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Abstract

We prove well-posedness for a transport-diffusion problem coupled with a wave equa-
tion for the potential. We assume that the initial data are small. A bilinear form in
the spirit of Kato’s proof for the Navier-Stokes equations is used, coupled with suitable
estimates in Chemin-Lerner spaces. In the one dimensional case, we get well-posedness
for arbitrarily large initial data by using Gagliardo-Nirenberg inequalities.

Keywords: Transport-diffusion equation, wave equation, Debye system, Chemin-Lerner
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1 Introduction.

Transport-diffusion equations have a vast phenomenology and have been widely studied. See,
among others, [2], [3], [7], [10] in the case of the semi-conductor theory, and [5] in the case
of Fokker-Planck equations. The goal of this note is to prove existence and uniqueness of the
solution for a modify semi-conductor equation.

In order to simplify the presentation, we restrict to the case of a single electrical charge.
The novelty of our equations is that we replace the Poisson equation on the potential by a wave
equation. This is a quite natural change, since the electric charge itself depends on the time.
From a mathematical point of view, switching from a Poisson equation to a wave equation
roughly amounts to the loss of one derivative in the estimates on the potential. Moreover, it
seems that one is bound to work in Lpt spaces with 1 ≤ p ≤ 2 due to the usual Strichartz
estimates.

In this paper, we prove the existence of a mild solution in Chemin-Lerner spaces L̃1(0, T,
Ḣn/2−1(Rn)). We first restrict to the case of small initial data (n ≥ 2), and use a variant
of the Picard fixed point theorem as in the proof of Kato’s and Chemin’s theorems for the
Navier-Stokes (and related) equations. See [9], [6], [4] and also [8], [1]. In particular, we work
in homogeneous Sobolev spaces in order to get T -independent estimates for the heat equation.
Note also that our bilinear form depends on a nonlocal term, given as the solution of the wave
equation on the potential.

In the case n = 1, well posedness is established for arbitrary large initial data (section 4).
Local well posedness is obtained as in section 3. The global existence is proved by combining
the usual L1 estimate with a Gagliardo-Nirenberg inequality, in the spirit of [3].
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2 Equations and preliminary results.

We begin with some notations. In this section n ≥ 2, T > 0, and s < n/2 are given. The
homogeneous Sobolev spaces Ḣs(Rn) are often denoted by Ḣs. For p ≥ 1, we also use the
Chemin-Lerner spaces L̃p(0, T, Ḣs(Rn)) = L̃p(0, T, Ḃs

2,2(Rn)), or simply L̃pT (Ḣs). Recall that a

distribution f ∈ S ′(]0, T [×Rn) belongs to the space L̃pT (Ḣs) iff Ṡjf → 0 in S ′ for j → −∞,

and ‖f‖L̃pT (Ḣs) := ‖(2js‖∆̇jf‖LpT (L2))j∈Z‖l2(Z) < ∞. Here, Ṡjf and ∆̇jf are respectively the
low frequency cut-off and the homogeneous dyadic block defined by the usual Paley-Littlewood
decomposition. See [1] p.98 for details. Last, we write ∇ for the (spatial) gradient, div for the
divergence and ∆ = div∇.

We now give the equations we are dealing with. Set s = n/2 − 1. Consider the Cauchy
problem on the scalar valued functions u and V defined on R+ × Rn

x

∂tu−∆u = div(u∇V ) (2.1)

∂ttV −∆V = u (2.2)

u(0) = u0 (2.3)

V (0) = V0, Vt(0) = V1 (2.4)

For u0 ∈ Ḣs, (∇V0, V1) ∈ Ḣs × Ḣs and u ∈ L̃1
T (Ḣs) given, we denote by S(u, V0, V1) ∈

C0
(
0, T,S ′(Rn)

