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Abstract

The attractiveness of insurance saving products is driven, among others, by dividends payments
to policyholders and participation in profits. These are mainly constrained by regulatory measures on
profit-sharing on the basis of statutory accounts. Moreover, since both prudential and financial report-
ing regulation require market consistent best estimate measurement of insurance liabilities, cash-flows
projection models have to be used for such a purpose in order to derive the underlying financial incomes.
Such models are based on Monte-Carlo techniques. The latter should simulate future accounting profit
and losses needed for profit-sharing mechanisms.

In this paper we deal with impairment losses on equity securities for financial portfolios which rely
on instrument-by-instrument assessment (when projection models consider groups of shares). Our mo-
tivation is to describe the joint distribution of market value and impairment provision of a book of
equity securities, with regard to the French accounting rules for depreciation. The results we obtain en-
able to improve the ability of projection models to represent such an asymmetric mechanism. Formally,
an impairment loss is recognized for an equity instrument if there has been a significant and prolonged
decline in its market value below the carrying cost (acquisition value). Such constraints are formalized
using an assumption on the dynamics of the equity, and leads to a complex option-like pay-off.

Using this formulation, we propose analytical formulas for some quantitative measurements related
the impairments losses of a book of financial equities. These are derived on a general framework and
some tractable example are illustrated. We also investigate the operational implementation of these
formulas and compare their computational time to a basic simulation approach.

Keywords: Insurance, Best Estimate Technical Provision, Impairment Losses, Correlated Brownian
Motions, Joint Density
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1 Introduction

Over the past decade, market consistent best estimate measurement became the new standard when it
comes to life insurance valuation. This principle was first generalized by the Market Consistent Embedded
Value (MCEV) principles published by the CFO Forum in 2009 and was then considered by the European
Union for prudential purposes (Solvency II) and by the International Accounting Standard-Setter (IASB)
for financial reporting purposes, see Thérond (2016), Vedani et al. (2017) and Wüthrich (2016).

Due to the complexity of life insurance mechanisms, in most cases, this kind of measurement requires
to use some cash-flows projection models in order to estimate the market consistent best estimate using
Monte Carlo simulations. As a matter of fact, projecting cash-flows of life insurers requires modelling
future guarantees revaluation and policyholders behaviours (especially regarding lapses) which both are
dependent on future economic scenarios. These economic scenarios have to be drawn consistently with
the current observed prices on the market (see Thérond (2016) for more details on market consistency
principles). In order to comply with the market consistency, risk neutral approaches appear to be the
present standard even if some other approaches would meet the requirement (e.g. real world economic
scenarios coupled with stochastic deflators when it comes to discount future cash-flows). Each generated
scenario should take into account the behaviours of insurer (through asset management, revaluation policy,
etc.) but also of policyholders (mortality, partial or total lapses, etc.).

Moreover, in some jurisdictions (e.g. Italy, Germany or France), participation mechanisms are con-
strained by regulation. For example, in France, life insurers have to dedicate, at least, 85% of financial
incomes to re-evaluate policyholder’s annuities or savings. Here, financial incomes has to be understood
as local Generally Accepted Accounting Principles (GAAP) financial revenues. As a consequence, and in
order to apprehend this kind of constraints, local GAAP financial statements have to be projected, too.

Modelling local GAAP financial statements appears to be quite a challenge due to the complexity of
some accounting mechanisms and the granularity at which they have to be considered. It is especially
the case for projecting financial assets due to the impairment provisions which are recognized on an
instrument-by-instrument basis and may have a significant impact on local GAAP financial revenue and
thus on the constraints an insurer has to deal with when considering revaluation decisions.

As a matter of fact, life insurers have to deal with guaranteed rate and participation features. Cash-
flows projection models have to be able to incorporate management rules such as the asset-and-liability
management (ALM), e.g. asset management policy regarding the entity’s objectives (giving good bonuses
to policyholders in order to avoid lapses, keeping some unrealized gains to prevent the consequences of
potential future market drops, containing P&L’s volatility, etc.) Equity securities management play a
major role in this ALM, since selling shares with unrealized gains and losses enables to modify the local
GAAP financial result. As a consequence, it is of major importance to be able to precisely model the
correlated behaviour of the market value and net carrying amounts of such financial assets.

Such a problem is the main motivation of this work. In fact, our main goal is to derive some ana-
lytical formulas in order to be able to simulate the joint carrying amount and market value of financial
equity portfolios, regarding French impairment rules. This subject is of paramount importance, from an
operational perspective, since cash-flows projecting models generally do not consider individual financial
assets but groups of financial assets (model points). The main challenge consists in deriving this joint
distribution for a book of n assets without computing the impairment mechanism for each individual asset.

In this paper, we propose closed form formulas of impairment provisions for a book of n equities with
different assumptions on their dependency. First, we consider the case of comonotonic shares driven by the
same Brownian motion. In fact, the valuation principle associated with the acquisition cost measurement
leads to distinctly recognize several lines of the same title acquired at different times, thus at different
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costs. So we may have, if any, different levels of impairment reserves for the same security but acquired
at different dates. Recently Azzaz et al. (2015) considered a similar case but with a different impairment
rule. Indeed, they investigated a criteria based on a separated events, e.g. decline and prolonged events.
However, in that paper the authors only considered a single equity. Therefore, in the current work we
intend to extend the results of Azzaz et al. (2015) to a more general framework but with a joint realisation
of the above mentioned impairment conditions. We should note that one can also derive the quantities of
interest in the framework of Azzaz et al. (2015) using the result developed in Section 4, e.g. next-period
expected impairment and its cumulative distribution function (c.d.f.). Secondly, we are tackling the case
of linearly dependent shares. In a similar way, we are able to develop analytical of the distributional
specificities of next-period impairment. This is mainly based on the existence of the joint law of a multi-
dimensional drifted Brownian motion with a vector of its element-wise supremum over a given period.
We should note that in our case we did use the joint density to characterize the quantities of interest.
This density is known for n = 2 but its analytical form for n ≥ 3 does only exist for some particular
correlation matrices, see Escobar and Hernandez (2014). We thus propose the computation of the next
period impairment c.d.f. of some particular cases where the aforementioned density does exist based on
the method of images, see Keller (1953).

Finally, we derive the explicit form of the joint c.d.f. of the aggregate carrying amounts and the
impairment losses both for the comonotonic and linearly dependent shares. This c.d.f. is of paramount
importance in practice as it should help the determination of a representative share of a book of equities
when amodel point approach is considered in the internal model of the insurer. In fact, due to constraints on
computation times and implementation costs but also due to the complexity of a share-by-share approach,
insurers generally rely on a model point that represents a book of equity, see Bennemann and Hennig
(2010). This leads to the application of the accounting depreciation rules to the representative equity
instead of applying it individually to each security. The results obtained in Azzaz et al. (2015) (with a
slightly different impairment criterion, that of IAS 39) have shown the inadequacy of the representation
of impairments using the only significant loss criterion. Hence, using this joint c.d.f. should enhance the
construction of the model point.

The remainder is organized as follows. In Section 2 we introduce the accounting standards that French
insurers have to apply for accounting non-depreciable financial assets (e.g. funds and stocks). This
gives arise to a mathematical formulation for the impairment rule as a complex option-like cash-flow.
In Section 3, we formulate this problem using a Black and Scholes framework, where the equities follow
a geometric Brownian motion. The impairment is formulated and its distribution and expectation are
investigated for a single share and give the basis for the computations for a book of n equities that follow
in Section 4. In this section, we introduce the main result of the paper while distinguishing comonotonic
of linearly dependent shares. Finally, in Section 5 we investigate the computational performance of the
analytical results and analyse the bias estimation stemming from a basic simulation-based approach.

2 Accounting measurement of equity securities

2.1 General Measurement. In France, the revaluation of life insurance policies is constrained by
regulatory measures on profit-sharing on the basis of statutory accounts. Therefore, it is necessary to
describe the specific modalities that apply to the measurement and recognition of the financial assets.
Precisely, the accounting standards for equity instruments are governed by Art. R343-10 of the French
Insurance Code and sections 123-1 to 123-19 of the French Insurance Accounting Regulation1 for their

1Règlement ANC n◦ 2015-11 available at https://www.anc.gouv.fr
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depreciation methods2. On an individual basis, these rules can be summarized as follows:
(i) at initial recognition, an equity security is measured and recognized at its acquisition cost;
(ii) the subsequent measurement of that kind of financial instruments remains at their acquisition cost;
(iii) under some conditions (described below), an impairment provision may be recognized.

From this accounting scheme, at each annual reporting date, the net carrying amount of an equity
security is equal to its acquisition cost less the impairment provision. The differences between the opening
and closing values of the impairment provision are recognized through profits-and-losses (P&L). When
this equity security is sold during the reporting period, the difference between its net carrying amount (at
the opening) and the sold price is recognized through P&L.

2.2 Impairment losses and provision. French accounting regulations state that provisions for im-
pairment have to be accounted on an individual basis, i.e. unrealised gains from some shares do not
compensate unrealised losses from other for the purpose of determining such provisions. Considering an
individual financial asset, an impairment provision has to be recognized if, at reporting date:
(i) the market value is inferior to the acquisition value; and
(ii) the unrealized loss presents a durable nature.

For non-amortizable financial assets, several cases have to be considered regarding the durable or
permanent condition. So, an unrealized loss of an equity security is presumed durable if:
(i) an impairment provision was recognized in the opening balance sheet;
(ii) it exists some objective hints that the unrealized loss presents a durable nature;
(iii) the unrealized loss has been significant and prolonged.

In the following, we will focus on the last criterion which is a quantitative one. Unlike the IAS 39 stan-
dards (see Azzaz et al. (2015)), the French standard defines how to consider a significant and prolonged
impairment : when the unrealized loss was higher than 20 % of the acquisition cost during the latest
6-months. Beyond the impairment trigger, two other disposals are quite different from IAS 39 impairment
mechanism:
(i) the impairment provision is re-evaluated each year (with the possibility of reversal),
(ii) if the insurance company has the will and the ability to hold the equity security over the next years,
the impairment provision could be lesser than the unrealized loss3.
In the following, without loss of generality, we will not consider this latter possibility.

