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Abstract

This chapter provides different models for the acoustic wave propagation in porous
materials having a rigid and an elastic frames. The direct problem of reflection and
transmission of acoustic waves by a slab of porous material is studied. The inverse
problem is solved using experimental reflected and transmitted signals. Both high- and
low-frequency domains are studied. Different acoustic methods are proposed for mea-
suring physical parameters describing the acoustic propagation as porosity, tortuosity,
viscous and thermal characteristic length, and flow resistivity. Some advantages and
perspectives of this method are discussed.

Keywords: acoustic porous materials, porosity, tortuosity, viscous and thermal
charactertistic lengths, fractional derivatives

1. Introduction

More than 50 years ago, Biot [1, 2] proposed a semi-phenomenological theory which provides
a rigorous description of the propagation of acoustic waves in porous media saturated by a
compressible viscous fluid. Due to its very general and rather fundamental character, it has
been applied in various fields of acoustics such as geophysics, underwater acoustics, seismol-
ogy, ultrasonic characterization of bones, etc. Biot’s theory describes the motion of the solid
and the fluid, as well as the coupling between the two phases. The loss of acoustic energy is
due mainly to the viscosity of the fluid and the relative fluid-structure movement. The model
predicts that the acoustic attenuation, as well as the speed of sound, depends on the frequency
and elastic constants of the porous material, as well as porosity, tortuosity, permeability, etc.
The theory predicts two compressional waves: a fast wave, where the fluid and solid move in
phase, and a slow wave where fluid and solid move out of phase. Johnson et al. [3] introduced
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the concept of tortuosity or dynamic permeability which has better described the viscous
losses between fluid and structure in both high and low frequencies.

Air-saturated porous materials such as plastic foams or fibrous materials are widely used in
passive control and noise reduction. These materials have interesting acoustic properties for
sound absorption, and their use is quite common in the building trade and automotive and
aeronautical fields. The determination of the physical parameters of the medium from reflected
and transmitted experimental data is a classical inverse scattering problem.

Pulse propagation in porous media is usually modeled by synthesizing the signal via a Fourier
transform of the continuous wave results. On the other hand, experimental measurements are
usually carried out using pulses of finite bandwidth. Therefore, direct modeling in the time domain
is highly desirable [4–10]. The temporal and frequency approaches are complementary for study-
ing the propagation of acoustic signals. For transient signals, the temporal approach is the most

Figure 1. Air-saturated plastic foam.

Figure 2. Human cancellous bone sample.
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appropriate because it is closer to the experimental reality and the finite duration of the signal.
However, for monochromatic harmonic signals, the frequency approach is the most suitable [11].

Fractional calculus has been used in the past by many authors as an empirical method to
describe the viscoelastic properties of materials (e.g., see Caputo [12] and Bagley and
Torvik [13]). The fact that acoustic attenuation, stiffness, and damping in porous materials
are proportional to the fractional powers of frequency [4, 5, 7, 9, 10] suggests that
fractional-order time derivatives could describe the propagation of acoustic waves in these
materials.

In this chapter, acoustic wave propagation in porous media is studied in the high- and the low-
frequency range. The direct and inverse scattering problems are solved for the mechanical
characterization of the medium. The general Biot model applied to porous materials having
elastic structure is treated, and also the equivalent fluid model, used for air-saturated porous
materials (Figures 1 and 2).

2. Porous materials with elastic frame

In porous media, the equations of motion of the frame and fluid are given by the Euler
equations applied to the Lagrangian density. Here, u and U are the displacements of the solid
and fluid phases. The equations of motion are given by [1, 2]

r11
∂2u
∂t2

þ r12
∂2U
∂t2

¼ P∇: ∇u:ð Þ þQ∇ ∇:Uð Þ �N∇ ∧ ∇ ∧uð Þ, (1)

r12
∂2u
∂t2

þ r22
∂2U
∂t2

¼ Q∇ ∇:uð Þ þ R∇ ∇:Uð Þ, (2)

where P, Q, and R are the generalized elastic constants, φ is the porosity, Kf is the bulk
modulus of the pore fluid, Ks is the bulk modulus of the elastic solid, and Kb is the bulk
modulus of the porous skeletal frame. N is the shear modulus of the composite as well as that
of the skeletal frame. The equations which explicitly relate P, Q, and R to φ, Kf , Ks, Kb, and N
are given by

