and 

plate geometry, and (ii) the different orientations of the wave in 

the beam and in the plate element as explained hereafter. 

2.2.1. The “co-dynamic” condition 
A first requirement for the appearance of inner resonances is 

obtained by expressing the “co-dynamic” condition. The dynamic 

equation describing the flexural motion of the beam B alone (i.e. 

not connected to the plate) along its axis a 1 reads (see axis of 
Fig. 1 ) 

E b I b ∂ 
4 
x 1 U = 
b ω 

2 U 

where U is the transverse displacement along a 3 , I b = bl 3 / 12 is the 
moment of inertia of the beam around a 2 , S b = bl is the beam 

section, and 
b = ρb S b its lineic mass. Thus, the reduced bending 

wavelength (i.e. the wavelength divided by 2 π ) L ω is given by: 

L 
4 
ω = O 

( E b I b 

b ω 2 

)

The fundamental resonance ω b of a beam of length L is such that 
L ω b = L and consequently: 

ω 
2 
b = O 

( E b I b 

b L 4 

)

As for the plate P, its local resonance happens within the period, 

which in our case is defined along a 2 and is of length D . Conse- 

quently, we have to consider the one-dimensional dynamic equa- 

tion that describe the flexural motion of the plate P along the a 2 
axis. It reads 

E ′ p I p ∂ 
4 
x 2 w = 
p ω 

2 w 

where w is the out-of-plane displacement along a 3 , E ′ p I p is the 
flexural stiffness, with E ′ p = E p / (1 − ν2 

p ) the “plate modulus”, I p = 

d 3 / 12 the moment of inertia around the a 1 axis, and 
p = ρp d
the surface mass. Hence, the fundamental resonance frequency of 

a plate of length D is estimated as: 

ω 
2 
p = O 

(
E ′ p I p


p D 4 

)

Considering the situation of inner resonance where the beam and 

plate fundamental resonances are of the same order, i.e., ω b /ω p = 

O (1) , we are lead to the following requirement 

E b l 2 

ρb L 4 
= O 

(
E ′ p d 

2

ρp D 4 

)
i.e. 

E b ρp 

E ′ p ρb
= O 

(
d 2 

l 2 
L 4 

D 4 

)
= O 

(
ǫ2
p

ǫ2 
b ε 

2 

)

(1) 

Note that a similar relation (adjusted by numerical factors) would 

be obtained by considering higher modes instead of fundamen- 

tal modes. Remark also that for infinite plates the ”co-dynamic”

condition implies that at frequency O ( ω p ), the beam B is in dy- 

namic regime so that the characteristic lengths of the motions in 

the beam is in that case L 4 ω p = O 

(
E b I b 
E ′ p I p


p 

b

D 4 
)
. 

2.2.2. Condition of asymmetric coupling 
As above stated, the inner resonance necessarily involves 

an inhomogeneous kinematics associated with an asymmetric 

beam/plate coupling. Indeed, a symmetric coupling would induces 

a similar regime in both elements. Therefore they would behave 

globally according to an homogeneous kinematic that avoids the 

inner resonance. We consider ribbed plates such that the stiff

beam acts as the forcing - or driving - system that imposes its 

displacement to the forced – or driven – plate. In response, the 

forces exerted by the plate on the beam acts as a surface source 

that loads the beam. In other words, considering the transverse 

balance, i.e. along a 3 , of the beam loaded by the plate, the asym- 

metric beam/plate coupling imposes that 

∂ x 1 T b = O (T p ) (2) 
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where T b denotes the transverse shear force (unit kN) in the beam 

B and T p the transverse linear shear force in the plate P (unit 

kN/m). Let us specify the case where fundamental resonances of 

the beam and plate are of the same order. 

Since the beam is the forcing system, its constitutive equation 

remains unchanged by the external loading. Hence, following the 

Euler behavior of slender beam in dynamic regime, T b and ∂ x 1 T b 
can be assessed as 

T b = O (E b I b ∂ 
3 
x 1 U) = O

(
E b 

bl 3 

12 

U 

L 3 

)
; ∂ x 1 T b = O 

(
E b 

bl 3 

12 

U 

L 4 

)

As the plate is vibrating along the a 2 -direction of length D , accord- 

ing to the Love–Kirchhoff behavior of thin plates, T p is estimated 

as: 

T p = O (E ′ p I p ∂ 
3 
x 2 w ) = O 

(
E ′ p 

d 3 

12 

w 

D 3 

)

The plate and beam displacements are identical at their junction, 

and consequently we have w = O (U) . Thus, from (2) and recalling 

that , b = O (l) , one deduces the following requirement 

O 
(
E b ǫ

4 
b 

)
= O 

(
E p ǫ3 

p 

)
(3) 

2.2.3. Possible designs suitable for inner resonant ribbed plates 
Conditions (1) and (3) can be achieved for different scaling of 

the five dimensionless parameters characterizing the ribbed plate. 

Let us examine two combinations of parameters that offer the pos- 

sibility of simple practical realizations. 

Consider a ribbed plate such that the flatness d / D of the plate 

is of the same order as the slenderness l / L of the beam. With these 

assumptions ǫb = l/L = d/D = ǫp = ǫ and, in turn, ε = O (D/L ) = 

O (d/l) . Thus, requirements (1) and (3) imposes respectively that 

E ′ p ρb

E b ρp 
= 

D 2

L 2 
= O (ε 2 ) ;

E ′p 
E b 

= l/L = d/D = O (ǫ) (4) 

which means that the plate modulus is much smaller than that 

of the beam and that the density ratio ρb / ρp is of the order of 

O ( ǫ/ ε2 ). Relations (4) correspond to an heterogeneous ribbed plate 

made of a narrow and thin plate in comparison with the beam 

length and thickness, respectively. By construction, when relations 

(4) are satisfied, an inner resonance situation is expected in the 

frequency range around the common fundamental frequency of the 

plate and the beam. 

It is also of interest to consider the case where the plate and 

beam materials are identical ( E p = E b , ρp = ρb ). In that case, the 

requirements (1) and (3) yields 

d 2 

l 2 
L 4 

D 4 
= 

ǫ2 
p 

ǫ2 
b ε 

2 
= O (1) ;

l 4 

L 4 
D 3 

d 3 
= 

ǫ4 
b 

ǫ3 
p 

= O (1) (5) 

from which one deduces that

ε = D/L = O ( 
√
d/l ) ≪ 1 and dD = O (l 2 ) 

The two above relations defines the geometry of inner resonant 

ribbed plates made of a single material with given values of the 

thicknesses d and l . 
Note that, in both designs, the bending deformability of plate 

is significantly larger than that of the beam due to smaller thick- 

ness and/or Young modulus (in the first situation d/l = O (ε) ; 

E p /E b = O (ε 2 ); and in the second one d/l = O (ε 2 ) ; E p /E b = 1 ). This 

is consistent with the analysis in terms of forcing beam and forced 

plate. 

2.3. Conduct of the homogenization process 

The homogenization method is well suited to handle systems 

with strong contrasts of properties, and in which physical vari- 

ables that exhibit slow variations interact with other variables 

that exhibit fast variations. In general, these features lead to ill- 

conditioned numerical formulation. However, owing to the asymp- 

totic approach, the two sets of variables can be dissociated which 

makes the resolution tractable. This enables to determine an effec- 

tive model whose parameters are directly inherited from the mi- 

crostructure. Let us focus on how the homogenization method will 

be applied in the present case. 

The homogenization method is based on the key assump- 

tion of scale separation (wavelength much larger that the period 

size). This is explicitly formulated through the asymptotic expan- 

sions of the variables that also accounts from the scaling issued 

from the dimensional analysis. The usual implementation of this 

method leads to solve the local problems by considering the pe- 

riod as a whole, ( Sanchez-Palencia, 1980; Auriault et al., 2009 ). In 

the present case, the asymmetric coupling between the cell con- 

stituents means that the driving beam imposes its displacement 

to the plate and in turn is subjected to the stresses exerted by 

the plate. Reciprocally, the driven plate is subjected to the beam 

displacement and imposes its stresses to the beam. Consequently, 

the usual procedure can be tailored and decomposed into the three 

following steps: 

1. derivation of the beam model based on the scale ratio ǫb ,

( Section 3.1.1 )

2. derivation of the plate model based on the scale ratio ǫp ,

( Section 3.1.2 )

3. derivation of the ribbed plate model based on the scale ratio ε.
( Section 3.2 ).

Notice that conveniently the scale ratio ǫb and ε are defined

by considering the beam length L as the characteristic size of the 
variations at large scale. This is consistent with the analysis of the 

fundamental and/or few first modes. However, when dealing with 

higher frequencies, the characteristic size would be the reduced 

bending wavelength L ω p instead of L . 

3. Homogenization of the flexural behavior of ribbed plates

with inner resonance 

3.1. Asymptotic bending models of beams and plates 

We focus here on the steps 1 and 2 above indicated. The elabo- 

ration of the models is a direct application of the asymptotic meth- 

ods dedicated to the formulation of beam or plate theory from 

(i) the 3D isotropic elasticity of the media, (ii) the slenderness 

or the flatness condition and (iii) the specific loading by surface 

and/or body forces, ( Trabucho and Viaño, 1996; Ciarlet, 1997 ), (see 

also papers dedicated to contrasted composites involving beam or 

plates ( Soubestre and Boutin, 2012; Viverge et al., 2016 )). Hence, 

for conciseness, the derivation of the beam and plate models will 

not be detailed here since they correspond to classical Euler beam 

and Love–Kirchhoff plate. However, to illustrate the asymptotic 

procedure, the main steps are reported in Appendix A (a similar 

approach would lead to the plate model). 

Nevertheless, in both models it is necessary to pay attention to 

the orders of magnitude of the physical variables (displacements, 

strains, stresses) which are the crucial issue for the consistency of 

the matching conditions. Indeed the latter have to be expressed on 

the beam/plate interface through the expanded variables in beam 

and plate. 

Let us also underline that, in addition to the fact that the small 

parameters of the beam and plate can differ, the problem geome- 

try is such that x 1 (respectively y 3 ) is a macroscopic (respectively 

microscopic) variable for both the beam and the plate, while the 

status of spatial variable associated with the a 2 axis changes from 

microscopic in the beam to macroscopic for the plate. 
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3.1.1. Asymptotic model of the beam B

The straight and homogeneous beam B satisfies the slenderness 

criterion ǫb = l/L ≪ 1 . The reference orthonormal frame ( a 1 , a 2 , a 3 ) 

shown in Fig. 1 is orientated following the main axes of inertia and 

its origin matches with the center of mass of the section. The ap- 

proach is based on the fact that the beam geometry differentiates 

the axial and transverse directions ; it also suggests that the phe- 

nomena vary along the axis according to L and within the section 

according to l . This has three main consequences. 

First, the relevant dimensionless space variables reflecting the 

difference of characteristic sizes along axial and transverse direc- 

tions are ( x 1 / L, x 2 / l, x 3 / l ). Equivalently, the appropriate physical 
space variables are ( x 1 , y 2 , y 3 ), where y α = (L/l) x α = ǫ−1 

b x α (by 

convention, the greek indices take values 2 and 3, e.g. y = y αa α). 
Now, for a quantity ϕ expressed in function of ( x 1 , y ) the usual gra- 
dient operator ∇ϕ( x ) = (∂ x i a i ) ϕ( x ) becomes ∇ϕ(x 1 , y ) = (∂ x 1 a 1 +
ǫ−1 
b ∂ y αa α ) ϕ(x 1 , y ) , and similarly for the divergence and other dif- 

ferential operators. It results that the balance equations involves 

terms of different orders of magnitude in ǫb . 