2.3 Notation. In this section, we consider the impairment of a single asset i, denoted Si, according to
the accounting principles discussed above. Suppose that we are at the beginning of the period t and we
seek to quantify the (t+ 1)-period impairment. At the end of this period, the equity is impaired whenever
its recoverable amount falls under the acquisition value Siti = ai > 0 (ti denotes the acquisition date).
This rule must be considered jointly with the constraint on the prolonged effect of the drop-down. Indeed,
the impairment is triggered when the observed market value over the period [t + 1/2, t + 1] remained
below a given level α of the acquisition value, where α ∈ [0, 1]. These together induce a recognition
of a loss (ai − Sit+1). More formally, given the information acquired up to time t > ti and denoting
S̃it+1 = supu∈[t+1/2,t+1] S

i
u, the future impairment PDDi

t+1 is given as follows:

PDDi
t+1 = (ai − Sit+1)

+1
S̃it+1≤αai

. (2.1)

2The details on the French insurance regulation is available at https://www.legifrance.gouv.fr
3The insurance company may compute a so-called "recoverable value" corresponding to the market value projected over

the remaining expected holding period (with a maximum of 5 years) of the considered financial asset.
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As a consequence, the net accounting value of this title is given by

NAVit+1 = ai − PDDi
t+1. (2.2)

3 Model assumptions

The issue we want to deal with consists in the projection of both net accounting and market values of
equity securities belonging to a life insurer’s financial assets portfolio.

As mentioned previously, both new prudential and financial reporting standards require market consis-
tent valuation of insurance liabilities. Concerning with-profits life insurance contracts, in most case, such
evaluations are conducted using Monte Carlo simulations based on future cash-flows realisations drawn
from a projection model. Such a model has to represent asset-and-liability management, especially local
GAAP P&L consequences of selling (or not) financial assets. Moreover, since Solvency II and IFRS 17
require market consistent measurement, in most cases, risk-neutral economic scenario generators are con-
sidered. More specifically, the stock dynamics are evolving under the risk neutral probability measure.
This practice roots in the use of the quantified provisions to assess the market consistent of the liability
best estimate under the regulatory requirement. As noted before, the latter should take into account the
financial returns that are accounted for in a profit sharing mechanism.

Accordingly, under the risk neutral measure, the equities share have the same drift rate that is equal
to the risk-free rate but have different volatilities. Hereafter, we consider that the dynamics of these stock
prices can be described by a geometric Brownian motion as follows

dSit = Sit
(
rdt+ σidW

i
t

)
, t ≥ 0 (3.1)

where r and σi are some constant parameters referring, respectively, to the risk-free interest rate and the
volatility of the ith equity. Here, W i = (W i

t )t≥0 is a standard Brownian motion such that for each i 6= j

we have cov(W i
t ,W

j
t ) = ρijt, where ρij ∈]− 1, 1[ is the correlation coefficient. Moreover, let us introduce

the following notation

Xi
t = µit+ σiW

i
t , where µi =

2r − σ2i
2

,

which will be used throughout the sequel.
A primal quantity of interest when dealing with impairment is the distributional behaviour of the im-
pairment provision at a given time. To this end, the next proposition gives the c.d.f. of the impairment
provision of a single title at time t, given the available information at time s. In the following proposition,
the notation Pt (·) (resp. Et(·)) stands for the conditional probability P

(
·|F it

)
(resp. conditional expecta-

tion E(·|F it )) where F it is the filtration generated by the Brownian motion W i, i.e. F it = σ{W i
s , s ≤ t}.

Proposition 1 Consider an asset i with acquisition value ai > 0, acquisition date ti and future impairment
PDDi given by Equation (2.2). Let t > 1

2 . For all ti ≤ s < t− 1
2 , the cumulative distribution function of

PDDit is given as follows:

Ps(PDDit ≤ x) =


0 if x < 0,

p1(ai, S
i
s) if 0 ≤ x < ai(1− α),

p2(ai, S
i
s) if ai(1− α) ≤ x < ai,

1 if x ≥ ai,
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with

p1(ai, S
i
s) = 1− Φ

(
w,

ln(
αai
Sis

)−µiδ

σi
√
δ

;
√
2δ−1√
2δ

)
+
(
αai
Sis

) 2µi
σ2
i Φ

(
w + 2µi

σi

√
δ − 1

2 ,
− ln(

αai
Sis

)−δµi
σi
√
δ

;−
√
2δ−1√
2δ

)
,

p2(a, S
i
s) = 1− Φ

(
w,

ln(
ai−x
Sis

)−µiδ

σi
√
δ

;
√
2δ−1√
2δ

)
+
(
αai
Sis

) 2µi
σ2
i Φ

w + 2µi
σi

√
δ − 1

2 ,
− ln(

(ai−x)S
i
s

a2
i
α2

)−δµi

σi
√
δ

;−
√
2δ−1√
2δ

 ,

w =
(

ln
(
αai
Sis

)
− µi(δ − 1

2)
)/
σi

√
δ − 1

2 , δ = t − s and Φ(U, V ; θ) is the joint c.d.f. of two correlated
Gaussian r.v.s U and V with a given correlation coefficient θ.

Proof. See Appendix A.1. �

If this first result enables to simulate future impairment losses, from an operational perspective, we
still have to deal with two issues:
(i) the joint evolution of market value and net accounting value has to be considered for applying man-
agement rules in projection models;
(ii) insurer’s internal models do not consider equity securities on an individual basis (even if the impair-
ment rules apply at this level of measurement).
In the following, we deal with these two issues with the objective of obtaining mathematical results which
enable an operational implementation (see 5).

4 Main results

In this section, we derive the main quantities needed to assess the impairment of a book of n equities.
These are related to the joint distribution of the next period impaired value and the underlying shares
values. First, we start with a particular case on which the equities have the same source of uncertainty.
This is to take into account a common practice in real world applications where the same Brownian motion
is used to generate the dynamics of the stocks and thus compute the related impaired values. This model
is also of interest when the insurance company holds many shares of a stock that have been purchased
at different dates. Following the accounting rules this share should be split in different lines based on
the acquisition date. Secondly, we consider a more general framework where the equity securities are not
perfectly correlated. For both frameworks, we denote

Γt = PDD1
t + · · ·+ PDDn

t , (4.1)

where PDDi
t, for i = 1, · · · , n are defined in Equation (2.2). Moreover, we are also considering the aggregate

dynamics Σ = (Σt)t≥0 defined as follows:

Σt = S1
t + · · ·+ Snt . (4.2)

From an operational perspective, our main goal is to be able to simulate some realizations of (Γt+1,Σt+1)
conditionally to (Γt,Σt).

4.1 Portfolio of comonotonic securities. Our first results consist in deriving the joint distribution of
the market value and the impairment reserve of shares of the same company, acquired at different times.
As a matter of fact, the valuation principle associated with the acquisition cost measurement leads to
distinctly recognize several lines of the same title acquired at different times, thus at different costs. So
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we may have, if any, different levels of impairment reserves for the same security but acquired at different
dates.

As noted before, in practice, the use of Monte-Carlo simulations based on an asset-by-asset approach
often leads to large running times. Therefore, the practitioners are generally used to group the equities
into homogeneous groups and to replace the group of contracts with a representative security called a
model point, see Bennemann and Hennig (2010). When doing this, they advocate the use comonotonic
dynamics for modelling the various securities within each model point. More formally, we consider that
the stocks have the same dynamic

dSt = St
(
rdt+ σdWt

)
,

where r, σ > 0 and W = (Wt)t≥0 is a standard Brownian motion. Here Xt = µt + σWt where µ =
(2r − σ2)/2. In the other hand, this case could correspond, for instance, to the presence of the same
share in the asset book of the insurer with different acquisition dates and values. These are treated
separately as the impairment provision does depend on the acquisition value, see Equation (2.2). Given
this particular case, our aim is then to derive the joint probability Pt (Γt+1 ≤ y,Σt+1 ≤ x), where as
previously mentioned the notation Pt (·) (resp. Et(·)) stands for the conditional probability P (·|Ft) (resp.
conditional expectation E(·|Ft)) where Ft is in this section the filtration generated by the Brownian motion
W , i.e. Ft = σ{Ws, s ≤ t}. First, we generalize the result in Proposition 1 and derive a closed form for
c.d.f. of the aggregate loss Γ defined in Equation (4.1).

Proposition 2 Let consider a book of n shares with different acquisition dates ti and acquisition costs
ai > 0, i = 1, . . . , n. Let t > 1

2 . For all max(t1 . . . tn) ≤ s < t− 1
2 , the next period probability of recording

an impairment on this book is given by

Ps(Γt > 0) = 1− p1(max(a1 . . . an), Ss),

where p1 is given in Proposition 1.

Proof. See Appendix A.2 �

Another indicator of interest is the expected loss at the end of a given period. Of course, one can
use the c.d.f. in the last proposition to retrieve the expected value of impairments by integration of the
survival function. However, this would be painful, and numerically complex. Therefore, in the next result
we give the explicit form of the latter conditional on the information up to time s.

Proposition 3 For n shares with different acquisition values ai and different acquisition dates ti ≤ s <
t− 1

2 , i = 1, . . . , n and t > 1
2 , the next period expected impaired amount is given as follows:

Es(Γt) =
n∑
i=1

ai(1− p1(ai, Ss))

+
n∑
i=1

erδ

−SsΦ
 ln aiα

Ss
− (µ+ σ2)(δ − 1

2)

σ
√
δ − 1

2

,
ln aiα

Ss
− (µ+ σ2)δ

σ
√
δ

;

√
2δ − 1√

2δ


+(aiα)

2(µ+σ2)

σ2 S
− 2r
σ2

s Φ

 ln aiα
Ss

+ (µ+ σ2)(δ − 1
2)

σ
√
δ − 1

2

,
− ln aiα

Ss
− (µ+ σ2)δ

σ
√
δ

;−
√

2δ − 1√
2δ

 .
where p1 is given in Proposition 1 and δ = t− s.
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Proof. See Appendix A.3 �

The above results are of paramount importance when investigating the impairment characteristics and
thus can be incorporated on a periodic assessment the impact of an impairment of a book of comonotonic
equities on the profit sharing mechanism. For instance, this can be integrated on scenario based approach.
However, from a risk management point of view it is important to measure the risk of any deviation in
the profit or loss resulting from any impairment of such a security. Therefore, in the following result we
are looking for the joint market value of an individual stock is the price at which this asset is quoted on
an exchange.

