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Abstract

The aim of this paper is to investigate the consequences of finite size effects on the thermody-
namics of nanoparticle assemblies and isolated particles. We consider a binary phase separating
alloy with a negligible atomic size mismatch and equilibrium states are computed using off-lattice
Monte Carlo simulations in several thermodynamic ensembles. First, semi-grand canonical en-
semble is used to describe infinite assemblies of particle with the same size. When decreasing the
particle size, we obtain a significant decrease of the solid /liquid transition temperatures as well as a
growing asymmetry of the solid state miscibility gap related to surface segregation effects. Second,
a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse
particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly
may split into two sub-assemblies of identical particles. Moreover, if the overall average canonical
concentration belongs to a discrete spectrum, the sub-assemblies concentrations are equal to the
semi-grand canonical equilibrium ones. We also show that the equilibrium of a particle assembly
with a prescribed size distribution combines a size effect and the fact that a given particle size
assembly can adopt two configurations. Finally, we have considered the thermodynamics of an
isolated particle to analyze whether a phase separation can be defined within a particle. When
studying rather large nanoparticles, we found that the region in which a two-phase domain can
be identified inside a particle is well below the bulk phase diagram but the concentration of the

homogeneous core remains very close to the bulk solubility limit.

PACS numbers: 82.60.Qr, 64.75.Jk, 64.75.Gh, 64.60.De



I. INTRODUCTION

Nanoalloys are metallic particles containing two or more elements with dimensions rang-
ing typically from 1 to 20nm. These objects have properties, which are fundamentally
different from those of discrete molecules and bulk systems. Nanoalloys have been the focus
of intense academic research and have now many applications in different fields of science
and technology such as in catalysis, magnetism and optics.! The knowledge of the structural
stability of nanoalloys®* is essential to guide the synthesis processes by the physical route
and is also the first step towards the understanding of the aging of these nano-objects, an

important question for the use of these objects in practical applications.

The first approach to model the stability of nanoalloys is based on a continuum descrip-
tion, only relevant for large enough particles. In these models, it is assumed that the struc-
ture of a nanoalloys can be decomposed in homogeneous regions (called phases) surrounded
by surfaces or interfaces. The geometry of the homogeneous regions and the thermodynam-
ical behavior of surfaces are assumed simple and characterized by a very limited number of
parameters. Equilibrium is then defined as the minimum of the Gibbs energy when varying
these parameters. Using these continuous models, the effect of the size and shape of the par-
ticles on the equilibrium structure has been demonstrated®® with, for example, the increase
of solubility in nanoalloys and the decrease of melting temperatures. Size and shape depen-
dent phase diagrams have been defined, in which equilibrium compositions after separation
and solubility limits do not coincide. It has also been shown that the conservation of matter
leads to constraints on the nucleation and growth of a new phase and to the existence of a

critical particle size below which a two-phase state is unstable.

A more accurate description of the stability of nanoalloys is however provided by atomic
approaches, using either molecular dynamics or Monte Carlo methods. These approaches
can in principle explore all possible structures and configurations (core/shell, Janus-like,
surface reconstructions, ...) and automatically include statistical fluctuations, which are
required to analyze the stability of small systems, inasmuch the different thermodynamic
ensembles of finite systems are not equivalent. These approaches have been used to analyze
the stability of specific particles and to explain non-trivial transformations such as the
transition between the high miscibility in Cs3Na nanoparticles at low temperature and a

demixtion at room temperature,” the dynamical equilibrium of the outer shell of Cu-Ag



nanoalloys,'? the formation of core-shell in size mismatched nano-alloys,'! and the ordering

in Au-Pd nanoalloys.!?

Using atomic approaches, the definition of a relevant size dependent phase diagram is
much more complicated than with continuum approaches. First, in a finite size system,
there is, strictly speaking, no phase transition because the partition function is analytic.
Fortunately, even for nanometric particles, phase transitions can often be safely defined by
rapid variations of thermodynamic quantities.!®!4 Second, because statistical ensembles are
not equivalent for finite size systems, the definition of an equilibrium state is only valid
within a given thermodynamic ensemble. This also raises the question of the relevance of
the computed equilibrium to analyze specific experimental results. Third, atomic models
automatically incorporate the complexity of the thermodynamical behavior of interfaces,
in particular segregation and wetting, during which a concentration excess appears at the
surface. Due to the finite size of the system, the formation of such an excess necessarily
implies a depletion in the core of the particle and therefore strongly impacts the stability of

the particle.

Due to the high computational cost, atomic scale approaches have rarely been used to
study the complete phase diagram of nanoalloys. One of the goals of the present work
is to give a general picture of the phase diagram of nanoalloys through the computation
of size dependent phase diagram spanning the whole composition and temperature ranges.
To this end, we use the simple, flexible and low time consuming Lennard-Jones pair-wise
interaction potential and off-lattice Monte Carlo calculations that can reproduce the stability
of both solid and liquid phases and allow surface reconstructions. Such a pairwise potential
is sufficient to address fundamental issues but is not appropriate to study specific metallic
systems. This would require a more accurate description of the many body character of the
chemical bonding, for example using tight binding or embedded-atom method (EAM) type
potentials. Another aim of the present work is to present and compare several definitions of
nanoalloys phase diagrams, based on several choices of thermodynamic ensembles. Finally,
this work also presents the analysis of the stability of nanoparticle assemblies, including the
case of a finite size distribution. The present paper does not consider the stability of small
atomic clusters, for which the crystalline structure differs from the bulk one.'®1%16 This
study focuses on the phase diagrams of binary alloys with a face centered cubic structure

when the size mismatch between atoms is negligible (e.g., Rh-Pd, Ir-Pd). The methodology
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discussed in the following is however fully adapted to study the effects of elasticity on the
solubility limits of nanolloys with an atomic size mismatch for which the strain have been
shown to strongly impact the nanoparticle morphology.2°

The paper is organized as follows. In Sec. II, we describe the interatomic potential and
the procedures used to compute phase diagrams in the canonical and the semi-grand canon-
ical ensembles. Sec. III is devoted to calculations performed in the semi-grand canonical
ensemble, which is relevant for the stability of an infinite assemblies of particles with iden-
tical size. In Sec. IV, using the canonical ensemble, the stability of a finite assemblies of
particles is discussed and the importance of the size distribution is demonstrated. Finally,
the question of the phase separation within an isolated nanoparticle is addressed in Sec. V,

before concluding remarks.