Second, the specificity of the axial direction leads to decompose 

the symmetric tensor of strain ( e B ) or stress ( σ B ) into reduced ten- 

sors, e.g. for the stress: 

σ B = σN a 1 � a 1 + ( σ T � a 1 + a 1 � σ t ) + σ
S

where, the three reduced tensors are: 

σN = σ11 : the scalar axial stress, 
σ T = σ1 αa α : the 2D stress vector exerted out of the plane of the 

section, 

σ
S

= σαβ ( a α � a β + a β � a α ) / 2 : the 2D stress tensor in the
plane of the section. 

Third, the existence of terms of different orders of magnitude in 

the balance equation leads to seek for the variables in the form of 

asymptotic expansion in power of ǫb , e. g. ϕ(x 1 , y ) = ϕ (0) (x 1 , y ) + 

ǫb ϕ (1) (x 1 , y ) + ǫ2 
b ϕ (2) (x 1 , y ) + . . . . The process consists in introduc- 

ing the expansions in the balance equations. Separating the terms 

of different orders leads to a series of problems to be solved 

successively (refer to Appendix A for further details). Following 

this procedure, the classic Euler-Bernoulli kinematics under flex- 

ural motions along a 3 is recovered at the leading order, that is 

u (0) (x 1 , y ) = U(x 1 ) a 3 ; u (1) (x 1 , y ) = −y 3 ∂ x 1 U a 1

As for the three reduced stress tensors, it comes out that their or- 

ders of magnitude differ, namely: 

σN = ǫb O 

(
E b 

U 

L 

)
; σ T = ǫ2 

b O 

(
E b 

U 

L 

)
; σ

S 
= ǫ3 

b O 

(
E b 

U 

L 

)

Furthermore, it shown that σN and σ S expand in odd powers of 

ǫb , while σ T expands in even powers of ǫb . In other words, at the 

leading order, the stress tensor in the beam σ B reads: 

σ B = ǫb σ
(1) 
N a 1 � a 1 + ǫ2 

b σ
(2) 
T 1 α( a 1 � a α + a α � a 1 )

+ ǫ3 
b σ

(3) 
Sαβ

( a α � a β + a β � a α ) (6) 

so that the stress vector on the surface Ŵb in contact with the plate 

takes the form 

σ B . a 2 = ǫ2 
b σ

(2) 
T 12 a 1 + ǫ3 

b (σ
(3) 
S22 . a 2 + σ (3) 

S23 . a 3 ) 

Finally the a 3 -transverse vibrations of the beam element B, are 

described by the following equations expressing respectively, the 

transverse force balance along a 3 axis, the balance of couple ac- 

cording to a 2 , and the bending constitutive law:
⎧ 

⎪ ⎪ ⎪ ⎪ ⎪⎪⎨
⎪ ⎪ ⎪⎪⎪⎪⎩ 

∂ x 1 T 
B + 

(∫ 

Ŵ+ 
b 

σS23 −
∫ 

Ŵ−
b 

σS23

)
= −
b ω 

2 U(x 1 ) 

∂ x 1 M 
B +

(∫

Ŵ+ 
b 

y 3 σT 12 −
∫ 

Ŵ−
b 

y 3 σT 12 

)
− T B 3 = 0 

M 
B = −E b I b ∂ 

2 
x 1 U(x 1 )

(7) 

The coupling with the plate arises from the terms in parenthe- 

sis in (7) . It consists in (i) a shear force associated with the stresses 

σS23 = ǫ3 
b σ

(3) 
S23 and in (ii) a a 2 -couple related to σT 12 = ǫ2 

b σ
(2) 
T 12 . The 

stress σS22 = ǫ3 
b σ

(3) 
S22 normal to Ŵb has no effect since at the leading 

order the beam section undergoes a rigid body motion with zero 

in-plane deformation. In particular Ŵ−
b and Ŵ+ 

b follows the same 

motion U ( x 1 ). 

3.1.2. Asymptotic model for the plate P
The plate satisfies the flatness criterion ǫp = d/D ≪ 1 . The plate 

geometry naturally differentiates the in-plane ( a 1 , a 2 ) and out-of- 

plane a 3 directions ; and the in-plane variations occurs accord- 

ing to D while the variation across the plate thickness arise ac- 

cording to d . Consequently, the appropriate physical space vari- 
ables describing the plate are ( x 1 , x 2 , y 3 ), where y 3 = (D/d) x 3 = 

ǫ−1 
p x 3 , so that the usual gradient operator ∇ϕ( x ) = (∂ x i a i ) ϕ( x ) be- 

comes ∇ϕ(x 1 , x 2 , y 3 ) = (∂ x 1 a 1 + ∂ x 2 a 2 + ǫ−1 
p ∂ y 3 a 3 ) ϕ(x 1 , x 2 , y 3 ) . The

terms of different order of magnitude in the balance equa- 

tion lead to seek for the variables in the form of asymptotic 

expansions in power of ǫp , e.g. ϕ(x 1 , x 2 , y 3 ) = ϕ (0) (x 1 , x 2 , y 3 ) + 

ǫp ϕ (1) (x 1 , x 2 , y 3 ) + ǫ2 
p ϕ (2) (x 1 , x 2 , y 3 ) + . . . . 

Now, in accordance with the flat geometry, the stress tensor 

( σ P ) is decomposed into (the same decomposition applies to the 

strain tensor): 

σ P = σ
p 

+ ( σ t � a 3 + a 3 � σ t ) + σn a 3 � a 3

where, the reduced tensors of the plate reads (with indices a, b = 

{ 1 , 2 } ): 
σ

p 
= σab ( a a � a b + a b � a a ) : the 2D second rank tensor of the

strain or stress in the plane of the plate, 
σ t = σ3 a a a : the 2D strain or stress vector exerted out of the 

plane of the plate, 
σn = σ33 : the scalar out-of-plane normal stress or strain. 

The asymptotic resolution is close to that for the beam, the 

main difference lying in the fact that the spatial variable asso- 

ciated with the a 2 axis is microscopic in the beam but macro- 

scopic for the plate. The resolution at the leading order leads to 

a Love–Kirchhoff plate where the dominating kinematic variable 

w ( x 1 , x 2 ) < uline > a < / uline > 3 is the out-of-plane displacement of 

P . The reduced stress tensors, are of different orders of magnitude 

given by: 

σ
p 

= ǫp O
(
E ′ p 

w 

D 

)
; σ t = ǫ2 

p O 

(
E ′ p 

w 

D 

)
;

σn = ǫ3 
p O 

(
E ′ p 

w 

D 

)

and, it is shown that their expansion is in odd (respectively even) 

ǫp powers for σ p and σ n (respectively σ t ). Hence, at the leading 

order, the stress tensor in the plate σ P reads: 

σ P = ǫp σ
(1) 
pab 

( a a � a b + a b � a a )

+ ǫ2 
p σ

(2) 
t3 a ( a 3 � a 1 + a 1 � a 3 ) + ǫ3 

p σ
(3) 
n a 3 � a 3 (8) 

As a result, the stress vector at the junction Ŵp with the beam is 

given by: 

σ P . a 2 = ǫp (σ
(2) 
p12 a 1 + σ (2) 

p22 a 2 ) + ǫ2 
p σ

(3) 
t32 . a 3 
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It results that, at the leading order, the out-of-plane a 3 -vibrations 

of the plate element P are described by the set of Eq. (9) express- 

ing respectively, the in-plane balance of transverse force balance 

along a 3 axis, the in-plane balance of the tensor of the in-plane 

oriented couples, and the bending constitutive law: 
⎧ 

⎪ ⎪⎨
⎪⎪⎩ 

˜ div ( T P ) = −
p ω 
2 w

˜ div ( M 
P ) − T P = 0

M 
P = −E ′ p I p ((1 − νp ) ̃  e ( ̃  ∇ w ) + νp ̃

 �w I 
P
) 

(9) 

In the above equations the ‘tilded’ differential operator stand 

for the in-plane operator. For instance ˜ ∇ = ∂ x 1 a 1 + ∂ x 2 a 2 ; ̃  e ( u ) =
( ̃  ∇ ( u ) + t ˜ ∇ ( u )) / 2 ; ˜ div ( T ) = ∂ x 1 T 1 + ∂ x 2 T 2 ; etc.

3.2. Homogenized bending model of ribbed plate 

The above elements enable to determine the model of periodic 

ribbed plates assuming that the wavelength carried by the beams 

of characteristic size L (the forcing constituent) is much larger than 

the size D of the period �, consistently with the fact that D/L = 

ε ≪ 1 . 

It follows that the gradient of the displacement along x 1 and 
x 2 differs significantly, namely ∂ x 1 U = O (U/L ) ≪ ∂ x 2 w = O (w/D ) so 

that, since w = O (U) : 

∂ x 1 w = O (ε∂ x 2 w ) ≪ ∂ x 2 w (10) 

Furthermore, as a consequence of the scale separation and of 

the �-periodicity, the physical variables take identical values on 

both sides of �, i.e. on Ŵ−
b and Ŵ

+ 
p .

By construction, the beam and plate models (7), (9) already ex- 

press the dynamic equilibrium within both constituents B and P . 

Consequently, to fulfill the dynamic balance of the whole cell �, 

it remains to formulate the balance at the junction Ŵ which will 

specify the beam/plate coupling. In this aim, the dynamic field 

within plate P has to be determined explicitly. 

3.2.1. Dynamic regime of the plate driven by the beam motion 
Let us specify the leading order boundary conditions on plate 

extremities Ŵp . The beam and plate displacements are identical 

at their interfaces, i.e., w Ŵ−
p 

= U Ŵ+ 
b 
, and, by periodicity, w Ŵ+ 

p 
= U Ŵ−

b 
.

In addition, since the beam section undergoes a rigid body mo- 

tion at the leading order, consequently i) U Ŵ−
b 

= U Ŵ+ 
b 
, this implies a

Dirichlet boundary condition on Ŵp that is W (x 1 , x 2 | Ŵp ) = U(x 1 ) , 
where W ( x 1 , x 2 ) stands for the leading order term of the ex- 

pansion of w , i.e. W (x 1 , x 2 ) = w (0) (x 1 , x 2 ) , and ii) the motion of 

the plate connected at the interface Ŵp is normal to a 2 . This im- 

plies that a clamped condition applies on the plate extremities, i.e. 

∂ x 2 W (x 1 , x 2 | Ŵp ) = 0 . 

Now, condition (10) ∂ x 1 W ≪ ∂ x 2 W states that the 2D plate Eq. 