Theorem 1 Let t, x, y ≥ 0. Assume, without loss of generality, that the acquisition costs ai, i = 1 . . . n
of n shares are ordered, i.e. a1 ≤ a2 · · · ≤ an. In the case of n shares with different acquisition values ai
and different acquisition dates ti < t, i = 1 . . . n, the joint c.d.f. Pt (Γt+1 ≤ y,Σt+1 ≤ x) can be written as
follows:

√
2φ

(
1

σ
ln

(
x

nSt

)
− µ

σ

)
− Φ

(
ωn,

1

σ
ln

(
x

nSt

)
− µ

σ
;

1√
2

)
+1 x

n
≤anα

(
anα

St

) 2µ

σ2

e−
µ2

σ2 Φ

(
ωn +

2µ

σ
,

1

σ
ln

(
xSt

n(anα)2

)
− µ

σ
;− 1√

2

)
+1 x

n
>anα

{
Φ

(
ωn,

1

σ
ln

(
x

nSt

)
− µ

σ
;

1√
2

)
− Φ

(
ωn,

1

σ
ln

(
anα

St

)
− µ

σ
;

1√
2

)
+

(
anα

St

) 2µ

σ2

e−
µ2

σ2 Φ

(
ωn +

2µ

σ
,− 1

σ
ln

(
anα

St

)
− µ

σ
;− 1√

2

)}

+
n−1∑
j=0

1 1
n−j (

∑n
i=1+j ai−y)≤

x
n
∧aj+1α

×
{

Φ

(
ωj+1,

1

σ
ln

( x
n ∧ aj+1α

St

)
− µ

σ
;

1√
2

)

−
(
aj+1α

St

) 2µ

σ2

e−
µ2

σ2 Φ

(
ωj+1 +

2µ

σ
,

1

σ
ln

(
St(

x
n ∧ aj+1α)

(aj+1α)2

)
− µ

σ
;− 1√

2

)
− Φ

(
ωj+1,

1

σ
ln

(∑n
i=j+1 ai − y
(n− j)St

)
− µ

σ
;

1√
2

)

+

(
aj+1α

St

) 2µ

σ2

e−
µ2

σ2 Φ

(
ωj+1 +

2µ

σ
,

1

σ
ln

(
St(
∑n

i=1+j ai − y)

(n− j)(aj+1α)2

)
− µ

σ
;− 1√

2

)}

−
n−1∑
j=1

1 1
n−j (

∑n
i=1+j ai−y)≤

x
n
∧aj+1α

(
1 x
n
>ajα − 1 1

n−j (
∑n
i=1+j ai−y)<ajα

){
Φ

(
ωj ,

1

σ
ln

(
ajα

St

)
− µ

σ
;

1√
2

)

−
(
ajα

St

) 2µ

σ2

e−
µ2

σ2 Φ

(
ωj +

2µ

σ
,

1

σ
ln

(
St
ajα

)
− µ

σ
;− 1√

2

)}

+1 1
n−j (

∑n
i=1+j ai−y)≤

x
n
<ajα

×
{
−Φ

(
ωj ,

1

σ
ln

(
x

nSt

)
− µ

σ
;

1√
2

)
+

(
ajα

St

) 2µ

σ2

e−
µ2

σ2 Φ

(
ωj +

2µ

σ
,

1

σ
ln

(
xSt

n(ajα)2

)
− µ

σ
;− 1√

2

)}
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+1 1
n−j (

∑n
i=1+j ai−y)≤

x
n
∧ajα

{
Φ

(
ωj ,

1

σ
ln

(∑n
i=1+j ai − y
(n− j)St

)
− µ

σ
;

1√
2

)

+

(
ajα

St

) 2µ

σ2

e−
µ2

σ2 Φ

(
ωj +

2µ

σ
,

1

σ
ln

(
(
∑n

i=1+j ai − y)St

(n− j)(ajα)2

)
− µ

σ
;− 1√

2

)}
,

where ωj =
√
2
σ ln (ajα/St) + µ/σ

√
2.

Proof. See Appendix A.4 �

From an operational perspective, this first result enables to deal with several lines of a same title which
were acquired at different times. Moreover it is already an improvement of the main used approach in
cash-flows projection models which consists to aggregate a book of stocks (averaging both market values
and acquisition costs) and consider it as if it was a single equity security. Of course this main used ap-
proach leads to misrepresent impairment losses dynamic which is far to be linear.

4.2 Shares with linear dependency. In this section, we intend to expand our first result, assuming
that the stocks are correlated and they have the following dynamics :

dSit = Sit
(
rdt+ σidW

i
t

)
, (4.3)

where r, σi > 0 and W i, i = 1, . . . , n are n correlated Brownian motions (BM) , cov(W i
t ,W

j
t ) = ρijt with

ρij ∈]− 1, 1[. In this section, Ft is the filtration generated by the n BMs.
Since the expected impaired amount does not depend on the correlation coefficients, we easily find the

following result as in the previous section.

Proposition 4 For n correlated shares with different acquisition dates ti and acquisition costs ai, the next
period expected impaired amount is given as follows for ti ≤ s < t− 1

2 , i = 1 . . . n and t > 1
2 :

Es(Γt) =
n∑
i=1

ai(1− p1(ai, Sis))

+
n∑
i=1

erδ

−SisΦ
 ln aiα

Sis
− (µi + σ2i )(δ − 1

2)

σi

√
δ − 1

2

,
ln aiα

Sis
− (µi + σ2i )δ

σi
√
δ

;

√
2δ − 1√

2δ


+(aiα)

2(µi+σ
2
i )

σ2
i S

− 2r

σ2
i

s Φ

 ln aiα
Sis

+ (µi + σ2i )(δ − 1
2)

σi

√
δ − 1

2

,
− ln aiα

Sis
− (µi + σ2i )δ

σi
√
δ

;−
√

2δ − 1√
2δ

 .
where p1 is given in Proposition 1 and δ = t− s.

Henceforth we consider the case of two correlated stocks (i.e. n = 2) where the correlation coefficient
between the two Brownian motions is ρ ∈] − 1, 1[. We introduce the following key functions needed
throughout the sequel.
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Definition 1 Let β ∈ [0, π], σ1, σ2 > 0, µ1, µ2 ∈ R some constants and q : R+ × [0, β] × R3
+ → [0, 1],

p : R2
+ × [0, β]2 × R3

+ → [0, 1] two functions defined by

q(r0, θ0, t;M1,M2) = eM1α1+M2α2+bt 2

βt
×

∞∑
n=1

e−
r20
2t sin

(
nπθ0
β

)∫ β

0
sin

(
nπθ̃

β

)∫ ∞
0

r̃e−
r̃2

2t e
µ2
σ2
r̃ sin θ+α1σ1

√
1−ρ2r̃ cos θ

Inπ
β

(
r̃r0
t

)
dr̃dθ̃,

p(r̃, r0, θ̃, θ0, t;M1,M2) = e
M1α1+M2α2+bt+

µ2
σ2
r̃ sin θ̃+α1σ1

√
1−ρ2r̃ cos θ̃ ×

2r̃

βt

∞∑
n=1

e−
r20+r̃

2

2t sin

(
nπθ0
β

)
sin

(
nπθ̃

β

)
Inπ
β

(
r̃r0
t

)
,

where In is the modified Bessel function,

α1 =
−µ1σ2 + ρµ2σ1

(1− ρ2)σ21σ2
, α2 =

−µ2σ1 + ρµ1σ2
(1− ρ2)σ1σ22

, and b =
−µ21σ22 − µ22σ21 + 2ρµ1µ2σ1σ2

2(1− ρ2)σ21σ22
.

Since in the sequel we consider the case n = 2, then Ft is the filtration generated by the two Brownian
motions W i, i = 1, 2.

If we still intend to express the joint conditional distribution of (Γ,Σ), the first step leads to express
to probability that, at least, one title among the book of assets is impaired.

Proposition 5 Let t > 1
2 . The next period probability of recording an impairment on a given book of 2

correlated shares with acquisition dates ti and acquisition costs ai, ti ≤ s < t− 1
2 , i = 1, 2 is given by

Ps(Γt > 0) =

2∑
i=1

(
1− p1(ai, Sis)

)
−Q(S1

s , S
2
s , δ)

where

Q(S1
s , S

2
s , δ) = E

[
1X≤A1,Y≤A2q

(
r0, θ0,

1

2
;σ1

√
δ − 1

2
(A1 −X), σ2

√
δ − 1

2
(A2 − Y )

)]
si=Sis

,

q is given in Definition 1, p1 is given Proposition 1. Here, (X,Y )t is a Gaussian vector N
(

0R2 ,

(
1 ρ
ρ 1

))
and

r0 =

(
δ − 1

2

1− ρ2

(
(A1 −X)2

2
− 2ρ(A1 −X)(A2 − Y ) +

(A2 −X)2

2

)) 1
2

tanβ = −
√

1− ρ2
ρ

, β ∈ [0, π], tan θ0 =
√

1− ρ2
(
A1 −X
A2 − Y

− ρ
)−1

, θ0 ∈ [0, β]

Ai =
ln aiα

si
− µi(δ − 1

2)

σi

√
δ − 1

2

, δ = t− s.
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Proof. See Appendix B.1 �

The Q function previously introduced is going to be used to express the conditional distribution of
(Γ,Σ) in 2.

Theorem 2 In the case of two correlated shares S1 and S2, the joint c.d.f. Pt (Γt+1 ≤ y,Σt+1 ≤ x) can
be written as follows for all x, y ≥ 0:

∑
i,j∈{1,2},i 6=j

E
[
J1
ij(X,Z)φij(s1, s2, X, Y, Z)

]
si,j=S

i,j
t
−
(
αai
Sit

) 2µi
σ2
i e
−µ

2
i
σ2
i E
[
J2
ij(X,Z)φ̃ij(s1, s2, X, Y, Z)

]
si,j=S

i,j
t

+E

[
1
X≤

ln x
s1
−µ1

σ1

φ

(
1

σ2
√

1− ρ2
ln
x− s1eµ1+σ1X

s2eµ2+σ2ρX

)]
s1,2=S

1,2
t

J3 +Q(S1
t , S

2
t , 1)J4

+

∫ ∞
0

∫ β

0
Et
[
1X≤A1,Y≤A2p

(
r̃, r0, θ̃, θ0, σ1

√
0.5(A1 −X), σ2

√
0.5(A2 − Y )

)]
s1,2=S

1,2
t

J(r̃, θ̃)dr̃dθ̃,

where Q, r0, θ0, Ai (for δ = 1) and β are given in Proposition 5, (X,Y, Z)t is a Gaussian vector

N

0R3 ,

 1 ρ 0
ρ 1 0
0 0 1

 and

J1
ij(X,Z) = 1X≤Ai

I1(ai, aj)1
Z≤

ln
x∧(αai)

si
−µi

σi
√
0.5

−X
+ I2(ai, aj)1 ln

ai−y
si
−µi

σi
√
0.5

−X≤Z≤
ln
x∧(αai)

si
−µi

σi
√
0.5

−X

 ,
J2
ij(X,Z) = 1X≤Ai

I1(ai, aj)1 ln
ai−y
si
−µi

σi
√
0.5

−X≤Z≤
ln
x∧(αai)

si
−µi

σi
√
0.5

−X
+ I2(ai, aj)1 ln

si(ai−y)
(αai)