II. TECHNICAL DETAILS AND METHODOLOGY

A. Thermodynamic ensembles

Phase diagrams calculations have to be performed in specific thermodynamic ensembles.
Here, we use the canonical and semi-grand canonical ensembles. In the canonical ensemble
denoted here by ({N;},P,T'), the temperature T', the pressure P, the number N; of atomic
sites of species ¢ in the M-component alloy are fixed quantities, where M is the number of
chemical species. The mean concentration c; of species ¢ is therefore a conserved quantity.
In the semi-grand canonical ensemble, denoted here by (N, {Apu;},P,T), the temperature T,
the pressure P, the total number N of atoms and the (M-1) alloy chemical potentials Apu; are
fixed quantities. Ap; = p;— fire is the difference between the chemical potential yi; of atomic
species ¢ and the chemical potential of a reference one. Calculations in the ({N;},P,T) and
in the (N,{Ap;},P,T) ensembles are realized with a Monte Carlo code which takes into
account chemical relaxations and atomic displacements. In the ({N;},P,T) ensemble, the
Metropolis algorithm!” is applied to exchanges between particles to reproduce chemical
correlations and to atomic displacements. This main loop is iterated until the Markov chain
converges to equilibrium. Because atomic size effects are not considered in this work, the
usual Markov steps on homogeneous strain have not been included.'® In the (N ,{Apu;},P,T)

ensemble, we apply the same Metropolis algorithm, except that position exchanges between



particles (swapping mechanism) are replaced by changes of atomic species on single sites
(flipping mechanism). In the exchange mechanism, because we are interested in equilibrium
but not kinetics, the choice of the two atoms is realized as follows : for each atom visited
sequentially, a second atom is randomly chosen. The flipping mechanism is operated on
a randomly chosen atom. Displacements are attempted sequentially on each atom of the
simulation box. The displacement vector coordinates are randomly selected between -0.1
and 0.1A. As usual, we define a Monte Carlo time in terms of Monte Carlo Steps (MCS). In
our calculations, one MCS corresponds to 10N attempts of exchanges (or identity changes),
and 10N attempts of displacements, N being the total number of atoms.

In this work, the calculations are performed at zero pressure. The reference case is a
bulk alloy i.e. a large system with periodic boundary conditions where phase transitions
and the phase diagram are clearly defined. Then, we analyze the equilibrium of finite
spherical particles with diameters between 2nm and 15nm. In the simulations, the initial
configurations correspond to a cut of the face centered cubic lattice by a sphere with a core
rich in B atoms and a shell rich in A atoms to reduce hysteresis effects and metastabilities

(pinning, lattice friction).'®

B. Interatomic potential

To study generic behaviors, we use a Lennard-Jones potential, which is very flexible in
comparison with more realistic potentials in terms of the determination of the potential
parameters and also very efficient from a computational point of view. The total energy of

the system is given by the sum of pair interactions:

VeO(ry) = —4e” [(UZB)G — (ijj)wl (1)

where r;; is the distance between the atom i (of type a) and the j atom (of type (). The

parameter o’ controls the position of the energy minimum and the parameter €*? its depth.
For the pure a-component, c*® is related to the equilibrium lattice parameter and €** to
the cohesive energy. The melting temperature and the surface energy depend on both o**
and €*“. In order to avoid energy discontinuities at the cutoff distance r.,, the potentials

are multiplied, for distances between r.,-Ar and 7., by the polynomial tapering function
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FIG. 1. Snapshots of four bimetallic particles of 6.6 nm, 4.4nm, 2.8 nm, and 2.2nm in diameter
from Monte Carlo simulations at 7=400K in the semi-grand canonical ensemble. The light (dark)
color corresponds to B (A) atoms respectively. The four particles contain 12137, 3565, 1058, and
429 atoms, respectively. Half sections of the particles are also presented for Au; and Aul (see

text for detail).

f(@):

f(z)=1[8—15(2z — 1) + 102z — 1)* — 3(2x — 1)°]/16 (2)

where © = [r — (reye — Ar)]/Ar. This procedure ensures that the potentials tend to zero
smoothly over the distance Ar, which is typically chosen equal to 0.2A. The potentials
are truncated between the 5th and 6th nearest neighbors of the face centered cubic (fcc)

structure, which is the ground state for bulk alloys.

To decouple elastic effects and chemical effects, we choose to investigate in this paper an
A-B alloy with no atomic size mismatch (Aa/a=0). 044, ¢4% and % are thus equal and
adjusted to reproduce a particular lattice parameter (0.36428 nm). The values of €** (a =
A or B) are chosen to reproduce two given melting temperatures close to 1300K (1400K and
1155K). These values are representative of common face centered metals (e.g., Cu, Ag, Ni,

4B is chosen to ensure a phase separation at low

Pt) but not specific to a particular one. €
temperature. Tab. I summarizes the parameter values as well as some energetic and elastic
properties. The corresponding (¢,7') and (Ap,T) phase diagrams for the bulk system are
represented by black squares in Fig. 2 and Fig. 3. The miscibility gap is almost symmetric
with respect to ¢ = 0.5. At this concentration, the transition temperature between the solid

solution and the phase separation is 750K. More details can be found in Ref. 18.
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A-A A-B B-B

£ (eV) 0.18 0.153 0.146
o®? (nm) 0.23508 0.23508 0.23508
a (nm) 0.36428 0.36428
E. (eV/at.) -1.459 -1.186
Bulk Mod. (GPa) 155 126
C11 (GPa) 217 177
C12® (GPa) 124 100
Y11(Jm™?) 1.4 1.2

2 for pairwise potentials Cy44 = C15 (Cauchy rule)

TABLE I. Lennard-Jones potential parameters (upper part) and corresponding quantities for the
pure components (lower part) with interactions up to the fifth neighbors. The lattice parameters,
the cohesive energies E. and the elastic moduli calculated with a strict cutoff at zero temperature

are given for the pure phases. 7111 is the (111) surface energy at 0K.