)
the unique solution of the wave equation 2.2, 2.4. With these notations, the

system 2.1− 2.4 is interpreted as the following problem (P):
find u ∈ L̃1

T (Ḣs) such that

∂tu−∆u = div(u∇S(u, V0, V1)) (2.5)

u(0) = u0 (2.6)

For future reference, we recall a standard result on the heat equation (see [1] p.157)

Proposition 2.1. Let T > 0, σ ∈ Rn and 1 ≤ p ≤ ∞. Assume that u0 ∈ Ḣσ and f ∈
L̃pT (Ḣσ−2+ 2

p ). Then the problem

∂tu−∆u = f (2.7)

u(0) = u0 (2.8)

admits a unique solution u ∈ L̃pT (Ḣσ+ 2
p ) ∩ L̃∞T (Ḣσ) and there exists C > 0 independent of T

such that, for any q ∈ [p,∞]

‖u‖
L̃qT (Ḣ

σ+2
q )
≤ C

(
‖f‖

L̃pT (Ḣ
σ−2+ 2

p )
+ ‖u0‖Ḣσ

)
(2.9)

Moreover, for f = 0, we have u ∈ C0([0, T ], Ḣσ) ↪→ L1([0, T ], Ḣσ).
The same statements hold true in nonhomogeneous Sobolev spaces with a constant C = CT

depending on T .

In the sequel, we denote the solution u of proposition 2.1 by

u(t) = et∆u0 +

∫ t

0

e(t−τ)∆f(τ)dτ

We will prove an existence result for problem (P) by combining proposition 2.1 with the fol-
lowing Ḣs estimate for the solution S(u, V0, V1) of the wave equation (see [1] pp. 360-361)

‖∇S(u, V0, V1)‖L̃∞T (Ḣs) ≤ C(‖∇V0‖Ḣs + ‖V1‖Ḣs + ‖u‖L̃1
T (Ḣs)) (2.10)
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3 Existence and uniqueness in the case n ≥ 2.

This part is devoted to the proof of existence of a mild solution to problem (P).

Theorem 3.1. Let n ≥ 2 and s = n/2 − 1. There exists η > 0 such that, for any T > 0,
u0 ∈ Ḣs−2 ∩ Ḣs, (∇V0, V1) ∈ Ḣs × Ḣs with

‖u0‖Ḣs−2 + ‖∇V0‖Ḣs + ‖V1‖Ḣs ≤ η (3.1)

there exists exactly one solution to the problem
find u ∈ L̃1

T (Ḣs) such that

u(t) = et∆u0 +

∫ t

0

e(t−τ)∆div
(
u∇S(u, V0, V1)

)
(τ)dτ

When condition 3.1 is replaced by ‖∇V0‖Ḣs + ‖V1‖Ḣs ≤ η, we get local in time existence and
uniqueness.

We will use the following classical lemma (see for instance [1] p.357). In this lemma,
B̄(0, r) ⊂ E denotes the closed ball of center 0 and radius r > 0.

Lemma 3.1. Let E be a Banach space. Let B : E ×E → E be a continuous bilinear map and
L : E → E be a linear continuous map with ‖L ‖ < 1. Let 0 < α < (1−‖L ‖)2/(4‖B‖). Then,
for any γ ∈ B̄(0, α), there exists exactly one x ∈ B̄(0, 2α) such that x = γ + L (x) + B(x, x).

In order to use lemma 3.1, for T > 0 and (∇V0, V1) ∈ Ḣs× Ḣs given, set ET = L̃1
T (Ḣs) and

define BT : ET × ET → ET by

BT (u,w) =

∫ t

0

e(t−τ)∆div
(
u∇S(w, 0, 0)

)
(τ)dτ (3.2)

We also define LT : ET → ET by

LT (u) =

∫ t

0

e(t−τ)∆div
(
u∇S(0, V0, V1)

)
(τ)dτ (3.3)

Theorem 3.1 is an immediate consequence of lemma 3.1 and the following T -independent esti-
mates.