2

σi
√
0.5

+X≤Z≤
ln
si(x∧αai)
(αai)

2

σi
√

0.5
+X

 ,
I1(ai, aj) = −1x≥α(ai+aj)1y<ai − 1y≥aj1αai≤x<α(ai+aj),
I2(ai, aj) = 1ai(1−α)≤y<ai1x≥(αaj)∨(ai−y), i, j ∈ {1, 2}, i 6= j,

J3 = 1x≥α(a1+a2) [1 + 1y≥a11x≥αa2 + 1y≥a21x≥αa1 ] ,

J4 = 1x≥α(a1+a2) [1y<a1 − 1a2≤y<a1+a2 ] ,

J(r̃, θ̃) = −I2(a1, a2)1(r̃,θ̃)∈D1
− I2(a2, a1)1(r̃,θ̃)∈D2

+ 1x≥(a1+a2−y)∨α(a1+a2)1y<a1+a21(r̃,θ̃)∈D3(a1+a2−y)

+ 1x<α(a1+a2)1y≥a1+a21(r̃,θ̃)∈D4(x)
+ 10<a1+a2−y≤x<α(a1+a2)1(r̃,θ̃)∈D3(x)−D3(a1+a2−y),

φij(si, sj , X, Y, Z) = φ

(
1

σj
√

0.5(1− ρ2)
ln
x− sieσi

√
0.5(X+Z)+µi

sje
σj
√
0.5(ρZ+Y )+µj

)
,

φ̃ij(si, sj , X, Y, Z) = φ

 1

σj
√

0.5(1− ρ2)
ln

x− (αai)
2

si
eσi
√
0.5(Z−X)(

αai
si

)2ρσj/σi
sje

σj
√
0.5(ρZ+Y−ρX)+µj−2ρµi

σj
σi

 ,

D1 =

{
(r̃, θ̃) : a1αe

−σ1r̃(ρ sin(θ̃)+
√

1−ρ2 cos(θ̃)) + a2αe
−σ2r̃ sin(θ̃) ≤ x, 1 ≥ e−σ1r̃(ρ sin(θ̃)+

√
1−ρ2 cos(θ̃)) ≥ a1 − y

αa1

}
,
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D2 =

{
(r̃, θ̃) : a1αe

−σ1r̃(ρ sin(θ̃)+
√

1−ρ2 cos(θ̃)) + a2αe
−σ2r̃ sin(θ̃) ≤ x, 1 ≥ e−σ2r̃ sin(θ̃) ≥ a2 − y

αa2

}
,

D3(m) =
{

(r̃, θ̃) : a1αe
−σ1r̃(ρ sin(θ̃)+

√
1−ρ2 cos(θ̃)) + a2αe

−σ2r̃ sin(θ̃) ≤ m
}
, ∀m ≥ 0.

Proof. See Appendix B.2. �

Notice that our method can be generalized to n > 2 if the joint density (X, X̃) is known, with
X = (X1, . . . , Xn) is a n-dimensional drifted Brownian motion and X̃ = (X̃1, . . . , X̃n) its element-wise
supremum over a given period. To our knowledge, this density only exists for some particular correlation
matrices, see Escobar and Hernandez (2014). The determination of such correlation structures is based
on the method of images, see Keller (1953). In our case, we note R the correlation matrix of the vector X
and introduce the matrices An, Bn and Cn that will needed to characterize the structures that can lead
to the derivation of the density depending on the dimension n. The elements of these three matrices are
given as follows:

An(i, j) =

{
− cos

(
π
3

)
, j = i+ 1

0 , else , and Bn(i, j) =


− cos

(
π
3

)
, j = i+ 1

− cos
(
π
3

)
, i = n− 2, j = n

0 , else

Cn(i, j) =


− cos

(
π
3

)
, j = i+ 1

− cos
(
π
4

)
, i = n− 1, j = n

0 , else.

Theorem 3 The type of correlation matrices R where the method of images can be used to find the joint
distribution of (X, X̃) is provided next :
1. If n = 3, then there are only three cases : A3, C3 and G3 where

G(i, j) =


− cos

(
π
3

)
, j = i+ 1, i 6= 2

− cos
(
π
5

)
, i = 2, j = 3

0 , else

2. For any n > 3 there are at least 3 cases of correlation matrices : An, Bn, Cn.

(a) If n = 4 then there are a total of 5 cases : A4, B4, C4 and F4, G4 where

F4(i, j) =


− cos

(
π
3

)
, j = i+ 1, i 6= 2

− cos
(
π
4

)
, i = 2, j = 3

0 , else
and G4(i, j) =


− cos

(
π
3

)
, j = i+ 1, i 6= 3

− cos
(
π
5

)
, i = 3, j = 4

0 , else

(b) If n = 5 then there are only three cases : A5, B5, C5.

(c) If n = 6, 7 or 8, then there are 4 cases : An, Bn, Cn and En where

En(i, j) =


− cos

(
π
3

)
, j = i+ 1, i 6= 4

0 , i = 4, j = 5
− cos

(
π
3

)
, i = 3, j = 5

0 , else.
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Let’s note that in the case n = 2 we use the joint density of (X, X̃) to find Pt (Γt+1 ≤ y,Σt+1 ≤ x), but
the c.d.f of this vector is enough for calculations.

Remark 1 If we add a dependent share to a set of comonotonic stocks, we can easily derive analytical
results as above. In fact, the triggering events of the comonotonic shares reduce to exploring a single random
process driving these shares. Thus, the calculation in presence of a dependent share follows similar steps
as detailed above while taking into account the correlation between the two Brownian motions.

5 Operational implementation

In this section, we illustrate the computation of the provisions and compare the closed form formulas to
the simulated approximations. For the sake of readiness we consider the case where the insurer holds two
assets, i.e. n = 2, for which we run Monte-Carlo experiments to quantify the quantities introduced in the
previous sections. To this end, we adopt a naïve approach to implement the simulation scheme. Let SM,i

tk
be the realizations of the dynamics of the process (St)t≥0 over a discrete-time grid tk, k = 0, 1, · · · ,M, of
length ∆t = tk − tk−1 = 1/M with

SM,i
tk

= SM,i
tk−1

exp
(
µi∆t+ σi

√
∆tXk

)
,

where Xk are independent realizations of a standard normal r.v. X. Accordingly, a realization of the
maximum over [t+ 1/2, t] can be approximated by

S̃M,i
t = max

{
SM,i
tk

, tk ∈ [t+ 1/2, t+ 1], k = 0, 1, · · ·
}
. (5.1)

Using this path approximation, we run standard Monte-Carlo approach to simulate the impairment PDDi
t

in Equation (2.2) for a given observation time t. More formally, let n = 2 then for i = 1, 2, we have the
following approximation for the future impairment:

ΣM
tN

= SM,1
tN

+ SM,2
tN

ΓMtN = (SM,1
t1
− SM,1

tN
)+1

S̃M,1tN
≤αSM,1t1

+ (SM,2
t2
− SM,2

tN
)+1

S̃M,2tN
≤αSM,2t2

.

These are used to approximate the different quantities considered in the above sections and will be com-
pared to the proposed formulas on a number of examples. The simulation experiments were performed on
a mac-OS with an Intel Core i7 2.80 GHz processor.

5.1 Comonotonic shares. We consider two lines of shares with the same underlying security S1.
The latter was acquired at two different dates t1 and t2 at cost a1 and a2. This makes the impairment
applicable considering the two shares separately but with the same underlying dynamics. Hereafter, we
omit the accumulated impairment losses and thus the carrying amount is equal to the cost (purchase)
amount. For illustration, we consider the impairment at terminal period t = 1 and the quantification from
the initial time s = 0. The security has an initial market value S1

0 and a given implied volatility σ1. The
prolonged component of the impairment is characterized at a prefixed level α = 80%. Figures 1 and 2
depict the evolution of the next-period impairment probability as well as the expected impaired amount
as a function of some key parameters. Here, we used N = 20000 replications on a discretized time-grid
tk = k∆t with M (100 and 1000) equidistant steps.
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Figure 1: Distribution function. The probability Ps(Γt > 0) in Proposition 1, for t = 1 (s = 0) as a
function of the risk-free interest rate r (left), the level α (middle) and the volatility σ (right).

Figure 2 illustrates the expected impairment in Proposition 3. We observe that when the risk-free return
r is high the impairment loss will be approaching zero almost surely, see Figure 1 for the corresponding
probabilities. This is of course related to the initial buffer of capital gains, which is assumed to be zero for
the base case. If the initial impairment is not omitted, one should expect a less of an impact. In the other
hand, a volatility increase leads to the rise of the impaired value and thus can reach 45% of the initial
cost. Regarding the simulated approximations (in blue), we remark that those are fairly reproducing the
exact results with respect to the exact computations. This comparison demonstrates that the Monte-Carlo
estimation is a biased estimator (the exact value is inside the 0.95 confidence interval of the estimates
for any M). However, we remark that the estimate based on a discretely monitored prolonged constraint
(barrier-type condition), see the approximation in Equation (5.1) converges to the continuous case (red
line) asM increases. However, the convergence is very slow and the bias is larger than 5% of the true values
(both for the c.d.f. and the expected value) even for 1000 time steps. Therefore, the use of the analytical
formulas are very efficient as the number of required amount of sampling dates and simulations to achieve
a descent approximation is high, see Figure 2 and Figure 1. In fact, this is due to the error coming from
the discretization of the dynamics in Equation (4.3) and especially the approximation of the maximum in
Equation (5.1). More precisely, there is a loss of information about all parts of the continuous-time path
between sampling dates, which introduces a substantial bias of estimation. Moreover, the latter decreases
very slowly as 1/

√
M , see Gobet (2000). In order to enhance this bias we can use a discretization scheme

based on the exact conditional law of the maximum. The technique is very efficient because only two times
steps (t1 = 1/2 and t2 = 1) are required to simulate the equity path and its supremum is drawn based
on the simulation of a one-dimensional Brownian bridge supremum between the sampled dates using its
distribution. This technique outperforms the naïve Euler scheme presented above and reduces the bias as
well as the convergence rate, see Gobet (2000).

In Table 1 and Table 2 we reported the CPU times of the simulations for N = 1000, 5000 and 10000 and
100 and 1000 numbers of time steps. We display the analytical (true) value for the expected impairment
at the end of the first period (lower panel) as well as the probability of positive impairment (left panel).
The choice of the number of paths is an important issue here. In fact, the number of steps is of little
impact especially when looking at the variance of the estimations. The latter is almost equivalent for
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Figure 2: Expected impairment. The conditional first moment Es(Γt) in Proposition 3, for t = 1
(s = 0) as a function of the risk-free interest rate r (left), the level α (middle) and the volatility σ (right).

different time steps but decreases as the number of simulations increases. However, this bias reduction
on the estimated quantities increases the computational time. For instance, the 10000 simulations scheme
increases the accuracy up to ten times compared to 1000 scheme but does increase the computational time
by the same rate.