III. THERMODYNAMICS OF INFINITE PARTICLE ASSEMBLIES

A. Introduction

In the semi-grand canonical ensemble, for large systems, phase transitions are associated
with singularities (as function of Apu;, P or T') of quantities such as internal energy, con-
centrations or order parameters. When studying a demixtion process, the concentrations
c_ and ¢y corresponding to the limits of the miscibility gap are estimated by varying the
alloy chemical potential Au to observe a finite jump of the concentration at a critical value
Ap.. In a previous study devoted to bulk alloys, we have developed a method based on
the Gibbs-Thomson effect to minimize hysteresis and metastabilities taking place at low
temperature (pinning, lattice friction).’® The method consists in analyzing the dynamics of
a curved interface that separates a B-rich sphere embedded in an A-rich matrix and wvice
versa. The two critical values of the alloy chemical potential determined by finite incre-

ments on Ay are then arithmetically averaged to obtain Apu,.. In the present study, because



the analyzed systems are small, the characteristic length of the interface fluctuations is not
negligible with respect to the particle size. As a consequence, the two initial configurations
(A-rich and B-rich spheres) leads to the same behavior of the concentration variation as a
function of the applied alloy chemical potential. Therefore, the limiting concentrations c_
and ¢, associated to the concentration jump at Ap,, are simply identified as the concentra-
tions corresponding to Au_ and Ay, respectively, where Ap, (Ap) is the alloy chemical
potential just before (after) the concentration jump takes place.

For systems with free surfaces, the atomic sites close to the surface behave differently
from the bulk ones due to their lower coordination numbers. Thus, apart from the bulk
transition, the system may exhibit surface transitions, associated with successive critical
chemical potentials Ap,..1%1929 Of course, the existence of a well defined sequence of surface
transitions is likely to disappear at high temperature when spatial and chemical fluctuations
of atomic sites are large enough.

When considering nano-objects, transitions are even more difficult to localize because
they are smooth as a consequence of the analyticity of all statistical functions.?* However,
when considering particles containing more than several hundreds of atoms, as it is the case
in this study, transitions can usually still be clearly defined. Finally, another important point
is that, for finite systems, the statistical ensembles are, strictly speaking, non-equivalent.

In this part, we first address the stability of a nano-particle in the semi-grand canonical
ensemble. Then, the result is compared to the situation of a finite assemblies of particles
with identical size in the canonical ensemble. Finally, the extension to an assemblies of

particles differing in size is considered.

B. Calculation in the semi-grand canonical ensemble

We first consider a single particle in the semi-grand canonical ensemble. For a given
particle size, the values of the critical chemical potential Ay, are searched in the (Ap, T')
parameter space. Fig. 1 shows snapshots of four particles of 6.6 nm, 4.4nm, 2.8 nm, and
2.2nm in diameter at T'=400K. For each of these particle sizes, a run along increasing Apu
with small increments of 0.5 meV reveals the occurrence of only one critical set (Ap, ,Aul).
Even for the smallest particle considered here (2.2 nm, 429 atoms) a chemical potential jump

can be easily identified. The corresponding (Apu,T") phase diagrams are shown in Fig. 2. The
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FIG. 2. Chemical potential-temperature phase diagrams for the bulk alloy and for spherical

nanoparticles with diameters equal to 6.6, 4.4, 2.8, and 2.2 nm.

transition temperature between the liquid and the solid decreases with the particle size. The
solid-solid transitions are also affected but only slightly: the critical value of the chemical
potential of 2.2nm particles is 10% lower than the bulk alloy one and the temperature
corresponding to the top of the miscibility gap is lowered by only 3%. However, in the (¢,T)
phase diagrams, represented in Fig. 3, the miscibility gap is much more affected by size
effects : it becomes asymmetric with respect to the equiatomic concentration and shrinks
when the particle size decreases. This effect is related to the difference A+ between the
surface energies of A and B atoms, which amounts to 200 mJ.m~2 for a (111) surface at 0K
(see Tab. I). We indeed checked that the miscibility gap remains symmetric if A~ is set to
zero. This condition is easily imposed within the Lennard-Jones approach, as it amounts to

AA

simply impose e11=eBP. We have also noted that the asymmetry of the miscibility gap is

not linked to surface segregation effects, as, when Ay=0, segregation of the minority species
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FIG. 3. Composition-temperature phase diagrams computed within the semi-grand canonical en-
semble for the bulk alloy and for spherical nanoparticles with diameters equal to 13, 6.6, 4.4, 2.8,

and 2.2nm. Shaded areas correspond to two-phase domains.

does exist and is still observed.

