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Abstract

Predicting a new response from a covariate is a challenging task in regression, which raises
new question since the era of high-dimensional data. In this paper, we are interested in
the inverse regression method from a theoretical viewpoint. Theoretical results for the
well-known Gaussian linear model are well-known, but the curse of dimensionality has
increased the interest of practitioners and theoreticians into generalization of those results
for various estimators, calibrated for the high-dimension context. We propose to focus on
inverse regression. It is known to be a reliable and efficient approach when the number
of features exceeds the number of observations. Indeed, under some conditions, dealing
with the inverse regression problem associated to a forward regression problem drastically
reduces the number of parameters to estimate, makes the problem tractable and allows to
consider more general distributions, as elliptical distributions. When both the responses
and the covariates are multivariate, estimators constructed by the inverse regression are
studied in this paper, the main result being explicit asymptotic prediction regions for the
response. The performances of the proposed estimators and prediction regions are also
analyzed through a simulation study and compared with usual estimators.

Keywords: Inverse regression, Prediction regions, Confidence regions, High-dimension,
Asymptotic distribution

1. Introduction

In a multiple (several response variables) and multivariate (several predictors) regression
framework, one wants to describe a response Y ∈ RL from regressors X ∈ RD. When con-
sidering a high number of predictors, the number of parameters could be quickly larger than
the sample size, making the estimates impossible to compute in practice or/and providing
bad performances for estimators such as lack of stability. This phenomena is generally re-
ferred as curse of dimensionality. Several tricks have been proposed in the literature to cope
with this issue.

For Gaussian linear models, one of the most famous method is variable selection based
on regularized regression, which reduces the dimension of the regression problem to the
subset of the most relevant features. Methods include the Lasso (Tibshirani, 1994), the
Dantzig selector (Candes and Tao, 2007), or the Ridge estimator (Hoerl and Kennard,
1970) to refer to the most popular. These widely used methods are designed to account for
univariate response and few implementations exist for multivariate response, considering
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then independent response terms. Some extensions have been proposed for generalized
linear models, as introduced for example in Bühlmann and van de Geer (2011).

Another way to deal with high dimensional data consists in dimension reduction tech-
niques which extract components or latent variables that summarize the information of a
large dataset into a small dimension space. For example, the Principal Component Regres-
sion (PCR) selects a subset of principal components for regression and focuses on hyper-
planes; the Partial Least Square regression (PLS) projects the predicted variables and looks
for latent variables, correlated to both response and covariates, in order to perform the
regression of Y on X in a space of lower dimension than D ; and the Sliced Inverse Regres-
sion (SIR) introduced in Li (1991) restricts the regressors to few projections by inverting
the role of predictors and response. SIR is based on a prior linear dimension reduction by
considering the covariance matrix of the inverse expectation E(X|Y) (hence the name of
the method). The main assumption of SIR relies on Linearity Design Condition, satisfied
by elliptical distributions, among which Gaussian distribution, Student distribution and
Laplace distribution for the most known. The eigenvectors of this covariance matrix are
computed in order to find a subspace that retains the information on Y contained by the
predictors. Many extensions have been proposed, some of them very recently, to data with
array (tensor)-valued predictors Ding and Cook (2015), to non linear regression through
score function Babichev and Bach (2018), to a sparse estimator Lin et al. (2019) to cite just
a few. Some theoretical results have been derived for SIR, as in Hsing and Carroll (1992)
where they proved the consistency and asymptotic normality for the 2-slices estimator, and
extended for K slices in Saracco (1997). However, the number of axes to retain must be
specified beforehand, which is one of the main drawbacks of those methods. Even if pro-
cedures have been proposed to choose this parameter (e.g., cross validation, elbow rule, or
other heuristics), results are still sensitive to this choice.

More precisely, in the context of regression with random predictors, several authors pro-
posed reduction dimension techniques based on the joint distribution of both predictors and
response (George and Oman, 1996; Helland, 1992; Helland and Almøy, 1994) to identify
components used to reduce the dimension of predictors matrix. Interestingly, while the
regression of interest (referred as forward regression in the literature) usually models the
conditional distribution of response given predictors Y|X, some authors explored the prop-
erties of inverse models, meaning that the conditional distribution of predictors is studied
given the response X|Y (referred as inverse regression (Oman, 1991)). It has first been
introduced for simple linear regression in the Gaussian setting in Krutchkoff (1967); Hunter
and Lamboy (1981); Williams (1969) in which it is compared to the least square approach.
Its prediction properties have also been studied in Parker et al. (2010) and we found ap-
plications of inverse regression to calibration problem (Kannan et al. (2007)) in industrial
sector. See also Cook (2007) for an interesting overview of these techniques. The goal of
inverse regression techniques is to preserve the information on the regression of interest by
studying the inverse conditional distribution as it is directly related to the forward condi-
tional distribution of interest. It consists in inverting the role of response and covariates in
the regression model to estimate parameters, taking benefit of the large number of regres-
sors as observations and of the small size of the response. Some works have also considered
this method combined with mixture model to propose a nonlinear estimator, for the specific
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case of Gaussian distribution Deleforge et al. (2015) or Student distribution Perthame et al.
(2018).

Whereas variable selection methods are mainly used for high-dimensional data, the
inverse regression approach is particularly interesting in three specific frameworks. First,
when D >> N , if a large number of covariates is known to have an impact on the response
(e.g. in planetology (Deleforge et al., 2015)), selecting variables is not relevant while inverse
regression is effective. Secondly, when dealing with large dimension for both sample size
and number of predictors (N and D large), inverse regression is efficient under few weak
assumptions: it avoids the inversion of a large empirical covariance matrix which is time
consuming in practice even if it is invertible in theory. Thirdly, inverse regression has
the advantage to allow multiple response potentially correlated, which is more and more
frequent with real data (e.g. in biology with measurement of multiple phenotypes (El Behi
et al., 2017)). Moreover, a more general paradigm is considered for theoretical results,
by considering data is modelled within elliptically contoured distributions. It encompasses
(among others) the very classical Gaussian as well as Student and contaminated Gaussian
distributions, which own good properties for extreme values or outliers.