In the left panel of Figure 4 in the Appendix C, we plotted the joint distribution of the aggregated
equities and the corresponding impairment. We used the analytical formula given in Theorem 1 for n = 2
and different values of the input parameters. We observe that the probability to recognize an impairment
next year together with a fall of the underlying equities does not exhibit a particular pattern: neither
globally convex in x and y nor concave. This probability is very low for some levels of x and y, which
is intuitively predictable. However, for such levels the simulation based estimation, see Figure 5 in the
Appendix C, had difficulties to capture these joint probabilities as the variance of the estimation is very
high. In fact, even if the number of simulated paths is sufficiently high, the scenarios triggering the events
(the impairment together with the equities drop-down) are rare and thus make the estimation unstable
and volatile.

5.2 Correlated securities. The case of correlated assets relies on semi analytical formulas that require
further computations. Indeed, the results in Subsection 4.2, i.e. Proposition 5 and Theorem 2, involve not
only some expectations but also multiple improper integrals. However, the underlying r.v. have a standard
normal density and should not be of a particular concern for the implementation. Also, we should note
that these formulas can be simplified for some particular forms of the correlation coefficient ρ. Indeed,
when the latter can take on only the special values ρk = − cos(π/k), k = 1, 2, · · · , the two functions q
and p in Definition 1 can be determined in a more tractable form. In particular, the infinite sum involved
in the definition of p can be written as a finite sum of bivariate normal densities. A similar finite sum
formula can be derived for the terms involved in the joint density, see He et al. (1998) for instance and
Lemma 2 in Appendix B. Still, the analytical form involves some expectations. Therefore, we focus on
the execution time needed to implement each of these quantities as well as the underlying bias.

For the sake of simplicity, we will focus on the above mentioned special case and let the correlation
coefficient equal to ρk = − cos(π/k). For instance, we consider the case where k = 5 and look at the c.d.f.
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Table 1: Computational Time (Probability). The calculation time and variance of the estimation
for the impairment probability Ps(Γt > 0) in Proposition 2 and Proposition 5 with t = 1 and s = 0 for two
shares (n = 2). The input parameters are as follows α = 80%, r = 1%.
Comonotonic shares (left panel): S1

0 = 100 and acquisition costs S1
t1 = 120, S1

t2 = 150 and σ1 = 30%.
Correlated shares (right panel): S1

0 = 100, S2
0 = 120, S1

t1 = 120, S2
t2 = 150 and σ1 = 30%, σ2 = 40%.

Comonotonic Correlated (k = 5)

N 1000 5000 10000 1000 5000 10000

Analytical 0.5723 Analytical 0.5304
Time (in seconds) – – – Time (in seconds) 0.10 0.53 2.92
Variance (1e-10) – – – Variance (1e-10) 0.284 0.054 0.014

Simulation (M = 100) 0.5938 Simulation (M = 100) 0.5637
Time (in seconds) 0.00 0.01 0.07 Time (in seconds) 0.02 0.06 0.17
Variance (1e-3) 0.239 0.046 0.013 Variance (1e-3) 0.262 0.046 0.013

Simulation (M = 1000) 0.5827 Simulation (M = 1000) 0.5402
Time (in seconds) 0.04 0.18 0.91 Time (in seconds) 0.08 0.46 2.77
Variance (1e-3) 0.245 0.049 0.011 Variance (1e-3) 0.264 0.045 0.012

in Proposition 5. In fact, as mentioned earlier the next-period expected impairment does not depend
on the correlation between the two shares and the discussion made in the previous section also applies
as one can only simulate comonotonic shares but with different initial values to recover the underlying
result for the linearly dependent case. In Figure 3 we depict this c.d.f. for different discretization schemes
(M = 100 and M = 1000). As we can see similar conclusions can drawn as for the comonotonic case.
Regarding the execution time, see the right panel of Table 1, the semi-analytical can be computationally
intensive. However, for small number of paths, N = 1000, the variance of estimate is 107 smaller than a
naïve Monte-Carlo scheme variance with an equivalent execution time, i.e. 0.28 seconds.

6 Concluding Remarks

In this paper, we considered French impairment rules regarding equity securities held by an insurer.
Our objective was to go further than common practice which consists in considering an overall portfolio of
equities as a single aggregated stock, since the impairment mechanism is complex and has to be considered
on an individual basis. Under the Black-Scholes framework (geometric Brownian motion dynamics for the
stocks), we derived closed form formulas for the joint distributions of the impaired amounts and the
equities market values as well as the next-period impairment provisions. Formally, the results present
analytical formulas for the comonotonic shares and semi-analytical forms in the linearly dependent case.
The latter can be improved to obtain more tractable formulas depending on the correlation factor. These
results enable to improve cash-flows projection models which are of massive use for both prudential and
financial reporting purposes. Moreover, our results are the starting ground for future research on the
optimal aggregation of equities. In fact, in future work we intend to study the construction of a proxy for
representing a book of equities while ensuring the adequate representation of the distributional behaviour
of both the aggregated net accounting values and market values.
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Table 2: Computational Time (Expectation). The calculation time and variance of the estimation
for the impairment probability Es[Γt] in Proposition 3 with t = 1 and s = 0 for two shares (n = 2). The
input parameters are as follows α = 80%, r = 1%, S1

0 = 100 and acquisition costs S1
t1 = 120, S1

t2 = 150
and σ1 = 30%.

N 1000 5000 10000

Analytical 12.8967

Simulation (M = 100) 13.4434

Time (in seconds) 0.01 0.03 0.12
Variance 0.689 0.151 0.036

Simulation (M = 1000) 13.1812
Time (in seconds) 0.06 0.34 1.98
Variance 0.758 0.139 0.033
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Appendices

A Comonotonic securities

In order to prove our results, we shall need the joint distribution of a Brownian motion with drift and its
supremum. This can be easily derived using Harrison (1985).
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Figure 3: Distribution function. The probability P(Γt > 0) in Proposition 5, for t = 1 and s = 0, as
a function of the interest rate r (left) and impairment level α (right) for equities S1

0 = 100, S2
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S1
t1 = 120 and S2

t2 = 150.

Proposition 6 Let Xt = µt + σBt, and Mt = supu∈[0,t]Xu where B is a standard Brownian motion.
Then, the probability P(Xt ≤ y,Mt ≥ x) is given by:

φ

(
y − µt
σ
√
t

)
if 0 ≥ x,

e2µx/σ
2
φ
(
y−2x−µt
σ
√
t

)
if 0 < x, y ≤ x,

φ

(
y − µt
σ
√
t

)
− φ

(
x− µt
σ
√
t

)
+ e2µx/σ

2
φ

(
−x− µt
σ
√
t

)
if 0 < x < y.

In the other hand, the c.d.f. P (Mt ≤ x) is given by: 0 if 0 ≥ x,

φ

(
x− µt
σ
√
t

)
− e2µx/σ2

φ

(
−x− µt
σ
√
t

)
if 0 < x.

where φ is the c.d.f of a standard Gaussian r.v.

We easily deduce

P(Xt ∈ dy,Mt ≤ x) = 10<x,y≤x
1

σ
√

2πt

(
e−

(y−µt)2

2σ2t − e
2µx

σ2 e−
(y−2x−µt)2

2σ2t

)
dy.

Another useful result is the following :

Proposition 7 Let α, β, w, c ∈ R and X is a standard Gaussian random variable, i.e. X ∼ N (0, 1) with
distribution function φ. Then

E
[
1X≤we

−cXφ(aX + b)
]

= ec
2/2Φ

(
w + c,

b− ac√
1 + a2

;
−a√
1 + a2

)
(1.1)

where Φ(U, V ; θ) is the joint c.d.f. of two correlated Gaussian r.v.s U and V with a given correlation
coefficient θ.
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Proof. If one considers two correlated random variables X1 and X2 with correlation coefficient ρ such that
Xi ∼ N (µi, σi), i = 1, 2 then the distribution of X2 conditionally on X1 can be written as follows:

X2|X1 ∼ N
(
µ2 + ρ

σ2
σ1

(X1 − µ1), (1− ρ2)σ22
)
.

Thus, we can write the joint distribution of X1 and X2 in the following form

P (X1 ≤ x1, X2 ≤ x2) = E

[
1
X≤x1−µ1

σ1

φ

(
y − µ2 − ρσ2

σ1
(Xσ1 + µ1 − µ1)

σ2
√

1− ρ2

)]
,

which can also be given in terms of the joint distribution Φ of two standard Gaussian r.v.’s with a given
correlation coefficient. Therefore, we can write for any a, b, c and w

E
[
1X≤we

−cXφ(aX + b)
]

= ec
2/2E

[
1X≤w+cφ(αX + b− ac)

]
= ec

2/2Φ

(
w + c,

b− ac√
1 + a2

;
−a√
1 + a2

)
, (1.2)

which is the desired result. �

A.1 Proof of Proposition 1. The cases x < 0 and x ≥ ai are obvious. Remark that on {S̃it ≤ αai},
ai(1− α) ≤ ai − Sit . Hence, for x < ai(1− α),

Ps(PDDi
t ≤ x) = Ps(S̃it > aiα) = 1− Ps(Pt− 1

2
(S̃it ≤ aiα)).

We then use the Markov property of Si and Proposition 6.
For ai(1− α) ≤ x < ai, we have

Ps(PDDi
t ≤ x) = Es

(
(ai − Sit)+1S̃it≤αai ≤ x

)
= Es

[
Et− 1

2

(
(ai − Sit)+1S̃it≤αai ≤ x

)]
.