P ¼
1� φ
� �

1� φ� Kb
Ks

� �
Ks þ φ Ks

Kf
Kb

1� φ� Kb
Ks
þ φ Ks

Kf

þ 4
3
N, Q ¼

1� φ� Kb
Ks

� �
φKs

1� φ� Kb
Ks
þ φ Ks

Kf

, R ¼ φ2Ks

1� φ� Kb
Ks
þ φ Ks

Kf

:

rmn is the “mass coefficients” which are related to the densities of solid (rs) and fluid (rf )

phases by

r11 þ r12 ¼ 1� φ
� �

rs, r12 þ r22 ¼ φrf : (3)

The Young modulus and the Poisson ratio of the solid Es and νs and of the skeletal frame Eb

and νb depend on the generalized elastic constant P, Q, and R via the relations:
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Ks ¼ Es

3 1� 2νsð Þ , Kb ¼ Eb

3 1� 2νbð Þ , N ¼ Eb

2 1þ νbð Þ : (4)

The mass coupling parameter r12 between the fluid and solid phases is always negative:

r12 ¼ �φrf α∞ � 1ð Þ, (5)

where α∞ is the tortuosity of the medium. The damping of the acoustic wave in porous
material is essentially due to the viscous exchanges between the fluid and the structure. To
express the viscous losses, the dynamic tortuosity is introduced [3] α ωð Þ given by

α ωð Þ ¼ α∞ 1� 1
jx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M

2
jx

r !
where x ¼ ωα∞rf

σφ
and M ¼ 8k0α∞

φΛ2 : (6)

where j2 ¼ �1, ω is the angular frequency, σ is the fluid resistivity, k0 is the viscous permeabil-
ity, and Λ is the viscous characteristic length given by Johnson et al. [3]. The ratio of the sizes of

the pores to the viscous skin depth thickness δ ¼ 2η=ωr0ð Þ1=2 gives an estimation of the parts of
the fluid affected by the viscous exchanges. In this domain of the fluid, the velocity distribution
is perturbed by the frictional forces at the interface between the viscous fluid and the motion-
less structure. At high frequencies, the viscous skin thickness is very thin near the radius of the
pore r. The viscous exchanges are concentrated in a small volume near the surface of the frame
δ=r≪ 1. The expression of the dynamic tortuosity α ωð Þ is given by [3]

α ωð Þ ¼ α∞ 1þ 2
Λ

η
jωrf

 !1=2
0
@

1
A, (7)

The range of frequencies such that viscous skin thickness δ ¼ 2η=ωr0ð Þ1=2 is much larger than
the radius of the pores r

δ
r
≫ 1 (8)

is called the low-frequency range. For these frequencies, the viscous forces are important
everywhere in the fluid. When ω ! 0, the expression of the dynamic tortuosity becomes

α ωð Þ ≈α0 1þ ηφ
jωα0rf k0

 !
, (9)

α0 is the low-frequency approximation of the tortuosity introduced by Lafarge in [14] and
Norris [15]:

α0 ¼ < v rð Þ2 >
< v rð Þ>2 (10)
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where v rð Þ is the microscopic velocity. The angle brackets represent the average of the random
variable over the sample of material. In the time domain, and in the high-frequency domain,
the dynamic tortuosity (Eq. 7) α ωð Þ acts as the operator, and its expression is given by [8]

~α tð Þ ¼ α∞ δ tð Þ þ 2
Λ

η
πrf

 !1=2

t�1=2

0
@

1
A, (11)

δ tð Þ is the Dirac function. In this model the time convolution of t�1=2 with a function is
interpreted as a semi-derivative operator according to the definition of the fractional derivative
of order ν given by Samko et al. [16]:

Dν x tð Þ½ � ¼ 1
Γ �νð Þ

ðt
0
t� uð Þ�ν�1x uð Þdu, (12)

where 0 ≤ ν < 1 and Γ xð Þ is the gamma function. A fractional derivative acts as a convolution
integral operator and no longer represents the local variations of the function. The properties
of fractional derivatives and fractional calculus are given by Samko et al. [16].