Lemma 3.2. Let n ≥ 2 and s = n/2− 1, u0 ∈ Ḣs−2, (∇V0, V1) ∈ Ḣs × Ḣs. Then, there exists
Ci > 0 (0 ≤ i ≤ 2) such that, for any T > 0 and any u ∈ ET , w ∈ ET , we have

‖BT (u,w)‖ET ≤ C0‖u‖ET ‖w‖ET (3.4)

‖LT (u)‖ET ≤ C1

(
‖∇V0‖Ḣs + ‖V1‖Ḣs

)
‖u‖ET (3.5)

‖et∆u0‖ET ≤ C2‖u0‖Ḣs−2 (3.6)

Proof. Inequality 3.6 follows from proposition 2.1. Inequalities 3.4 and 3.5, amount to

‖BT (u,w) + LT (u)‖L̃1
T (Ḣs) ≤ C‖u‖L̃1

T (Ḣs)

(
‖w‖L1

T (Ḣs) + ‖∇V0‖Ḣs + ‖V1‖Ḣs

)
Set

z = BT (u,w) + LT (u) =

∫ t

0

e(t−τ)∆div
(
u∇S(w, V0, V1)

)
(τ)dτ

Proposition 2.1 provides

‖z‖L̃1
T (Ḣs) ≤ C‖div(u∇S(w, V0, V1))‖L̃1

T (Ḣs−2)
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hence

‖z‖L̃1
T (Ḣs) ≤ C‖u∇S(w, V0, V1)‖L̃1

T (Ḣs−1) (3.7)

Since −n/2 < s < n/2, the product is continuous from L̃1
T (Ḣs) × L̃∞T (Ḣs) to L̃1

T (Ḣ2s−n/2) =
L̃1
T (Ḣs−1). See for instance [1] pages 90 and 98 or use Bony’s decomposition. With 3.7, this

implies that
‖z‖L̃1

T (Ḣs) ≤ C‖u‖L̃1
T (Ḣs)‖∇S(w, V0, V1)‖L̃∞T (Ḣs)

and with 2.10
‖z‖L̃1

T (Ḣs) ≤ C‖u‖L̃1
T (Ḣs)

(
‖w‖L̃1

T (Ḣs) + ‖∇V0‖Ḣs + ‖V1‖Ḣs

)
Global existence and uniqueness in theorem 3.2 is a consequence of lemmas 3.1 and 3.2 by

restricting to small data, i.e ‖∇V0‖Ḣs + ‖V1‖Ḣs < 1/C1 and ‖u0‖Ḣs−2 < [1 − C1(‖∇V0‖Ḣs +
‖V1‖Ḣs)]2/(4C0C2). The local existence and uniqueness part is a consequence of the same lem-
mas once limt→0 ‖eτ∆u0‖Et = 0 is proved. This follows from the fact that eτ∆u0 ∈ L1([0, t], Ḣs(R))
(see proposition 2.1) and the inequality (see [1] p.98)

‖eτ∆u0‖Et ≤ ‖eτ∆u0‖L1([0,t],Ḣs(R)) → 0

when t→ 0.

Remark 3.1. The proof of theorem 3.1 extends to the Debye type system (see [3], [7]): ∂tuj −
∆uj = div(βjuj∇V ), ∂ttV −∆V =

∑
k αkuk, uj(0) = uj,0, V (0) = V0, Vt(0) = V1 with (αj, βj) ∈

R2 (1 ≤ j ≤ m) given.

4 Existence and uniqueness in the case n = 1.

Until the end of the paper, n = 1. We still denote by S(u, V0, V1) ∈ C0
(
0, T,S ′(Rn)

)
the unique

solution of the wave equation 2.2, 2.4, and BT (u,w) and LT (u) are still formally defined by
formulas 3.2 and 3.3. The notation Lpx stands for Lp(Rx). Last, ∇ = div = ∂x.