Using the Markov property of Si, we get

Es
[
1Si

t− 1
2

≤αaiEt− 1
2

((
ai − Sit− 1

2

e
µi
2
+σiB 1

2

)
1
sup

u∈[0, 12 ]
(µiu+σiBu)≤ln

(
aiα/Sit−1/2

) ≤ x
)]

,

where B is a standard Brownian motion independent of W . We firstly use Proposition 6 to compute
the conditional expectation and secondly we remark that Si

t− 1
2

= Sise
X
δ− 1

2 where Xδ− 1
2

= µi(δ − 1
2) +

σi

√
δ − 1

2X whereX is a standard Gaussian random variable independent of Fs, with distribution function
φ(·). We easily obtain

p1(ai, S
i
s) =1− Es

1X≤wφ
 ln(aiα

Sis
)− µiδ − σi

√
δ − 1

2X

σi
√

1/2

+

(
aiα

Sis

) 2µi
σ2
i e
− 2µ2i
σ2
i

(δ− 1
2
)
×

× Es

1X≤we− 2µi
σi

√
δ− 1

2
X
φ

− ln(aiα
Sis

) + µi(δ − 1) + σi

√
δ − 1

2X

σi
√

1/2

 ,
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p2(ai, S
i
s) =1− Es

1X≤wφ
 ln(ai−x

Sis
)− µiδ − σi

√
δ − 1

2X

σi
√

1/2

+

(
aiα

Sis

) 2µi
σ2
i e
− 2µ2i
σ2
i

(δ− 1
2
)
×

× Es

1X≤we− 2µi
σi

√
δ− 1

2
X
φ

− ln( (ai−x)S
i
s

a2α2 ) + µi(δ − 1) + σi

√
δ − 1

2X

σi
√

1/2

 ,
This result could be enhanced as the expectations involved in the formulas of p1 and p2 can be explicitly
computed using Equation (1.2). �

A.2 Proof of Proposition 2. We remark that Ps(Γt > 0) = 1 − Ps(Γt = 0) = 1 − Ps(S̃t >
αmax(a1 . . . an)) and we conclude as in the proof of Proposition 1 that Ps(Γt > 0) = 1−p1(max(a1 . . . an), Ss),
which is the desired result. �

A.3 Proof of Proposition 3. We notice that the expected impaired amount for a single share S with
an acquisition cost ai can be computed as follows

Es(PDDi
t) = aiPs(S̃t ≤ aiα)− Es

(
St1S̃t≤aiα

)
.

The first term Ps(S̃t ≤ aiα) = 1 − p1(ai, Ss). The second term can be expressed, using the Markov
property, in the following form:

Es
[
St− 1

2
1S

t− 1
2
≤aiαEt− 1

2

(
e
µ
2
+σB 1

2 1sup
u∈[0, 12 ]

µu+σBu≤ln aiα/St−1/2

)]
,

which needs the density P
(
Xt ∈ dx, supu∈[0,t]Xu ≤ a

)
. Now, using this density we can write that Et− 1

2
(. . . )

equals

er/2φ

 ln aiα
S
t− 1

2

− µ+σ2

2

σ
√

1/2

−( aiα

St− 1
2

) 2(µ+σ2)

σ2

er/2φ

− ln aiα
S
t− 1

2

− µ+σ2

2

σ
√

1/2

 .

Finally, using the fact that St− 1
2

= Sse
µ(δ− 1

2
)+σ

√
δ− 1

2
X , with δ = t − s and X a standard normal r.v.

independent of Fs, together with the identity in Equation (1.2) leads to the desired formula. �

A.4 Proof of Theorem 1. To find the joint probability Pt (Γt+1 ≤ y,Σt+1 ≤ x), we will need the
following technical lemma (to prove it, we use Equation (1.2)).

Lemma 1 Let a > 0, β, γ and α be some constants, then for s, t ≥ 0 we have the following

Et
[
1St+s<aS

−γ
t+sφ(α+ β lnSt+s)

]
= S−γt e−γ(r−

σ2

2
)s×

Φ

(
ln a

St
− (r − σ2

2 − γσ
2)s

σ
√
s

,
α+ β ln(St) + βs(r − σ2

2 )− βγσ2s√
1 + β2σ2s

;− βσ
√
s√

1 + β2σ2s

)
.

Similarly, we have

Et
[
1St+s>aφ(α+ β lnSt+s)

]
= Et [φ(α+ β lnSt+s)]− Et

[
1St+s<aφ(α+ β lnSt+s)

]
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=Φ

(
0,
α+ β lnSt + βs(r − σ2

2 )√
1 + β2σ2s

;− βσ
√
s√

1 + β2σ2s

)
+ Φ

(
0,
α+ β lnSt + βs(r − σ2

2 )√
1 + β2σ2s

;
βσ
√
s√

1 + β2σ2s

)

− Φ

(
ln a

St
− (r − σ2

2 − γσ
2)s

σ
√
s

,
α+ β ln(St) + βs(r − σ2

2 )√
1 + β2σ2s

;− βσ
√
s√

1 + β2σ2s

)
.

Let n ≥ 1, we are concerned with the computation of the conditional joint c.d.f. of (Γt+1,Σt+1):

Pt (Γt+1 ≤ y,Σt+1 ≤ x) = Et

[
Pt+ 1

2

(
St+1 ≤

x

n
,
n∑
i=1

(ai − St+1)
+1

S̃t+1≤aiα ≤ y

)]
.

In the above equation, the probability conditional on Ft+ 1
2
can be decomposed in the following form:

Pt+ 1
2

(
St+1 ≤

x

n
, S̃t+1 ≤ a1α,

n∑
i=1

(ai − St+1)
+ ≤ y

)
(1.3)

+ · · ·+Pt+ 1
2

St+1 ≤
x

n
, ajα < S̃t+1 ≤ aj+1α,

n∑
i=j+1

(ai − St+1)
+ ≤ y

 (1.4)

+ · · ·+Pt+ 1
2

(
St+1 ≤

x

n
, S̃t+1 ≥ anα

)
. (1.5)

It is easily seen that the term (1.3) can be written as

Pt+ 1
2

(
S̃t+1 ≤ a1α, 1n(

∑n
i=1 ai − y) ≤ St+1 ≤ x

n ∧ a1α
)
,

and similarly the term (1.4) as

Pt+ 1
2

(
ajα < S̃t+1 ≤ aj+1α,

1
n−j (

∑n
i=j+1 ai − y) ≤ St+1 ≤ x

n ∧ aj+1α
)
.

Moreover, we use Markov property and Proposition 6 to write the term (1.5) in the following form

1S
t+1

2
≥anαφ

 ln x
nS

t+1
2

− µ
2

σ
√

0.5

+ 1S
t+1

2
<anα1 x

n
≤anα

(
anα

St+ 1
2

) 2µ

σ2

φ

 ln
xS

t+1
2

na2nα
2 − µ

2

σ
√

0.5

+

1S
t+1

2
<anα1 x

n
>anα

φ
 ln x

nS
t+1

2

− µ
2

σ
√

0.5

− φ
 ln anα

S
t+1

2

− µ
2

σ
√

0.5

+

(
anα

St+ 1
2

) 2µ

σ2

φ

− ln anα
S
t+1

2

− µ
2

σ
√

0.5

 .
On { 1n(

∑n
i=1 ai − y) ≤ x

n ∧ a1α}, the term (1.3) is equal to :

1S
t+1

2
<a1α

φ
 ln

x
n
∧a1α
S
t+1

2

− µ
2

σ
√

0.5

−( a1α

St+ 1
2

) 2µ

σ2

φ

 ln
x
n
∧a1α
S
t+1

2

− 2 ln a1α
S
t+1

2

− µ
2

σ
√

0.5


− φ

 ln
∑n
i=1 ai−y
nS

t+1
2

− µ
2

σ
√

0.5

+

(
a1α

St+ 1
2

) 2µ

σ2

φ

 ln
∑n
i=1 ai−y
nS

t+1
2

− 2 ln a1α
S
t+1

2

− µ
2

σ
√

0.5


 .
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On { 1
n−j (

∑n
i=1+j ai − y) ≤ x

n ∧ aj+1α} the term (1.4) is equal to :

1S
t+1

2
≤aj+1α

φ
 ln

x
n
∧aj+1α

S
t+1

2

− µ
2

σ
√

0.5

−(aj+1α

St+ 1
2

) 2µ

σ2

φ

 ln
x
n
∧aj+1α

S
t+1

2

− 2 ln
aj+1α
S
t+1

2

− µ
2

σ
√

0.5


− φ

 ln
∑n
i=j+1 ai−y

(n−j)S
t+1

2

− µ
2

σ
√

0.5

+

(
aj+1α

St+ 1
2

) 2µ

σ2

φ

 ln
∑n
i=j+1 ai−y

(n−j)S
t+1

2

− 2 ln
aj+1α
S
t+1

2

− µ
2

σ
√

0.5




+1S
t+1

2
≤ajα

(
1 1
n−j (

∑n
i=j+1 ai−y)>ajα

− 1 x
n
>ajα

)φ
 ln

ajα
S
t+1

2

− µ
2

σ
√

0.5

+

(
ajα

St+ 1
2

) 2µ

σ2

φ

 ln
−ajα
S
t+1

2

− µ
2

σ
√

0.5




+1S
t+1

2
≤ajα1 x

n
<ajα

φ
 ln

x
n
∧aj+1α

S
t+1

2

− µ
2

σ
√

0.5

−( ajα

St+ 1
2

) 2µ

σ2

φ

 ln
x
n
∧aj+1α

S
t+1

2

− 2 ln
ajα
S
t+1

2

− µ
2

σ
√

0.5




+1S
t+1

2
≤ajα1 1

n−j (
∑n
i=j+1 ai−y)≤ajα

φ
 ln

∑n
i=j+1 ai−y

(n−j)S
t+1

2

− µ
2

σ
√

0.5

+

(
ajα

St+ 1
2

) 2µ

σ2

φ

 ln
∑n
i=j+1 ai−y

(n−j)S
t+1

2

− 2 ln
ajα
S
t+1

2

− µ
2

σ
√

0.5


 .

We conclude the proof using Lemma 1 to compute the expectations conditional to Ft. �

B Correlated securities

In order to prove our results in the correlated case, we shall need the joint distribution of two correlated
Brownian motions with drift and their suprema. The joint distribution is obtain by making the following
change of variables x2 = M2 − σ2r sin θ and x1 = M1 − σ1r(ρ sin θ +

√
1− ρ2 cos θ) in Lemma 3 and

Remark 4 from He et al. (1998).

Proposition 8 Let Xi = µit + σiW
i
t , where µi ∈ R, σi > 0 and W i two correlated Brownian motions

with correlation coefficient ρ ∈]− 1, 1[. For x1 ≤M1, x2 ≤M2 with M1,M2 ≥ 0, we have :
P(X1

t ∈ dx1, X2
t ∈ dx2, supu≤tX1

u ≤M1, supu≤tX
2
u ≤M2) = p(r, r0, θ, θ0, t;M1,M2)drdθ

P(X̃1
0→t ≤M1, X̃2

0→t ≤M2) = q(r0, θ0, t;M1,M2),
where p and q are given in Definition 1 and

r =
1√

1− ρ2

√
(M1 − x1)2

σ21
− 2ρ

(M1 − x1)(M2 − x2)
σ1σ2

+
(M2 − x2)2

σ22
,

r0 =
1√

1− ρ2

√
M2

1

σ21
− 2ρ

M1M2

σ1σ2
+
M2

2

σ22
, tanβ = −

√
1− ρ2
ρ

, β ∈ [0, π],

tan θ =
√

1− ρ2
(
σ2(M1 − x1)
σ1(M2 − x2)

− ρ
)−1

, tan θ0 =
√

1− ρ2
(
σ2M1

σ1M2
− ρ
)−1

, θ, θ0 ∈ [0, β].