(9) reduces to a 1D equation involving x 2 only. To sum up, the 

elasto-dynamic equations describing the plate P in conditions of 

scale separation and periodicity read: 

in P 

⎧ 

⎪ ⎪⎨
⎪⎪⎩ 

∂ x 2 T 
P = −
p ω 

2 W

∂ x 2 M 
P − T P = 0

M 
P = −E ′ p I p ∂ 

2 
x 2 W 

on Ŵp 

⎧ 

⎪ ⎪ ⎨ 

⎪⎪⎩ 

∀ x 1

W (x 1 , x 2 | Ŵ) = U(x 1 ) 

∂ x 2 W (x 1 , x 2 | Ŵ) = 0 

(11) 

It results that, (i) x 1 plays the role of a parameter involved on the 

boundary condition only and, (ii) the set (11) is a linear problem 

where the displacement U ( x 1 ) is the forcing term. Thus, W ( x 1 , x 2 ) 
takes the form 

W (x 1 , x 2 ) = U(x 1 ) φω (x 2 ) (12) 

where φω ( x 2 ) is the frequency dependent solution of the one- 
dimensional harmonic bending equation here below in which ap- 

pears the natural flexural wavenumber δ defined by (as well as the 

dimensionless wave number δ∗) 

δ4 = 
p ω 
2 / (E ′ p I p ) ; δ∗ = δD/ 2

∂ 4 x 2 φω − δ4 φω = 0 ; φω (x 2 | Ŵ) = 1 ; ∂ x 2 φω (x 2 | Ŵ) = 0 (13) 

The resolution of (13) is straightforward and the solution reads 

φω (x 2 ) = 
cosh (δx 2 ) sin (δ∗) + cos ( δx 2 ) sinh (δ∗) 

cosh (δ∗) sin (δ∗) + cos (δ∗) sinh (δ∗) 
;

−D/ 2 < x 2 < D/ 2 (14) 

The expression of φω ( x 2 ) highlights the resonant character of the 
plate response. The vanishing of the denominator leads to an infi- 

nite motion. This occurs at the specific series of frequencies corre- 

sponding to the odd modes, that are symmetric, of the plate (see 

the Remark below). Note that, in accordance with the symmetry of 

the forced boundary conditions, the antisymmetric modes of the 

clamped plate do not participate to the forced motion φω . It is 

useful for the following to introduce 〈 φω 〉 the mean value of φω

〈 φω 〉 = 
1

D 

∫ D/ 2

−D/ 2
φω (x 2 )d x 2 = 

2 

δ∗
1 

coth (δ∗) + cot (δ∗) 
(15) 

Remark : The eigenfrequencies { ω I } associated to the eigen- 

modes { � I } of a clamped plate in one-dimensional bending are 

given by series of roots { δ∗
I } , { I = 1 , 2 , 3 , . . . } of the transcenden- 

tal equation 

F (δ∗) = 0 where F (δ∗) = cosh (2 δ∗) cos (2 δ∗) − 1 

As this equation can be also expressed as 

f + (δ∗) f −(δ∗) = 0 where f ±(δ∗) = tan (δ∗) ± tanh (δ∗) 

the roots { δ∗
I } are split into (i) the subset { δ∗

2 n +1 } roots of f + (δ∗) = 

0 associated to the n th odd ( I = 2 n − 1 ) and symmetric modes 

�n 
s = �2 n −1 , and (ii) the subset { δ∗

2 n } roots of f −(δ∗) = 0 associ- 

ated to the n th even ( I = 2 n ) and antisymmetric modes �n 
t = �2 n . 

For I > 1 the { δ∗
I } are closely approximated by { δ∗

I } ≈ π
2 (I + 

1 
2 ) . 

Thus the eigenfrequencies { ω sn } of the symmetric modes take 

values close to 

ω sn ≈ (2 n −
1 

2 
) 2 

(
π

D 

)2
√

E p I p 

p 

, n = (1) , 2 , 3 , . . . 

while the eigenfrequencies { ω tn } of the anti symmetric modes take 

values close to 

ω tn ≈ (2 n + 
1 

2 
) 2 

(
π

D 

)2
√

E p I p 

p 

, n = 1 , 2 , 3 , . . . 

3.2.2. Beam/plate coupling 
We are now in position to determine the coupling terms in the 

beam balance (7) . From the displacement field in the plate one de- 

duces the stress state and then the force and couple at the plate 

extremities. The in-plane stress σ p 12 reads 

σp12 = −E ′ p (1 − νp ) y 3 ∂ 2 x 1 x 2 W 

and due to the clamped condition ∂ x 2 W = 0 on Ŵp , both the shear 

stress and the a 2 -couple are null at the plate extremities Ŵ+ 
p and

Ŵ−
p , i.e. σp12 | Ŵ±

p 
= 0 thus 

∫ 
Ŵ±
p 
y 3 σp12 = 0 . As for the transverse shear

force on the plate extremities we have 

T P | Ŵ±
p

= 

∫ 

Ŵ±
p 

σt23 = E ′ p I p (∂ 
3 
x 2 W ) | Ŵ±

p
= E ′ p I p U(x 1 )(∂ 3 x 2 φω ) | Ŵ±

p

6



Expressing the beam/plate stress continuity σ B . a 2 = σ P . a 2 at their
interface (i.e. the interface balance) and accounting for the period- 

icity we have: 

σT 12 | Ŵ∓
b

= σp12 | Ŵ±
p

= 0 ; σS23 | Ŵ∓
b

= σt23 | Ŵ±
p

Then the couple and force exerted by the plate on the beam (see 

(7) ) read 
∫ 

Ŵ+ 
b 

y 3 σT 12 −
∫ 

Ŵ−
b 

y 3 σT 12 = 

∫ 

Ŵ−
p 

y 3 σp12 −
∫ 

Ŵ+ 
p 

y 3 σp12 = 0 (16) 

∫ 

Ŵ+ 
b 

σS23 −
∫ 

Ŵ−
b 

σS23 = 

∫ 

Ŵ−
p 

σt23 −
∫ 

Ŵ+ 
p 

σt23 = T P | Ŵ−
p

− T P | Ŵ+
p

It is worth noticing that the matching of the integrated values

of the non vanishing stresses 
∫ 
Ŵb 

σS23 = 
∫ 
Ŵ−
b 

ǫ3 
b σ

(3) 
S23 and 

∫ 
Ŵ+ 
p 
σt23 =

∫ 
Ŵp 

ǫ2 
p σ

(2) 
t32 requires that both terms are of the same order. This 

is actually provided when the scaling (3) is satisfied. Indeed, as 

the reference values that normalize the stresses are E b 
U 
L and E p 

U 
D 

in the beam and plate respectively, then 
∫ 
Ŵb 

ǫ3 
b σ

(3) 
S23 = O (l. ( l L ) 

3 E b 
U
L

and 
∫ 
Ŵp 

ǫ2 
p σ

(2) 
t32 = O (d. ( d D ) 

2 E p U D ) , so that equating the order of both 

terms leads to (3) . 

Furthermore, from the plate Eq. (11) 

T P | Ŵ−
p

− T P | Ŵ+ 
p

= −
∫ D/ 2

−D/ 2
∂ x 2 T 

P d x 2 = 
p ω 
2

∫ D/ 2

−D/ 2
W d x 2 

= 
p D 〈 φω 〉 ω 
2 U(x 1 ) (17) 

Relations (16) and (17) show that the plate does not induce any a 2 - 

couple on the beam, but exerts a shear force on the form of a in- 

ertial term with a non-conventional frequency dependence arising 

from 〈 φω 〉 . This expression reported in (7) provides the effective
modeling of the ribbed plates, that involves the beam deflection 

U ( x 1 ) as the unique kinematic descriptor. 

3.2.3. Dynamic regime of the plate with passive beams 
Implicitly, the above analysis assumes that the beams are mov- 

ing and, in turn, determine the dynamics of the whole ribbed plate. 

However, such a regime disappears when the beam are passive, 

i.e., when U(x 1 ) = u (0) = 0 (meaning that the beam displacement

expansion begin at the first order i.e. u = ǫb u 
(1) + . . . ) so that the 

forcing of the plate vanishes at the leading order. Nonetheless, an 

other mechanism of vibration with passive beams is possible. The 

latter is defined in each plate P by (9) together with the fixed 

and clamped conditions on Ŵp at the leading order. The plate mo- 

tion W (x 1 , x 2 ) = w (0) (x 1 , x 2 ) is the unique kinematic descriptor of 

this dynamic regime. Note that, to insure a null beam deflection, 

the shear forces exerted by the plates on the opposite sides of 

the beam section must vanish. This imposes that in two adjacent 

plates the motions are identical but of opposite sign. Hence, the 

kinematic of the whole ribbed plate with passive beams is fully 

determined. 

3.2.4. Synthetic formulation of the flexural behavior of ribbed plates 
The above analysis of the flexural motions of the ribbed plate 

leads to a dual formulation that encompasses the two independent 

types of flexural behaviors. The first one is associated with moving 

beams which make the plate vibrating, while in the second one 

the plates only are set in vibration. 

• the case where the beam is active U ( x 1 ) � = 0 gives the global

modes associated with the flexural inertia of the beam and a

non conventional effective beam/plate inertia that includes the

static mass of the beam and the frequency-dependent effec- 

tive mass of the plate. This situation actually describes a co- 

dynamic beam/plate regime and the corresponding equation for

the beam deflection U ( x 1 ) reads: 

E b I b ∂ 
4 
x 1 U = ω 

2 ( 
b +
p D 〈 φω 〉 ) U;

〈 φω 〉 = 
2

δ∗
1 

coth ( δ∗) + cot ( δ∗) 
(18) 

• the case where the beam is passive U(x 1 ) = 0 leads to guided

modes governed by the flexural inertia and the surface mass of

the plate. The corresponding equation for the plate deflection

W ( x 1 , x 2 ) reads:

E ′ p I p ̃  �2 W = 
p ω 
2 W with on Ŵp W (x 1 , x 2 | Ŵp ) = 0 ;

∂ x 2 W (x 1 , x 2 | Ŵp ) = 0 (19) 

and, as above explained, one has alternatively W and −W from 

a plate to the adjacent one. 

4. Dispersion features of ribbed plates in bending

4.1. Bending waves with active beams 

Let us first outline the strong frequency dependence of the ap- 

parent dimensionless mass 〈 φω 〉 of P . According to (15) and recall- 

ing that ω = δ2 
√ 

E ′ p I p 

p

and δ∗ = δD/ 2 we have: 

• 〈 φω 〉 → 1 when δ∗ → 0 i.e. when ω → 0, which is consistent

with the fact that in statics, the apparent mass of P is the real

mass,
• 〈 φω 〉 → ±∞ when tan (δ∗) + tanh (δ∗) = 0 which corresponds

to the eigenfrequencies { ω sn } of the symmetric P-plate modes.

When ω → ω 
−
sn , the plate apparent mass tends to be infinite

and positive, while it tends to negative infinite values when

ω → ω 
+ 
sn ,

• 〈 φω 〉 = 0 when δ∗ = π (n + 1 / 2) , i.e. at frequencies ω 0 n = (2 n +

1)2 
(

π
D 

)2√ 
E p I p 

p

that lies in-between ω sn and ω s (n +1) . Thus in the 

intervals [ ω sn , ω 0 n ] the apparent mass of P is negative. 

In practice, the singularities of 〈 φω 〉 are smoothed by the un- 

avoidable dissipation effects. They can be accounted for through a 

structural damping η introduced as a corrective imaginary part of 

the elastic modulus that becomes (1 + iη) E p . Quantities are then 
complex-valued and smoothing appears as η is increased. 

The properties of 〈 φω 〉 are illustrated in Fig. 2 that presents
for two values of damping the variations of the real and imag- 

inary parts versus the frequency normalized by the fundamental 

frequency. Except in the neighborhood of the eigenmodes where 

〈 φω 〉 becomes singular, 〈 φω 〉 is globally confined between 1 and 0

and the modal mass diminishes as ω increases. This means that, 

for intermediate frequencies in between the eigenfrequencies, the 

plate behaves as if it were lighter than it actually is. 

Considering a wave propagating along x 1 of the form U(x 1 ) = 

exp (ik ω x 1 ) , the dispersion features of waves governed by (19) is 

determined by the flexural wavenumber k ω given by 

k 4 ω = ω 
2 
b + 
p D 〈 φω 〉

E b I b 
(20) 

Due to the inner resonance of plate P accounted by 〈 φω 〉 , the dis- 
persion Eq. (20) differs notably from the classical bending case 

in which k ∼
√ 

ω in the whole frequency range, especially in the 

neighborhood of the eigenmodes. In particular, slow down bend- 

ing waves (compared to that in beam B) appear around ω 
−
sn ,

where 〈 φω 〉 ≫1. Furthermore, within the range [ ω sn , ω 0 n ] in which

〈 φω 〉 < 0 and/or | 〈 φω 〉 | ≫1, either strongly damped bending waves

(similarly to thermal waves) occur if k 4 < 0 so that k ∼
√ 
i , or bend- 

ing waves can be speed up if k 4 ≈0 and is positive. The numerical 

evidences of these properties are detailed in Section 6 . 
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Fig. 2. Real and imaginary parts of the dimensionless apparent mass of the plate

〈 φω 〉 versus dimensionless circular frequency ω / ω s 1 of the three first symmetric 

modes; with structural damping η = 0 . 5 % ( ) , and η = 2 % ( ). 