As a building block in the proof of the existence theorem 4.1, we first establish a L1 estimate
for solutions of equations 2.5, 2.6 (lemma 4.3). We begin with two simple trace-lemmas. For
y ∈ R, set DT (y) =]0, T [×]y, y + 1[ and D̄T (y) = [0, T ]× [y, y + 1].

Lemma 4.1. Let T > 0, y ∈ R. There exists C > 0 such that, for any y ∈ R and f ∈
C1(D̄T (y)), we have

‖f(., y)‖L2(0,T ) + ‖f(., y + 1)‖L2(0,T ) ≤ C‖f‖L2(0,T,H1(]y,y+1[)) (4.1)

Proof. We only prove inequality∫ T

0

|f(τ, y)|2dτ ≤ C‖f‖2
L2(0,T,H1(]y,y+1[)) (4.2)

Let φ ∈ C1(D̄T (0)) with φ(t, x) = 1 for (t, x) ∈ [0, T ] × [0, 1/4] and φ(t, x) = 0 for (t, x) ∈
[0, T ] × [3/4, 1]. For y ∈ R fixed, define φy ∈ C1(D̄T (y)) by φy(t, x) = φ(t, x − y). Let
f ∈ C1(D̄T (y)). We have∫ T

0

|f |2(τ, y)dτ =

∫ T

0

|φyf |2(τ, y)dτ ≤
∫ T

0

∫ y+1

y

2|φyf(φyf)x|(τ, s)dsdτ

≤ 2‖φy‖2
W 1,∞(D(y))‖f‖2

L2(0,T,H1(]y,y+1[)) (4.3)

Since ‖φy‖W 1,∞(D(y)) = ‖φ‖W 1,∞(D(0)), we get inequality 4.2.
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Let y ∈ R. By lemma 4.1, we can define two continuous trace-operators γ−y+1 and γ+
y :

L2(0, T,H1(R)) → L2(0, T ) by γ+
y (f)(τ) = f(τ, y) and γ−y+1(f)(τ) = f(τ, y + 1) for any f ∈

C1(D̄T (y)). For future reference, notice that, for any f ∈ L2(]0, T [, H1(]y, y + 1[)), we have

‖γ−y+1(f)‖L1(0,T ) + ‖γ+
y (f)‖L1(0,T )

≤
√
T (‖γ−y+1(f)‖L2(0,T ) + ‖γ+

y (f)‖L2(0,T )) ≤ C
√
T‖f‖L2(0,T,H1(]y,y+1[)) (4.4)

with a constant C > 0 independent of y ∈ R.
The second lemma is a consequence of the continuity of the trace functions γ±y and density

arguments. We omit the proof. In the sequel sign denotes the sign function.

Lemma 4.2. Let T > 0 and y ∈ R. Let also f ∈ L2(0, T,H2(R)), g ∈ L∞(0, T,H2(R)) and
φ ∈ L2(0, T,H1(R)). Then, for any (y, z) ∈ R2, y < z, and any t ∈ [0, T ] we have

a) ∫ t

0

∫ z

y

φ∂xxfdxdτ = −
∫ t

0

∫ z

y

∂xφ∂xfdxdτ +

∫ t

0

[γ−z (φ∂xf)− γ+
y (φ∂xf)]dτ (4.5)

∫ t

0

∫ z

y

sign(f)∂x(f∂xg)dxdτ =

∫ t

0

[γ−z (|f |∂xg)− γ+
y (|f |∂xg)]dτ (4.6)

b) Let A ∈ L∞(0, T,H1(R)). Then |γ±y (Af)|(τ) ≤ ‖A‖L∞(0,T,H1(]y,y+1[))|γ±y (f)|(τ) for almost
every τ ∈ [0, T ].

We are ready to prove our main L1 lemma.

