Gabriela Montoya
email: gmontoya@cs.aau.dk

Hala Skaf-Molli

Katja Hose
email: khose@cs.aau.dk

The Odyssey Approach for Optimizing Federated SPARQL Queries

Answering queries over a federation of SPARQL endpoints requires combining data from more than one data source. Optimizing queries in such scenarios is particularly challenging not only because of (i) the large variety of possible query execution plans that correctly answer the query but also because (ii) there is only limited access to statistics about schema and instance data of remote sources. To overcome these challenges, most federated query engines rely on heuristics to reduce the space of possible query execution plans or on dynamic programming strategies to produce optimal plans. Nevertheless, these plans may still exhibit a high number of intermediate results or high execution times because of heuristics and inaccurate cost estimations. In this paper, we present Odyssey, an approach that uses statistics that allow for a more accurate cost estimation for federated queries and therefore enables Odyssey to produce better query execution plans. Our experimental results show that Odyssey produces query execution plans that are better in terms of data transfer and execution time than state-of-theart optimizers. Our experiments using the FedBench benchmark show execution time gains of at least 25 times on average.

Introduction

Federated SPARQL query engines [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF][START_REF] Basca | Querying a Messy Web of Data with Avalanche[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF][START_REF] Quilitz | Querying Distributed RDF Data Sources with SPARQL[END_REF][START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF] answer SPARQL queries over a federation of SPARQL endpoints. Query optimization is a particularly complex and challenging task in a federated setting. The query optimizer minimizes processing and communication costs by selecting only relevant sources for a query. It decomposes the query into subqueries, and produces a query execution plan with good join ordering and physical operators. With limited access to statistics, however, most federated query engines rely on heuristics [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF][START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF] to reduce the huge space of possible plans or on dynamic programming (DP) [START_REF] Charalambidis | SemaGrow: Optimizing Federated SPARQL queries[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF] to produce optimal plans. However, these plans may still exhibit a high number of intermediate results or high execution times because of inadequate heuristics or inaccurate estimations of cost functions [START_REF] Gubichev | Exploiting the query structure for efficient join ordering in SPARQL queries[END_REF].

In this paper, we propose Odyssey, a cost-based query optimization approach for federations of SPARQL endpoints. Odyssey defines statistics for representing entities inspired by [START_REF] Neumann | Characteristic Sets: Accurate Cardinality Estimation for RDF Queries with Multiple Joins[END_REF] and statistics for representing links among datasets while guaranteeing result completeness. In a federated setting, computing statistics naturally requires access to more than one dataset. To reduce the overhead, Odyssey uses entity synopsis to identify links among datasets. This comes at the risk of losing some accuracy in the link identification but still guarantees that no links will be missed during query optimization, i.e., there is a small risk that more sources are queried than strictly necessary but the query result will be complete.

Odyssey uses the computed statistics to estimate the sizes of intermediate results and dynamic programming to produce an efficient query execution plan with a low number of intermediate results. In summary, this paper makes the following contributions:

• Concise statistics of adequate granularity representing entities and describing links among datasets while guaranteeing result completeness. • A lightweight technique to compute federated statistics in a federated setup that relies on entity synopsis. • A query optimization algorithm based on dynamic programming using our statistics to find the best plan. • Extensive evaluation using a well-accepted standard benchmark for federated query processing [START_REF] Schmidt | FedBench: A Benchmark Suite for Federated Semantic Data Query Processing[END_REF], including comparison against a broad range of state-of-the-art related work [START_REF] Charalambidis | SemaGrow: Optimizing Federated SPARQL queries[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF][START_REF] Saleem | HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation[END_REF][START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF]. The results show Odyssey's superiority with a speed-up of up to 126 times and a reduction of transferred data of up to 118 times on average. This paper is organized as follows. Section 2 presents related work, Section 3 describes the Odyssey approach and its algorithms. Section 4 discusses our experimental results. Finally, conclusions and future work are outlined in Section 5.

Related Work

Query optimization in state-of-the-art federated query engines, such as FedX [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF] and ANAPSID [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF], relies on heuristics. For instance, FedX [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF] integrates the variable counting heuristic, where relative selectivity of triple patterns is heuristically estimated according to the presence of constants and variables in the triple patterns. These heuristics are lightweight but might not lead to the best query execution plan [START_REF] Stocker | SPARQL Basic Graph Pattern Optimization Using Selectivity Estimation[END_REF]. To find an optimal plan, several approaches [START_REF] Charalambidis | SemaGrow: Optimizing Federated SPARQL queries[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF][START_REF] Quilitz | Querying Distributed RDF Data Sources with SPARQL[END_REF][START_REF] Wang | LHD: Optimising Linked Data Query Processing Using Parallelisation[END_REF] rely on dynamic programming. However, given the high number of alternative query plans for SPARQL queries with many triple patterns, dynamic programming is very expensive [START_REF] Gubichev | Exploiting the query structure for efficient join ordering in SPARQL queries[END_REF]. Another important factor of query optimization is source selection. Several approaches [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF][START_REF] Saleem | HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation[END_REF][START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF][START_REF] Wang | LHD: Optimising Linked Data Query Processing Using Parallelisation[END_REF] try to determine the relevance of a source by sending ASK queries, which increases the costs for a single query but might amortize in large federations for an overlapping query load. Another technique is to estimate whether combining the data of multiple sources can lead to any join results, e.g., by computing the intersection of the sources' URI authorities [START_REF] Saleem | HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation[END_REF] or detailed statistics [START_REF] Harth | Data Summaries for On-Demand Queries over Linked Data[END_REF][START_REF] Prasser | Efficient Distributed Query Processing for Autonomous RDF Databases[END_REF].