In this paper, we propose to address the multiple linear regression problem under an
inverse regression approach. We study first the theoretical properties of the estimators of
the inverse regression model. Then we focus on a prediction purpose by deriving prediction
regions. Indeed, under the linear modelling framework, one can predict a new response from
a new covariate using the estimator of regression coefficient matrix A?. Provided that an
estimator of A? is available, it is relevant to quantify uncertainty around this prediction.
This paper focuses on both confidence region for parameters estimates and prediction regions
in high-dimensional settings.

Note that few theoretical confidence intervals have been derived in high dimensional
context. For Lasso based estimators, Javanmard and Montanari (2014); van de Geer et al.
(2014); Zhang and Zhang (2014) derive confidence regions for slope coefficient and statis-
tical testing of sparsity for linear model using several tools: relaxed projection Zhang and
Zhang (2014), desparsifying Lasso van de Geer et al. (2014) or through the computation of
an approximate inverse of the Gram matrix Javanmard and Montanari (2014). Since those
pioneer works, several articles have provided extensions for more general models or estima-
tors, as generalised linear model (van de Geer et al. (2014) for convex loss function, Janková
and van de Geer (2015) for subdifferential loss). We also refer to Meinshausen (2015) for
groups of variables and Stucky and van de Geer (2017) for linear regression models with
structured sparsity, among others. However, those results rely on strong assumptions on
the design and although some authors consider more practical aspects (Chao et al., 2015;
Lee et al., 2016), those results still remain difficult to be implemented.

In this paper, we propose to address the linear regression problem for elliptical distri-
butions under an inverse regression approach rather than sparse regression. We assume
that the residuals of the inverse model are not correlated which reduces the number of
parameters to estimate and overcome the dimensionality burden, while allowing both co-
variates and residuals of the forward model to be dependent. In this modelling context,
assessing confidence in predicted values is one major goal in the manner of least square
estimator. However, when the number of predictors becomes too large, least square method
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suffers from the curse of dimensionality, has bad performances and is computationally in-
tensive while inverse regression approach tackles those problems. Under our framework, we
get asymptotic distribution for parameters estimates, and then derive confidence regions
for slope coefficients. Moreover, we derive a theorem to quantify prediction uncertainty
through asymptotic prediction regions. Then, the properties of parameters estimates are
illustrated in an intensive simulation study through finite distance examples.

The paper is organised as follows. In Section 2, the inverse regression model is in-
troduced, as well as the estimation and prediction procedure. Asymptotic distribution of
parameters estimates are derived in Section 3. Then, confidence region of slope coefficients
and prediction regions are established in Section 4. The finite-sample performance of the
proposed confidence and prediction regions are investigated in Section 5, which also includes
a comparison with existing methods namely least squares and Lasso. The paper concludes
by a discussion in Section 6.

2. Inverse regression model

In this section, the various elements of the modelling framework are introduced.

2.1 Elliptical distributions

Introduced in Li (1991), the inverse regression relies on the Linearity Design Condition
(LDC) which relates the covariates to elliptical distribution. First, recall the definition of
elliptical distributions.

Definition 1 Let X be a d-dimensional random vector. X is said to be elliptically dis-
tributed if and only if there exist a vector µ ∈ Rd, a positive semidefinite matrix Σ ∈ Rd×d
and a function φ : R+ → R such that the characteristic function t 7→ ϕX−µ(t) of X − µ
corresponds to t 7→ φ(t′Σt), t ∈ Rd. We write X ∼ Ed(µ,Σ, φ).

In this article, we focus on the characterisation provided by the following theorem (we refer
to Cambanis et al. (1981) for more details).

Theorem 2 Let X be a d-dimensional random vector. X ∼ Ed(µ,Σ, φ) with rank(Σ) = k
if and only if

X = µ+RΛU(k)

where the equality holds in distribution, and where U(k) is a k-dimensional random vector
uniformly distributed on the unit hypersphere with k − 1 dimensions Sk−1, R is a non-
negative random variable with distribution function F related to φ being stochastically in-
dependent of U(k), µ ∈ Rd and Λ ∈ Rd×k with rank(Λ) = k.

Multivariate normal distribution, multivariate t-distribution and multivariate Laplace dis-
tribution are some examples of elliptical distributions. In the following proposition we
summarise the main properties we will use in this paper. We refer to Frahm (2004) for
details.

Proposition 3 Let X ∼ Ed(µ,Σ, φ) with rank(Σ) = k. The following hold:
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• E(X) = µ,

• V ar(X) = E(R2)
k Σ = −2φ′(0) if φ is differentiable at 0,

• An affine transformation of an elliptic random variable is also elliptic.

• Conditional distribution: let X = (X1,X2), where X1 is a k-dimensional sub-vector

of X, and let Σ =

(
Σ11 Σ12

Σ21 Σ22

)
∈ Rd×d. Provided the conditional random vector

X2|X1 = x1 exists, it is also elliptically distributed: X2|(X1 = x1) ∼ Ed−k(µ∗,Σ∗, φ∗).
Moreover, it can be represented stochastically by

X2|(X1 = x1) = µ∗ +R∗U(r−k)Γ∗

where the equality holds in distribution, and U(r−k) is uniformly distributed on Sr−k−1,
and

R∗ = R
√

1− β|(R
√
βU(k) = Σ−111 (x1 − µ1))

µ∗ = µ2 + Σ21Σ
−1
11 (x1 − µ1)

Σ∗ = Σ11 − Σ12Σ
−1
22 Σ21

where β ∼ Beta(k/2, (r−k)/2) and R, β,U(k) and U(r−k) are supposed to be mutually
independent, and Σ∗ = (Γ∗)tΓ∗.