Lemma 4.3. Let T > 0, V0 ∈ H2(R), V1 ∈ H1(R), u0 ∈ H1(R) ∩ L1(R) and u ∈ L2
T (H2) ∩

H1
T (L2)∩C0([0, T ], H1). Assume that S(u, V0, V1) ∈ C0([0, T ], H2)∩C1([0, T ], H1) and assume

that function (u, S(u, V0, V1)) is a solution of equations 2.5, 2.6, i.e

u(t) = et∆u0 +

∫ t

0

e(t−τ)∆div
(
u∇S(u, V0, V1)

)
(τ)dτ

Then u ∈ C0([0, T ], L1(R)) and ‖u(t)‖L1 ≤ ‖u0‖L1, for any t ∈ [0, T ]. Moreover, when ±u0 ≥ 0,
we have ±u ≥ 0 and ‖u(t)‖L1 = ‖u0‖L1.

Proof. Let (y, z) ∈ R2 with y < z, and t ∈ [0, T ]. Since u ∈ L2
T (H2) and S(u, V0, V1) ∈

C0([0, T ], H2), we can apply formula 4.6 with f = u, g = S(u, V0, V1). Hence, multiplying 2.5
by sign(u) and integrating on [0, T ]× [y, z], we obtain∫ z

y

|u|(t, x)dx = ‖u0‖L1([y,z]) +

∫ t

0

[γ−z (|u|∂xS)− γ+
y (|u|∂xS)]dτ +

∫ t

0

∫ z

y

sign(u)∆udxdτ

≤ ‖u0‖L1([y,z]) + ‖γ−z (|u|∂xS)‖L1([0,T ]) + ‖γ+
y (|u|∂xS)‖L1([0,T ]) + sup

t∈[0,T ]

(∫ t

0

∫ z

y

sign(u)∆udxdτ
)

(4.7)

We majorize the last three terms in inequality 4.7. Using the inequality 4.4, we get

‖γ−z (|u|∂xS)‖L1([0,T ]) + ‖γ+
y (|u|∂xS)‖L1([0,T ]) ≤ C

√
T‖|u|∂xS‖L2(0,T,H1(]y,y+1[∪]z−1,z[)) (4.8)

Hence, 4.8 and |u|∂xS ∈ L2(0, T,H1(R)) implies that

lim
inf(|y|,|z|)→∞

(
‖γ−z (|u|∂xS)‖L1([0,T ]) + ‖γ+

y (|u|∂xS)‖L1([0,T ])

)
= 0 (4.9)

5



We next prove that

lim sup
inf(|y|,|z|)→∞

(
sup
t∈[0,T ]

∫ t

0

∫ z

y

sign(u)∆u(τ, x)dxdτ
)
≤ 0 (4.10)

Set hε(x) = x/
√
x2 + ε (x ∈ R, ε > 0). Due to ∆u ∈ L2([0, T ] × R) ↪→ L1

loc([0, T ] × R),
‖hε‖L∞ ≤ 1 and Lebesgue theorem, we have∫ t

0

∫ z

y

sign(u)∆u(τ, x)dxdτ = lim
ε→0

∫ t

0

∫ z

y

hε(u)∆u(τ, x)dxdτ (4.11)

Using 4.5 with f = u ∈ L2
T (H2), φ = hε(u) ∈ L2

T (H1), majorizing, and appealing to lemma 4.2
b), we obtain an (ε, t)-independent estimate∫ t

0

∫ z

y

∆uhε(u)dxdτ = −
∫ t

0

∫ z

y

|∇u|2h′ε(u)dxdτ +

∫ t

0

[γ−z (hε(u)∇u)− γ+
y (hε(u)∇u)]dτ

≤
∫ T

0

[|γ−z (∇u)|+ |γ+
y (∇u)|]dτ (4.12)

Appealing to 4.4, we deduce from 4.12 and 4.11 that

sup
t∈[0,T ]

(∫ t

0

∫ z

y

sign(u)∆u(τ, x)dxdτ
)
≤ C
√
T‖∇u‖L2(0,T,H1(]y,y+1[∪]z−1,z[) (4.13)