Federated query optimization can also rely on cardinality estimations based on statistics and used, for instance, to reduce sizes of intermediate results. Most available statistics [START_REF] Aranda | SPARQL Web-Querying Infrastructure: Ready for Action?[END_REF] use the Vocabulary of Interlinked Datasets VOID [START_REF] Alexander | Describing Linked Datasets[END_REF], which describes statistics at dataset level (e.g., the number of triples), at the property level (e.g., for each property, its number of different subjects), and at the class level (e.g., the number of instances of each class). However, approaches based on VOID [START_REF] Charalambidis | SemaGrow: Optimizing Federated SPARQL queries[END_REF][START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF][START_REF] Hagedorn | Resource planning for SPARQL query execution on data sharing platforms[END_REF] and other statistics, such as QTrees [START_REF] Harth | Data Summaries for On-Demand Queries over Linked Data[END_REF] and PARTrees [START_REF] Prasser | Efficient Distributed Query Processing for Autonomous RDF Databases[END_REF], share the drawback of missing the best query execution plans because of errors in estimating cardinalities caused by relying on assumptions that often do not hold for arbitrary RDF datasets [START_REF] Neumann | Characteristic Sets: Accurate Cardinality Estimation for RDF Queries with Multiple Joins[END_REF], e.g., a uniform data distribution and that the results of triple patterns are independent.

Characteristic sets (CS) [START_REF] Du | Partitioned Indexes for Entity Search over RDF Knowledge Bases[END_REF][START_REF] Neumann | Characteristic Sets: Accurate Cardinality Estimation for RDF Queries with Multiple Joins[END_REF] aim at solving this problem in centralized systems by capturing statistics about sets of entities having the same set of properties. This in-formation can then be used to accurately estimate the cardinality and join ordering of star-shaped queries. Typically, any set of joined triple patterns in a query can be divided into connected star-shaped subqueries. Subqueries in combination with the predicate that links them, define a characteristic pair (CP) [START_REF] Gubichev | Exploiting the query structure for efficient join ordering in SPARQL queries[END_REF][START_REF] Meimaris | Extended Characteristic Sets: Graph Indexing for SPARQL Query Optimization[END_REF]. Statistics about such CPs can then be used to estimate the selectivity of two star-shaped subqueries. Such cardinality estimations can be combined with dynamic programming on a reduced space of alternative query plans. Whereas existing work on CSs and CPs were developed for centralized environments, this paper proposes a solution generalizing these principles for federated environments.

The Odyssey Approach

Inspired by the latest advances in statistics for centralized triple stores [START_REF] Gubichev | Exploiting the query structure for efficient join ordering in SPARQL queries[END_REF][START_REF] Meimaris | Extended Characteristic Sets: Graph Indexing for SPARQL Query Optimization[END_REF][START_REF] Neumann | Characteristic Sets: Accurate Cardinality Estimation for RDF Queries with Multiple Joins[END_REF], Odyssey uses statistics about individual datasets to derive detailed statistics for optimizing federated queries. In the following, we first describe the foundations of our statistics on individual datasets (Section 3.1) and then propose a novel method for computing such statistics in a federated environment based on entity descriptions (Section 3.2). As the detailed entity descriptions cause too much overhead in a federated setup, we propose a method for reducing the sizes of the descriptions (Section 3.3). Finally, we present the Odyssey approach for query optimization and its main steps (Section 3.4): source selection, join ordering, and query decomposition.

Dataset Statistics on Individual Datasets

Star-Shaped Subqueries To estimate the cardinality and costs of BGPs sharing the same subject (or object), i.e., star-shaped subqueries, we exploit the principle that entities sharing the same set of properties are similar. In this context, we refer to the set of an entity's properties as its characteristic set (CS) and use cs s (e) to denote the CS of entity e in dataset s or cs(e) if s is clear from the context. For instance, in DBpedia 3.5.1 cs(dbr:Gary Goetzman)=C CSs can be computed by scanning once a dataset's triples sorted by subject; after all the entity properties have been scanned, the entity's CS is identified. For each CS C, we compute statistics, i.e., the number of entities sharing C (count(C)) and the number of triples with predicate p occurring with these entities (occurrences(p, C)). Listing 1.1 shows the statistics for the above mentioned example CS C 1 . Entities of C 1 occur on average in 1 triple with property dbo:birthDate and in 3.94 triples with property rdf:type.