• The sum of independent elliptically distributed random vector with the same dispersion
matrix Σ is elliptical too (Hult and Lindskog, 2002).

2.2 Inverse regression method

For a vector of responses Yi ∈ RL and covariates Xi ∈ RD, let introduce the following
generative model: [

Xi

Yi

]
∼ ED+L

([
0
0

]
;

[
Σ + AΓA> AΓ

(AΓ)> Γ

]
;φ

)
; (1)

Using Proposition 3, this joint distribution leads to the linear regression problem we aim to
address in this paper, characterized by the following marginal and conditional distributions:

Xi ∼ ED(0,Γ?, φ) with rank(Γ?) = D (2)

Yi|Xi = A?Xi + εi (3)

where Y = (Y1, . . . ,YN ) ∈ RL×N corresponds to L responses for N subjects and X =
(X1, . . . ,XN ) ∈ RD×N contains D elliptical centered predictors with covariance matrix
Γ?. The error term ε = (ε1, . . . , εN ) is an unobserved L × N matrix with independent
columns elliptically distributed, ε1, . . . , εN ∼ EL(0,Σ?, φ̃) with rank(Σ?) = L, independent
from the regressors. The L × D matrix of slope coefficients is denoted by A?. When D
is large or/and when the number of observations N is smaller than D, the so-called least
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square estimate of A? is not numerically computable for the forward regression defined in
Equations (2) and (3). Indeed, it requires the inversion of the possibly large matrix X>X
which is not invertible when D > N and computationally intensive for large D when N > D.
An interesting and relatively simple approach to handle this high dimensional problem is
to consider the inverse regression problem, derived as well from the joint distribution in
Equation (1):

Yi ∼ EL(0,Γ, φ) with rank(Γ) = L (4)

Xi|Yi = AYi + ei (5)

where A is a D×L matrix of slope coefficients of the inverse regression and e = (e1, . . . , eN )
is a D ×N matrix of unobserved centered elliptical random noise with residual covariance
matrix Σ, independent from Y . The inverse regression approach consists in inverting the
response and the covariates in the model and performing regression of response on covariates.
While least squares estimate is not computable in high dimension for forward regression,
it turns out that dealing with the inverse regression problem, under some assumptions on
the noise e detailed hereafter, drastically reduces the number of parameters and makes the
problem tractable.

Note that no intercept is considered in models (4) and (5), which leads to assume that
both response and covariates are centered.

The key point of the model introduced in Equation (1) is that forward parameters
(Γ?,A?,Σ?) are expressed in function of the inverse parameters (Γ,A,Σ) through the
following one-to-one mapping :

Ψ : (Γ,A,Σ) 7→(Γ?,A?,Σ?)

=(Σ + AΓA>, (Γ−1 + A>Σ−1A)−1A>Σ−1, (Γ−1 + A>Σ−1A)−1). (6)

Details to prove the involution between forward and inverse regression are given in
Appendix, relying on the joint distribution introduced previously. As the mapping Ψ is an
involution, the forward regression parameters in model (2)-(3) map to the inverse regression
parameters in model (4)-(5). The advantage of the inverse approach appears when structure
is assumed on large covariance matrix Γ?. Indeed, the linear regression problem we address
in this paper is not computable when the number of predictors D becomes large. When
D > N , the LSE is not computable as the matrix XXT is singular and when N > D, even
if the problem is analytically tractable, computation of the LSE involves the inversion of a
large D ×D matrix. To handle this issue, a solution would be to decrease the dimension.
Three solutions can be proposed: either using variable selection (such as model selection or
lasso approaches) ; or using projection methods (such as PLS, PCR or SIR approaches) if all
variables are active in the prediction, if the user does not assume that its regression problem
is sparse, or if its purpose is just prediction, with no necessarily variable selection ; or at
last, in the same paradigm, one can decrease the dimension of the problem by reducing the
number of parameters to estimate with respect to structure assumptions on the modelling.
A drastic way to decrease the number of parameters would be to make assumptions on the
large covariance matrix involved in the problem Γ? and assume that it is diagonal. This
would result in a strong assumption on dependence structure of predictors (no correlation
allowed) but would drastically reduces the number of parameters and make the problem
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computable. Our suggestion is to assume a structured dependence among predictors which
would be flexible enough to allow correlations among predictors, but constrained enough
to efficiently decrease the dimension. For example, a block structure or a Toeplitz matrix
would be convenient. Nevertheless, it turns out that the low rank decomposition, also
known as factor model we assume for Γ? = Σ + AΓAT provides a good approximation
and is flexible enough to handle various applied problems while being numerically tractable
(Leek and Storey (2007, 2008); Carvalho et al. (2008); Sun and Cai (2009); Blum et al.
(2010); Causeur et al. (2011); Teschendorff et al. (2011); Perthame et al. (2015)). Notice
that a direct consequence of this assumption on Γ? in the forward regression problem
is to assume that the residuals of the inverse regression are not correlated, which is the
assumption we make in this paper. Assuming that Σ is diagonal drastically reduces the
number of parameters to estimate: for example, if D = 100 and L = 5, the number of
parameters to estimate goes from LD+L(L+ 1)/2 +D(D+ 1)/2 = 5565 in the full model
to LD + L(L + 1)/2 + D = 615 under our model. The robustness to this assumption is
assessed in the Case 4 of the simulation study in Section 5.

2.3 Estimation

Considering the inverse model defined in Equations (4)-(5), the least squares estimators are:

Γ̂ =
1

N − 1
Y>Y;

Â = (Y>Y)−1Y>X; (7)

∀j ∈ {1, . . . , D}, Σ̂j,j =
1

n− 1

n∑
i=1

(Xi,j − [ÂYi]j)
2.

Using mapping Ψ, it is straightforward to deduce estimators for the forward regression:

Γ̂
?