Hence, inequality 4.10 follows from 4.13 and u ∈ L2(0, T,H2(R)). Set y = −z and let z → +∞
in 4.7. Using 4.9, 4.10 and the monotone convergence theorem, we get ‖u(t)‖L1 ≤ ‖u0‖L1 for
t ∈ [0, T ]. Replacing the sign function by the negative or positive part functions (.)±, or the
constant function 1, the same argument provides ‖(u)±(t)‖L1 ≤ ‖(u0)±‖L1 and

∫
R u(t, x)dx =∫

R u0(x)dx. In the particular case ±u0 ≥ 0, we recover ±u(t) ≥ 0 and ‖u(t)‖L1 = ‖u0‖L1 for
any t ∈ [0, T ].

Finally, appealing to 4.7, 4.9, 4.10 and u0 ∈ L1, we have supτ∈[0,T ]‖u(τ)‖L1(]−∞,−x[∪]x,+∞[) →
0 when x → +∞. Hence, noticing that u ∈ C0(0, T, L2(R)) ↪→ C0(0, T, L1

loc(R)), we easily
obtain u ∈ C0(0, T, L1(R))

It follows that

Theorem 4.1. Let T > 0, V0 ∈ H2(R), V1 ∈ H1(R) and u0 ∈ H1(R) ∩ L1(R). The problem
find u ∈ L2

T (H1) such that

u(t) = et∆u0 +

∫ t

0

e(t−τ)∆div
(
u∇S(u, V0, V1)

)
(τ)dτ

admits exactly one solution. Moreover, u ∈ L2
T (H2) ∩ H1

T (L2) ∩ C0([0, T ], H1 ∩ L1) and
‖u(t)‖L1

x
≤ ‖u0‖L1. Last, when ±u0 ≥ 0, we have ±u ≥ 0 and ‖u(t)‖L1 = ‖u0‖L1, 0 ≤ t ≤ T .

Proof. Step 1 (local existence). For any 0 < T < 1, u ∈ L2
T (H1) and w ∈ L2

T (H1), proposition
2.1 provides

‖BT (u,w) + LT (u)‖L2
T (H1) ≤ C‖div

(
u∇S(w, V0, V1)

)
‖L1

T (L2)

≤ C‖u∇S(w, V0, V1)‖L1
T (H1)

≤ C‖u‖L2
T (H1)‖∇S(w, V0, V1)‖L2

T (H1) (4.14)

6



Note that

S(w, V0, V1)(t, x) =

∫ t

0

∫ x+(t−τ)

x−(t−τ)

w(τ, ξ)dξdτ +
1

2

(
V0(x+ t) + V0(x− t) +

∫ x+t

x−t
V1(s)ds

)
(4.15)

Assume first that V0, V1 and w are infinitely differentiable. We have

∇S(w, V0, V1)(t, x) =

∫ t

0

(
w(τ, x+ (t− τ))− w(τ, x− (t− τ)

)
dτ

+
1

2

(
V
′

0 (x+ t) + V
′

0 (x− t) + V1(x+ t)− V1(x− t)
)

(4.16)

Arguing by density, the formula 4.16 holds for the distributional derivative ∇S under the
assumptions of theorem 4.1, and we have

‖∇S(w, V0, V1)‖L2
T (H1) ≤ C

√
T
(
‖w‖L2

T (H1) + ‖V ′0‖H1 + ‖V1‖H1

)
(4.17)

From 4.14 and 4.17 we deduce that

‖BT (u,w) + LT (u)‖L2
T (H1) ≤ C

√
T‖u‖L2

T (H1)

(
‖w‖L2

T (H1) + ‖V ′0‖H1 + ‖V1‖H1

)
(4.18)

Finally, notice that

‖et∆u0‖L2
T (H1) ≤ ‖u0‖L2 (4.19)