For a star-shaped query, only CSs including all of the query's properties are relevant as entities that only satisfy a subset of these properties cannot contribute to the answer. For star-shaped queries asking for the set of unique entities described by some properties (query with DISTINCT modifier), the exact number of answers can be determined precisely (no estimation). For example, the cardinality of the query given in Listing 1.2 can be obtained by adding up the count(C) of all CSs containing the properties dbo:birthDate, dbo:activeYearsStartYear, and foaf:name. In DBpedia 3.5.1, there are 7,059 CSs that include these three properties, and the total number of entities with these CSs is 83,438. Formally, the number of entities for a given set of properties P, cardinality(P), is computed based on the CSs C j that include all the properties in P as:

cardinality(P) = P ⊆C j count(Cj) (1)
For queries without the DISTINCT modifier, we need to account for duplicates by considering the number of triples with predicate p i ∈ P that an entity is associated with on average:

estimatedCardinality(P) = P ⊆C j count(Cj) * p i ∈P ocurrences(pi, Cj) count(Cj) (2)
In DBpedia 3.5. Once the relevant CSs for a query have been identified, they can be used to find the join order minimizing the sizes of intermediate results. For the query in Listing 1.2, we start by estimating the cardinalities for each subquery with two out of the three triple patterns using Formula 1: {tp1, tp2}: 98,281, {tp1, tp3}: 209,731, and {tp2, tp3}: 127,712. The triple pattern not included in the cheapest subquery ({tp1, tp2}) is executed last (tp3). We proceed recursively with the cheapest subquery and determine the cardinalities for its subsets: {tp1}: 232,608 and {tp2}: 143,004. Again, the triple pattern not included in the cheapest subquery (tp1) will be executed last of the currently considered set of triple patterns. As a result, we will execute the join between tp2 and tp1 first and afterwards compute the join with tp3. We also get the order in which the triple patterns should be evaluated for the first join: first tp2 and then tp1.

Arbitrary Queries To estimate the cardinality for queries with more complex shapes, we need to consider the connections (links) between entities with different CSs. Entity dbr:Evan Almighty, for example, is linked to dbr:Tom Shadyac via property dbo:director by triple (dbr:Evan Almighty, dbo:director, dbr:Tom Shadyac).

The links between CSs via properties can formally be described by characteristic pairs (CPs), they are defined as (cs s (e1), cs s (e2), p) for entities e1 and e2 if (e1, p, e2) ∈ s. The statistics -count((C i , C j , p)) -capture the number of links between a pair of CSs (C i and C j) using a particular property p. For example, given the CSs of dbr:Tom Shadyac and dbr:Evan Almighty as C 1 and C 2 the number of links via property dbo:director is given by: count((C 2 , C 1 , dbo:director)). (t p 2) ? f i l m dbo : budget ? budget .

(t p 3) ? d i r e c t o r dbo : b i r t h D a t e ? date .

(t p 4) ? d i r e c t o r dbo : a c t i v e Y e a r s S t a r t Y e a r ?sy . (t p 5) ? d i r e c t o r f o a f : name ?name (t p 6) }

The number of unique results (pairs of entities, query with DISTINCT modifier) can be exactly computed (not estimated) using the formula:

cardinality((Pi, Pj , p)) = P i ⊆C k ∧P j ⊆C l count((C k , C l , p)) (3)
For the query in Listing 1.

estimatedCardinality((Pi, Pj , p)) = P i ⊆C k ∧P j ⊆C l count((C k , C l , p)) * p i ∈P i -{p} ocurrences(pi, C k) count(C k) * p j ∈P j ocurrences(pj , C l) count(C l) (4)
Assuming that the order of joins within star-shaped subqueries has already been determined based on the CSs as described above, we treat each star-shaped subquery as a single meta-node to reduce complexity. We estimate the cardinalities of the metanodes using the statistics on CPs and use dynamic programming (DP) to determine the optimal join order that minimizes the size of intermediate results. Although the presentation in this section focuses on subject-subject joins, the same principle can be applied to other types of joins, e.g., object-object.

Federated Statistics

In general, entities might occur in multiple datasets in a federation S. Hence, we define a federated characteristic set (FCS) as follows: fcs S (e)= s∈S cs s (e), S might be omitted if clear from the context. However, triples describing the same entity are typically part of a single dataset so that most CSs can be computed over each dataset independently from the others 3 Whereas single dataset statistics can be computed once and provided by the sources in the same way they currently provide VOID statistics, FCSs and FCPs require more effort and centralized knowledge about all entities in the considered datasets. A naive way to compute FCSs and FCPs is evaluating expensive SPARQL queries with FILTER expressions involving NOT EXISTS, but this can take weeks for a dataset with thousands of CSs. It is much more efficient if the sources directly share information about local subjects and objects with the federated query engine. local subjects s (C) contains the entity set with CS C for source s, while local objects s (p, C) contains the set of entities connected via p to CS C. Such information can, for instance, be obtained efficiently while computing CSs and CPs locally and then shared with the federated query engine.