For some special correlation values, the function q may be written in a simpler form (see Corollary 2 in
He et al. (1998)). We easily obtain the following results4 :

4Let’s note that there is a mistake in Corollary 2 He et al. (1998) and t is sometimes missing

22



Lemma 2 Under the assumptions of Proposition 8, if ρn = − cos πn , we have :

p(r, r0, θ, θ0, t;M1,M2)drdθ1r≥0,θ∈[0,β] = p(x1, x2, t;M1,M2)dx1dx21x1≤M1,x2≤M2 ,

q(r0, θ0, t;M1,M2) = q(M1,M2, t),

where p(x1, x2, t;M1,M2) = eα1x1+α2x2+bt
n−1∑
k=1

[
g+k (x1, x2, t) + g−k (x1, x2, t)

]
,

q(M1,M2, t) =

n−1∑
k=0

[
Q+(M1,M2,

2kπ

n
+ θ)−Q−(M1,M2,

2kπ

n
− θ)

]
,

g
+
−
k (x1, x2, t) =+

−
1

2πt
exp

− 1

2t

( 1√
1− ρ2n

(
M1 − x1
σ1

− ρn
M2 − x2
σ2

)
+ ξ1

)2

+

(
M2 − x2
σ2

− ξ2
)2
 ,

Q
+
−(M1,M2,

2kπ

n
+
−θ) = exp

[
B0 +B1ξ1 +B2ξ2 + (

B2
1 +B2

2

2
+ b)t

]
×

× Φ

(
ξ2 +B2t√

t
,
−
√

1− ρ2n(ξ1 +B1t) + ρn(ξ2 +B2t)√
t

, ρn

)
,

ξ1 = −r0 cos

(
2kπ

n
+
−θ

)
, ξ2 = r0 sin

(
2kπ

n
+
−θ

)
,

tan θ = −
√

1− ρ2n
ρn − M1σ2

M2σ1

, r0 =
1√

1− ρ2n

√
M2

1

σ21
− 2ρn

M1M2

σ1σ2
+
M2

2

σ22
,

B0 = a1M1 + a2M2, B1 = a1σ1
√

1− ρ2n, B2 = −(a1σ1ρn + a2σ2) =
−α2

σ2
,

b = − α2
1σ

2
2 + α2

2σ
2
1

2(1− ρ2n)σ21σ
2
2

+
ρnα1α2

(1− ρ2n)σ1σ2
, a1 =

α1σ2 − ρnα2σ1
(1− ρ2n)σ21σ2

, a2 =
α2σ1 − ρnα1σ2
(1− ρ2n)σ1σ22

.

B.1 Proof of Proposition 5. We remark that

Ps(Γt > 0) = 1− Ps(Γt = 0) = Ps
(
S̃1
t ≤ αa1

)
+ Ps

(
S̃2
t ≤ αa2

)
− Ps

(
S̃1
t ≤ αa1, S̃2

t ≤ αa2
)

=

2∑
i=1

pi(ai, S
i
s)− Ps

(
Pt−1/2

(
S̃1
t ≤ αa1, S̃2

t ≤ αa2
))

.

Markov property, Proposition 8 and writing S1
t−1/2 = S1

se
µ1(δ−1/2)+σ1

√
δ−1/2X with X ∼ N (0, 1) lead to

the desired formula. �

We need some technical results in order to find the joint law of Γ and Σ.

Lemma 3 Let x > 0. The c.d.f of the aggregate dynamics Σ of two correlated shares is given by

Pt(Σt+1 ≤ x) = E

[
1
X≤

ln x
s1
−µ1

σ1

φ

(
1

σ2
√

1− ρ2
ln
x− s1eµ1+σ1X

s2eµ2+σ2ρX

)]
s1=S1

t ,s2=S
2
t

,

where X is a standard Gaussian r.v. We denote this probability by f(S1
t , S

2
t , x) = Pt(Σt+1 ≥ 0).
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Proof. Since W 1 and W 2 are two correlated Brownian motions with correlation coefficient ρ, then W 2 =
ρW 1 +

√
1− ρ2W with W 1 and W two independent BM. Hence :

Pt(Σt+1 ≤ 0) = Pt(S1
t e
µ1+σ1X + S2

t e
µ2+σ2ρX+σ2

√
1−ρ2Z ≤ x),

where X and Z are two independent standard Gaussian r.v. We integrate with respect Z and the conclu-
sion holds. �

Lemma 4 Let Xi
t = µit+ σiW

i
t , where µi, σi ∈ R and W i two correlated BM with correlation coefficient

ρ ∈]− 1, 1[. Then for M1 > 0, x1, x2 ∈ R

P(X1
t ∈ dx1, X2

t ∈ dx2, supu≤tX1
u ≤M1) = h(x1, x2,M1)dx1dx2

where

h(x1, x2,M1) = 1x1<M1

[
e
− (x1−µ1t)

2

2σ21t − e
2
µ1M1
σ21 e

− (x1−2M1−µ1t)
2

2σ21t

]
1

2πtσ1σ2
√

1− ρ2
e
− (σ1x2−ρσ2x1+(µ1σ2ρ−µ2σ1)t)

2

2σ21σ
2
2t(1−ρ

2) .

Proof. Without loss of generality we consider σi = 1, i = 1, 2 (we then replace x1,M1, x2 by x1
σ1
, M1
σ1
, x2σ2

).
Since

P(X1
t ∈ dx1, X2

t ∈ dx2, supu≤tX1
u ≤M1) =

∂2

∂x1∂x2
P(X1

t ≤ x1, X2
t ≤ x2, supu≤tX1

u ≤M1)

and W 2 = ρW 1 +
√

1− ρ2W with W 1 and W two independent BM, we can write for ρ 6= 05

P(X1
t ≤ x1, X2

t ≤ x2, supu≤tX1
u ≤M1)

=1x1≥M1P(X2
t ≤ x2, supu≤tX1

u ≤M1) + 1x1<M1P(X1
t ≤ x1 ∧

1

ρ
(x2 −

√
1− ρ2Wt + (µ1ρ− µ2)t), supu≤tX1

u ≤M1).

The derivative of the first term is 0. For the second term, we integrate with respect to the law of Wt and
then we use Proposition 6. Finally the derivative with respect to x1 and x2 leads to the desired result. �

We easily deduce the following :

Corollary 4 Under the assumptions of Lemma 4 let R1, R2, x, w,M1 > 0. Then

P(R1e
X1
t +R2e

X2
t ≤ x, supu≤tX1

u ≤M1) = E

1
X≤

(
ln

(
x
R1

)
∧M1

)
−µ1t

σ1
√
t

φ

(
1

σ2
√
t(1− ρ2)

ln
x−R1e

σ1X
√
t+µ1t

R2eXρσ2

√
t+µ2t

)
−e

2
µ1M1
σ21 E

1
X≤

(
ln

(
x
R1

)
∧M1

)
−2M1−µ1t

σ1
√
t

φ

(
1

σ2
√
t(1− ρ2)

ln
x−R1e

σ1X
√
t+2M1+µ1t

R2e
Xρσ2

√
t+2

σ2
σ1
ρM1+µ2t

) ,
5If ρ = 0, then

P(X1
t ∈ dx1, X2

t ∈ dx2, supu≤tX1
u ≤M1) = P(X1

t ∈ dx1, supu≤tX1
u ≤M1)P(X2

t ∈ dx2)

= 1x1<M1

[
e−

(x1−µ1t)
2

2t − e2µ1M1e−
(x1−2M1−µ1t)

2

2t

]
1

2πt
e−

(x2−µ2t)
2

2t dx1dx2

24



P(R1e
X1
t +R2e

X2
t ≤ x, supu≤tX1

u ≤M1, e
X1
t ≥ w) = 1w≤0P(R1e

X1
t +R2e

X2
t ≤ x, supu≤tX1

u ≤M1)

+10<w≤ x
R1
∧eM1

E
1

lnw−µ1t
σ1
√
t
≤X≤

(
ln

(
x
R1

)
∧M1

)
−µ1t

σ1
√
t

φ

(
1

σ2
√
t(1− ρ2)

ln
x−R1e

σ1X
√
t+µ1t

R2eXσ2ρ
√
t+µ2t

)
−e

2
µ1M1
σ21 E

1
lnw−µ1t−2M1

σ1
√
t

≤X≤

(
ln

(
x
R1

)
∧M1

)
−2M1−µ1t

σ1
√
t

φ

(
1

σ2
√
t(1− ρ2)

ln
x−R1e

σ1X
√
t+2M1+µ1t

R2e
Xσ2ρ

√
t+2ρ

σ2
σ1
M1+µ2t

) ,
where X is a standard Gaussian r.v.

B.2 Proof of Theorem 2. The joint c.d.f

Pt (Γt+1 ≤ y,Σt+1 ≤ x) = Pt
(

(a1 − S1
t+1)1S̃1

t+1≤αa1
+ (a2 − S2

t+1)1S̃2
t+1≤αa2

≤ y, S1
t+1 + S2

t+1 ≤ x
)
,

can be decomposed in the following form :

Pt
(
S1
t+1 + S2

t+1 ≤ x, S̃1
t+1 > αa1, S̃2

t+1 > αa2

)
+

∑
i,j∈{1,2},i 6=j

Pt
(
S1
t+1 + S2

t+1 ≤ x, S̃it+1 ≤ αai, S̃jt+1 > αaj , S
i
t+1 ≥ ai − y

)
+Pt

(
a1 + a2 − y ≤ S1

t+1 + S2
t+1 ≤ x, S̃1

t+1 ≤ αa1, S̃2
t+1 ≤ αa2

)
.

Step 1 - Probabilities decomposition
• The first term C1(S

1
t , S

2
t ) = Pt

(
S1
t+1 + S2

t+1 ≤ x, S̃1
t+1 > αa1, S̃2

t+1 > αa2

)
may be written as :

1x≥α(a1+a2)

[
Pt(S1

t+1 + S2
t+1 ≤ x)− Pt(S1

t+1 + S2
t+1 ≤ x, S̃1

t+1 ≤ αa1)

− Pt(S1
t+1 + S2

t+1 ≤ x, S̃2
t+1 ≤ αa2) + Pt(S1

t+1 + S2
t+1 ≤ x, S̃1

t+1 ≤ αa1, S̃2
t+1 ≤ αa2)

]
.