= Σ̂ + ÂΓ̂Â>; (8)

Â? = (Γ̂
−1

+ Â>Σ̂
−1

Â)−1Â>Σ̂
−1

; (9)

Σ̂
?

= (Γ̂
−1

+ Â
>
Σ̂
−1

Â)−1. (10)

The inverse regression trick allows to numerically compute those estimators even when
D >> N as it requires the inversion of the L×L matrix YTY and not the inverse of XTX
as in the forward regression. Assuming Σ is diagonal avoids also to invert a full D × D
matrix. To ensure invertible estimator of Γ, it only requires the response dimension to be
smaller than the sample size.

2.4 Prediction of the response

Considering those estimators (Â?, Γ̂
?
, Σ̂

?
), a new response ŶN+1 is predicted for a new

observed profile xN+1 from Model (3) and defined by:

ŶN+1 = E(Y|X = xN+1) = Â?xN+1.

The purpose of this article is to study the uncertainty around this prediction which can
be quantified by deriving prediction region. Moreover, we deeply study the theoretical
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properties of the estimators of this model and establish the exact distribution of Γ̂
?

and Σ̂
?

and the asymptotic distribution of Â? which is involved into prediction region computation.

3. Theoretical study of the estimators

In this section, we assume that covariance matrices Σ and Γ are both known and that Σ is
diagonal as previously stated. In this section, asymptotic distribution of estimators for the
forward regression are derived.

3.1 Matrix variate elliptical distribution and Kronecker product

First we recall some properties about the matrix variate elliptical distribution and the
tensor product. These results can be found in Gupta and Nagar (2000) Chapter 2, but
some properties are recalled in this paper as we use them extensively.

Definition 4 (Kronecker product) Let A ∈ Mm,n(R) be a m × n matrix with real ele-
ments denoted by (ai,j) with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} and B ∈Mp,q(R). Then, the
Kronecker product A⊗B is the mp× nq block matrix:

A⊗B =

a11B . . . , a1nB
...

. . .
...

am1B . . . AmnB

 .

The vectorization hereafter is used to work with vectors instead of matrices.

Definition 5 (Vectorization) The vectorization vec(A) of a matrix A is a linear trans-
formation which converts the matrix into a column vector, by stacking the columns of the
matrix on top of one another.

Gupta and Varga (1994) define the matrix variate elliptical distribution through char-
acteristic function and derive a theorem to characterize this distribution using vec operator
which is more convenient to derive results in this paper (Theorems 2.1 and 2.3 in Gupta
and Varga (1994)).

Definition 6 (Matrix variate elliptical distribution) The random variable X ∈ RL×D
is distributed according to a matrix variate elliptical distribution with mean X0 and vari-
ances U ∈ML,L(R) (among-row) and V ∈MD,D(R) (among-column), denoted

X ∼MEL,D(X0, U ⊗ V, φ),

if and only if vec(X) ∼ ELD(vec(X0), V ⊗ U, φ).

For this distribution, some interesting properties are derived.

Proposition 7 The following equivalence holds:

X ∼MEL,D(X0, U ⊗ V, φ) ⇔ XT ∼MED,L(XT
0 , V ⊗ U, φ).
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Proposition 8 If X ∼MELD(X0, U⊗V, φ), the following properties hold for A ∈Mr,L(R)
and B ∈MD,s(R)

AXB ∼MErs(AX0B,AUA
T ⊗BTV B, φ);

vec(AXB) = (BT ⊗A)vec(X).

For A ∈ Mr,L(R), B ∈ MD,s(R), C ∈ Mr,L(R), D ∈ MD,s(R) and if X has finite second
order moments, the following holds:

Cov(vec(AXB), vec(CXD)) = −2φ′(0)(BTV D ⊗AUCT );

Cov(vec(AXB), vec(CXTD)) = −2φ′(0)(BT ⊗A)E(vec(X)vec(X)T )T−1LD(DT ⊗ C)

= −2φ′(0)(BTV ⊗AU)T−1LD(DT ⊗ C) for X centered.

where TLD is the commutation matrix, transforming the vectorized form of a matrix of size
L×D into the vectorized form of its transpose.

3.2 Asymptotic distribution of Â?

In order to derive the asymptotic distribution of the forward regression coefficients Â?, the
distribution of the inverse regression coefficients matrix Â is described at first.

Proposition 9 (Distribution of Â) Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of
iid random variables satisfying the model defined in Equations (2) and (3), or equivalently
in Equations (4) and (5). Then,

√
N(Â−A) −→

N→+∞
MED,L(0,Σ⊗ Γ−1, φ).

This result is an extension of the least square estimator in the multivariate linear model
to the multiple multivariate linear model. The proof is straightforward using that Â is a
linear combination of X.

From this, we derive the asymptotic distribution of Â?. A matricial version of the
∆-method is used, which involves the differential of the function g : A 7→ A? and the
corresponding asymptotic variance of Â?. They are first computed in the following lemma.

Lemma 10 Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of iid random variables sat-
isfying the model defined in Equations (2) and (3). Let

g : RD×L → RL×D

A 7→ A? = Σ?ATΣ−1 = (Γ−1 + ATΣ−1A)−1ATΣ−1. (11)

Then the differential of this function at point (Â−A) is,

Dg(A).(Â−A) = Σ?(Â−A)TΣ−1 −Σ?(Â−A)TΣ−1AA? −A?(Â−A)A?. (12)
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Moreover, the covariance of this random matrix is given by the following, if φ is differentiable
in 0,

−1

2φ′(0)
Cov(vec(Dg(A).(Â−A))) = (13)(

(Σ−1 + (A?)TATΣ−1AA? − 2Σ−1AA?)⊗Σ?ΓΣ?
)

+ ((A?)TΓA? ⊗A?Σ(A?)T )

− 2
(
(I⊗Σ?Γ) + ((A?)TAT ⊗Σ?Γ)

)
T−1LD((A?)T ⊗A?).