The federated query engine can then use this information to compute FCSs and FCPs. Consider, for instance, the two datasets LMDB and DBpedia in Fig. 1; based on the CSs (Fig. 1a)), the sources compute entity descriptions (local subjects i and local objects i in Fig. 1b)). Entity film:28350 has properties { movie:language,...,owl:sameAs}= C LMDB,1 . Hence, film:28350 ∈ local subjects LMDB (C LMDB,1). Entity dbr:Evan Almighty is the value of property owl:sameAs for an entity with CS C LMDB,1 (film:28350) so dbr:Evan Almighty ∈ local objects LMDB (owl:sameAs, C LMDB,1) (Fig. 1b)). The overlap between the set of entities local objects DBpedia (C DBpedia,1) and local subjects LMDB (owl:sameAs, C LMDB,1) are links from LMDB to DBpedia via property owl:sameAs. Hence, we obtain FCP (C LMDB,1 , C DBpedia,1 , owl:sameAs) (Fig. 1c)). count((C LMDB,1 , C DBpedia,1 , owl:sameAs)) corresponds to the cardinality of the intersection between all the local objects DBpedia and local subjects LMDB .

Algorithm 1 describes in more detail how to compute FCPs only based on the pre- FCPs can be used for cardinality estimation and join ordering using the same principles as described in Section 3.1. Consider a federation consisting of DBpedia (160,061 CSs) and LMDB (8,466 CSs) with 22,592 FCPs. We can use Formula 4 with FCPs to estimate the result cardinality: 171. This is close to the real cardinality (293).

Reducing the Sizes of Entity Descriptions

As the entity descriptions (local subjects d and local objects d) introduced above are often very expensive to compute, maintain and exchange, we propose a technique to reduce their sizes. We organize the entity descriptions in a tree structure that summarizes the entities used as subject or object in any pf the dataset's triples. Inspired by [START_REF] Harth | Data Summaries for On-Demand Queries over Linked Data[END_REF][START_REF] Prasser | Efficient Distributed Query Processing for Autonomous RDF Databases[END_REF][START_REF] Saleem | HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation[END_REF], we factorize common prefixes, transform suffixes into integers, and summarize sets of integers in buckets, i.e., a set synopsis consisting of minimum value (mn), maximum value (mx), mn, mx , number of elements, num, and their set of two least significant bytes (lsb). lsb(i) is computed as i mod 2 16 and is included to improve the synopsis' accuracy.

The tree structure is organized in three levels. The top level summarizes the prefixes of entity IRIs occurring as subjects and objects in the dataset. Suffixes are mapped to integers using a hash function, these integers are summarized in the middle and bottom levels. The middle level includes buckets where parent nodes subsume the synopsis of their children (ranges are included, nums are added) and aids in efficiently accessing only the integer's lsb to reduce the space use while improving the synopsis' accuracy.

In Fig. 2 we present a fragment of the reduced descriptions for LMDB. The reduced descriptions include all the entities that are subject or object in the dataset's triples. In particular, it includes the entity with IRI http://data.linkedmdb.org/resource/film/28350 (Fig. 2c)). This IRI prefix identifies the subtree that summarizes the entity (light gray ellipses in Fig. 2a)), while the hash code of its suffix (resource/film/28350), 1093595742, is used to identify the leaf that includes its lsb (-3490), i.e., with 1093595742 between its minimum and maximum values (gray rectangle in Fig. 2b)). Its lsb is in local subjects(C LMDB,1) and local objects(mol:link source, C LMDB,2) in the identified leaf (trapezium in Fig. 2b)). This tree structure exhibits size reduction and eases the computation of FCPs by allowing to discard large portions of the descriptions contrary to descriptions in Fig. 1b), where all the local subjects and local objects should be pair-wise tested for overlap.

Computation costs are greatly reduced by pruning large portions of the tree and comparing only a few pairs of leaves, the ones that have common prefixes and overlapping representation of the suffixes. An important feature of these summaries is that entities present in more than one dataset are always detected.

These trees are considerably lighter than the entity descriptions discussed in Section 3.2, but they might reduce accuracy. For FedBench's DBpedia 3.5.1 subset, a dataset with 43,126,772 triples that occupies 6.1GB, the local subjects and local objects occupy 1.37GB and the tree only occupies 68MB 4 . They have compression ratios of 4.45 and 91.86, respectively. Regarding the quality, the tree summary allows for computing all the FCSs and FCPs.

To reduce the resources used by the tree, we have reduced the number of CSs as suggested in [START_REF] Gubichev | Exploiting the query structure for efficient join ordering in SPARQL queries[END_REF][START_REF] Neumann | Characteristic Sets: Accurate Cardinality Estimation for RDF Queries with Multiple Joins[END_REF] to 10,000. Only the CSs that are shared by a greater number of entities are kept, and the others are merged into existing CSs if possible. For instance, by selecting from the CSs that include all the properties of the merged CS the one with the smallest number of properties and adding count and ocurrences values to its own values, or splitting the CS into property subsets that can be merged with other CSs. This may reduce the accuracy of the query cardinality estimation, but it allows to bound the resources used to store and access these statistics.