4.2. Bending waves with passive beams 

Focusing on the second mechanism when the beams are at 

rest (19) , the plate is clamped on its two opposite sides, however 

a long wavelength motion is possible along its length L . The exact 
determination of the dispersion of these guided waves would re- 

quire a numerical resolution. However, the dispersion features can 

be fairly assessed by approximating the field within the plate. We 

present here two simple options for assessing the dispersion rela- 

tion of these guided waves. 

Let us seek for an approximated solution in the form of sepa- 

rated variables: 

w (x 1 , x 2 ) = exp (ik ′ ω x 1 )�(x 2 ) where 

�( x 2 | Ŵp ) = 0 ; ∂ x 2 �( x 2 | Ŵp ) = 0

The function �( x 2 ) fluctuates according to the plate width D , while 

exp (ik ′ ω x 1 ) varies according to L ≫D . Consequently, at the lead- 

ing order, the plate equation reduces to the following 1D-problem 

(identical to (11) except for the zero boundary condition for �): 

E ′ p I p ∂ 
4 
x 2 � = 
p ω 

2 � �( x 2 | Ŵp ) = 0 ; ∂ x 2 �( x 2 | Ŵp ) = 0

The solutions are the modes (symmetric and non symmetric) 

� I ( x 2 ) associated with the infinite series of frequencies ω I . Hence, 

w ( x 1 , x 2 ) appears to be the x 2 -eigenmodes modulated according to 

large wavelength along x 1 . The x 1 -wave number can then be de- 

termined by reporting the expression of w ( x 1 , x 2 ), in the bilapla- 
cian Eq. (19) governing the plate P . For each eigenmode � I one 

obtains: 

E ′ p I p
[
(k ′ I ω ) 

4 � I − 2(k ′ I ω ) 
2 ∂ 2 x 2 �

I + ∂ 4 x 2 �
I 
]

= 
p ω 
2 � I 

that is, since, E ′ p I p ∂ 
4 
x 2 

� I = 
p ω 2 I �
I : 

E ′ p I p
[
(k ′ I ω ) 

4 � I − 2(k ′ I ω ) 
2 ∂ 2 x 2 �

I 
]

= 
p (ω 
2 − ω 

2 
I )�

I (21) 

• At this step, a first approach consists in integrating this equa- 

tion over to x 2 . Noticing that 
∫ 

∂ 2 x 2 �
I = [ ∂ x 2 �(x 2 )] | Ŵp = 0 , one

derives

E ′ p I p (k 
′ I 
ω ) 

4 〈 � I 〉 = 
p (ω 
2 − ω 

2 
I ) 〈 � I 〉

This leads to an approximated dispersion equation associated 

with the mode � I that simply reads 

(k ′ I ω ) 
4 ≈


p 

E ′ p I p
(ω 

2 − ω 
2 
I ) (22) 

• An alternative approach is to approximate the exact eigenmode

shapes of the clamped plate that are given by (0 ≤ x 2 ≤D and

δ∗
I = δ(ω I ) D/ 2 ): 

� I (x 2 ) = cos 
(
δ∗
I ( 

2 x 2 
D 

− 1) 

)
+ 

sin (δ∗
I ) 

sinh (δ∗
I ) 

cosh 

(
δ∗
I ( 

2 x 2 
D 

− 1) 

)
; (I = 2 n = 2 , 4 , 6 , . . . ) 

� I (x 2 ) = sin 
(
δ∗
I ( 

2 x 2 
D 

− 1) 

)
−

sin (δ∗
I ) 

sinh (δ∗
I ) 

sinh 

(
δ∗
I ( 

2 x 2 
D 

− 1) 

)
; (I = 2 n + 1 = 1 , 3 , 5 , . . . ) 

where the values of δ∗
I are the roots of tan (δ∗

I ) + 

(−1) I tanh (δ∗
I ) = 0 . 

Since the roots δ∗
I are very close to the series π

2 (I + 
1 
2 ) 

the mode shape functions can be approximated by � I ( x 2 ) ≈
sin (Iπ x 2 

D ) so that ∂ 2 x 2 �
I ≈ −( IπD ) 

2 � I (note that these expres- 

sions are compatible with the sign inversion of the motions 

from a plate the adjacent one). Reporting this approximation 

in (21) yields the following approximated dispersion equation 

for the guided waves 

(k ′ I ω ) 
4 + 2(k ′ I ω ) 

2 
( Iπ

D 

)2

−

p 

E ′ p I p
(ω 

2 − ω 
2 
I ) ≈ 0 (23) 

We will see in Section 6 that (23) provides better estimates 

than (22) . The family (indexed by the eigenmode number I ) of 
equations (23) defines the guided waves branches. The features of 

these waves are defined by the nature of the roots of (23) that de- 

pends strongly upon the frequency. Simple algebra shows that the 

discriminant is negative for ω < ω cI and positive above, ω cI being 

given by 

ω 
2 
cI = ω 

2 
I 

(
1 −

I 4 

(I + 
1 
2 ) 

4 

)
< ω 

2 
I 

Hence, at frequencies lower than ω cI , the wavenumbers are com- 

plex valued which corresponds to propagative but significantly 

damped waves. For frequencies in the interval [ ω cI , ω I ] the 

wavenumbers are imaginary, so that the waves are evanescent in 

this range. Finally for frequencies higher than the clamped plate 

eigenfrequencies ω I , a real positive root exists and the wave prop- 

agates without damping. Note also that these guided waves are 

build in a similar manner for the symmetric or the non symmet- 

ric modes of the clamped plate. Their features will be illustrated in 

Section 6 . 

4.3. Limit of validity the homogenized model 

It is worth recalling the conditions of validity of the homog- 

enized model. As for the beam and plate models itself, the fre- 

quency must be sufficiently low to fulfill the slenderness and 

flatness requirement in dynamic regime. This imposes the classi- 

cal following restrictions on the reduced wavelengths L B ω > l and 
L P ω > d that read: 

ω 
2 < Min 

{ E b I b 

b l 4 

,
E ′ p I p

p d 4 

}
(24) 

In addition, for the ribbed plate, the scale separation must be sat- 

isfied, i.e., k ω D < 1, that corresponds to the frequencies ranges such 

8



Fig. 3. Torsional kinematics with torque applied by the plate and moment induced

in the beam.

that 

ω 
2 < 

E b I b 
(
b + 
p D 〈 φω 〉 ) D 4

(25) 

The modeling (18) with active beams only applies if both condi- 

tions (24) and (25) are fulfilled. However, modeling (19) with pas- 

sive beams and guided waves in the plates applies if the single 

condition ω 2 < 
E ′ p I p

p d 4 

is satisfied. 

5. Homogenized formulation of the torsional behavior of

ribbed plates 

The analysis of the bending behavior can be replicated for 

studying the dynamic torsional behavior. Fig. 3 depicts the tor- 

sional kinematics of the ribbed plate : the beam B in torsion im- 

poses its rotation to the plate extremities, in turn the plate P is 

bended and exerts shear forces and torques on the beam. The re- 

quirements for reaching this situation are identified by express- 

ing the conditions of “co-dynamic” regime and of asymmetric cou- 

pling. 

The equation describing the dynamic torsion of the beam B

alone (i.e. not connected to the plate) along its axis a 1 reads (see 
axis of Fig. 3 ) 

G b I b ∂ 
2 
x 1 θ = −ρb J b ω 

2 θ

where θ is the torsion angle, G b I b the torsional rigidity of the 

beam and ρb J b its polar moment, with G b = E b / 2(1 + νb ) , I b = 

O (l 4 ) , J b = O (l 4 ) . Thus, the reduced wavelength in torsion L ′ω
reads: 

L 
′ 2 
ω = O 

( G b I b 

ρb J b ω 2 

)

At the fundamental resonance in torsion ω ′ b of the beam of

length L ′ , L ′ ω = L ′ so that: 

ω 
′ 2 
b = O 

( G b I b 

ρb J b L ′ 2

)

Concerning the plate P, its resonance frequency in bending is

of the order of : ω 2 p = O 

(
E ′ p I p


p D 4

)
. Then, considering again the in- 

ner resonance situation where the fundamental frequencies of the 

beam B and plate P are of the same order i.e. ω ′ b /ω p = O (1) , one

obtains the following condition: 

G b I b 

ρb J b L ′ 2
= O 

(
E ′ p d 

2 

ρp D 4 

)
i.e. 

G b ρp 

E ′ p ρb
= O 

(
d 2 L ′ 2 

D 4 

)
= O 

(
ǫ2 
p

ε 2 

)

(26) 

In addition, we have to express the condition of asymmetric 

coupling stating that the action exerted by the plate on the beam 

acts as an external load. Thus, considering the balance in torsion 

along a 1 (the torque is denoted M b in B), we have 

∂ x 1 M b = O (M p ) i . e . O 

(
M b

L ′ 

)
= O (M p ) 

where M b = G b I b ∂ x 1 θ = O (G b l 
4 θ
L ′ ) and M p = O (E ′ p I p ∂ 

2 
x 2 
w ) =

O (E ′p
d 3
12

w 
D 2 

) . Furthermore the kinematic variables of torsion and 

bending are related by θ = O (w/D ) . Thus we obtain a second 

condition 

G b l 4 

DL ′ 2 
= O 

(
E ′ p d 

3 

D 2 

)
i. e. O 

(
G b ǫ

4 
b 

)
= ε 2 O 

(
E ′ p ǫ

3
p

)
(27) 

In the case of an heterogeneous ribbed plate where ǫb = l/L = 

d/D = ǫp = ǫ, (and then ε = D/L = d/l) conditions (26) and (27) are 
fulfilled when 

E ′ p ρb 

G b ρp 
= O 

(
ε 2 

ǫ2 

)
;

E ′p 
G b 

= O 

(
ǫ

ε 2 

)
(28) 

In the case of an homogeneous ribbed plate where E p = E b , ρp = 

ρb , (26) and (27) impose that 

d 
D 

= O 

(D
L 

)
= O 

(
l 4 / 3 

L 4 / 3 

)
(29) 

The conditions of inner resonance in torsion (26) and (27) differ 

from that established in bending (1) –(3) . This reflects the fact that 

the beam bending rigidity is much lower (by a factor ǫ2 
b ) that its 

torsional rigidity and consequently, for a beam of a given length, 

the fundamental frequency in bending and torsion differs by a fac- 

tor ǫb . Nevertheless, in infinite (or sufficiently long) ribbed plates 

both inner resonance in bending and torsion can occur but they 

will involve different wavelengths in the beam. 

5.1. Derivation of the torsional behavior of ribbed plates 

In the same way as for the study in bending, the analysis in 

torsion is performed by assuming that the conditions (26) and 

(27) are satisfied. The developments are very similar, and then only 

the key points will be presented. 

First, the asymptotic model of the beam B loaded in torsion 

reads 
⎧ 

⎨ 

⎩ 

∂ x 1 M 
B + 

∫ 

Ŵb

y 2 σS32 .n 2 −
∫

Ŵb

y 3 σS22 .n 2 = −ρb J b ω 
2 θ (x 1 )

M 
B = G b I b ∂ x 1 θ (x 1 )

(30) 

where the two integral terms in (30) account for the action of the 

plate on the beam and n 2 is the component of the outgoing normal 

of the beam section and takes the value ±1 on Ŵ±
b . 