Proof of Lemma 10 is given in Appendix 7.
Finally, the following theorem, which is the key of this paper, details the asymptotic

distribution of Â?.

Theorem 11 (Asymptotic distribution of Â?) Suppose ((X1,Y1), . . . , (XN ,YN )) is a
sequence of iid random variables satisfying the model defined in Equations (2) and (3). Let

g : RD×L → RL×D

A 7→ A? = Σ?ATΣ−1 = (Γ−1 + ATΣ−1A)−1ATΣ−1. (14)

Then, the following holds for the estimator Â? defined in Equation (9),

√
N(vec(Â?)− vec(A?)) →

N→+∞
EDL(0,Θ(A), φ);

where Θ(A) = Cov(vec(Dg(A).(Â−A))) defined in Equation (13).
Moreover, Θ(Â) is a consistent estimator of Θ(A), and

√
N(vec(Â?)− vec(A?))TΘ(Â)−1(vec(Â?)− vec(A?)) →

N→+∞
F (
√
.); (15)

where F is the distribution function of the random variable R involved in the stochastic
representation of vec(A?).

Proof The matrix version of the ∆-method is a second order Taylor expansion of g : A 7→
A?. Therefore, for A ∈ MD,L(R) and g defined by Equation (14), the Taylor expansion
leads to

Â? = g(Â) = g(A) +Dg(A).(Â−A) +RN (Â);

with RN (Â) a rest term that vanishes to 0 when N → +∞ and Dg(A).(Â−A) is given in
Lemma 10.

Then,

√
N(Â? −A?) =

√
NDg(A).(Â−A) +

√
NRN (Â). (16)

The last term in (16) converges to 0 in probability, and by Proposition 9, the linear combi-
nation with respect to Â defined in (12) is a matrix variate elliptical distribution, centered.
Using (13), we get the distribution of the vectorized vector vec(Â?).

10



Prediction regions through Inverse Regression

Asymptotic distribution of the quadratic form Equation (15) is deduced using both Slut-
sky’s theorem and Corollary 1 of Cambanis et al. (1981).

This result is the key theorem of this article as it provides closed-form expressions to
derive confidence regions for A? and prediction regions. As an example, assume that both X
and Y are Gaussian (setting φ = exp(−u/2)). Theorem 11 gives that Â? is asymptotically

Gaussian. Moreover, remark that the quadratic form associated to vec(Â?) asymptotically
follows a χ2 distribution with LD degrees of freedom which depends on the size of the
response and the covariates in the same way.

4. Confidence regions and predictions regions

In this section, we provide confidence regions for vec(A?) and prediction regions for Y
through the inverse regression method.

4.1 Confidence regions for A?

Theorem 12 Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of iid random variables sat-
isfying the model defined in Equations (2) and (3). Then, a confidence region for A? is

P
(

vec(A?) ∈ R̃vec(A?),α

)
→

n→+∞
1− α;

where

R̃vec(A?),α =
{
a? ∈ML,D(R) s.t. (vec(a? − Â?))TΘ(A)−1(vec(a? − Â?)) ≤ Q(1− α)

}
;

with Θ(A) = Cov(vec(Dg(A).(Â−A))) defined in Equation (13) and Q the quantile func-
tion of F (

√
.).

Those explicit formulae allow to compute confidence regions in practice. Numeric perfor-
mances stand in Section 5.

4.2 Prediction regions

Theorem 13 Suppose ((X1,Y1), . . . , (XN ,YN )) is a sequence of iid random variables sat-
isfying the model defined in Equations (2) and (3). Then,

P
(
Yn+1 ∈ P̃RY,α

)
→

n→+∞
1− α;

where

P̃RY,α =
{
y ∈ RL s.t. (17)

(y − Â?XN+1)
T (Ω(A?XN+1)−2φ′(0)Σ?)−1(y − Â?XN+1) ≤ Q(1− α)

}
;

where Ω(Â?XN+1) is the following L× L covariance matrix;

Ω(A?XN+1) = (IL ⊗XT
N+1)Θ(A)(XT

N+1 ⊗ IL);

where Θ(A) = Cov(vec(Dg(A).(Â−A))) defined in Equation (13).

11



Devijver and Perthame

One can notice that the covariance matrix that is inverted in Equation (17) breaks
down into 2 parts. The first one, Ω(A?XN+1), represents the variance of the prediction
which depends on the estimation accuracy of A? while the second part, Σ?, is the variance
inherited from the residuals. In the special case of Gaussian setting, the quadratic form in
Equation (17) associated to prediction yn+1 asymptotically follows a χ2 distribution with
L degrees of freedom. This closed-form formula is used hereafter in numerical experiments

5. Simulations

The goal of this section is to compute the prediction regions derived from the theoretical
results presented in Section 4. For several designs regarding the sample size, the dimen-
sion, the sparsity and several covariance patterns, we study the coverage, the volume of
the interval and the computation time. For comparison, we also compute prediction inter-
vals deduced from the least square estimator or a regularized approach (depending on the
dimension we consider)1.

5.1 Simulation design

In order to assess the impact of data dimension and design complexity on different estimation
methods of prediction regions, we perform a simulation study. The Gaussian setting is
considered. The response dimension L is varying in {1, 2, 5}. Indeed, when L = 1 or 2,
prediction regions are easily graphically displayable which is useful to visualize methods.
We focus on four distinct designs: for D = 100, we consider a high-dimensional one with
N = 50, an asymptotic one with N = 500 and an intermediate design with N = 100. We
also study a design with D = 1000 and N = 100 to assess our method when D is large.
Data are simulated according to an inverse regression model and forward parameters are
deduced from Equation (6). For each combination of dimension, we focus on the 4 following
scenarii:

(Case 1) Sparse regression coefficients and independent responses: A is a D × L matrix with
3% of its rows with non zero entries, uniformly drawn into a uniform distribution on
(3, 3) for D = 100 and (1, 1) for D = 1000. This setting ensures that the sparsity level
of A? is 3% regardless to L, as proposed in van de Geer et al. (2014). Coefficients are
drawn from a uniform distribution on (−2, 2) for D = 100 and (−1, 1) for D = 1000.
Matrix Γ of covariances between response terms is set to IL. The residual covariance
matrix of inverse regression Σ is set to ID. Note that a diagonal Σ and a sparse A
under the inverse model lead to a sparse matrix of regression coefficients for forward
regression A?.