Entity summaries can be kept up-to-date in two ways. For datasets that are rarely updated the subtree representing the entities with the prefix affected by the updates, e.g., Fig. 2b) in our example, can be re-computed. For datasets that are often updated, leaves should support removal of entities, this can be easily done by storing the multiplicity of each least significant byte, so they are removed only if all the entities with that least significant byte have been removed from the dataset.

Optimizing Federated Queries

Query optimization in Odyssey can logically be divided into the following steps: i) preprocessing and source selection, ii) join ordering, and iii) query decomposition. Arbitrary queries can be handled incrementally by optimizing its subqueries. In the following, we address the optimization of queries with bounded predicates, Odyssey relies on existing optimizers to handle other queries.

Preprocessing and source selection We first parse the query and identify its starshaped subqueries. Then, properties in each star-shaped subquery are used to identify relevant CSs and sources. For example, the subquery composed by tp3 and tp4 in Fig. 3(a) has relevant CSs that include both owl:sameAs and movie:sequel. In the FedBench federation described in Table 1, these CSs are only part of LMDB. Therefore, LMDB is the only relevant source for this subquery. Afterwards, we use CPs/FCPs to identify relevant sources for the links between the star-shaped subqueries.

Join ordering Once we have identified the set of relevant sources, we can estimate cardinalities of subqueries and find the best join ordering. We first optimize the order of joins and triple patterns within each star-shaped subquery as explained in Section 3.1 using the reduced entity descriptions described in Section 3.3. Afterwards, as described in Section 3.1, each subquery is treated as a meta-node and we estimate cardinalities of the joins between these meta-nodes using formulas in Section 3.1 for FCPs to estimate subquery cost and apply DP. Fig. 4 (left) shows the estimated cardinality and cost of the subqueries of Q F (Fig. 3

Fig. 4: Example query optimization

In our current implementation, the cost function is solely defined on the cardinalities of intermediate results and how many results need to be transferred from endpoints during execution. This favors query plans with selective subqueries. For instance, the cost of the join between meta-nodes ?star1 and ?star2 (1,965) includes the result sizes (417) and the incurred intermediate results [START_REF] Acosta | ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints[END_REF]548). This cost function assumes that all endpoints have the same characteristics. We can easily extend this cost function by additional parameters that can be fine-tuned to represent the characteristics of each endpoint individually, e.g., communication delays, response times, etc.

Query decomposition Finally, we optimize the SPARQL queries that are actually sent to the endpoints and try to minimize their number. For instance, we combine all triple patterns and logical subqueries to a particular endpoint into a single SPARQL query to a particular endpoint whenever possible. For instance, meta-nodes ?star2 and ?star3 in Fig. 4 are combined into one subquery (Fig. 3(b)) and evaluated by the DBpedia endpoint.

Evaluation

In this section, we present the results of our experimental study that compares our approach, Odyssey, with state-of-the-art federated query engines: HiBISCuS (FedX-HiBISCuS, cold and warm cache) [START_REF] Saleem | HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation[END_REF], SemaGrow [START_REF] Charalambidis | SemaGrow: Optimizing Federated SPARQL queries[END_REF], FedX (cold and warm cache) [START_REF] Schwarte | FedX: Optimization Techniques for Federated Query Processing on Linked Data[END_REF], and SPLENDID [START_REF] Görlitz | SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions[END_REF]. Full implementations, statistics, and results are available at https://github.com/gmontoya/federatedOptimizer. Datasets and queries: We use the real datasets and queries proposed in the FedBench benchmark [START_REF] Schmidt | FedBench: A Benchmark Suite for Federated Semantic Data Query Processing[END_REF]. Queries are divided into three groups Linked Data (LD1-LD11), Cross Domain (CD1-CD7), and Life Science (LS1-LS7). They have 2-7 triple patterns and star and hybrid shapes. They have between 1 and 9,054 answers. Basic statistics about the datasets are listed in Table 1. We ran each query ten times and report the averages over the last nine runs. Standard deviation is included as error bars on the plots. Implementation: Odyssey is implemented in Java using the Jena library to parse and transform queries into queries with SPARQL 1.1 service clauses. Our implementation uses the FedX 3.1 framework with deactivated native optimization to execute Odyssey's query plans.

Hardware configuration: For our experiments we used virtual machines (VMs). A VM using up to 4GB of RAM to run the federated query engine and nine VMs with 2 processors, 8GB of RAM and CPU 2294.250 MHz to host Virtuoso endpoints with the datasets described in Table 1 (one dataset and endpoint per VM).