The knowledge of these size-dependent phase diagrams may be a useful tool to interpret
the observed configurational states of large monodisperse assemblies of nanoparticles, if of
course the synthesis conditions are such that the assembly reaches its equilibrium state.
The semi-grand canonical thermodynamics of a single particle is formally equivalent to the
canonical thermodynamics of an infinite assembly of particles with the same size, which
only interact through the exchange of atoms. Therefore, in the single-phase domains of the
phase diagram presented in Fig. 3, infinite assemblies feature only one type of particles,
whereas in the two-phase domains, assemblies exhibit two populations. In the latter case,
the equilibrium concentrations of each particle type are given by the limits of the miscibility

gap and the fraction of particles of each type is given by the lever rule.
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Inside a given particle, the concentration fields are of course inhomogeneous and depend
on temperature. In our calculations, we consider spherical particles and we observe that
the concentration fields have a radial symmetry at equilibrium. As shown in Fig. 4, at
400K, the concentration profile associated with Ap_ exhibits a 4nm large homogeneous
zone poor in B atoms around the center of the particle (core), followed by a 0.5nm thick
interface and terminates by a surface rich in B (shell). For Ay}, the concentration profile
is quasi-homogeneous through the particle. At 750K, the concentration profiles exhibit
a 1~2nm large homogeneous zone close to the center of the particle and then a diffuse
transition up to the surface, which is rich in B. These observations indicate that, within
the miscibility gap, the configurational states of the particles at low temperature (core-
shell like) are qualitatively very different from those observed at high temperature. In
Fig. 5, the concentrations measured close the center of the particles (in the homogeneous
zones) for Ay, and Aul are superimposed to the bulk alloy (¢,T") phase diagram for solid-
solid transformations. We observe that they are close to the limits of the bulk miscibilty
gap. In other words, within the miscibility gap associated to nanoparticles, the equilibrium
concentrations at the center of the particles differ only slightly from their bulk equilibrium
values. For example, for assemblies of 6.6 nm particles, concentrations at the center only
very slightly deviate from those of the bulk alloy (Fig. 5), even though the corresponding
phase diagram is clearly very different from the bulk one (Fig. 3).

The previous calculations and conclusions pertain to a situation where a large number
(possibly infinite) of monodisperse particles reach collectively a thermodynamical equilib-
rium. In the next section, we investigate the collective behavior of a small number of

particles. This of course requires the use of the canonical ensemble.

IV. CANONICAL ENSEMBLE : FINITE ASSEMBLIES OF PARTICLES

A. Finite assemblies of particles with identical size

We consider a finite assembly of particles in interaction in the canonical ensemble, where
the number of A and B atoms in the assembly, the temperature and the pressure are fixed
quantities. In order to make a link between the equilibrium of a single particle in the semi-

grand canonical ensemble and the equilibrium of the particles in the canonical ensemble, we
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FIG. 4. Averaged radial concentration profiles of a 6.6 nm particle for Au, (open symbols) and
Apt (close symbols). Figure 4(a) corresponds to calculations at 400K and Fig. 4(b) to calculations

at 750K. Dashed lines correspond to the bulk alloy equilibrium concentrations.

investigate a situation where all the particles have the same size, the same shape and the

same number of atomic sites.
In the semi-grand canonical ensemble, the relevant thermodynamical function is the grand

potential G(Au), which is related to the canonical free energy F'(c) of a single particle by:
(3)

G(Ap) = mindF(c) — Auc}

We are interested here in a situation where the grand canonical equilibrium state is degen-

erated. In other words, the chemical potential Ay is equal to its critical value Apu,. and the

concentration of the two degenerated states are such that :
13
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FIG. 5. Concentrations calculated at the center of particles with diameters equal to 6.6 nm and

4.4nm (close symbols) superimposed on the corresponding bulk alloy (¢,7) phase diagram.

F(c1) — Apecy = Fey) — Apieca (4)

which, together with Eq. 3 leads to :

8_F
Oc

_OF

cl— aC

_He) = Fle) _y, )

c2 1 —C2

We consider now a finite monodisperse assembly of NV particles in the canonical ensemble.

The total free energy of this assembly is given by:

Ftot({ci}) = Z F(Cz) (6)
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FIG. 6. Half sections of an assembly of ten particles obtained by Monte Carlo simulations at 400K
in the canonical ensemble for three imposed total concentrations : c;,;=0.30, 0.73 and 0.75 from
top to bottom. The light (dark) color corresponds to B (A) atoms respectively. The concentration

of each particle population is also specified.

where ¢; is the average concentration of particle ¢. The additive property of Fj, is linked to
two assumptions. First, there are no direct chemical interactions between atoms of different
particles through the interatomic potential. The second requirement is less straightforward.
The identification of an average concentration ¢; for a given particle and its associated
canonical free energy F'(c;) requires that the average concentration can be defined along a
sufficiently long time sequence and that its fluctuations are small enough. This obviously re-
quires that the particles are large enough, but also that the number of particles is sufficiently
high in order to make the concentration fluctuations between particles nearly independent.

We now address the following question : in which circumstances does the canonical
assembly of N particles split in two sub-assemblies of N; and N, particles (with N7 + No
= N), characterized by two different concentrations ¢; and ¢y, that are associated with the
degenerated grand canonical equilibrium ?

The answer to this simple problem proceeds as follows. Under the previous assumptions,
the equilibrium state {c{?} of our canonical ensemble is given by applying the variational

principle on the free energy defined in Eq. 6 :

Fio({c"}) = mine, ZF(@) (7)

under the constraint:
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N

Zci:NE (8)

i=1
where ¢ is the overall average concentration. This problem is equivalent to minimizing the

functional G({¢;}, A), where X is a Lagrange parameter :

G({c:h \) = Fle;) — A(ﬁ: ¢ — Na) (9)

The equilibrium concentrations should therefore verify :

OF

| =) (10)

5
In the present situation (a binary alloy that displays a miscibility gap), the generic shape
of the low temperature free energy curve displays only two wells. Therefore, for a given

(Lagrange parameter) A, their exist only two different concentrations ¢; and ¢;; such that :

a_F
oc

_or
- e

Ccr

=\ (11)

CI1

Each particle will now adopt one of these two concentrations. If N (resp. Ny) is the number
of particles with concentration ¢; (resp. c¢yy), the quantity G introduced above becomes a

function of N; and Ny;:

G(Nr, Nir, A) = NiF(cr) +
N[[F(C][) — )\(N]C[—f—N][C[[ —NE) (12)
The next step of our variational procedure consists in minimizing this function with respect

to the integers N; and Njy;. As their sum is constant, when they reach the values that

minimize G(Ny, N7, A), Ny and N;; must verify the following equations :

g<N17NII7A) §g<NI_17NII+]-7)\) (13>
g<NI7NII7>\) SQ(NI+1;NII_17)\> (14)
This translates to :
F(C[) — )\C[ S F(C[[) - )\C][ (15)
F(C[[) — /\C[[ S F(C[) - )\C[ (16)
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which implies :
F(C]) — )\C[ = F(C[]) — )\CU (17)

The canonical concentrations c¢; and c¢;; should therefore verify simultaneously Eq. 11 and

Eq. 17 :

8_F
Oc

_or
e

_ F(C[) — F(C[[) (18)

Cr —Cr1

Cr CIr

This equation is identical to Eq. 5. Therefore, if a solution to our initial problem exists,
the concentrations c¢; and c;; of the two sub-assemblies of our canonical ensemble will be
necessarily equal to the concentrations ¢; and ¢, that are associated to the degenerated

grand canonical equilibrium:
cr =20
Cr1 = C2

Of course, as the concentration is a conserved quantity, a necessary condition for this solution

to exist is that the solutions N; and Ny of the linear system:
ClN] + CQN[] = Nc

N+ Ny = N

are integers. This requires that the average concentration ¢ can be written as :

Co — C1

N

E=ci + k : k=01, N (19)

In summary, if the concentration ¢ belongs to the discrete spectrum defined by Eq. 19,
the canonical particle assembly of N particles will split, at the equilibrium, into two sub-
sets associated with the degenerated equilibrium concentrations ¢; and ¢y identified in the
semi-grand canonical ensemble and the fraction of particles of each type will be given by the
lever rule.

In order to confirm this analysis, we now proceed to a numerical study of the thermody-
namical behavior of a finite set of particles. Two different situations are considered: first, a
set of ten particles with a diameter of 4.4nm and second, an assembly of 4 particles with a

diameter equal to 2.2 nm.
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The Monte Carlo results obtained for the set of ten identical 4.4 nm particles are rep-
resented in Fig. 6. Three average concentrations (¢=0.30, 0.728 and 0.749) have been in-
vestigated at the fixed temperature T=400K. When the average concentration ¢ sits in the
single-phase domain identified within the semi-grand canonical ensemble (¢=0.30), we nat-
urally observe a single particle state. Conversely, when ¢ lies within the two-phase domain
(cr < ¢ < ¢p with ¢;=0.56 and ¢3=0.98), the assembly splits into two subsets of particles,
with specific concentrations ¢; and ¢j; (see Fig. 6), in agreement with the previous analysis.
Moreover, when ¢ fulfills the quantification requirement given by Eq. 19 (¢=0.728), the ob-
served canonical concentrations ¢; and c¢;; correspond exactly to the semi-grand canonical
ones, ¢; and ¢y, as predicted above. In contrast, when ¢ deviates from the discrete spectrum
(¢=0.749), the equilibrium concentrations differ definitively from the semi-grand canonical
ones, as expected. We now analyze the set of four identical particles with a diameter equal
to 2.2nm and for T=400K. The aim is to enhance the quantification effects associated with
Eq. 19, and also, to investigate numerically the influence of a smaller particle size. Ac-
cording to the results presented in Fig. 3, the limits of the two-phase domain calculated in
the semi-grand canonical ensemble for a particle size of 2.2nm are ¢;=0.63 and cy=0.98.
We have investigated many average concentrations ¢ in between 0.5 to 1 and it appears
that the 4-particle assembly may adopt qualitatively three different behaviors which are
now described using the three selected concentrations ¢=0.805, 0.7875 and 0.77. The overall

behavior will be discussed at the end of this section.

Fig. 7 represents for each of the three concentrations ¢ given above, the time evolution
of the four particle concentrations observed in the canonical ensemble as well as the corre-
sponding concentration distribution. At any time step, the assembly splits into two subsets
with two concentrations ¢; and ¢y;, as anticipated before. Due to the surface energy dif-
ference between A and B atoms, ¢;; is always close to ¢y (see section IIIB). In contrast,
c; may strongly deviate from ¢;. When ¢=0.805, the requirement of Eq. 19 is fulfilled with
N; = N;; = 2 and we observe (Fig. 7a) that the canonical concentrations ¢; and ¢;; are
equal to the semi-grand canonical concentrations ¢; and ¢y respectively, in agreement with
the analysis presented above. The next situation, ¢=0.7875, corresponds to a case where ¢
deviates slightly from the quantification case just described. Consequently, we expect that
the assembly still splits into two subsets with N; = N;; = 2 but with canonical concentra-

tions ¢y and ¢;; that differ from the semi-grand canonical concentrations ¢; and c¢y. Indeed,
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FIG. 8. Generic free energy curve of a single particle (see text for detail).

in Fig. 7b, we observe that ¢;=0.61 and ¢;;=0.97. The behavior is generic to a situation
which is close but not equal to a quantification case. We also note that each of the four
particle does not stay in the same state but instead switches between the two concentration
c; and c¢yr, but this switching event preserves the N; = N;;=2 partition. The last situ-
ation, ¢=0.77, corresponds to a case which is in between two quantification values. More
precisely, the next lower quantified concentration is ¢=0.7175 for which N; = 3 and N;;=1
and the next higher quantified concentration is ¢=0.805 for which N;=2 and N;;=2. As
consequence, for the considered concentration ¢=0.77, the 4-particle assembly switches as a

function of time between those two distributions as seen in Fig. 7c.