Second, the plate P in bending is described by the set (9) . In 

the condition of scale separation (10) , the description reduces to 

(11) except for the boundary conditions. Here the proper bound- 

ary conditions express that (i) at the leading order, the beam sec- 

tion undergoes a rigid body motion so that Ŵ−
b and Ŵ+ 

b follows 

the same rotation θ ( x 1 ), and (ii) since l ≪D , the vertical motion at 

the beam/plate interface is O ( θ l ) that is negligible compared to the 

plate deflection W = O (θD ) . Thus, the plate problem reads now 

in P 

⎧ 

⎪ ⎪⎨
⎪⎪⎩ 

∂ x 2 T 
P = −
p ω 

2 W

∂ x 2 M 
P − T P = 0

M 
P = −E ′ p I p ∂ 

2 
x 2 W 

on Ŵp 

⎧ 

⎪ ⎪⎨
⎪⎪⎩ 

∀ x 1

W (x 1 , x 2 | Ŵ) = 0 

∂ x 2 W (x 1 , x 2 | Ŵ) = θ (x 1 ) 

(31) 

The solution of this linear problem in which rotation θ ( x 1 ) is 
the forcing term takes the form W (x 1 , x 2 ) = Dθ (x 1 ) ψ (x 2 ) where 

ψ ω ( x 2 ) is the frequency dependent solution of 

∂ 4 x 2 ψ ω − δ4 ψ ω = 0 ; ψ ω (x 2 | Ŵp ) = 0 ; ∂ x 2 ψ ω (x 2 | Ŵp ) = 1 /D

A standard resolution provides (recall that δ4 = 
p ω 2 / (E ′ p I p ) and 
δ∗ = δD/ 2 ) 
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ψ ω (x 2 ) = 
sinh (δx 2 ) sin (δ∗) − sin ( δx 2 ) sinh (δ∗)

2 δ∗( cosh (δ∗) sin (δ∗) − cos (δ∗) sinh (δ∗)) 
;

−D/ 2 < x 2 < D/ 2 (32) 

Infinite motion arises when the denominator of ψ ω ( x 2 ) vanishes. 
This happens at the eigenfrequencies of the antisymmetric modes 

of the plate (note that 〈 ψ ω 〉 = 0 ). In accordance with the antisym- 

metric boundary conditions, the symmetric modes do not partici- 

pate to the forced motion ψ ω . It is useful for the following to in- 

troduce the quantities 〈 x 2 D ψ ω 〉 and D 3 ∂ 3 x 2 ψ ω | D 
2 
:

J ∗ω = 

〈 x 2 
D 

ψ ω 

〉
= 

1

D 

∫ D/ 2 

−D/ 2 

x 2 
D 

ψ ω (x 2 )d x 2 

= 
1 

(2 δ∗) 2 
coth (δ∗) + cot (δ∗) − 2 /δ∗

coth (δ∗) − cot (δ∗) 
(33) 

C ∗ω = D 
3 ∂ 3 x 2 ψ ω | D 2 = (2 δ∗) 2 

coth (δ∗) + cot (δ∗) 

coth ( δ∗) − cot (δ∗) 
(34) 

The beam/plate coupling is derived from the stress continuity 

σ B . a 2 = σ P . a 2 and the periodicity that provides σS22 | Ŵ∓
b 

= σp22 | Ŵ±
p

and σS23 | Ŵ∓
b 

= σt23 | Ŵ±
p
. Then the action of the plate on the beam 

defined in (30) reads: 
∫ 

Ŵb

y 2 σS32 .n 2 = 

∫ 

Ŵ+ 
b 

b 
2 
σS23 −

∫ 

Ŵ−
b 

−
b
2 
σS23 

= 
b
2 

(∫

Ŵ−
p 

σt23 + 

∫ 

Ŵ+ 
p 

σt23 

)
= 

b
2 

(
T P | Ŵ−

p
+ T P | Ŵ+

p

)
(35) 

−
∫ 

Ŵb

y 3 σS22 .n 2 = −
∫ 

Ŵ+ 
b 

y 3 σS22 + 

∫ 

Ŵ−
b

y 3 σS22 

= −
∫ 

Ŵ−
p 

y 3 σp22 + 

∫ 

Ŵ+ 
p 

y 3 σp22 = −M 
P 
| Ŵ−

p
+ M 

P 
| Ŵ+ 

p
(36) 

Hence, the effective moment acting on the beam includes (i) the 

moment due to the sum of the shear effort s on the two sides of 

the plate and (ii) the differential moment between each side. Now, 

from the plate Eq. (31) we have on the one hand 
∫ D/ 2 

−D/ 2
x 2 ∂ x 2 T 

P d x 2 = −
p ω 
2

∫ D/ 2

−D/ 2
x 2 W d x 2 

= −
p D 
3 〈 x 2 

D 
ψ ω 〉 ω 

2 θ (x 1 ) (37) 

and on the other hand, using integration by part 
∫ D/ 2 

−D/ 2
x 2 ∂ x 2 T 

P d x 2 =
∫ D/ 2 

−D/ 2
∂ x 2 (x 2 T 

P )d x 2 −
∫ D/ 2

−D/ 2
T P d x 2

= 
D 

2 
(T P | Ŵ+

p
+ T P | Ŵ−

p
) −

∫ D/ 2

−D/ 2
∂ x 2 M 

P d x 2

Thus, transforming the last integral, one obtains 

M 
P 
| Ŵ+

p
− M 

P 
| Ŵ−

p
= 

D 

2 
(T P | Ŵ+

p
+ T P | Ŵ−

p
) | + 
p D 

3 〈 x 2 
D 

ψ ω 〉 ω 
2 θ (x 1 ) (38) 

then, observing that T P | Ŵ+
p

= T P | Ŵ−
p

= −E ′ p I p ∂ 
3 
x 2 

ψ ω | D 
2
Dθ (x 1 ) 

∫ 

Ŵb

y 2 σS32 .n 2 −
∫ 

Ŵb

y 3 σS22 .n 2 

= 

(
−E ′ p I p (D + b) D∂ 3 x 2 ψ ω | D2 + 
p D 

3 〈 x 2 
D 

ψ ω 〉 ω 
2
)
θ (x 1 ) 

5.2. Homogenized torsional model of ribbed plates 

The previous expression reported in (30) provides the effec- 

tive torsional modeling. It involves the beam rotation θ ( x 1 ) as the 
unique kinematic descriptor. To sum up we are lead to the follow- 

ing synthetic dual homogenized formulation 

• the case where the beam is active θ ( x 1 ) � = 0 gives the

global modes associated with the non conventional effective

beam/plate rotational inertia - that includes the static rota- 

tional inertia of the beam and the frequency-dependent effec- 

tive rotational inertia of the plate - and a frequency-dependent

torsional spring rigidity. This situation actually describes a co- 

dynamic beam/plate regime and the corresponding equation for

the beam rotation θ ( x 1 ) reads:

G b I b ∂ 
2 
x 1 θ = −ω 

2 
(
ρb J b + 
p D 

3 J ∗ω 
)
θ + 

E ′ p I p (D + b) 

D 2 
C ∗ω θ (39) 

where the frequency dependent parameters J ∗ω and C 
∗
ω of the

plate are defined in (33) and (34) as: 

J ∗ω = 
1 

(2 δ∗) 2 
coth (δ∗) + cot (δ∗) − 2 /δ∗

coth (δ∗) − cot (δ∗) 
;

C ∗ω = (2 δ∗) 2 
coth (δ∗) + cot (δ∗) 

coth ( δ∗) − cot (δ∗) 

• furthermore, the above analysis in torsion assumes that the

beams are rotating. However, if the beam stays at rest, i.e.

θ (x 1 ) = 0 , vibrations of the plate are nonetheless possible. The

latter are ruled by (9) together with the clamped conditions on

Ŵp , and correspond to the guided waves with passive beams

already described by (19) . Note that to insure the vanishing of

the torques exerted on both faces of the beam the motions are

alternatively W and −W from a plate to the adjacent one.

The governing equation associated with torsional waves (39) is 

non-conventional. Indeed, meanwhile J ∗ω and C 
∗
ω appear as an ef- 

fective rotational inertia and rigidity they both are elasto-inertial 

parameters resulting from the elasto-dynamic regime in the plate 

and both present strong frequency variations with singularities. It 

can be established from expressions (33) and (34) that: 

• J ∗ω → − 1
60 when δ∗ → 0 (hence ω → 0). Therefore the contribu- 

tion of the quasi-statically bended plate to the rotational inertia

is negative and takes the value − 1 
5 


p D 3 

12 ,

• C ∗ω → 12 when δ∗ → 0. Thus, the quasi-statically bended plate 

exerts an actual return torque corresponding to a torsional 

spring rigidity of positive value 
12 E ′ p I p (D + b) 

D 2
,

• J ∗ω and C 
∗
ω → ±∞ when tan (δ∗) = tanh (δ∗) i. e. at the eigen- 

frequencies { ω tn } of the antisymmetric modes. When ω → ω 
−
tn

(resp. ω 
+ 
tn ), J 

∗
ω and C 

∗
ω → −∞ (resp. + ∞ ),

• J ∗ω = 0 when coth (δ∗) + cot (δ∗) = 2 /δ∗. This occurs at frequen- 

cies ω t 0 n that can be assessed as ω t 0 n ≈ (2 n + 
3 
2 ) 

2 
(

π
D

)2√ 
E p I p

p

(which are very close to ω s (n +1) for n > 1). Thus, in the inter- 

vals [ ω t 0 n , ω tn ] the effective rotational inertia of P is negative .
• C ∗ω = 0 when tanh (δ∗) + tan (δ∗) = 0 , i.e. at the eigenfrequen- 

cies ω sn of the symmetric modes. Thus in the intervals [ ω sn ,
ω tn ] the apparent torsional spring rigidity of the plate P is neg- 
ative , which means that, instead of exerting a return torque, the

bended plate exerts a repulsive torque.

The features of J ∗ω and C 
∗
ω are illustrated respectively in Figs. 4

and 5 with two values of structural damping. These terms normal- 

ized by their static values are also plotted in Fig. 6 . These figures 

clearly highlight the strong frequency dependence and the singu- 

larities of both J ∗ω and C 
∗
ω at the eigenfrequencies { ω tn }, as well as

their negative and positive static values respectively. Note that in 

between the singularities the fluctuations of the torsional spring 

rigidity are significantly larger than that of the rotational inertia. 

5.3. Dispersion features of torsional waves 

The dispersion of torsional waves on the form θ (x 1 ) = 

exp (iκω x 1 ) is determined by the wavenumber κω . The latter is de- 
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termined from (39) : 

κ2 
ω = 

ω 2 
(
ρb J b + 
p D 3 J ∗ω

)
− E ′ p I p (D + b) 

D 2 C ∗ω
G b I b 

(40) 

Conversely to the classical non-dispersive torsional waves, the in- 

ner resonance of plate P reflected by the terms J ∗ω and C 
∗
ω in- 

duces a non-conventional dispersion. A full analysis of the prop- 

erties would require the knowledge of the parameters due to the 

complex interaction between J ∗ω ω 2 and C ∗ω . Examples will be pre- 

sented in Section 6 . Nevertheless, one may notice that: 

• when ω → 0 then κ2 
ω → −12 

E ′ p I p (D + b) 
D 2 G b I b 

< 0 . Thus the torsional

wavenumber is imaginary and the corresponding waves are

evanescent from ω = 0 to a cut-off frequency,
• significant dispersion effects are expected in the neighborhood

of the eigenfrequencies of the antisymmetric modes. Further- 

more, alternating frequency bands of evanescent or propagative
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Fig. 6. Real parts of the normalized dimensionless apparent inertia of the plate

〈 x 2 D ψ ω 〉 ( ), and normalized apparent torsional spring rigidity of the plate 

D 3 ∂ 3 x 2 ψ ω | D 2 ( ) versus the dimensionless circular frequency ω / ω t 1 . 

waves will occur, corresponding to negative or positive values 

of κ2 
ω , 

• at the eigenfrequencies of the symmetric modes J ∗ω ≈ 0 and C ∗ω = 

0 . Consequently, the torsional wave in the ribbed plate should 

present features close to that of the propagative torsional wave 

in the beam alone. 

The feature of the guided waves with passive beams were al- 

ready described by (19) . In fact, one may split the guided waves 

into those based on symmetric modes that are related to the flex- 

ural behavior, and those based on antisymmetric modes that are 

related to the torsional behavior. 