The introduction of the tortuosity operator ~α tð Þ (Eq. 11) in Biot’s Eqs. (1) and (2) to describe the
inertial and viscous interactions between fluid and structure will express the propagation
equations in the time domain. When ~α tð Þ is used instead of α∞ in Eqs. (1) and (2), the equations
of motion (1) and (2) will be written as [17]

ðt
0
~r11 t� t0ð Þ ∂

2u t0ð Þ
∂t2

þ
ðt
0
~r12 t� t0ð Þ ∂

2u t0ð Þ
∂t02

dt ¼ P:∇ ∇:u tð Þð Þ þQ∇ ∇:u tð Þð Þ �N∇ ∧ ∇ ∧u tð Þð Þ,

ðt
0
~r12 t� t0ð Þ ∂

2u tð Þ t0ð Þ
∂t2

þ
ðt
0
~r22 t� t0ð Þ ∂

2U t0ð Þ
∂t2

dt ¼ Q∇ ∇:u tð Þð Þ þ R∇ ∇:U tð Þð Þ: (13)

In these equations, the temporal operators ~r11 tð Þ, ~r12 tð Þ, and ~r22 tð Þ represent the mass coupling
operators between the fluid and solid phases and are given by

~r11 tð Þ ¼ 1� φ
� �

rs þ φrf ~α tð Þ � 1Þ, ~r12 tð Þ ¼ �φrf ~α tð Þ � 1Þ, ~r22 tð Þ ¼ φrf ~α tð Þ,
��

where ~α tð Þ is given by Eq. (11).

The wave equations of dilatational and rotational waves can be obtained using scalar and
vector displacement potentials, respectively. Two scalar potentials for the frame and the fluid,
Φs and Φf , are defined for compressional waves giving

r11
∂2

∂t2
þ A

∂3=2

∂t3=2
� PΔ r12

∂2

∂t2
� A

∂3=2

∂t3=2
�QΔ

r12
∂2

∂t2
� A

∂3=2

∂t3=2
�QΔ r22

∂2

∂t2
þ A

∂3=2

∂t3=2
� RΔ

0
BBB@

1
CCCA

~Φs tð Þ
~Φ f tð Þ

 !
¼ 0: (14)

Wave Propagation in Porous Materials
http://dx.doi.org/10.5772/intechopen.72215

103



where A ¼ 2φrf α∞

Λ

ffiffiffiffi
η
rf

q
, Δ is the Laplacian, and ∂3=2

∂t3=2
represents the fractional derivative following

the definition given by Eq. (12).

Two distinct longitudinal modes called fast and slow waves are obtained by the resolution of
the eigenvalue problem of the matrix of Biot (Eq. (14)). On a basis of fast and slow waves Φ1 tð Þ
and Φ2 tð Þ, one can have

Δ
Φ1 tð Þ
Φ2 tð Þ

� �
¼

~λ1 tð Þ 0
0 ~λ2 tð Þ

 !
Φ1 tð Þ
Φ2 tð Þ

� �
, (15)

where ~λ1 tð Þ and ~λ2 tð Þ are the “eigenvalue operators” of the Biot matrix (Eq. (14)). Their
expressions are given by

~λi tð Þ ¼ Ci
∂2

∂t2
þDi

∂3=2

∂t3=2
þ Gi

∂
∂t
, i ¼ 1, 2, (16)

Their corresponding eigenvectors are

~J i tð Þ ¼ Ai þ Biffiffiffiffiffi
πt

p , i ¼ 1, 2, (17)

where

Ci ¼ 1
2

τ1 þ �1ð Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q� �
, Di ¼ 1

2
τ2 þ �1ð Þi τ1τ2 � 2τ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ21 � 4τ3
q

0
B@

1
CA,

Gi ¼ �1ð Þi: 1
4

τ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q � τ1τ2 � 2τ4ð Þ2
2 τ21 � 4τ3
� �3=2

0
B@

1
CA, Ai ¼

τ1 � 2τ5 þ �1ð Þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q
2τ7

,

Bi ¼ 1
4τ27

τ2 � 2τ6 þ �1ð Þi τ1τ2 � 2τ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q
0
B@

1
CA2τ7 þ τ1 � 2τ5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q� �
:2τ6

2
64

3
75, i ¼ 1, 2,

and

t

τ1 ¼ R0r11 þ P0r22 � 2Q0r12, τ2 ¼ A P0 þ R0 þ 2Q0ð Þ, τ3 ¼ P0R0 �Q02
� �

r11r22 � r212
� �

,

τ4 ¼ A P0R0 �Q02
� �

r11 þ r22 � 2r12ð Þ, τ5 ¼ R0r11 �Q0r12ð Þ, τ6 ¼ A R0 þQ0ð Þ,

τ7 ¼ R0r12 �Q0r22ð Þ:

Coefficients R0, P0, and Q0 are given by

R0 ¼ R
PR�Q2 , Q0 ¼ Q

PR�Q2 , and P0 ¼ P
PR�Q2 :

The fast and slow waves Φ1 and Φ2 are obeying to the following propagation equations along
the x axis:
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∂2Φi x; tð Þ
∂x2

� 1
v2i

∂2Φi x; tð Þ
∂t2

� hi
∂3=2Φi x; tð Þ

∂t3=2
� d

∂Φi x; tð Þ
∂t

¼ 0, i ¼ 1, 2, (18)

where the coefficients vi, hi i ¼ 1; 2ð Þ, and d are constants, respectively, given by

vi ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q
þ �ð Þiτ1

r , hi ¼ 1
2

τ2 þ �1ð Þi τ1τ2 � 2τ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q
0
B@

1
CA, i ¼ 1, 2

and

d ¼ � 1
4

τ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ21 � 4τ3

q � τ1τ2 � 2τ4ð Þ2
2 τ21 � 4τ3
� �3=2

0
B@

1
CA,

where Eq. (18) is a fractional propagation equations [17] in time domain of the fast and slow
waves, respectively. These equations describe the attenuation and the spreading of the temporal
signal propagating inside the porous material. These fractional propagation equations have been
solved and well-studied in the case of rigid porous materials using the equivalent fluid model.

3. Porous materials with rigid frame

In the acoustics of porous media, two situations can be distinguished: elastic and rigid frame
materials. In the first case, the Biot [1, 2] theory is best suited. In the second case, the acoustic
wave cannot vibrate the structure. The equivalent fluid model is then used, in which the
acoustic wave propagates inside the saturating fluid [8, 11]. The equations for the acoustics in
the equivalent fluid model are given by

r
∂2Ui

∂t2
¼ �∇ip, p ¼ �Kf∇:U: (19)

In these relations, p is the acoustic pressure. The first equation is the Euler equation, and the
second one is a constitutive equation obtained from the equation of mass conservation associ-
ated with the behavior (or adiabatic) equation. These equations can be obtained from the Biot
Eqs. (1, 2) by canceling the solid displacement. Assuming that the porous medium studied is
homogeneous and has a linear elasticity, we obtain easily the following wave equation (prop-
agation along the x axis) for the acoustic pressure in a lossless porous material:

∂2p x; tð Þ
∂x2

� r

Ka

� �
∂2p x; tð Þ

∂t2
¼ 0: (20)

In Eq. (20), the viscous and thermal losses that contribute to the sound damping in acoustic
materials are not described. The thermal exchanges are generally negligible near viscous
effects in the porous materials obeying to the Biot theory, this is not the case for air-saturated
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porous materials using the equivalent fluid model. To take into account the fluid-structure
exchanges, the density and compressibility of the fluid are “renormalized” by the dynamic
tortuosity α ωð Þ and the dynamic compressibility β ωð Þ, via the relations r ! rα ωð Þ and
Kf ! Kf =β ωð Þ, giving the following wave equation in frequency domain (Helmholtz equation)
for a lossy porous material:

∂2p x; tð Þ
∂x2

þ ω2 rα ωð Þβ ωð Þ
Ka

� �
p x; tð Þ ¼ 0: (21)

The thermal exchanges to the fluid compressions-dilatations are produced by the wave
motion. The parts of the fluid affected by the thermal exchanges can be estimated by the ratio

of a microscopic characteristic length of thermal skin depth thickness δ0 ¼ 2η=ωrPrð Þ1=2 (η is
the fluid viscosity; Pr is the Prandtl number).

The expression of the dynamic compressibility is given by

β ωð Þ ¼ γ� γ� 1ð Þ= 1� 1
jx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M0

2
jx0

r" #
where x0 ¼ ωrf k

0
0Pr

ηφ
and M0 ¼ 8k00

φΛ02 : (22)

where γ is the adiabatic constant, the magnitude k00 introduced by Lafarge [14] called thermal
permeability by analogy to the viscous permeability, and Λ0 is the thermal characteristic
length. The low-frequency approximation of β ωð Þ [14] is given by

β ωð Þ ¼ γþ γ� 1ð Þrf k0
0
Pr

ηφ jω
, when ω ! 0: (23)

where k00, which has the same size (area) that of Darcy’s permeability of k0, is a parameter
analogous to the parameter k0 but is adapted to the thermal problem.