(Case 2) Sparse regression coefficients and correlated responses: same as previous scenario
except that Γ is a full covariance matrix generated according to a factor model such
as dependence among response terms is rather strong.

(Case 3) Full matrix of regression coefficients and correlated responses: coefficient matrix A is
full with entries uniformly sampled in [−0.5, 0.5] for D = 100 and [−0.125, 0.125] for

1. The R code to use the 3 compared methods on simulated data is available at
https://research.pasteur.fr/fr/member/emeline-perthame/.
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D = 1000 (to ensure similar SNRs) and covariance matrix Γ is generated as in Case
2. The residual covariance matrix Σ is set to ID.

(Case 4) Unconstrained residual covariance matrix Σ: same as previous scenario except that Σ
is a full covariance matrix generated according to a factor model such as dependence
among residuals of inverse regression terms is medium. Note that this scenario violates
our assumption that Σ is diagonal and allows to assess the robustness of our approach
to this limitation.

Cases 1 and 2 mimic designs with a low number of active covariates to predict the
response. Therefore, they are favourable for the lasso, which performs variable selection.
In Case 2, responses are correlated, which might affect the lasso. Case 3 falls in our inverse
regression paradigm so it favours IR and LSE (when computable) but not the lasso. At
last, Case 4 violates the assumption we made so only LSE is favoured (when computable),
as it does not make any assumption on the structure of the design. Note that the amplitude
of coefficients in A differs from one case to another. This amplitude is adjusted in order to
make scenarii comparable regarding to the signal to noise ratio (SNR) criterion defined as:

SNR =
1

L
trace(A?Γ?(A?)T (Σ?)−1);

where trace refers to the sum of diagonal entries of a matrix. In this simulation setting, for
all cases and all values of L, the SNR varies between 8 and 10 which is rather (reasonably)
high. Note that we extended the well-known SNR definition of Verzelen and Gassiat (2017)
to our multivariate response framework. However, note that even if SNR values are similar
for the different settings, the evolution of performance with respect to L is difficult to
analyze because the difficulty of the regression problem depends on L.

Datasets are generated under a linear regression model as defined in Equations (2)-(3).
For each simulated design, 1 000 learning datasets with dimension (N,D) are generated as
well as 1 000 corresponding testing observations. Note that the computation of prediction
regions for inverse model involves the computation of a commutation matrix. To compute
such matrices, we used the fast routine implemented in the function commutation.matrix

available in the R package matrixcalc.
We compare the prediction regions derived from the 3 following methods: the proposed

method based on inverse regression referred as IR in the following, the so-called least square
estimator (LSE) for designs with N > D and a Lasso prediction interval based on bootstrap.
To our knowledge, no computation of prediction regions for the lasso is implemented into a R
package. In our simulation study, we therefore implemented our own version of prediction
regions for the lasso, based on a bootstrap approach. N observations are sampled with
replacement within the training set and lasso variable selection is applied using glmnet R
package. For each bootstrapped training set, the response of testing set is predicted. By
repeating this procedure B = 100 times, the distribution of the prediction is estimated. The
prediction region is deduced using the α/2 and 1 − α/2 quantiles of this distribution. For
more details, the code is available online on the author’s webpage. The accuracy of the
method is assessed by computing the coverage (proportion of testing observations falling
into the prediction region), the normalised volume of the prediction regions (defined as the
Lth root of the volume) and the computation time (on log scale) required to compute the

13
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Figure 1: Results of simulations study for Gaussian distribution: prediction regions com-
puted on datasets simulated under models described in Section 5.1. Coverage,
normalised volume and CPU time are computed for each method to compare per-
formances. IR (in black) is compared to the bootstrapped Lasso (in dark grey)
and to LSE (in light grey) for designs with N > D. Each method is assessed
1000 times, and mean is computed and reported on the graph with colour for
the method and dot shape for the 4 cases. We added a small amount of random
variation to the horizontal location of each point in order to avoid overlap.

prediction region on a MacBook Pro - 2,9 GHz Intel Core i5 processor - RAM 16 Go with
programs written in R. In this simulation study, the level of confidence for prediction regions
is set to 95%.

5.2 Results of the intensive simulation study

The results of this simulation study are presented in Figure 1 (corresponding numerical
values are available in Table 1 in Appendix 7). This figure presents the results for varying
sample and design sizes in column, and coverage, volume and time computation in row for
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varying methods and response dimension. For each scenario, IR (in black) is compared to
Lasso (in dark grey) and to LSE (in light gray) when N > D.