Note finally that the validity of the homogenized model in tor- 

sion imposes (i) the classic restrictions on the reduced wavelengths 

in the beam and plate respectively L ′ 
B ω 

> l and L P ω > d that read:

ω 
2 < Min 

{ G b I b 

ρb J b l 2 
,

E ′ p I p

p d 4 

}
(41) 

and (ii) the scale separation condition for the ribbed plate, i.e., 

κω D < 1, that corresponds to the frequencies ranges such that 

ω 
2 < 

E ′ p I p (D + b) C ∗ω + G b I b(
ρb J b + 
p D 3 J ∗ω 

)
D 2 

(42) 

Modeling (40) with active beams requires both conditions 

(41) and (42) , while modeling (19) with passive beams and guided 

waves requires simply that ω 2 < 
E ′ p I p 

p d 4 

. 

6. Examples, comparisons, discussion

In this section, the phenomena above described by the homog- 

enized model constituted by the set of Eqs. (18) - (19) - (39) are il- 

lustrated on two realistic examples. One focuses first on the wave 

propagation along the beam axis in infinite ribbed plates. The dis- 

persion relations are calculated according to the up-scaled model, 

and compared with a numerical approach. Second, we perform 

modal analysis on a ribbed plate of finite length. The co-dynamic 

conditions are specified in concrete terms, and the homogenized 
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Table 1

Mechanical properties and geometrical parameters of plates under study.

E, ν ρ (kg.m −3 ) Dimensions

R 1 
Beam B 1 69 ×10 9 Pa, 0.3 2700 l = b = 2 . 5 cm 

Plate P 1 69 ×10 9 Pa, 0.3 2700 D = 18 . 78 cm, d = 3 . 3 mm 

R 2 
Beam B 2 69 ×10 9 Pa, 0.3 2700 l = b = 1 cm 

Plate P 2 3 ×10 9 Pa, 0.3 1200 D = 12 . 3 cm, d = 1 . 8 mm 

model is used to the calculate the frequency response function of 

the considered ribbed plate. 

6.1. Ribbed plates under study 

The two ribbed plates under study are denoted R 1 and R 2 . The 

ribbed plate R 1 consists in beams B and plates P both made of 

aluminum, while in the ribbed plate R 2 the beam B is made of 

aluminium and the plate P is made of perspex which much softer 

than aluminum. The mechanical and geometrical parameters are 

summarized in Table 1 . 

The eigenfrequencies f I = ω I / (2 π ) of the three first symmetric 

and antisymmetric modes of the plates P 1 and P 2 are 

f s 1 = 519 ; f t1 = 1432 ; f s 2 = 2808 ; f t2 = 4641 ; f s 3 = 6934 

f t3 = 9685 Hz for R 1 

f s 1 = 208 ; f t1 = 573 ; f s 2 = 1123 ; f t2 = 1857 ; f s 3 = 2774 ;
f t3 = 3874 Hz for R 2 

From the values given in Table 1 , the effective parameters and the 

wavenumbers are calculated for R 1 and R 2 (a structural damping 

coefficient η = 0 . 5% is considered). A detailed analysis is presented 

here-below for R 1 and, to save place, only synthetic results are 

given for R 2 . 

6.2. Analysis of wave dispersion of ribbed plates R 1 

To perform the analysis, it is convenient to split the waves in- 

volving the symmetric and antisymmetric modes. In doing so one 

eases the understanding of the underlying mechanisms (i) of the 

flexural waves and symmetric guided waves and (ii) of the tor- 

sional waves and antisymmetric guided waves. Hence, the flexural 

(respectively torsional) waves is concurrently commented with the 

symmetric (respectively antisymmetric) guided waves. 

6.2.1. Waves involving symmetric modes 
Symmetric modes are involved in both the bending waves with 

active beam and the symmetric guided wave with passive beam. 

The real and imaginary parts of the flexural wavenumber in 

the active beam regime (20) versus frequency – in the range of 

the first two symmetric eigenmodes of the plate P 1 –are drawn in 

Fig. 7 . One observes that: 

• in the low frequency domain, the wavenumber matches that of

the beam B whose static linear mass would be replaced by that

of the ribbed plate. Actually, the static linear mass of the whole

ribbed plate is retrieved when ω = 0 , see (18) ,
• significant un-conventional dispersion is observed around the

eigenfrequencies f s 1 and f s 2 of the symmetric modes of P . In

the frequency bands corresponding to negative effective linear

mass 
e f f = 
b + 
p D 〈 φω 〉 , the real and imaginary parts of

the wavenumber are (quasi)-identical (the difference relies on

the slight damping factor considered). Consequently, the bend- 

ing wave is strongly damped,
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Fig. 7. Bending wavenumber along the beam axis of the ribbed plate R 1 derived 

from (18) , (real part ( ) and imaginary part ( )). For comparison the bending

wavenumbers of the beam B itself ( ), and of the beam with the static lineic mass 

of the ribbed plate ( ) are also plotted. The frequency bands of negative effective

lineic mass are indicated by the shadowed zones ( ). The maximum value of the

wavenumber for the validity of the beam model itself in bending ( ).

• in the close vicinity of f s 1 and f s 2 , the waves are almost not

damped and present either a velocity much lower than that

of the beam with the whole mass (lower bound) or a veloc- 

ity much larger – say up to three times – than the velocity

of the beam itself (upper bound). Note also that outside of the

bands of unconventional dispersion, as the frequency increases,

the wavenumber tends to that of the beam alone B, due to the

reduction of modal mass of the plate P (actually, outside of the

resonance frequency bands the effective linear mass of plate P

vanishes as the frequency increases)

In Fig. 8 , the wavenumbers of the symmetric guided waves cal- 

culated from approximated formulae (22) and (23) are displayed. 

As indicated by the theory, the cut-off frequencies are the 

eigenfrequencies f s 1 and f s 2 of the symmetric modes of the plate. 

Below the cut-off frequencies the wavenumbers are purely imag- 

inary (resp imaginary or complex) when estimated by (22) (resp. 

(23) ) whereas they both are purely real above the cut-off frequen- 

cies and leads to propagating waves. In order to check the rele- 

vancy of the two approaches the results of finite element numeri- 

cal computation (as described in Section 6.2.3 ) are also displayed. 

It appears that (23) fits better the numerical results. 

6.2.2. Waves involving antisymmetric modes 
Antisymmetric modes are mobilized in the torsional waves with 

active beam and in the antisymmetric guided waves with passive 

beam. 

The real and imaginary parts of the torsional wavenumber in 

the active beam regime (40) is plotted in the [0–4 kHz] frequency 

range in Fig. 9 . It appears that: 

• on the whole frequency range, due to the contribution of the

bended plate P, the torsional wave dispersion of the ribbed

plate strongly differs from that of the beam B alone,
• several bands (shadowed zones in Fig. 9 ) of imaginary

wavenumber appear, the first one at low frequency, the next

ones after the eigenfrequency f tn of the antisymmetric modes

of the plate P . They correspond to evanescent torsional waves,
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Fig. 8. Wavenumbers of the symmetric guided waves of the ribbed plate R 1 de- 

rived from (22) (real part ( ) and imaginary part ( )) and from (23) (real part

). The eigenfrequencies of the symmetric eigenmodes of the plate P are indicated 

by vertical dotted lines. For comparison, finite element computation of the symmet- 

ric guided waves wavenumbers ( ).

• out of the evanescent zones, a strong un-conventional disper- 

sion is observed with singularities at the eigenfrequencies of

the antisymmetric modes f tn .

In Fig. 10 , the wavenumbers calculated from (22) and (23) of

the antisymmetric guided waves are displayed. The same com- 

ments than those made for the made for symmetric guided waves 

apply, the cut-off frequencies being here given by the eigenfre- 

quencies f tn of the antisymmetric modes. Remark that the succes- 

sive branches of the guided waves are alternatively associated with 

symmetric and antisymmetric modes. 

6.2.3. Comparison with numerical approaches of dispersion 
For comparison with the theoretical approach, the ribbed plate 

R 1 has been investigated numerically in the framework of the 

Floquet-Bloch method. The latter explicitly accounts for the peri- 

odicity of the cell to extract its propagation characteristics. 

The modeled unit cell � consists in a thin slice of depth � de- 

picted in Fig. 11 . The cell is described through a three-dimensional 

finite element model. Phase shift conditions are imposed on the 

opposite faces of the unit cell as u b = exp (− jk x 1 �) u f where u f 
and u b are the displacements of forward and backward part of 

the cell, k x 1 is the wavenumber along the a 1 direction. For a given 

frequency, the dynamic balance formulated from the stiffness and 

mass matrices yields an eigenvalue problem whose resolution en- 

ables to track the various dispersion branches. The implementation 

of the eigenvalue problem is performed using the Wave Finite El- 

ement Method ( Ichchou et al., 2008b ) improved by modal reduc- 

tion ( Zhou et al., 2015 ) and ( Droz et al., 2014 ) denoted hereafter 

CWFEM (Condensed Wave Finite Element Method). Note that for 

clear identification of guided waves, we defined specific phase shift 

conditions corresponding to a plate having two opposites sides at 

rest. The computed dispersion diagram of the waves propagating 

waves along a 1 is presented in Fig. 12 . One notices 

• two linear branches that correspond to the in-plane shear and
compressional modes which are not dispersive (in the fre- 

quency range under study). Their wavenumbers are classically

given by the mean values of the modulus and density of the

beam B and the plate P . Namely k c = ω

√ 
ρ
μ and k s = ω 

√ 
ρ

E

respectively, where E = (E b bl + E ′ p dD ) /S, μ = (μb bl + μp dD ) /S, 
ρ = (ρb bl + ρp dD ) /S, S = bl + dD .
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Fig. 9. Wavenumber of the torsional wave (real part ( ) and imaginary part ( ))

and of the first antisymmetric guided waves ( ). For comparison, the torsional

wavenumbers of the beam B itself are also plotted ( ). The shadowed zones cor- 

responds to the frequency bands of negative effective torsional inertia ( ). The

maximum value of the wavenumber for the validity of the beam model itself in

bending ( ).

500 1000 1500 2000 2500 3000 3500 4000
−20

−10

0

10

20

30

40

50

60

f
2
=1432 Hz

W
av

en
u
m

b
er

 k
x

1
 [

m
−

1
]

Frequency [Hz]

Fig. 10. Wavenumbers of the antisymmetric guided waves of the ribbed plate R 1 
derived from (22) (real part ( ) and imaginary part ( )) and from (23) (real

part ). The eigenfrequencies of the antisymmetric eigenmodes of the plate P are 

indicated by vertical dotted lines. For comparison, finite element computation of

the antisymmetric guided waves wavenumbers ( ).

Fig. 11. Periodic cell of ribbed plate considered for the computation of full disper- 

sion diagram Fig. 12 (a), and for the computation of guided waves wavenumbers

only Fig. 8,10 (b).
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Fig. 12. Dispersion curves of the ribbed plate R 1 computed through CWFEM ( ). 
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Fig. 13. Wavenumbers of the symmetric modes of propagation. Homogenized

model that encompass inner resonance in bending (real part ( ) and imaginary

part ( )) and guided waves (real part ( ) and imaginary part ( ). CWFEM

computation ( ). Computation of the symmetric guided waves wavenumbers ( ).

• other non linear branches corresponding to dispersive waves

involving out-of-plane kinematics. However, the identification of

the torsional or flexural nature of theses dispersive modes is

not achievable from the dispersion curves only.

The Figs. 13 and 14 provide the theoretical/numerical com- 

parison of the dispersion diagram associated with the symmet- 

ric and antisymmetric wave kinematics respectively. On both fig- 

ures, one notices the good agreement between the numerical sim- 

ulations and the wavenumbers given by the homogenized model 

with active or passive beams. The ribbed plate model ease the un- 

derstanding of the dispersion features: the bending and torsional 

kinematics are clearly identified, as well as the transition between 

the different branches and the cut-on frequency of the guided 

waves corresponding to the eigenfrequencies of the plate. The acti- 

vation of the torsional kinematics around 750 and 2460 Hz is also 

correctly predicted. 
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Fig. 14. Wavenumbers of the antisymmetric modes of propagation. Homogenized

model that encompass inner resonance in torsion (real part ( ) and imaginary part

( )) and guided waves (real part ( ) and imaginary part ( )). CWFEM com- 

putation ( ). Computation of the antisymmetric guided waves wavenumbers ( ).