Statistics computation: As DBpedia has a very high number of CSs (160,061), we reduced them to 10,000 by merging (as suggested in [START_REF] Gubichev | Exploiting the query structure for efficient join ordering in SPARQL queries[END_REF][START_REF] Neumann | Characteristic Sets: Accurate Cardinality Estimation for RDF Queries with Multiple Joins[END_REF] and explained in Section 3.3) without significant losses in the quality of estimations. Details on creation times of statistics are listed in Table 1. Odyssey's statistics can be more expensive to compute for datasets with more than 3,419 CSs and cheaper than HiBISCuS's for datasets with less than 67 CSs. In total, Odyssey's statistics are computed five times faster than VOID's.

Evaluation metrics: i) Optimization time (OT): is the elapsed time since the query is issued until the optimized query plan is produced, ii) number of selected sources (NSS): is the number of sources that have been selected to answer a query, iii) number of subqueries (NSQ): is the number of subqueries that are included in the query plan, iv) execution time (ET): is the time elapsed since the evaluation of the query plan starts until the complete answer is produced (with a timeout of 1,800 seconds), v) number of transferred tuples (NTT): is the number of tuples transferred from all the endpoints to the query engine during query evaluation.

Result completeness: All approaches produce the complete result set for non-timed out queries, except SPLENDID for query LS7.

Experimental Results

Optimization time Fig. 5 shows the optimization time (OT) for the studied approaches. Because of the detailed statistics and dynamic programming, one might expect Odyssey to suffer from a considerable overhead in OT. As our experimental results show, however, Odyssey's query planner is competitive to most other approaches with a slight advantage for FedX-Warm as this system has cached information about the query relevant sources. For instance, Odyssey is up to 69 times faster (SemaGrow) than other approaches on average. Number of selected sources As Fig. 6 shows, Odyssey selects only a small number of relevant sources; for instance, at least 1.81 times less (FedX-Cold/Warm and Sema-Grow) and up to 1.93 times less (HiBISCuS-Cold/Warm) on average. For some queries, e.g., LS4, existing approaches already select the optimal number of sources. For LD7, Odyssey selects a larger number of sources than the optimum because our approach does not perform ASK queries during execution to prune irrelevant sources. Sometimes Odyssey overestimates the set of relevant sources -but on the other hand it never misses any relevant sources. For LS1, most approaches select just one (10 0) source because there is only one dataset that have triples with the predicate in the query. Number of subqueries As Fig. 7 shows, Odyssey uses considerably fewer subqueries than other approaches, at least 2.62 times less (HiBISCuS-Cold/Warm) and up to 3.41 times less (SPLENDID) on average. The fact that Odyssey always produces the correct and complete answers confirms that Odyssey correctly identifies and exploits cases for which it is advantageous to combine subqueries. Odyssey's reduction of the number of relevant sources has a positive impact on the number of subqueries (NSQ), Odyssey's pruning of non relevant sources allows for combining triple patterns into subqueries without affecting the result completeness. Some queries, like LD2, LD4, and LD9, include triple patterns that can be evaluated by a unique endpoint of the federation and existing approaches already decompose the query into the optimal NSQ. Only for LD7, FedX-Cold/Warm, SPLENDID, and SemaGrow decompose the query into fewer subqueries than Odyssey, this is because they use ASK queries to assess a source's relevance. Odyssey could be enhanced with this strategy.

Execution time Some approaches failed to answer all queries before the timeout: SPLENDID (2 queries) and SemaGrow (4 queries). Even when considering only those queries that completed before the timeout, Odyssey is on average 126.26 times faster than SPLENDID and 28.30 times faster than SemaGrow. Fig. 8 shows the execution times (ET) for the studied approaches. Number of transferred tuples Fig. 9 shows the number of transferred tuples (NTT) for the studied approaches. Odyssey transfers fewer tuples than other approaches. Even when considering only those queries that completed before the timeout, Odyssey transfers on average 1.15 times fewer tuples faster than SemaGrow and 108.4 times fewer tuples than SPLENDID. For the approaches that completed all the queries, Odyssey transfers at least 117.55 fewer tuples (HiBISCuS-Cold/Warm) on average. Most approaches are competitive in terms of NTT. The largest difference is observed for LS6, where Odyssey clearly outperforms the other approaches transferring 500 times fewer tuples. In contrast to other approaches, Odyssey not only reduces the number of requests sent to the endpoints but also avoids non-selective queries, which significantly reduces network traffic and the local load at the endpoints.

Combining Odyssey with Existing Optimizers

We have also integrated Odyssey techniques into an the FedX optimizer and obtained: -Odyssey-FedX-Cold, which relies on CSs and CPs to select sources and decomposes the query but uses FedX join ordering. -FedX-Cold-Odyssey, which relies on the FedX optimizer for source selection but uses Odyssey for query decomposition and join ordering. Fig. 10 compares the execution times (ET) of these two implementations with Odyssey, FedX-Cold, and FedX-Warm. In most cases the combined approaches are considerably faster than native FedX. In a few cases, however, their ET can increase considerably. In these cases, queries include a highly selective subquery with one triple pattern and using FedX's heuristic to execute subqueries with more than one triple pattern first leads to plans that are more expensive than others. On average, the combined approaches are 26.86 and 3.99 times faster than FedX-Cold.