In a high-frequency limit, Allard and Champoux [18] showed the following behavior of β ωð Þ:

β ωð Þ ¼ 1� 2 γ� 1ð Þ
Λ0

η
Prrf

 !1=2
1
jω

� �1=2

, ω ! ∞: (24)

Replacing α ωð Þ and β ωð Þ given by Eqs (18) in Eq. (21), we obtain the following lossy equation
for porous materials in the high-frequency domain:

∂2p x; tð Þ
∂x2

þ ω2 rα
Ka

1�
ffiffiffiffiffiffiffiffi
η
rjω

r
2
Λ
þ 2 γ� 1ð Þ

Λ0 ffiffiffiffiffiPrp
	 
� �

p x; tð Þ þ D1 � 1
x

� �
∂p x; tð Þ

∂x
¼ 0: (25)

In the time domain (using the convention ∂=∂t ! �jω), we obtain the following fractional
propagation equation:

Computational and Experimental Studies of Acoustic Waves106



∂2p x; tð Þ
∂x2

� rα
Ka

� �
∂2p x; tð Þ

∂t2
� 2α

ffiffiffiffiffiffi
rη

p
Ka

2
Λ
þ 2 γ� 1ð Þ

Λ0 ffiffiffiffiffi
Pr

p
� �

∂3=2p x; tð Þ
∂t3=2

¼ 0: (26)

In this equation, the term ∂3=2p x;tð Þ
∂t3=2

is interpreted as a semi-derivative operator following the

definition of the fractional derivative of order ν, given by Samko and coll. [16]. The solution of
the wave Eq. (26) with suitable initial and boundary conditions is by using the Laplace
transform. F is the medium’s Green function [9] given by

F t; kð Þ ¼
0 if 0 ≤ t ≤ k

Ξ tð Þ þ Δ
Ð t�k
0 h t; ξð Þdξ if t ≥ k

8><
>: (27)

with

Ξ tð Þ ¼ b0

4
ffiffiffiffi
π

p k

t� kð Þ3=2
exp � b02k2

16 t� kð Þ

 !
, (28)

where h τ; ξð Þ has the following form:

h ξ; τð Þ ¼ � 1
4π3=2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ� ξð Þ2 � k2

q 1

ξ3=2

ð1
�1

exp �χ μ; τ; ξ
� �

2

� �
χ μ; τ; ξ
� �� 1

� � μdμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ2

p , (29)

χ μ; τ; ξ
� � ¼ Δμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ� ξð Þ2 � k2

q
þ b0 τ� ξð Þ

� �2

=8ξ, b0 ¼ Bc20
ffiffiffiffi
π

p
,

and Δ ¼ b02.

Let us consider a homogeneous porous material which occupies the region 0 ≤ x ≤L; the expres-
sions of the reflection and transmission coefficients in the frequency domain are given by

R ωð Þ ¼ 1�D2� �
sinh k ωð ÞLð Þ

2Y ωð Þcoth k ωð ÞLð Þ þ 1þ Y2 ωð Þ� �
sinh k ωð ÞLð Þ , (30)

T ωð Þ ¼ 2Y ωð Þ
2Y ωð Þcoth k ωð ÞLð Þ þ 1þ Y2 ωð Þ� �

sinh k ωð ÞLð Þ , (31)

where

Y ωð Þ ¼ φ

ffiffiffiffiffiffiffiffiffiffi
β ωð Þ
α ωð Þ

s
, and k ωð Þ ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rα ωð Þβ ωð Þ

Ka

s
,

These expressions are simplified by taking into account the reflections at the interfaces x ¼ 0 and
x ¼ L; the expressions of the reflection and transmission operators are given in time domain by
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~R tð Þ ¼
ffiffiffiffiffiffi
α∞

p � φffiffiffiffiffiffi
α∞

p þ φ
δ tð Þ � 4φ

ffiffiffiffiffiffi
α∞

p ffiffiffiffiffiffi
α∞

p � φ
� �
ffiffiffiffiffiffi
α∞

p þ φ
� �3 F t;

2L
c

� �
, (32)

~T tð Þ ¼ 4φ
ffiffiffiffiffiffi
α∞

p

φþ ffiffiffiffiffiffi
α∞

p� �2 F tþ L
c
;
L
c

� �
: (33)

where δ tð Þ is the Dirac function and F is the Green function of the medium given by Eq. (27). In
the next sections, we will use the reflected and transmitted waves for solving the inverse
problem in order to characterize the porous materials.