We also clearly observe in Fig. 7 that, within a given distribution (N, Nr), the concen-
tration of each particle fluctuates around c¢; or ¢;;. These fluctuations reach £10% around
¢y for the 2.2 nm particle considered in Fig. 7c and decrease as the particle size increases (not
shown). These fluctuations and their amplitudes may be explained through a qualitative
analysis of the canonical free energy F'(c) as a function of its average concentration ¢ (see Eq.
6 and the corresponding discussion). In the present situation where the thermodynamical
properties of a particle is governed by the presence of a miscibility gap, the free energy F'(c)

displays generically a two-well shape qualitatively displayed in Fig. 8. When a given par-
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ticle is thermodynamically linked to others within a canonical ensemble, its concentration,
which is not fixed, can fluctuate around an average value. These fluctuations are controlled
by the second derivative of F'(c¢). When the average concentration is close to 1 we clearly
anticipate that the second derivatives are large and therefore the fluctuations should be
small. This is the reason why, in all the cases shown in Fig. 7, the fluctuations around the
average concentrations ¢y; (which are close to ¢3=0.98) are small. The fluctuations around
the other average concentration displayed by the particle (i.e. ¢;) are much stronger because
the second derivative of the free energy F(c) is smaller (see Fig. 8). We also note that the
fluctuations around ¢; increase with ¢; and that the fluctuations around cj; increase when
crr decreases. The reason is that, due to its double well shape and provided we consider
a concentration domain around its minimum, the second derivative of the free energy F'(c)
generically decreases when the average concentration ¢ comes closer to the middle of the

two-phase grand canonical domain (see Fig. 8).

On the right hand side of Fig. 7, we observe that, on top of their overall shape, the
concentration distributions display several extremely sharp peaks at specific positions. This
shows that some particle configurations are observed with higher probabilities. We have
verified that the position of these concentration peaks are not influenced by the number of
particle in the assembly nor by temperature but by their size. Therefore we conclude that this
specific configurations correspond to local energy minima. This illustrates the importance of
the geometric structure when considering small nanoparticles, a feature extensively discussed

in the literature.?"?2

We now present the overall 4-particle assembly behavior as a function of the average
concentration ¢. Fig. 9, represents the concentration ¢, of each particle averaged in a time
interval where no concentration switch is observed, as a function of the average concentration
¢ of the assembly. The semi-grand canonical concentrations ¢; and ¢y correspond to the red
dashed lines and when ¢ fulfills Eq. 19, the concentration of each particle is highlighted in
red. The dotted lines are guidelines. For ¢ < ¢; and for ¢ > ¢y, each particle concentration is
¢ (single-phase domain). For the five concentrations ¢, which fulfill Eq. 19, the equilibrium
concentrations calculated in the canonical (red symbols) are identical to those calculated in
the semi-grand canonical ensemble (dashed lines). When ¢ is outside the discrete spectrum,

cyr is close to ¢y, whereas ¢; adopt a quasi linear behavior (dotted lines):
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concentrations when ¢ fulfills Eq. 19 and dotted lines correspond to the extrapolation of Eq. 20.
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which is simply a consequence of the conservation law, given that c;; is hardly sensitive to c.
Finally, we note that for ¢=0.96, the four particles adopt the same state. This means that in
the canonical ensemble, the single state domain is reached before the semi-grand canonical

limit c;=0.98, as it should.

B. Finite assemblies of particles with different sizes

The synthesis of nanoalloys by the physical route is often obtained by the deposition of

atoms on a substrate. During the deposition, the substrate is usually heated to enhance
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diffusion and a post-synthesis heat treatment is sometimes added. At the end of such a
process, the particles are in a coarsening regime with low thermodynamic driving forces. In
binary nanoalloys, where the exchange of atoms between particles is much faster for a given
species than for the other one, a partial equilibrium is reached leading to particle assemblies
in which the particle concentration is size dependent.?

In the present work, the importance of the size distribution of a particle assembly is
demonstrated through the computation of the canonical equilibrium of an assembly with a
prescribed size distribution. We consider 30 particles assembly made of three sub-assemblies:
5 nanoparticles with a diameter of 2.2nm, 15 with a diameter of 4.4nm and 10 with a
diameter of 6.6 nm. As in the previous section, the number of atomic sites of each particle
is fixed and Monte Carlo simulations are performed to reach equilibrium in the canonical
ensemble where the number for A and B atoms in the assembly, the temperature and pressure
are fixed quantities.

Fig. 10 represents the equilibrium concentration ¢, of each particle at T'=400K as a
function of the nominal concentration ¢ of the assembly in B atoms. For concentrations
lower than ¢=0.45, all the sub-assemblies are in a single-population state and it is observed
that the smaller the particle size, the higher the concentration in B atoms. This effect is
due to the segregation of B atoms at the surface and to the fact that the relative number of
surface sites is higher in smaller nanoparticles. For a concentrations ¢ above 0.34, the smaller
nanoparticles (2.2nm in diameter), contain almost only B atoms. Therefore, an increase of
the assembly concentration will only influence the 4.4 nm and 6.6 nm sub-assemblies.

For 0.46< ¢ <0.6, the concentrations of the particles in the 4.4nm and 6.6 nm sub-
assemblies are independent of ¢. All particles in the 6.6 nm sub-assembly have a concentra-
tion close to 0.3. The 4.4nm sub-assembly splits into two populations with compositions
either close to ¢;=0.58 or ¢;;=0.98. In this composition range, an increase of the concentra-
tion ¢ only implies a change of the number of particles between these two populations.

For a composition above ¢=0.6, both the 2.2nm and 4.4 nm sub-assemblies are almost
saturated in B atoms. For 0.6< ¢ <0.72, the 6.6 nm particle sub-assembly is in a single-
population state, and the particle concentration is linearly increasing with ¢ as expected
from the conservation of the number of B atoms. Finally, above ¢=0.75, a two population

domain takes place for the largest particles.