For query LD7, Odyssey and FedX-Cold/Warm exhibit similar ETs whereas FedX-Cold-Odyssey is considerably faster. For this query it happens that the advantages of both Odyssey and FedX coincide, i.e., we can take advantage of the good join ordering by Odyssey but also of the additional pruning based on ASK queries by FedX.

Even if Odyssey's OT can be higher in comparison to existing approaches, Odyssey produces better plans composed of fewer subqueries and fewer selected sources per triple pattern without compromising result completeness. Benefits of these features have been evidenced with significantly faster ETs and less transferred data from endpoints to the federated query engine.

Conclusion

In this paper, we have presented Odyssey, an approach for optimizing federated SPARQL queries based on statistics. These statistics detail information about the data provided by remote endpoints as well as the links between them. This enables more accurate cost estimations, query optimization, and selection of relevant sources. Our extensive experimental evaluation shows that Odyssey produces query execution plans that are better in terms of data transfer and execution time than state-of-the-art optimiz-ers. In our future work, we plan to further improve Odyssey by considering in which situations exactly it is worthwhile to use additional aspects of other optimizers, such as ASK queries and associated statistics. Another interesting perspective work is to further reduce the computation time and sizes of the entity descriptions and provide efficient strategies to update the descriptions and statistics.

Listing 1 . 3 :

 13 Find movies and their directors SELECT DISTINCT ? f i l m ? d i r e c t o r WHERE { ? f i l m dbo : r u n t i m e ? r u n t i m e . (t p 1) ? f i l m dbo : d i r e c t o r ? d i r e c t o r .

Fig. 3 :

 3 Fig. 3: Query Q F and its Optimized Plan

Fig. 5 :

 5 Fig. 5: Optimization Time in ms (OT, log scale). CD1 and LS2 have variable predicates and Odyssey relies on FedX to find plan.

Fig. 6 :

 6 Fig. 6: Number of Selected Sources (NSS, log scale, 10 0 =1)

Fig. 7 :

 7 Fig. 7: Number of Subqueries (NSQ, log scale, 10 0 =1)

Fig. 8 :Fig. 9 :

 89 Fig. 8: Execution Time in ms (ET, log scale)

Fig. 10 :

 10 Fig. 10: Execution Time in ms (ET, log scale)

 . The federated characteristic pair (FCP) of entities e1 and e2 via property p

		LMDB				DBpedia
	film:28350	mo vie :lan gua ge owl :sam eAs	linguo:en . . .	dbr:Evan Almighty	dbo :pro duce r dbo:d irecto r	dbr:Gary Goetzman . . .
		dbr:Evan Almighty				dbr:Tom Shadyac
	il:49900	mo l:lin k sou rce mol :link targ et	film:28350 . . .	dbr:Gary Goetzman	dbo: birth Date skos: subje ct	1952-11-06 . . .
		photos:Evan Almighty				dbc:American film producer
		CLMDB,1={movie:language,...,owl:sameAs} CSs and CPs at the sources	CDBpedia,1={dbo:producer,...,dbo:director}
		CLMDB,2={mol:link source, mol:link target}	a)		CDBpedia,2={dbo:birthDate,...,skos:subject}
		(CLMDB,2,CLMDB,1,mol:link source)			(CDBpedia,1,CDBpedia,2,dbo:producer)
	
	local subjectsLMDB(CLMDB,1)={ film:28350, ... }	Entity Descriptions		local subjectsDBpedia(CDBpedia,1)={ dbr:Evan Almighty, ... }
	local objectsLMDB(movie:language, CLMDB,1)={ linguo:en,...} local objectsLMDB(owl:sameAs,CLMDB,1)={ dbr:Evan Almighty, ...} b)	local objectsDBpedia(dbo:producer,CDBpedia,1)={ dbr:Gary Goetzman, ...} local objectsDBpedia(dbo:director,CDBpedia,1)={ dbr:Tom Shadyac, ...}
			(CLMDB,1,CDBpedia,1,owl:sameAs)	FCPs (and FCSs)
				c)		

1

Fig.

1

: Federated Computation of Statistics in federation S is defined as (fcs S (e1), fcs S (e2), p). For FCSs FC i and FC j and property p, we compute statistics count(FC i), occurrences(p, FC i), and count((FC i ,FC j ,p)) as before for CSs and CPs. For simplicity, the following sections focus on FCPs connecting CSs instead of FCSs. The generalization using FCSs is straightforward.

 Algorithm 1 Compute FCPs AlgorithmInput: local objects d1 and local subjects d2 for datasets d1 and d2 Output: A set of FCPs (FCPs) with links from d1 to d2 count(fcp) for each fcp in FCPs 1: function ComputeFCPs(local subjects d2 , local objects d1) 2:computed statistics local objects d1 and local subjects d2 . First, all common entities in local objects d1 and local subjects d2 are identified in line 7. These common entities represent links between CSs C d1,i and C d2,j via property p and are captured by a FCP (lines 9-10).