3.1. Ultrasonic measurement of porosity, tortuosity, and viscous and thermal characteristic
lengths via transmitted waves

The experimental setup consists of two transducers broadband Ultran NCT202 with a central
frequency of 190 kHz in air and a bandwidth of 6 dB extending from 150 to 230 kHz [19]. A
pulser/receiver 5058PR Panametrics sends pulses of 400 V. The high-frequency noise is avoided
by filtering the received signals above 1 MHz. Electronic interference is eliminated by 1000
acquisition averages. The experimental setup is shown in Figure 3. The inverse problem is to
find the parameters α∞, φ, Λ, and Λ0 which minimize numerically the discrepancy function

U α∞;φ;Λ;Λ0� � ¼Pi¼N
i¼1 ptexp x; tið Þ � pt x; tið Þ
� �2

, wherein ptexp x; tið Þi¼1,2,…n is the discrete set of

values of the experimental transmitted signal and pt x; tið Þi¼1,2,…n is the discrete set of values of
the simulated transmitted signal predicted from Eq. (33). The least squares method is used for
solving the inverse problem using the simplex search method (Nelder-Mead) [20] which does
not require numerical or analytic gradients.

pulse generator
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Figure 3. Experimental setup of the ultrasonic measurements.
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Consider a sample of plastic foam M1, of thicknesses 0:8� 0:01cm. Sample M1 was character-
ized using classic methods [21–31] and gave the following physical parameters φ ¼ 0:85� 0:05,
α∞ ¼ 1:45� 0:05, Λ ¼ 30� 1ð Þμm, and Λ0 ¼ 60� 3ð Þμm. Figure 4 shows the experimental inci-
dent signal (dashed line) generated by the transducer and the experimental transmitted signal
(solid line). After solving the inverse problem simultaneously for the porosity φ, tortuosity α∞,
and viscous and thermal characteristic lengthsΛ andΛ0, we find the following optimized values:
φ ¼ 0:87� 0:01, α∞ ¼ 1:45� 0:01, Λ ¼ 32:6� 0:5ð Þμm, and Λ0 ¼ 60� 0:5ð Þμm. The values of
the inverted parameters are close to those obtained by conventional methods [21–31]. We present
in Figures 5 and 6 the variation of the minimization function U with the porosity, tortuosity,
viscous characteristic length, and the ratio betweenΛ0 andΛ. In Figure 7, we show a comparison
between an experimental transmitted signal and simulated transmitted signal for the optimized
values of φ, α∞, Λ, and Λ0. The difference between the two curves is small, which leads us to
conclude that the optimized values of the physical parameters are correct.
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Figure 4. Experimental incident signal (solid line) and experimental transmitted signal (dashed line).
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3.2. Measuring flow resistivity of porous material via acoustic reflected waves at low-
frequency domain

In the low-frequency domain, the viscous forces are important everywhere in all the fluid saturat-
ing the porous material. The thermal exchanges between fluid and structure are favored by the
slowness of the cycle of expansion and compression in thematerial. The temperature of the frame
is practically unchanged by the passage of the soundwave because of the high value of its specific
heat: the frame acts as a thermostat; the isothermal compressibility is directly applicable. In this

domain, the viscous skin thickness δ ¼ 2η=ωr0ð Þ1=2 ismuch larger than the radius of the pores r

δ
r
≫ 1: (34)
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Figure 7. Comparison between the experimental transmitted signal (black dashed line) and the simulated transmitted
signals (black line) using the reconstructed values of ϕ, α∞, Λ, and Λ0.
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We consider the low-frequency approximations of the response factor α ωð Þ and β ωð Þ. When
ω ! 0, Eqs. (22) and (6), respectively, become

α ωð Þ ¼ σφ
iωr

, (35)

β ωð Þ ¼ γ: (36)

For a wave traveling along the direction ox, the generalized forms of the basic Eqs. (19) in the
time domain are now

σφV ¼ � ∂p
∂x

and
γ
Ka

∂p
∂t

¼ � ∂v
∂x

(37)

where the Euler equation is reduced to Darcy’s law which defines the static flow resistivity
σ ¼ η=k0. The wave equation in time domain is given by

∂2p
∂x2

þ σφγ
Ka

� �
∂p
∂t

¼ 0 (38)

The fields which are varying in time, the pressure, the acoustic velocity, etc. follow a diffusion
equation with the diffusion constant:

D ¼ Ka

σφγ
: (39)

The diffusion constant D is connected to Darcy’s constant k0 (called also the viscous permeabil-
ity) by the relation

D ¼ Kak0
ηφγ

, (40)

where η is the fluid viscosity.