First, Figure 1 demonstrates that the proposed method reached a valid asymptotic cov-
erage and performs well with respect to LSE and Lasso. Indeed, its performances regarding
coverage and volume are similar or even better than Lasso for multivariate response. As ex-
pected, the confidence level increases with the ratio N/D. Note that multivariate version of
the Lasso is not implemented to our knowledge in R which makes IR a challenging method.
Interestingly, IR does not suppose sparsity in the model but seems to be competitive with
the Lasso on sparse design (Cases 1 and 2) regarding to both coverage and volume. Under
Case 3, data are generated under the underlying model of IR, with Σ diagonal and no
sparsity assumption on A, so IR performs particularly well. Case 4 is the most difficult for
our procedure, as it violates our assumption that Σ is diagonal. Performances are rather
good compared with the Lasso, but, when it is computable (N > D), LSE performs better
as no assumption is needed. However, IR has always a smallest volume than Lasso and
LSE, so it seems to have correctly detected the shape of the ellipsoid. Remark that when
D > N , especially for D = 1000, inference seems a challenging problem and coverage is far
from 95%. Coverage is even poorer for Case 4 as none of the methods seems to compute a
reasonable prediction region. Compared to bootstrapped Lasso, IR approach is significantly
faster as our method does not rely on resampling. Computation time is reasonable while
achieving challenging coverage and volume when D is large. Whatever the design, note that
the volume of prediction regions increases with L, meaning the underlying space dimension.
It is interesting to notice that, by normalising the volume by the dimension, the volume
stays almost constant across the situations studied.

Figure 2 displays a graphical representation of prediction regions for Case 1 which are
ellipses when L = 2. We consider two sample sizes, N = 50 and N = 500. Dotted
line represents ellipses computed by LSE when N = 500 and Lasso when N = 50, long
dashed line represents ellipses computed by IR and solid line represents true prediction
regions computed with true parameters used for simulation. Grey dots are 500 replications
of responses from the same covariate’s profile representing the residual variance. Three
specific profiles of covariates are considered: on the left panel, prediction ellipse for the
median covariate’s profile is computed, which is an easy situation. When N = 500, both
LSE and IR provide similar ellipses, close to the true one. When N = 50, IR’s ellipse
is close to the true one while Lasso correctly predicts the response but the volume of the
ellipse is larger. For the middle panel, a covariate’s profile corresponding to quantile 0.35 is
generated, making the computation of the prediction ellipse more complex. When sample
size is large, LSE and IR are competitive regarding to true ellipse and equivalent. When
N = 50, the ellipse computed with IR is larger than the theoretical one. The bootstrapped
Lasso fails in prediction, which confirms the lower coverages observed in Figure 1. At last,
for the right panel, an even more extreme profile associated to quantile 0.2 is generated,
making the computation less reliable. When N = 500, the volume of ellipses computed by
LSE and IR gets even larger as the covariate’s profile gets far from the mean. Notice that
LSE and IR again achieve similar ellipses in this setting. When N = 50, conclusions of the
middle panel apply as well.

To conclude, we would advice to use IR when no variable selection is expected, whereas
considering a high-dimensional dataset. Moreover, IR may consider correlated responses,
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Figure 2: Prediction regions for L = 2. Dotted line: LSE for N = 500 and Bootstrapped
Lasso for N = 50, long dashed line: IR, solid line: true parameters, grey dots: 500
responses generated from the same covariate’s profile. On the left panel, median
covariate’s profile are considered. In the middle panel, a covariate’s profile cor-
responding to quantile 0.35 is generated. On the right panel, a profile associated
to quantile 0.2 is generated. Thus, more on the right, more difficult it is.

which is not the case for usual estimators in high-dimension. Remark also that assumptions
are weakest when L is larger, because it describes the number of factors in the decomposition
of the covariance matrix. So we would also advice to use IR if the response is multivariate.
About the robustness to diagonal residual covariance matrix, we think that, even if it
would be very interesting to derive it, a theoretical result is out of the scope of this paper.
The robustness is tested in practice, and we denote that for reasonable dimensions (not
the largest one), IR performs good. When the number of covariates is too large, and the
assumption is violated, performance is not good as one may expect.

5.3 Study of estimation accuracy

In this section, we focus on the first setting (Case 1) with L = 2, D = 5 and N = 100
in order to visualise the ability of inverse regression to estimate parameters (A?,Γ?,Σ?)
and to predict the response. Violin plots of Figures 3 to 5 display the distribution of the
estimators in black and the true value of the parameter in red. Regarding the estimation
of the D × D matrix Γ?, Figure 3 demonstrates that IR is able to retrieve the diagonal
structure of the true matrix. Note that the estimation is more variable for diagonal terms.
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Figure 3: Violin plots displaying the distribution of Γ? estimator for L = 2, D = 5 and Case
1. Γ? is diagonal, true values are located by red crosses.

Same remarks hold for the estimation of the L × L matrix Σ?, see Figure 4. Regarding
estimation of A?, it is interesting to notice that IR partially retrieves the sparse structure
of the true parameter. Indeed, all values in A? are zero except the 4th coefficient of the
first row, and the 3rd value of the second row in Figure 5. The corresponding violin plots
are centred around the true value.

Figure 6 displays the distribution of absolute prediction error |Ŷ − Y|. Note that
IR achieves interesting prediction accuracy as most of prediction errors are close to 0.
Prediction error of the second response seems easier to predict than the first component
which is not surprising as the residual variance in matrix Σ? for the 2nd response is smaller
than residual variance of first response component.

6. Conclusion and further discussion

In this article, the properties of inverse regression are extensively investigated under the
general framework of elliptical distributions. Inverse regression addresses linear regression
issues with random multivariate predictors and multiple responses. The characteristic of this

17



Devijver and Perthame

0.0

0.5

1.0

l=
 1

Estimation of Σ∗ with L = 2, D = 5, case = 1

0.0

0.5

1.0

1 2

l=
 2

Figure 4: Violin plots displaying the distribution of Σ? estimator for L = 2, D = 5 and
Case 1. Σ? is diagonal, true values are located by red crosses.
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crosses.
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Figure 6: Violin plots displaying the distribution of the absolute prediction error |Ŷ −Y|
for L = 2, D = 5 and Case 1.

model is that it inverts the role of covariates and response. By making weak assumptions on
the residual covariance matrix of the inverse regression, this model allows to consider settings
with both large sample size and covariates dimension, as an alternative to least square
methods or regularized methods. Explicit estimators of model parameters are derived, for
which asymptotic distributions and confidence regions are deduced. Last but not least,
asymptotic prediction regions are derived, allowing to quantify the confidence in prediction.