To highlight the consequences of a size distribution, we now summarize how the above
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FIG. 10. Particle concentration ¢, as function of the assembly concentration ¢ obtained with Monte
Carlo calculations in the canonical ensemble, at T=400K, for a 30 particle assembly with different
sizes (2.2nm, 4.4nm and 6.6 nm, see text for detail). Dashed lines are guidelines and dotted lines

correspond to the two-phase domains obtained in the semi-grand canonical calculations.

results compare with the behavior of infinite assemblies of monodisperse particles obtained in
the semi-grand canonical calculations (see Sec. IIIB). First, we found in both cases that the
equilibrium particle concentration is size dependent. Second, particles of a given size forming
a sub-assembly may all have the same composition or be split into two populations with
different equilibrium compositions ¢; and c¢;;. The latter compositions are close to the semi-
grand canonical equilibrium compositions ¢; and c;. We also found that the concentration
ranges where each sub-assembly is in a two-population state can significantly differ from the
semi-grand canonical prediction. This results from the difference between the equilibrium
composition of each sub-assembly and the average composition. This difference is expected

to be large in the present work where surface segregation occurs because the fraction of
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FIG. 11. Averaged radial concentration profiles of 5nm, 8 nm, 15nm and 20 nm isolated particles

with ¢ = 0.5 at 500K. ¢4 and c_ correspond to the solubility limits of the bulk alloy (dotted lines).

surface sites is directly related to the particle size.

V. THERMODYNAMICS OF ISOLATED PARTICLES

We have shown in the previous section that, when assemblies of particles with identical
size are considered, the canonical equilibrium can be characterized by a coexistence of two
particle populations which differ by their averaged concentration, a behavior formally similar
to the phase separation observed in bulk alloys. In this part, we consider the stability of
an isolated particle, and we question whether a phase separation can be observed within the
particle. To allow a meaningful comparison with the bulk case, and with the results obtained
on particle assemblies (Sect. IIIB), the same binary Lennard-Jones system is used (Tab. I)

for which A and B atoms have the same size and a segregation of B atoms at the surface is
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FIG. 12. Concentration (a) and temperature (b) dependence of the averaged radial concentration
profiles in a particle with a diameter equal to 15nm. c4 and c_ correspond to the solubility limits
of the bulk alloy (dotted lines). (c) is a comparison between the concentration measured in the

center of the particle (dashed line) and the solubility limit of the bulk alloy (solid line) for ¢ = 0.5.

expected. We only consider in this section large enough nanoparticles so that a core region
and a surface region can be distinguished. Our aim is to analyze whether a two-phase state
can be properly defined in the particle and how phase diagram can be built in this context.

We consider spherical particles of a given radius in the canonical ensemble where the
number of A and B atoms, the temperature and the pressure are fixed quantities. For
the concentrations investigated here, the concentration fields observed in the particle have
a radial symmetry and the equilibrium can be analyzed in terms of radial concentration
profiles.

Equilibrium concentration profiles for different particle diameters D are presented in
Fig. 11. The same average concentration ¢=0.5 is used and the temperature T'=500K is
chosen well below the bulk critical temperature (T*“*=750K). As expected, the larger par-
ticles (D >15nm) display two homogeneous regions whose concentrations are close to the
bulk solubility limits (dashed lines) and the volume fraction of these regions is close to the
value 0.5 predicted by the lever rule. In addition, a segregation of B atoms is observed at
the particle surface. The concentration profile inside smaller particles (5nm< D <8nm)
is qualitatively different. Indeed, a similar low concentration phase is observed in the core
of the particle (c=c_), but the concentration profile then continuously increases to reach a

value close to 1 at the surface. This means that for small particles, the high concentration
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phase (expected in the bulk case) does not appear due to the segregation of B atoms at the
surface. In brief, at ¢=0.5, and at a temperature 250K below the bulk critical temperature,
the equilibrium state of a particle can only be described as a mixture of two homogeneous
phases (with concentrations close the bulk solubility limits) if the particle diameter is above
8nm.

In Fig. 12, we analyze in more detail the equilibrium state of a rather large nanoparticle
(diameter D=15nm). For this particle size, the coexistence at equilibrium of two homo-
geneous phases is investigated when changing the average particle concentration (Fig. 12a)
and the temperature (Fig. 12b). When the shell of the particle contains an homogeneous
phase, a plateau (close to c; ) is observed in the radial concentration profile. More precisely,
we have considered that a homogeneous shell phase was detected as soon as an inflection
point could be measured in the concentration profile. Fig. 12a shows that at T=500K,
the equilibrium microstructure of a nanoparticle with an average concentration above 0.4 is
made of two homogeneous phases with concentrations that are close to the bulk solubility
limits (c_, ¢, ). This is no more the case for concentrations below 0.4 and the concentration
profile is continuously increasing between the value of the core phase and 1 at the surface.
This behavior is similar to the one presented in Fig. 11 for small particles and originates
from the strong segregation of B atoms at the surface.

Fig. 12b shows that the concentration profile inside of nanoparticle with an average con-
centration ¢=0.5 qualitatively changes with temperature. The microstructure containing
two homogeneous phases is stable at low temperature, then a transition towards the mi-
crostructure composed of only one homogeneous phase at the core is observed at T=600K.
Note finally that for the temperature above the bulk critical temperature, the concentration
profile is not constant because of the strong segregation of B atoms at the surface. In that
situation, a rather homogeneous core concentration can still be defined even if its value is
far from the average composition expected in the bulk case.

The evolution of the concentration of the core of the particle as a function of the tempera-
ture is presented in Fig. 12¢ (red dashed line) for ¢=0.5. Below the bulk critical temperature
TP *  the core concentration is close to the solubility limit. Above T?“*  the core concen-
tration continuously increases to concentrations closer to the average concentration ¢=0.5.
An important point is that the transition between these two regimes is continuous. The dis-

continuity observed in bulk systems at the transition can not be observed in nanoparticles
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because of their finite size character.