The expression of the reflection coefficient R zð Þ in Laplace domain (put z ¼ jω for obtaining the
frequency domain of R ωð Þ), is given by [32]

R zð Þ ¼ 1� B2z
� �

sinh L
ffiffiffiffiffiffiffi
Dz

p� �
2B

ffiffiffi
z

p
cosh L

ffiffiffiffiffiffiffi
Dz

p� �þ 1þ B2z
� �

sinh L
ffiffiffiffiffiffiffi
Dz

p� � , (41)

The development of these expressions in exponential series leads to the reflection coefficient:

R zð Þ ¼ 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p
X
n ≥ 0

1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p
� �2n

exp �2nL
ffiffiffiffiffiffiffi
Dz

p� �
� exp �2 nþ 1ð ÞL

ffiffiffiffiffiffiffi
Dz

p� �� �
: (42)

The multiple reflections in the material are taken into account in these expressions. As the
attenuation is high in the porous materials, the multiple reflection effects are negligible. Let us
consider the reflections at the interfaces x ¼ 0 and x ¼ L:
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R zð Þ ¼ 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p 1� 4B
ffiffiffi
z

p

1þ B
ffiffiffi
z

pð Þ2
exp �2L

ffiffiffiffiffiffiffi
Dz

p� � !

¼ 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

p � 4B
ffiffiffi
z

p
1� B

ffiffiffi
z

pð Þ
1þ B

ffiffiffi
z

pð Þ3
exp �2L

ffiffiffiffiffiffiffi
Dz

p� � (43)

The reflection scattering operator is calculated by taking the inverse Laplace transform of the
reflection coefficient.

We infer [32] that

L�1 1� B
ffiffiffi
z

p
1þ B

ffiffiffi
z

pð Þ
	 


¼ L�1 �1þ 2
B

1ffiffiffi
z

p þ 1=B

	 


¼ �δ tð Þ þ 2
B
ffiffiffiffiffiffi
π t

p � 2
B2 exp t=B2� �

erf
ffiffi
t

p
=B

� �
,

(44)

where erf is the error function. By putting

g zð Þ ¼ Bz� 1

1þ Bzð Þ3 ¼
1
B2

z� 1=B

1=Bþ zð Þ3 ,

we obtain

L�1 g zð Þ½ � ¼ f tð Þ ¼ 1
B2 L

�1 z� 1=B

1=Bþ zð Þ3
" #

¼ 1
B2 t� t2=B
� �

exp �t=Bð Þ:

Using the relation

L�1 ffiffiffi
z

p
g

ffiffiffiffiffiffi
zð Þ

p
Þ

� i
¼ 1

2
ffiffiffiffi
π

p 1
t3=2

ð∞
0
exp � u2

4t

� �
u2

2t
� 1

� �
f uð Þdu

	

¼ 1
2
ffiffiffiffi
π

p
B2

1
t3=2

ð∞
0
exp � u2

4t

� �
u2

2t
� 1

� �
u� u2

B

� �
exp � u

B

� �
du,

which with the variable change u=B ¼ y, yields

L�1 4B
ffiffiffi
z

p
B
ffiffiffi
z

p � 1ð Þ
1þ B

ffiffiffi
z

pð Þ3
" #

¼ 2
B
ffiffiffiffi
π

p 1
t3=2

ð∞
0
exp � u2

4t

� �
u2

2t
� 1

� �
u� u2

B

� �
exp � u

B

� �
du,

¼ 2Bffiffiffiffi
π

p 1
t3=2

ð∞
0
exp �B2y2

4t

� �
y2B2

2t
� 1

� �
y� y2
� �

exp �yð Þdy:

¼ k tð Þ

The reflection scattering operator is then given by

~R tð Þ ¼ f tð Þ þ k tð Þð Þ∗g tð Þ (45)
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3.2.1. Acoustic parameter sensitivity

Consider a sample of porous material having a physical parameters that correspond to quite
common acoustic materials, as follows: thickness L ¼ 4cm, porosity φ ¼ 0:9, flow resistivity
σ ¼ 30000N m�4s, and radius of the pore r ¼ 70μm. Let us study the sensitivity of the main
parameters using numerical simulations of waves reflected by a porous material. Fifty percent
variation is applied to the physical parameters (flow resistivity σ and porosity φ).