Hence, for T > 0 small enough, the existence and uniqueness of a solution u ∈ L2
T (H1) follows

from lemma 3.1, inequalities 4.18 and 4.19.
Next, since u ∈ L2

T (H1), V0 ∈ H2 and V1 ∈ H1 we get

S(u, V0, V1) ∈ C0([0, T ], H2) ∩ C1([0, T ], H1) (4.20)

Therefore div(u∇S(u, V0, V1)) ∈ L2
T (L2). Due to u0 ∈ H1, equation ∂tu−∆u = div(u∇S(u, V0, V1)),

proposition 2.1 (and by interpolation), we thus obtain

u ∈ L2
T (H2) ∩H1

T (L2) ∩ C0([0, T ], H1) (4.21)

Step 2 (global existence). Let T ∗ > 0, the maximal time of existence of a mild solution endowed
with the properties 4.20, 4.21. In particular, u ∈ C0([0, T ], L1(R)) and ‖u(t)‖L1

x
≤ ‖u0‖L1 for

0 ≤ t ≤ T < T ∗ (see lemma 4.3). In order to prove that T ∗ = ∞, and due to 4.20, 4.21 and
lemma 4.3, we essentially have to find an a priori estimate on ‖u‖L2

T (H1) for 0 < T < T ∗. We
multiply equation 2.5 by u and integrate with respect to x. Appealing to 4.20 and 4.21, we get

1

2

d

dt
‖u‖2

L2
x

+

∫
R
|∂xu|2dx ≤ |

∫
R
u∂xu∂xSdx|

≤ ‖u‖L4
x
‖∂xu‖L2

x
‖∂xS‖L4

x
(4.22)

We now estimate ‖u‖L4
x

and ‖∂xS‖L4
x
. By Gagliardo-Nirenberg inequalities and the L1 properties

of u, we have

‖u‖4
L4
x
≤ C‖u‖2

L1
x
‖∂xu‖2

L2
x
≤ C‖u0‖2

L1‖∂xu‖2
L2
x

(4.23)

Using equation 4.16 with w = u, we obtain for any 0 < t < T

‖∂xS(t)‖L4 ≤ C
(
‖u‖L1(0,t,L4) + ‖V ′0‖L4 + ‖V1‖L4

)
(4.24)
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Invoking inequality 4.23, this implies that

‖∂xS(t)‖L4 ≤ C
(
‖u0‖1/2

L1

∫ t

0

‖∂xu(τ)‖1/2

L2
x
dτ + ‖V ′0‖L4 + ‖V1‖L4

)
≤ C

(
‖u0‖1/2

L1 ‖∂xu‖1/2

L2(]0,T [×R)t
3/4 + ‖V ′0‖L4 + ‖V1‖L4

)
(4.25)

Therefore, 4.22, 4.23, 4.25 and injection H1(R) ↪→ L4(R) provide

1

2

d

dt
‖u‖2

L2
x

+ ‖∂xu(t)‖2
L2
x
≤ C‖u0‖1/2

L1 ‖∂xu(t)‖3/2

L2
x

(
‖u0‖1/2

L1 ‖∂xu‖1/2

L2(]0,T [×R)t
3/4 + ‖V ′0‖L4 + ‖V1‖L4

)
≤ η‖u0‖2/3

L1 ‖∂xu(t)‖2
L2
x

+ Cη
(
t3‖u0‖2

L1‖∂xu‖2
L2(]0,T [×R) + ‖V0‖4

H2 + ‖V1‖4
H1

)
(4.26)

Take η such that 0 < η‖u0‖2/3

L1 ≤ 1/2. Hiding the term η‖u0‖2/3

L1 ‖∂xu(t)‖2
L2
x

in the left hand

side of 4.26, setting z(t) = ‖u(t)‖2
L2
x

+
∫ t

0
‖∂xu(τ)‖2

L2
x
dτ and using the Gronwall inequality we

obtain the required a priori estimate on ‖u‖L2
T (H1). The end of the proof is standard and we

omit further details.
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