In an intensive simulation study, we present inverse regression as an alternative to
variable selection when the sample size is small regarding to the dimension of covariates.
Indeed, inverse regression achieves interesting coverage for reasonable time computation.
Although our results are asymptotic, performances are challenging for finite sample and
illustrates how this model can be used in practice.

A future work could be the extension of this model to generalized linear model by
considering other distributions of the noise of the inverse model.
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Appendix A: details for the proofs

Relation between forward and inverse regression

The joint distribution defined in (1) leads to the marginal and the conditional distributions
of Equations (2)-(5) and to a mapping between their mean and variance parameters. Indeed,
using conditioning properties of elliptical distributions, we get the following marginal for X
and conditional for Y distributions

X ∼ ED(0,Σ + AΓA>, φ);

Y|X ∼ EL(Γ>A>(Σ + AΓA>)−1X,Γ− Γ>A>(Σ + AΓA>)−1AΓ, φ̃).

where φ̃ is defined in Cambanis et al. (1981) and not detailed here. For more details, we
refer to this key paper, as the explicit expression of the characteristic function is not used
in this article.

We therefore define

Γ? = Σ + AΓA>;

Σ? = Γ− Γ>A>(Σ + AΓA>)−1AΓ = (Γ−1 + A>Σ−1A)−1;

using Woodbury matrix identity. Lastly we define A? which gives the relations between
forward and inverse regression

A? = Γ>A>(Σ + AΓA>)−1

= ΓA>Σ−1 − ΓA>Σ−1A(Γ−1 + A>Σ−1A)−1A>Σ−1

=
[
Γ(Γ−1 + A>Σ−1A)− ΓA>Σ−1A

]
(Γ−1 + A>Σ−1A)−1A>Σ−1

= (Γ−1 + A>Σ−1A)−1A>Σ−1;

using Woodbury identity matrix again and the symmetric property of Γ.

Proof of Lemma 10

We use the following lemma.

Lemma 14 If ‖A‖ ≤ 1, then (I−A)−1 = I + A + A2 + o(||A||2).

Then, we prove Lemma 10:

g(A + hM)− g(A) = h(Γ−1 + A>Σ−1A)−1M>Σ−1

− h(Γ−1 + A>Σ−1A)−1(M>Σ−1A + A>Σ−1M)(Γ−1 + A>Σ−1A)−1AΣ−1 +O(h2);

Dg(A).M = (Γ−1 + A>Σ−1A)−1M>Σ−1

− (Γ−1 + A>Σ−1A)−1(M>Σ−1A + A>Σ−1M)(Γ−1 + A>Σ−1A)−1AΣ−1.

Next, remember that M = (Â−A), we have:

Dg(A).(Â−A) = (Γ−1 + A>Σ−1A)−1[Â−A]>Σ−1 − (Γ−1 + A>Σ−1A)−1

×
(

[Â−A]>Σ−1A + A>Σ−1[Â−A]
)

(Γ−1 + A>Σ−1A)−1AΣ−1.

(18)
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Then, we compute the covariance. We decompose it as the following.

Cov(vec(Dg(A).(Â−A))) =var(vec(Σ?(Â−A)>Σ−1)) + var(vec(Σ?(Â−A)>Σ−1AA?))

+ var(vec(A?(Â−A)A?))

− 2cov(vec(Σ?(Â−A)>Σ−1), vec(Σ?(Â−A)>Σ−1AA?))

− 2cov(vec(Σ?(Â−A)>Σ−1), vec(A?(Â−A)A?)).

− 2cov(vec(Σ?(Â−A)>Σ−1AA?), vec(A?(Â−A)A?)).

Then, we want to compute each term explicitly.

var(vec(Σ?(Â−A)>Σ−1)) = −2φ′(0)(Σ−1 ⊗Σ?ΓΣ?);

var(vec(Σ?(Â−A)>Σ−1AA?)) = −2φ′(0)((A?)>A>Σ−1AA? ⊗Σ?ΓΣ?);

var(vec(A?(Â−A)A?)) = −2φ′(0)((A?)>ΓA? ⊗A?Σ(A?)>);

cov(vec(Σ?(Â−A)>Σ−1), vec(Σ?(Â−A)>Σ−1AA?)) = −2φ′(0)(Σ−1AA? ⊗Σ?ΓΣ?);

cov(vec(Σ?(Â−A)>Σ−1), vec(A?(Â−A)A?)) = −2φ′(0)(I⊗Σ?Γ)T−1LD((A?)> ⊗A?);

cov(vec(Σ?(Â−A)>Σ−1AA?), vec(A?(Â−A)A?)) = −2φ′(0)((A?)>A> ⊗Σ?Γ)T−1LD((A?)> ⊗A?).

Putting everything together, we get the following:

−1

2φ′(0)
Cov(vec(Dg(A).(Â−A))) =(Σ−1 ⊗Σ?ΓΣ?) + ((A?)>A>Σ−1AA? ⊗Σ?ΓΣ?)

+ ((A?)>ΓA? ⊗A?Σ(A?)>)− 2(Σ−1AA? ⊗Σ?ΓΣ?)

− 2(I⊗Σ?Γ)T−1LD((A?)> ⊗A?)

− 2((A?)>A> ⊗Σ?Γ)T−1LD((A?)> ⊗A?)

=
(

(Σ−1 + (A?)>A>Σ−1AA? − 2Σ−1AA?)⊗Σ?ΓΣ?
)

+ ((A?)>ΓA? ⊗A?Σ(A?)>)

− 2
(

(I⊗Σ?Γ) + ((A?)>A> ⊗Σ?Γ)
)
T−1LD((A?)> ⊗A?).

Appendix B: results of simulation study

The table hereafter details numerical values displayed in Figure 1.
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Table 1: Results of simulation study displayed in Figure 1 (best results for coverage and
volume are in bold).
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