To obtain the simulated reflected waves, we use the incident signal given in Figure 8 (dashed
line). The result (reflected wave) is the wave given in the same figure (Figure 8) in solid line.
The spectra of the two waves (incident and reflected) are given in Figure 9. From Figure 8,
we can see that there is just an attenuation of the reflected wave without dispersion, since the
two waves have the same spectral bandwidth (Figure 9). Figure 8 shows the results obtained
after reducing flow resistivity by 50% of its initial value. The wave in dashed line corre-
sponds to the simulated reflected signal for σ ¼ 30000N m�4s and the second one (solid line)
to σ ¼ 15000N m�4s. The values of the porosity φ ¼ 0:9 and thickness L ¼ 4cm have been
kept constant. When the flow resistivity is reduced, the amplitude of reflected wave
decreases by 30% of its initial value. Physically, by reducing the flow resistivity, the medium
is less resistive, since the viscous effects become less important in the porous material, and
thus the amplitude of the reflected wave decreases. No change is observed in the reflected
wave when reducing the porosity by 50% of its initial value. We can conclude that the
porosity has no significant sensitivity in reflected mode.

For the propagation of transient signals at low frequency, a guide (pipe) [32], having a
diameter of 5 cm and of length 50 m, is chosen. The pipe can be rolled without perturbations
on experimental signals (the cutoff frequency of the tube f c � 4kHz). The same microphone
(Brüel & Kjær, 4190) is used for measuring the incident and reflected signals. Burst is
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Figure 8. Incident signal (dashed line) and simulated reflected signal (solid line).
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provided by synthesized function generator Stanford Research Systems model DS345-
30 MHz. A sound source driver unit “Brand” constituted by loudspeaker Realistic 40-9000
is used. The incident signal is measured by putting a total reflector in the same position than
the porous sample. The experimental setup is shown in Figure 10. Consider a cylindrical
sample of plastic foam M1 of flow resistivity value σ ¼ 40000� 6000Nm-4s. This value is
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Figure 9. Spectrum of incident signal (dashed line) and spectrum of reflected signal (solid line).

Figure 10. Experimental setup of acoustic measurements.
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obtained using the method of Bies and Hansen [33]. The sample M1 has a diameter of 5 cm
and a thickness of 3 cm. Figure 11 shows the experimental incident wave (solid line) gener-
ated by the loudspeaker in the frequency bandwidth (35–75) Hz, and the experimental
reflected signal (dashed line), with their spectra. There is no dispersion, since the two signals
have practically the same bandwidth. The minimization of the function U gives the solution
if the inverse problem:

U σð Þ ¼
Xi¼N

i¼1

prexp x; tið Þ � pr x; tið Þ
� �2

, (46)

where prexp x; tið Þi¼1,2,…N and pr x; tið Þi¼1,2,…N represent the discrete set of values of the exp-

erimental reflected signal and of the simulated reflected signal, respectively. The optimized
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Figure 11. Experimental incident signal (solid line) and experimental reflected signal (dashed line), and their spectra,
respectively.
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Figure 12. Variation of the minimization function U with flow resistivity σ.
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value of σ ¼ 40500� 2000Nm-4s is obtained by solving the inverse problem. The variation of
the minimization function U with the flow resistivity σ is given in Figure 12. A comparison
between experiment and theory is given in Figure 13. The difference between theory and
experiment is slight, which leads us to conclude that the optimized value of the flow resistivity
is good.

This alternative acoustic method has the advantage of being simple and effective since it
requires the use of only one microphone and therefore no calibration problem. In addition,
this approach is different from conventional methods (Bies and Hansen [33]) that involve the
use of fluid flow measurement techniques and pressure differences. The mathematical analysis
of the reflected wave at low frequency is quite simple, because this wave is not propagative in
the medium but simply diffusive (having the same frequency band with the incident signal).
The wave reflected by the resistive materials has the advantage of being easily detectable
experimentally compared to the transmitted wave.

4. Conclusion

Acoustic propagation in porous media involves a large number of physical parameters when
the structure is elastic. This number is reduced when the structure is rigid, because the
mechanical part does not intervene and thus remains only the acoustic part. The study of high
and low frequencies separately solves the inverse problem and characterizes the porous mate-
rials in the domain of influence of the physical parameters. The proposed methods are simple
and effective and allow an acoustic characterization of porous materials using transmitted or
reflected experimental waves.
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Figure 13. Comparison between experimental reflected signal (dashed line) and simulated reflected signal (solid line) for
the sample M1.
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