6.3. Wave dispersion of ribbed plate R 2 

The same analysis has been performed on the ribbed plate R 2 

(see Table 1 ). The comparison of the theoretical/numerical results 

displayed in Fig. 15 shows a good agreement. These two different 

examples R 1 and R 2 substantiate the validity and the robustness 

of the homogenized model. 

6.4. Implementation of the homogenized model for finite ribbed plate 

6.4.1. Further comments on the co-dynamic condition 
Let us formulate more precisely the co-dynamic condition. As 

shown above the singular behavior of the ribbed plates is asso- 

ciated to the eigenmodes and frequency of the plate. Thus for a 

ribbed plate of finite size L, one may reach different co-dynamic 

situation according the considered mode for the beam and the 

plate. 

For a ribbed plate clamped at its extremities, the size L nJ such 

that the n th symmetric mode of the plate arises at the same fre- 

quency than that of the J th mode in bending of the beam can be 

assessed being expressing that ω sn = ω J . By definition: 

ω sn = δ2 
P 

√ 

E ′ p I p

p 

; ω J = δ2 
B 

√
E b I b 

b 

and, in accordance with the resonance states δP D = (2 n − 1 / 2) π , 

δB L nJ = (J + 1 / 2) π . This yields 

L nJ = D 
J + 1 / 2 

2 n − 1 / 2 
4 

√
E b I b 
p 

E ′ p I p 
b

The same reasoning enables to assess the size L ′ mK such that the 

frequency ω tm of the m th antisymmetric mode of the plate coin- 

cides with the frequency of the K th mode in torsion of the beam. 

In that case 

ω tm = δ2 
P 

√ 

E ′ p I p

p 

; ω K = δ′ 
B 

√
G b I b 

ρb J b 

and, we have δP D = (2 m + 1 / 2) π , δ′ 
B L ′mK = Kπ , so that 

L 
′ 
mK = D 

K 
2 m + 1 / 2 

4 

√ 

E b I b 

b 

√
ρb J b 
G b I b 

14



Fig. 15. (a) Wavenumbers of the symmetric modes of propagation. Homogenized model that encompass inner resonance in bending (real part ( ) and imaginary part ( ))

; (b) Wavenumbers of the antisymmetric modes of propagation. Homogenized model that encompass inner resonance in torsion (real part ( ) and imaginary part ( )).

Guided waves (real part ( ) and imaginary part ( ). CWFEM computation ( ). Computation of the guided waves wavenumbers ( ).

Fig. 16. Distribution of eigenfrequencies associated with the plate ( ) and the beam ( ) in bending (a) and torsion (b), with corresponding beam length suitable

for co-resonance.

A graphical representation of the flexural and torsional co- 

resonance matching is given in Fig. 16 for the ribbed plate R 1 

clamped at its extremities. The indicated lengths correspond to 

L ′ n 1 , L ′ m 1 , n, m = 1 , 2 , 3 so that the fundamental mode of the beam 

coincide with a given mode of the plate. For instance, considering 

a plate of length L 31 , the co-resonance regime is reached at ω s 3 . 

At frequencies { ω s 1 , ω s 2 }, the beam may undergoes a quasi-static 

regime however inner resonance appear in the plate. This will also 

be the case for antisymmetric modes at { ω t1 , ω t2 , . . . } since the
eigenfrequencies of the beam in torsion are much higher than in 

bending. Conversely, at frequencies ω sn , n > 3 the beam undergoes 

a dynamic regime (not necessarily at resonance) and the plate res- 

onates. 

As a numerical example, considering a clamped ribbed plate R 1 

of length L = 0 . 5 m, the fundamental and higher eigenfrequencies 

in bending of the beam and the plate are close and occur at [519 ; 

1432 ; 2808 ; 4641 ;...] Hz, while they significantly differ in tor- 

sion since the torsional resonance of the beam occur at [2840 ; 

5680 ;...] Hz. Focusing on the fundamental bending mode, the five 

dimensionless parameters are { ǫb = 0.05 ; ǫp = 0.017, ε = 0.36, 

E p /E b = 1 , ρb / ρp = 1}. Note that (i) the condition of asymmetric 

coupling (3) is satisfied since 
E b ǫ

4 
b 

E p ǫ3 p 
= 1 . 2 = O (1) , and (ii) the di- 

mensionless parameters are small enough to insure scale separa- 

tion. 

Symmetric modes enable to reach the co-dynamic condition in 

bending and leads to L ω p;1 , 3 , 5 . Alternatively, antisymmetric modes 

yields the design for co-dynamic regime when the plate makes the 

beam rotate and yields L ′ ω p;2 , 4 , 6 . 

6.4.2. Frequency response functions of a finite ribbed plate 
As an example of implementation of the homogenized model 

in bending (18) the frequency response functions (FRF) of the 

ribbed plate R 1 , of finite length 0.5 m, clamped at both extrem- 

ities has been determined considering identical imposed harmonic 

displacements at the clamped extremities. The reference is taken 
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Fig. 17. (a) Two-dimensional representation of transfer functions calculated for the beam alone (top) and with the resonating plate (bottom). (b) Flexural wavenumber,

analytical ( ), reconstructed by IWC from theoretical FRFs ( ). Calculation with clamped-clamped conditions.

Fig. 18. Transfer function H on the ribbed plate with inner resonance : homoge- 

nized ( ), FEM ( ).

onto the extremity while the receiver is located at any point along 

the beam. In order to show the effect of inner resonance, a two- 

dimensional representation of the FRFs is presented in Fig. 17 . 

These analytical FRFs are plotted with respect to the receiver’s po- 

sition on the beam, (for its half-length only because of the sym- 

metry). In absence of inner resonance, the symmetric modes reso- 

nance frequencies of the beam are identified as stripes around 519 

and 2808 Hz. Accounting for the inner resonance effects leads to 

significant decrease of amplitude at those particular frequencies. 

Attenuation zones spread over the whole length of the beam ex- 

cept around x = 0 , i.e. in the neighborhood of the excitation. The 

counterpart is the creation of two peaks on both sides of the anti- 

resonance. The dispersion curve associated with flexural waves in 

the beam affected by local resonance of the plate, as that pre- 

sented in Fig. 7 , can be recovered from these FRFs using the IWC 

(Inhomogeneous Wave Correlation) ( Berthaut et al., 2005 ) and Mc 

Daniel ( McDaniel and Shepard, 20 0 0 ) methods. Such a processing 

is performed here on theoretical FRFs and illustrated in Fig. 17 . 

Similar post-processing was achieved on experimental FRF’s and 

will be published in a forthcoming paper. 

Note that anti-resonances appear exactly at the beam eigenfre- 

quencies since the same boundary conditions for the beam and 

the plate were considered to illustrate the case of co-resonance. 

Considering, for example, clamped-free boundary conditions with 

(18) would yield another distribution of eigenfrequencies and anti- 

resonances while band gaps associated with the plate would not 

change. 

For consistency, an analytical forced response is compared with 

the computation in Fig. 18 . For this comparison, the receiver is lo- 

cated at the half-length of the beam x r = 0 . 25 m and the refer- 

ence is taken onto the excitation point x e = 0 . The transfer function 

H = U (x r ) /U (x e ) is plotted as the ratio of transverse displacements 

at the receiver’s location and the excitation, two curves match cor- 

rectly, and this preliminary comparison constitutes a promising re- 

sult pending experimental validation. 

7. Conclusion

Asymptotic homogenization applied to periodically ribbed 

plates allowed predicting their macroscopic behavior accounting 

for inner resonance resulting from contrasted geometrical param- 

eters and/or mechanical properties. These contrasts lead to situa- 

tions of co-resonance and asymmetric coupling between the plate 

and the beam. In this context, and within the scale separation as- 

sumption, the procedure yields an analytical homogenized model 

constituted by the set of equations (18) - (19) - (39) whose the ef- 

fective parameters are fully determined from the knowledge of 

the mechanical and geometrical parameters of the plate and beam 

constituting the structure. The complex dynamic behavior is shown 

to encompass several mechanisms associated with enriched kine- 

matics: 

• for both flexural and torsional kinematics, one identifies two

types of waves governed by two distinct differential equations

that describes (i) waves where both beam and plate moves, and

(ii) guided waves where the plate only is set in motion,
• the flexural waves with active beam are affected by the fre- 

quency dependent effective mass of the moving plate that takes

positive or negative values. The consequence on the dispersion

is to induce singularities associated with the symmetric eigen- 

modes. In particular, frequency bands of strong attenuation ap- 

pear,
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• the torsional waves with active beam are affected by both the

effective rotational inertia and the torsional spring rigidity aris- 

ing from the bended plate. Both of these contributions are fre- 

quency dependent and combine together so that the torsional

wave also exhibit un-conventional dispersion with cutoff fre- 

quencies and attenuation zones associated with antisymmetric

modes of the plate. Notably, at low frequencies only evanescent

waves exist,
• the guided waves are alternatively related to the symmetric and

antisymmetric modes of the moving plate and are propagative

above the corresponding eigenfrequencies.

By principle, the WFE method is more versatile and general 

than the presented model well suited for ribbed plates. How- 

ever, the interpretation of the WFE computed dispersion curves for 

this coupled physics problem is difficult and the presented model 

solves the problem by explaining in detail the origins and param- 

eters controlling these curves. All the branches of the dispersion 

diagram are identified from the homogenized model and each of 

them is ruled by a specific dispersion equation established the- 

oretically under an explicit form. Furthermore, the predictions of 

the homogenized model have been successfully compared to nu- 

merical calculations conducted using CWFEM method. Particularly, 

the homogenized model captures correctly the local resonances ap- 

pearing on the flexural and torsional branches as well as cut-off

frequencies of the torsional and guided waves. 

The scale separation assumption, together with the co- 

resonance matching and the asymmetric coupling can be re- 

expressed in terms of design rules to design ribbed plate panels 

having specific atypical features in a given frequency range. 

Experimental validation has been performed and will be pre- 

sented in a forthcoming publication. In addition, extensions to 

orthogonally-ribbed plates are in progress to describe cellular pan- 

els, as investigated e.g. in Varanasi et al. (2013) , or membrane-type 

metamaterials. 
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Appendix A. Derivation of the beam model 

A1. Scaled formulation 

The beam kinematics is constrained by the fact that tangen- 

tial stress are negligible on ∂S b − Ŵb . The normal vector associated 

with the contour ∂S b is n = n αa α, thus: 

σ1 αn α = 0 /∂S b with σ1 α = μ(∂ x α ˜ u 1 + ∂ x 1 ̃  u α) 

Since ∂ x α ˜ u 1 = O ( ̃  u 1 /l) and ∂ x 1 ̃  u α = O ( ̃  u α/L ) , the vanishing of 
tangential stress σ 1 α on ∂S b requires, for the components of ˜ u = 

˜ u 1 a 1 + ˜ u αa α: 

O 

(
˜ u 1 
l 

)
= O 

(
˜ u α
L 

)
so O ( ̃  u 1 ) = ǫb O ( ̃  u α ) 

Hence, the displacements along the axis are of a lower order com- 

pared to transverse displacements. Thus the displacements are nor- 

malized writing u 1 = ǫb u 1 in such a way that O (u 1 ) = O (u α ) : 

˜ u = ǫb u 1 a 1 + u αa α (A.1) 

According to the beam geometry, the tensors of strains e 

and stresses σ split into three reduced tensors, as A = A N a 1 �
a 1 + ( A T � a 1 + a 1 � A T ) + A 