Recall that S1
t+1 + S2

t+1 = Σt+1. Note that on {x ≥ α(a1 + a2)},

Pt
(
S1
t+1 + S2

t+1 ≤ x, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2
)

= Pt
(
S̃1

t+1 ≤ αa1, S̃2
t+1 ≤ αa2

)
.

Hence,

C1(S
1
t , S

2
t ) = 1x≥α(a1+a2)

[
Pt(Σt+1 ≤ x)− Pt(Σt+1 ≤ x, S̃1

t+1 ≤ αa1)

− Pt(Σt+1 ≤ x, S̃2
t+1 ≤ αa2) + Pt(S̃1

t+1 ≤ αa1, S̃2
t+1 ≤ αa2)

]
.

• The second term C2(S
i
t , S

j
t , ai, aj) = Pt

(
S1
t+1 + S2

t+1 ≤ x, S̃it+1 ≤ αai, S̃jt+1 > αaj , S
i
t+1 ≥ ai − y

)
equals

to :

1y≥ai1αaj≤x<α(a1+a2)

[
Pt(Σt+1 ≤ x)− Pt(Σt+1 ≤ x, S̃jt+1 ≤ αaj)

]
+ 1y≥ai1x≥α(a1+a2)

[
Pt(Σt+1 ≤ x, S̃it+1 ≤ αai)− Pt(S̃it+1 ≤ αai, S̃jt+1 ≤ αaj)

]
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+ 1ai(1−α)≤y<ai1x≥(αaj)∨(ai−y)

[
Pt(Σt+1 ≤ x, S̃it+1 ≤ αai, Sit+1 ≥ ai − y)

− Pt(Σt+1 ≤ x, S̃it+1 ≤ αai, S̃jt+1 ≤ αaj , Sit+1 ≥ ai − y)
]
.

• The last term C3(S
1
t , S

2
t ) = Pt

(
a1 + a2 − y ≤ S1

t+1 + S2
t+1 ≤ x, S̃1

t+1 ≤ αa1, S̃2
t+1 ≤ αa2

)
may be writ-

ten as :

1x≥α(a1+a2)1y≥a1+a2Pt(S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2)

+ 1x≥(a1+a2−y)∨α(a1+a2)1y<a1+a2Pt(Σt+1 ≥ a1 + a2 − y, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2)

+ 1x<α(a1+a2)1y≥a1+a2Pt(Σt+1 ≤ x, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2)

+ 10<a1+a2−y≤x<α(a1+a2)Pt(a1 + a2 − y ≤ Σt+1 ≤ x, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2).

Step 2 - Grouping of terms
Remark that for the term C2(S

i
t , S

j
t , ai, aj), we may use Markov property and Proposition 8. Hence we

can write (consider for example the case i = 1 and j = 2) :

Pt(Σt+1 ≤ x, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2, S1
t+1 ≥ a1 − y)

=Et

1S1

t+1
2

≤αa1,S2

t+1
2

≤αa2Pt+ 1
2

S1
t+ 1

2

e
X1

1
2 + S2

t+ 1
2

e
X2

1
2 ≤ x, X̃1

1
2

≤ ln
αa1
S1
t+ 1

2

, X̃2
1
2

≤ ln
αa2
S2
t+ 1

2

, X1
1
2

≥ ln
a1 − y
S1
t+ 1

2

 ,
=

∫ ∞
0

∫ β

0
Et
[
1X≤A1,Y≤A2p

(
r̃, θ̃, σ1

√
0.5(A1 −X), σ2

√
0.5(A2 − Y )

)]
si=Sit

1(r̃,θ̃)∈D1
dr̃dθ̃,

where Xi
t = µit+ σiB

i
t where Bi are two correlated BM independent of Ft+ 1

2
, and D1 given before.

The same reasoning allows to write Pt(Σt+1 ≤ x, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2, S2
t+1 ≥ a2− y), Pt(Σt+1 ≥

a1+a2−y, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2), Pt(Σt+1 ≤ x, S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2) and Pt(a1+a2−y ≤ Σt+1 ≤
x, S̃1

t+1 ≤ αa1, S̃2
t+1 ≤ αa2) in a similar form with D2, D3(a1+a2−y), D3(x) and D3(x)−D3(a1+a2−y).

Hence, we have

Pt (Γt+1 ≤ y,Σt+1 ≤ x) =
∑

i,j∈{1,2},i 6=j

Pt(Σt+1 ≤ x, S̃it+1 ≤ αai)I1(ai, aj) + Pt(S̃1
t+1 ≤ αa1, S̃2

t+1 ≤ αa2)J4

+
∑

i,j∈{1,2},i 6=j

Pt(Σt+1 ≤ x, S̃it+1 ≤ αai, Sit+1 ≥ ai − y)I2(ai, aj) + Pt(Σt+1 ≤ x)J3

+

∫ ∞
0

∫ β

0
Et
[
1X≤A1,Y≤A2p

(
r̃, θ̃, σ1

√
0.5(A1 −X), σ2

√
0.5(A2 − Y )

)]
si=Sit

J(r̃, θ̃)dr̃dθ̃.

Step 3 - Final calculation
Remark that Pt(S̃1

t+1 ≤ αa1, S̃2
t+1 ≤ αa2) = Q(S1

t , S
2
t , 1) with Q given in Proposition 5. Also, the

conditional law of Σ, i.e. Pt(Σt+1 ≤ x), is given in Lemma 3. Since the calculation method is the same
for all the other terms, we only detail here the probability Pt(Σt+1 ≤ x, S̃1

t+1 < αa1). Thus, Markov
property gives

Pt(Σt+1 ≤ x, S̃1
t+1 < αa1) = Et

1S1

t+1
2

<αa1Pt+ 1
2

S1
t+ 1

2

e
X1

1
2 + S2

t+ 1
2

e
X2

1
2 ≤ x, X̃1

1
2

< ln
αa1
S1
t+ 1

2

 ,
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where Xi
1
2

= µi
2 +σiB

i
1
2

, Bi two correlated BM independent of Ft+ 1
2
. Next, using Theorem 4, we find that

Pt+ 1
2

(
S1
t+ 1

2

e
X1

1
2 + S2

t+ 1
2

e
X2

1
2 ≤ x, X̃1

1
2

< ln αa1
S1

t+1
2

)
equals

Et+ 1
2

1
Z≤

ln

x∧αa1S1
t+1

2

−µ12
σ1
√
0.5

φ

 1

σ2
√

0.5(1− ρ2)
ln
x− S1

t+ 1
2

eσ1Z
√
0.5+

µ1
2

S2
t+ 1

2

eσ2ρZ
√
0.5+

µ2
2




−

 αa1
S1
t+ 1

2


2µ1
σ21

Et+ 1
2

1
Z≤

ln


S1
t+1

2

(x∧αa1)

(αa1)
2

−µ12
σ1
√
0.5

φ


1

σ2
√

0.5(1− ρ2)
ln

x− (αa1)2

S1

t+1
2

eσ1Z
√
0.5+

µ1
2

(
αa1
S1

t+1
2

) 2σ2ρ
σ1

S2
t+ 1

2

eσ2ρZ
√
0.5+

µ2
2



 ,

where Z is a standard Gaussian r.v. independent of Ft+ 1
2
.

We conclude writing S1
t+ 1

2

= S1
t + µ1

2 + σ1
√

0.5X (resp. S2
t+ 1

2

= S2
t + µ2

2 + σ2
√

0.5Y ) with X,Y two
correlated standard Gaussian r.v’s, that :

Pt(Σt+1 ≤ x, S̃1
t+1 < αa1) =E

1
X≤A1,Z≤

ln
x∧(αa1)

s1
−µ1

σ1
√

0.5
−X

φ12(s1, s2, X, Y, Z)


s1,2=S

1,2
t

−
(
αa1
S1
t

) 2µ1
σ21 e

−µ
2
1
σ21 E

1
X≤A1,Z≤

ln
s1(x∧αa1)

(αa1)
2

σ1
√
0.5

+X

φ̃12(s1, s2, X, Y, Z)


s1,2=S

1,2
t

.

We also find

Pt(Σt+1 ≤ x, S̃1
t+1 ≤ αai,S1

t+1 ≥ a1 − y) = E

1
X≤A1,

ln
a1−y
s1
−µ1

σ1
√
0.5

−X≤Z≤
ln
x∧(αa1)

s1
−µ1

σ1
√
0.5

−X
φ12(s1, s2, X, Y, Z)


s1,2=S

1,2
t

−
(
αa1
S1
t

) 2µ1
σ21 e

−µ
2
1
σ21 E

1
X≤A1,

ln
s1(a1−y)
(αa1)

2

σ1
√

0.5
+X≤Z≤

ln
s1(x∧αa1)

(αa1)
2

σ1
√
0.5

+X

φ̃12(s1, s2, X, Y, Z)


s1,2=S

1,2
t

.

Remark that on I1, x > αa1, so :

Pt(Σt+1 ≤ x, S̃1
t+1 < αa1) + Pt(Σt+1 ≤ x, S̃1

t+1 ≤ αai, S1
t+1 ≥ a1 − y)

=E [J1(s1, s2, X, Z)φ12(s1, s2, X, Y, Z)]−
(
αa1
S1
t

) 2µ1
σ21 e

−µ
2
1
σ21 E

[
J2(s1, s2, X, Z)φ̃12(s1, s2, X, Y, Z)

]
.

This completes the proof. �
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Figure 4: Joint distribution function. The joint probability Pt(Γt+1 < y,Σt+1 ≤ x) in Theorem 1
(left) and Theorem 2 (right), for t = 0 with n = 2. The input parameters are as follows α = 80%, r = 1%.
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t = 0, with acquisition values a1 = 80 and a2 = 90 and initial value S0 = 120 (left) and S0 = 60 (right).

28


	Introduction
	Accounting measurement of equity securities
	[0.3in][r]2.1.  General Measurement
	[0.3in][r]2.2.  Impairment losses and provision
	[0.3in][r]2.3.  Notation

	Model assumptions
	Main results
	[0.3in][r]4.1.  Portfolio of comonotonic securities
	[0.3in][r]4.2.  Shares with linear dependency

	Operational implementation
	[0.3in][r]5.1.  Comonotonic shares
	[0.3in][r]5.2.  Correlated securities

	Concluding Remarks
	Comonotonic securities 
	[0.3in][r]A.1.  Proof of Proposition 1
	[0.3in][r]A.2.  Proof of Proposition 2
	[0.3in][r]A.3.  Proof of Proposition 3
	[0.3in][r]A.4.  Proof of Theorem 1

	Correlated securities 
	[0.3in][r]B.1.  Proof of Proposition 5
	[0.3in][r]B.2.  Proof of Theorem 2

	Additional Figures