The results presented in Fig. 12 show that, even for rather large nanoparticles (D =
15nm), the equilibrium configuration is quite complex but can be approximately described
in terms of one or two homogeneous phases supplemented by an heterogeneous layer of B
atoms at the surface. Therefore, for large enough particle sizes, a composition-temperature
phase diagram can be constructed to defined domains in which two homogeneous phases
are simultaneously observed at equilibrium. This phase diagram is presented in Fig. 13 (red
dashed line). It is clear that in a nanoparticle of 15nm in diameter, the two-phase stability
region is much smaller than in the bulk case. This large difference is due to the size effect
of the nanoparticle combined with a rather strong segregation of B atoms at the surface.
Indeed, all the B atoms that have segregated at the surface are no more available to form a
two-phase state within the particle. Note however that contrary to bulk alloys, the limits of
the two-phase domain do not correspond to the phase concentrations observed within the
particle. Therefore, additional graphs such as the one presented in Fig. 12c¢ are necessary
to fully describe the internal state of the particle. As an example, when comparing Fig. 12¢
and Fig. 13, it appears clearly that, even if the particle size effect strongly modifies the
two-phase domain limits, the core concentration which is observed when the concentration
profile displays a two-phase structure deviates only slightly from the low concentration limit
of the bulk phase diagram. A complete description would also require a detail description

of the segregation process which is beyond the scope of the present paper (see for example

Refs. 19 and 1).

Finally, we recall that we have selected in the present analysis rather large particles to
analyze how the usuall description by a phase diagram has to be modified and extended to
describe the equilibrium state of a binary nanoalloy. When considering small nanoparticles
a description based on a coexistence of homogeneous phases (eventually supplemented by a
segregation layer) can be irrelevant. As an example, the concentration profiles corresponding
to a nanoparticle of 6 nm in diameter are presented in Fig. 14. In that case, the concentration
profile continuously increases from the center to the outer shell so that no homogeneous
region can be defined within the particle when the temperature is above 600K. The proper
description of such situations requires an atomistic approach, in which the atomic sites of
the particle are automatically treated as nonequivalent. Intermediate approaches could also

be of interest, where sites are divided in several sets (surface atoms, first sub-surface atoms,
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FIG. 13. Composition-temperature phase diagram for a bulk alloy and for an isolated particle with

a diameter equal to 15nm (see text for detail).

...), in which all sites are assumed equivalent.?

VI. CONCLUSION

In this work, we studied the thermodynamics of binary fcc nanoparticles using a sim-
ple atomic pair potential. Equilibrium states were computed with off-lattice Monte Carlo
simulations in several thermodynamic ensembles.

In the semi-grand canonical ensemble, the (Apu,T') phase diagram and the resulting (¢,T')
phase diagram were computed for particle size between 2.2nm and 13nm and compared
to the bulk case. When decreasing the particle size, we obtained a significant decrease of
the solid/liquid transition temperatures as well as a growing asymmetry of the solid state
miscibility gap related to surface segregation effects. The (¢,T") phase diagram obtained in

the semi-grand canonical ensemble describes the stability of an infinite assembly of particles
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of the same size:
e within the one-phase stability regions, all particles are identical at equilibrium

e within the two-phase stability regions the assembly splits in two subassemblies with

average concentrations equal to the solubility limits.

Note that this phase diagram gives no information on the repartition of concentration inside
each particle. Additional diagrams are needed to describe this information.

We then studied the stability of finite assemblies of particles using a canonical ensemble
in which particles only interact by the exchange of atoms. When considering particles of
identical sizes, we showed, using a general thermodynamic formulation of the problem, that
the equilibrium configuration is either an assembly of identical particles or a set of two such
assemblies. In the latter case, the concentrations of the two sub-assemblies are equal to

the semi-grand canonical equilibrium compositions only for certain quantified values of the
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average concentration. These predictions were confirmed by simulations of different finite

monodisperse assemblies of particles.

We then modeled the importance of a size distribution by computing the canonical equi-
librium of an assembly composed of three sub-assemblies with three different sizes. First,
a strong size effect was evidenced; small particles tends to be enriched in the segregating
B atom, because of their larger surface to volume ratio. Second, we found that particles
belonging to a given sub-assembly can either all adopt the same composition or be split
in two populations. As a conclusion, the equilibrium of the particle assembly with a size
distribution combines a size effect and the fact that a given particle size may adopt two

configurations.

Finally, we have considered the thermodynamics of an isolated particle to analyze whether
a phase separation can be defined within a particle. When studying rather large nanopar-
ticles (15nm in diameter) we showed that the equilibrium state can still be described by
either a homogeneous phase or a two-phase configuration, supplemented by a segregation
layer. We found that the region in which a two-phase domain can be identified inside a
particle is well below the bulk phase diagram. However, in this region, the concentration
of the homogeneous core remains very close to the bulk solubility limit. We also showed
that the top-down description of the stability of nanoparticles based on homogeneous phases
supplemented by surface properties may be irrelevant for small nanoparticles, especially at

high temperature.

The semi grand canonical (SGC) ensemble was essentially used to rationalize the results
obtained within the canonical ensembles of mono-disperse particles. Notwithstanding this
point, we did consider canonical assemblies of poly-disperse particles. This procedure en-
abled the analysis of the equilibrium state of particles with prescribed sizes, even though a
complete analysis of such assemblies should of course be done within a context of out-of-
equilibrium thermodynamics. Also, a natural extension of this work is a systematic study of
the consequences of an atomic size mismatch on the equilibrium configuration of nanopar-
ticle. Because the elastic driving force is usually very anisotropic, a strong impact on the
configuration of particles is expected.?”%" In addition, such an off-lattice method could be

used to clarify the formation of misfit dislocations at the nanoparticle interface.%28
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