S 
with A N = A 11 is the axial stress or

strain (scalar), A T = A 1 αa α are the section out-of-plane stress or 

strain (vector), A 
S 

= A αβ ( a α � a β + a β � a α ) are the section in- 

plane stress or strain (tensor). The elastic linear isotropic constitu- 

tive law reads σ = λtr( e ) + 2 μe , and denoting I 
S 

= e 2 � e 2 + e 3 �
e 3 the identity tensor in the section, the reduced stress tensors 
read: 

σN = λ(tr( e 
S 
) + e N ) + 2 μe N σ T = 2 μe T

σ
S 

= λ(tr( e 
S 
) + e N ) I S + 2 μe 

S

The local governing equation consists in the momentum bal- 

ance with body force b and contact force f ( f = f + on Ŵ+ 
b and

f = f − on Ŵ−
b ):

di v y ( σ ) = b in S b ; σ . n = 

{
0 on ∂S b − Ŵb 
f on Ŵb 

(A.2) 

Expressed in a two-scale form, (A.2) splits into a scalar balance 

along the length of the beam (along a 1 ): 

∂σN 

∂ x 1 
+ ǫ−1 

b di v y ( σ T ) = b 1 in S b ; σ T . n =
{
0 on ∂S b − Ŵb 
f 1 on Ŵb 

(A.3) 

and a vectorial balance in the section plane (in the ( a 2 , a 3 ) plane): 

∂ σ T 

∂ x 1 
+ ǫ−1 

b di v y ( σ S 
) = b αa α in S b ; σ

S 
. n =

{
0 on ∂S b − Ŵb 
f αa α on Ŵb 

(A.4) 

In order to satisfy the separation of scales, loading terms b 

and f must be introduced at orders b 1 = ǫb b 
1 
1 , b α = ǫ2 

b b 
2 
α, f 1 = 

ǫ2 
b f 

2 
1 , f α = ǫ3 

b f 
3 
α . Consequently, the three first problems related to 

the local balance are the same as in the static unloaded case. In 

dynamics, the body force term b in (A.2) reads b = −ρω 2 u where 

the axial component is held by u 1 1 and the transverse component 

is held by u 0 α, so that b 1 1 = −ρω 2 u 1 1 and b 
2 
α = −ρω 2 u 0 α . 

The global balances of forces and momentum acting on the 

section are obtained by integrating over the beam section S b the 
scalar and vectorial balances. It defines N a 1 the normal effort N =∫ 
S b 

σN ds and the shear force T = T αa α =
∫ 
S b 

σ T ds . The flexural mo- 

mentum around y 2 and y 3 : M = M αa α = 
∫ 
S b 
y 
α
σN ds, α = 2 , 3 , and

the torsional moment around x 1 : M 1 = 
∫ 
S b 
y ∧ σ T ds . The global 

equilibrium for normal and shear forces, flexural and torsional mo- 

mentum, are written in the axial direction a 1 : 
dN 
dx 1 

= 
∫ 
S b
b 1 ds + 

∫ 
Ŵb

f 1 dγ ; d M 1 
dx 1

= 
∫ 
Ŵ y ∧ b α, and in transverse directions ( a 2 , a 3 ) : 

d T
dx 1

= ( 
∫ 
S b 
b αds + 

∫ 
Ŵb 

f αdγ ) a α ; d M 
dx 1 

− T = 
∫ 
S b 
b 1 y ds + 

∫ 
Ŵb 

f 1 y dγ . To 

get the full description of the beam, it remains now to establish 

the constitutive laws. 

A2. Beam model derived by asymptotic expansions 

The purpose now is to derive the beam behavior through 

asymptotic approach. Each field of the problem (displacements, 

stresses, strains) is seeked in the form of an asymptotic expansions 

in power of ǫb . Due to (A.1) , the balance equations and boundary 

conditions contain either terms in even (A.3) or odd (A.4) power 

of ǫb . Thus, it is enough to expand u i in even powers of ǫb : 

˜ u = 

∞ ∑ 

i =0

ǫ2 i 
b (ǫb u 

2 i +1 
1 a 1 + u 2 i α a α ) , with ˜ u 1 =

∞ ∑ 

i =0

ǫ2 i +1 
b u 2 i +1 

1 , and 

˜ u α = 

∞ ∑ 

i =0

ǫ2 i 
b u 

2 i 
α

17



Thus, the reduced strain and stress tensors in the axis and in 

the cross-section (respectively tangential) are expanded in odd (re- 

spectively even) powers of ǫb : 

e N = ǫ1 
b e 

(1) 
N + ǫ3 

b e 
(3) 
N + . . . σN = ǫ−1 

b σ (−1) 
N + ǫb σ

(1) 
N + . . . 

e T = ǫ0 
b e 

(0) 
T + ǫ2 

b e 
(2) 
T + . . . σ T = ǫ0 

b σ
(0) 
T + ǫ2 

b σ
(2) 
T + . . . 

e 
S 

= ǫ−1 
b e 

(−1) 
s

+ ǫ1 
b e 

(1) 
S

+ . . . σ
S = ǫ−1 

b σ (−1) 
S + ǫ1 

b σ
(1) 
S + . . . 

These expansions (A.5) are then introduced in balance Eqs.

(A .3) and (A .4) . This yields a series on the form 
∑ 

i ǫ
i 
b P 

i = 0 , ∀ ǫb <<

1 , which leads to solve successively problems on the form P i = 0 . 

This resolution is performed solving alternatively problems in the 

axis and in the cross-section. 

The first problem derived from (A.4) at order ǫ−2 
b expresses the 

in-plane equilibrium in the section of the tensor σ−1 
S , without ex- 

ternal force: 

di v y ( σ
−1 
S 

) = 0 in S b ; σ−1 
S

= 2 μe −1 
S

+ λ(tr( e −1 
S

)) I S 

σ−1 
S

. n = 0 on ∂S b 

The resolution shows that the displacement u 0 at order 0 is a 
rigid body motion of the cross-section in its plane, i.e . translation 
U 0 and rotation �−1 a 1 .

u 0 = u 0 αa α = U 
0 
α(x 1 ) a α + �−1 a 1 ∧ y

And consequently, e Sy (u 0 ) = 0 , σ−1 
S 

= 0 and σ−1 
N = 0 . As the trans- 

lation and the rotation are two independent mechanisms, we can 

consider that the rotation �−1 = 0 . 

The second problem derived from (A.3) at order ǫ−1 
b expresses 

the axial balance of the section. Since σ−1 
N = 0 , it reads: 

di v y ( σ 0 
T ) = 0 in S b ; σ 0 

T = μ(∂ y αu 
1
1 + ∂ x 1 U 

0 
α ) a α

σ 0 
T . n = 0 on ∂S b

which solution follows the Euler–Bernoulli kinematics u 1 = 

u 1 1 a 1 with u 1 1 = −y α∂ x 1 U 0 α + U 1 1 (x 1 ) , so that e 
0 
T = 0 and σ 0 

T = 0 , and 

finally e 0 = 0 and σ 0 = 0 . 

The third problem derived from (A.4) at order ǫ0 
b deals with the 

equilibrium in the section of the tensor σ 1 
S
,

di v y ( σ
1 
S 
) = 0 in S b ; σ 1 

S 
= 2 μe1 

S
+ λ(tr( e 1 

S
) + e 1 N ) I S 

σ 1 
S 
. n = 0 on ∂S b

The resolution gives e 1 
S

= −νe 1 N I and σ 1 
N = E b e 

1 
N where e 1 N = 

∂ x 1 u 
1 
1 and σ

0 
S

= 0 . Integrating σ 1 
N and y ασ 1 

N over the section S b 
yields respectively the normal effort N and the constitutive law for 

flexural moments M : 

N = 

∫ 

S b

σ 1 
N ds = E b S b 

dU 1 1 

dx 1 
; M = 

∫ 

S b

σ 1 
N y αds a α = −E b I bα

d 2 U 0 α

dx 2 1 
a α

The fourth problem derived from (A.3) at order ǫb deals with 

the axial balance of σ 2 
T in presence of a dynamic term and contact 

force on Ŵ: 

∂ x 1 σ
1 
N + di v y ( σ 2 

T ) = −ρω 
2 u 1 1 in S b σ 2 

T = μ(∂ y αu 
3
1 + ∂ x 1 U 

2 
α ) a α

σ 2 
T . n =

{
0 on ∂S b − Ŵb 
f 1 on Ŵb 

Integrating the axial balance over the section S b leads to 

∂ x 1 
∫ 
S b 

σ 1 
N +

∫ 
S b 
di v y ( σ 2 

T ) = −ρω 2 
∫ 
S b 
u 1 1 . Furthermore, noting: 

∫ 

S b

di v y ( σ 2 
T ) =

∫ 

Ŵb

σ 2 
T .n Ŵb =

∫ 

Ŵb

f 1 

with n 2 the component of the outgoing normal of the beam sec- 

tion, taking the value ±1 on Ŵ±
b , one obtains the axial balance 

along a 1 : 

∂ x 1 N + 

∫ 

Ŵb

f 1 = −ρω 
2 

∫ 

S b

u 1 1 

In a similar way, the momentum balance is obtained by multi- 

plying the axial balance by y α , then integrating over S b yields 

∂ x 1 

∫ 

S b

y ασ 1 
N + 

∫ 

S b

y αdi v y σ 2 
T = −ρb S b ω 

2

∫ 

S b

y αu 1 1 

noting that 
∫ 

S b

y αdi v y ( σ 2 
T ) =

∫ 

S
di v y (y ασ 2 

T ) −
∫ 

S b

σ 2 
T grad y (y α )

In addition, we have on one hand 
∫ 

S b

di v y (y ασ 2 
T ) =

∫ 

Ŵb

y α( σ 2 
T . a 2 ) =

∫ 

Ŵb

y α f 1 

and, on the other hand 
∫ 

S b

σ 2 
T grad y (y α ) =

∫ 

S b

σ 2 
T 1 α

= T α

We obtain the moment balance along a α: 

∂ x 1 M + 

∫ 

Ŵb

y α f 1 − T α = −ρω 
2

∫ 

S b

y u 1 1 

The inertial term is specified further observing that 

∫ 

S b

y αu 1 1 = 

∫ 

S b

(
−y αy β

∂U 0 
β

∂x 1 
+ y αU 

1 
1 (x 1 ) 

)

= −
∂U 0 α

∂x 1 

∫ 

S b

y 2 α = E b I bα
∂U 0 

∂x 1 

The fifth problem derived from (A.4) at order ǫ2 
b deals with the 

equilibrium in the section of the tensor σ 3 
S
. 

∂ x 1 σ
2 
T + di v y ( σ

3 
S 
) = −ρb ω 

2 (U αa α ) in S b σ 3 
S 
. n = 0 on ∂S b − Ŵb

Integrating this expression over S b yields 
∫ 

S b

∂ x 1 σ
2 
T +

∫ 

S b

di v y ( σ
3 
S 
) = −ρb S b ω 

2 U αa α

On one hand, the first left hand side term is ∂ x 1 T , and on the 
other hand: 
∫ 

S b

di v y ( σ 3 
S 
) =

∫ 

Ŵb

σ 3 
S 
n Ŵ =

∫ 

Ŵb

f αa α

The term b α accounting for transverse dynamic appears in the 

global shear effort in the form: 

∂ x 1 T = −ρb S b ω 
2 U 

0 
αa α −

∫ 

Ŵb

f αa α

To sum-up, the global balance equation for compression, and 

the bending moment, moment balance along a α , and the global 

shear effort are: 

⎧
⎪ ⎪ ⎨ 

⎪⎪ ⎩ 

∂ x 1 N + 

∫ 

Ŵb

f 1 = −ρω 
2 

∫ 

S b

u 1 1 

N = E b S b 
dU 1 1 

dx 1 

;

⎧
⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎨
⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎩ 

∂ x 1 T α + 

∫ 

Ŵb

f αa α

= −ρb S b ω 2 U 0 α(x 1 )

∂ x 1 M + 

∫ 

Ŵb

y α f 1 − T α = 0 

M = −E b I b 
d 2 U 0 α

dx 2 1 
(A.6) 
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