	3: 4: 5: 6: 7: 8: 9: 10: 11:	FCPs ← { } count ← a function with default value 0 for (p, C d1,i) ∈ domain(local objects d1) do entities ← local objects d1 (p,C d1,i) for C d2,j ∈ domain(local subjects d2) do entities ← entities local subjects d2 (C d2,j) if entities = ∅ then FCPs ← FCPs { (C d1,i , C d2,j , p) } count((C d1,i , C d2,j , p)) ← count((C d1,i , C d2,j , p)) + cardinality(entities) end if
	12:	end for
	13:	end for
	14:	return CPs, count
	15: end function

Listing 1.4: Find LMDB movies that are also DBpedia movies SELECT ? f i l m ?movie WHERE { ? f i l m dbo : budget ? budget . ? f i l m dbo : d i r e c t o r ? d i r e c t o r . ?movie owl : sameAs ? f i l m . ?movie lmdb : sequel ?seq }

 (a)), arrows indicate which smaller subqueries were combined by the DP algorithm to form a larger subquery. As the number of subqueries is usually considerably lower than the number of triple patterns, applying DP becomes affordable.

				?star3					
		?star2			db o:b irt hD at e	?sy	subqueries	cardinality	cost
	?m ?star1 ow m o v ie :s e q u e l l: sa m eA s	?f	d b o: d ir ec to r d b o :b u d g e t	?d ?b	db o:a ct ive Ye ar sS ta rtY ea r	?bd	{ ?star1 } { ?star2 } { ?star3 } { ?star1, ?star2 } { ?star2, ?star3 } { ?star1, ?star3 }	1,548 6,057 125,003 417 979 1.9e8	1,548 6,057 125,003 1,965 979 1.9e8
		?s					{ ?star1, ?star2, ?star3 }	68	1,047
		?star1		?star2		?star3			
						1			

Table 1 :

 1 FedBench[START_REF] Schmidt | FedBench: A Benchmark Suite for Federated Semantic Data Query Processing[END_REF] dataset statistics: number of distinct triples (#DT), number of predicates (#P), number of CSs (#CS), number of CPs (#CP), Odyssey statistics and synopsis computation time in s, HiBISCuS summaries computation time in s, and VOID statistics computation time in s

	Dataset	#DT	#P # CS	#CP	#FCP Odyssey HiBISCuS VOID
	ChEBI	4,772,706	28	978	9,958	19,360 82.91	96.02	73.89
	KEGG	1,090,830	21	67	239	13,822 30.15	95.23	12.84
	Drugbank	517,023	119 3,419 12,589 103,070 1,299.9	76.4	6.98
	DBpedia subset 42,855,253 1,063 10,000 1,069,431 6,583	2,739	770.48 1,465.36
	Geonames 107,949,927 26	673	7,707 322,672 1,885.97 609.52 39,694.07
	Jamendo	1,049,647	26	42	190	1,259	31.25	99.17	14.66
	SWDF	103,595	118 547	6,713	17,557	7.27	69.21	2.03
	LMDB	6,147,916 222 8,466 94,188 359,340 947.16	317.21	355.45
	NYTimes	335,119	36	47	158	3.96	10.01	72.56	4.22
	Federated						620.35		
	Total						7,654.27 2,205.8 41,629.5

 Odyssey is on average at least 25.46 times faster (FedX-Warm). Only for few queries Odyssey is (slightly) slower than other approaches, e.g., LS3. As for the other metrics, Odyssey's ET can be improved if ASK queries were used during query execution to further reduce the relevant sources similarly as it is done by other approaches. For five of the queries, Odyssey is one of the fastest approaches and for 11 queries, Odyssey is the fastest approach. Odyssey's achieved reductions on the NSS and NSQ have a positive impact on the ET, as fewer endpoints are queried fewer times, Odyssey produces results faster than most approaches in most cases.

				10 6			
		Odyssey HiBISCuS-Warm HiBISCuS-Cold FedX-Warm FedX-Cold SemaGrow	ET (ms)	10 2 10 4		TIMEOUT	
		SPLENDID		10 0			
				LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11
		10 6			10 6		
	ET (ms)	10 2 10 4		ET (ms)	10 2 10 4	TIMEOUT	TIMEOUT TIMEOUT	INCOMPLETE RESULT ABORT
		10 0			10 0		
		CD1 CD2 CD3 CD4 CD5 CD6 CD7		LS1 LS2 LS3 LS4 LS5 LS6 LS7

FCSs describing entities across multiple datasets are very rare. In FedBench, for instance, they affect less than 0.5% of all CSs.

Implementation based in Java's HashSet and HashMap was used to measure their sizes.

Acknowledgments

This research was partially funded by the Danish Council for Independent Research (DFF) under grant agreement no. DFF-4093-00301.