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Abstract—Probabilistic and neural approaches, through their
incorporation of nonlinearities and compression of states, enable
a broader sampling of the phase space. For a broad set of complex
questions that are encountered in conventional computation, this
approach is very effective. In these patterns-oriented tasks a
fluctuation in the size of data is akin to a thermal fluctuation.
A thermodynamic view naturally applies to this computational
style to information processing and from this reasoning one may
estimate a variety of interesting consequences for computing:
(a) efficiencies in energy, (b) complexity of tasks that can be
tackled, (c) inaccuracies in inferences, and (d) limitations arising
in the incompleteness of inputs and models. We employ toy model
examples to reflect on these important themes to establish the
following:

• A dissipation minimum can be predicted predicated on the
averaged information being discarded under constraints of
minimization of energy and maximization of information
preservation and entropy. Analogous to the kBT ln 2 for
the randomization of a bit, under biological constraints, the
∼−70 mV base and ∼40 mV peak spike potential are then
a natural consequence in a biological neural environment.
Non-biological, that is, physical implementations can be
analyzed by a similar approach for noisy and variability-
prone thermodynamic setting.

• In drawing inference, the resorting to Occam’s razor as
a statistical equivalent to the choice of simplest and least
number of axioms in developing of a theory conflicts with
Mencken’s rule—for every complex problem, there is an
answer that is clear, simple and wrong—as a reflection of
dimensionality reduction.

• Between these two factors, it is possible to make a measure
of the error bound predicated on the averaged information
being discarded and being filled in, and

• This lets one predict the upper limits of information pro-
cessing rate under constraints.

These observations point to what may be achievable using
neural and probabilistic computation through their physical
implementation as reflected in the thermodynamics of the im-
plementation of a statistical information mechanic engine that
avoids computation via deterministic linear algebra.

I. INTRODUCTION

Probability estimations through the various styles—neural
of the different varieties, Bayesian, et cetera—are estimations
on limited samples using nonlinearities and compression.

Finding maximum likelihoods, or minimizing energy con-
sumption, and other objectives of a computation are subject
to the problems of “fitting” that is natural to statistical model
building. Entropy, energy, likelihood are a common theme
here and therefore the thermodynamics of information and
of physical implementations relevant. Employing the tools
of neural and probabilistic computation and of statistical
mechanics approaches, we use example toy models to point
out a number of interesting conclusions and directions worthy
of deeper exploration.

A. Spiking action potentials

The action potential in spiking in the living biological world
is viewable through the constraints of thermodynamics. The
action potential moves down an axon whose simplest model is
that of a capacitive membrane across which an electromotive
potential exists due to the ion concentration differences and
where conductance channels open and close. This signaling
is dissipative. But, absence of signaling too is dissipative. So,
the potentials, currents and times need to be consistent within
the energetic constraints. The spiking and the noise together
make this signaling mechanism effective. For this problem, the
equilibrium potential is calculable from the ionic concentration
across the membranes, with K+ dominating, but Na+, Ca+

and Cl− also present. K+ concentration is higher outside the
tubule, while in case of N+ it is higher inside. The biologically
sustainable concentrations are in the order of few mM to few
100s mM . For example, for K+, Na+ and Cl− outside/inside
these are 5/140, 140/12 and 20.

The diffusive and electrical flow balancing establishes the
reversal potential, which is the voltage across the specific ion
channel during its operation. This reversal potential, for K+

flow in its channel, is

Vrev =
RT
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(1)
Here, R is the gas constant (8.314 J/K.mole), T is the body
temperature 310 K), z is the ionicity (1 for K+), F is Faraday
constant (96485 J/V.mole) and concentrations of ions is a
ratio in identical units. Cl−, which is not actively pumped,



settles at a reversal potential close to the resting potential
determined by other ions. Chlorine is also highly impermeable.
This resting potential, absent any activity, is a balance of
concentrations and the permeabilities of their channels. Again
following the Nernst equation approach,
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RT
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where πs are permeabilities. The size of the ion (Na+ <
K+(0.138 nm) < Ca+)[1], for example, and the size of
that ion’s pore matter for resting potential. πNa/πK < 0.01.
The resting potential is maintained by active ion pumping
to compensate for leakages. The pumps—marvels of near-
ideal electrochemomechanical coupling—and the permeability
lead to smaller resting potential, which for these parameters,
including leakage of K+, Na+ and Cl− are 1× 10−6 cm/s,
2× 10−8 cm/s and 5× 10−10 cm/s[2].This resting potential
is −78 meV , and is in range that is measured across species
and cell types.

Noise is essential in a driven nonlinear dynamic sys-
tem[3].The noise is Poissonian—1/f -like as in many elec-
tronic physical systems. Fisher information[4]—as a measure
of the ability to estimate a parameter as well as of state of
disorder—gives us a tool to extracting the consequence that
the high voltage of the the action is ∼40 mV which is slightly
above the thermal voltage to maintain a judicious signal-to-
noise ratio where synchronization becomes achievable.

The +40 mV peak—of the order of kBT—in action
potential is significant in its role in how noise, spiking
and information processing interact. And this spike contains
≈ 0.5 × 110 mV × 10−3 s × 3 pA ≈ 165 aJ ≈ 40000kBT
of energy. The membrane signaling process is a capacitance-
based, signaling is through conductance of channels that are
manifested in the voltage spike.

So, noise and thermodynamics give a powerful example in
the low energy processing of information in the living system.

II. MUTUAL INFORMATION, CONVOLUTION, INFORMATION
AGGREGATION AND SEPARATION

Information is relative. It a measure of the difference be-
tween two levels of uncertainty. Reduction in this uncertainty
is gaining of information. Shannon entropy is one of our tools
to quantifying uncertainty over several states of variables (say
X). The observation of other variables (say Y ), informing us
of the state X is the mutual information. It is something in
common. The mutuality of this information is also embedded
in the convolutions—pairwise and higher—and this underlies
the success of convolution networks as well as in the use of
partition functions. Observations on Y , either increase or leave
the information on X unchanged. This lets us write the rules
of aggregation of information.

With H(X) = −
∑

x p(x) log2 p(x) as the Sannon entropy,
the mutual information between the two variables is

I(X;Yi) = H(X)−H(X|Yi). (3)

Information is a differential so we may write this as
I(X;Yi) = −∆H(X)/∆Yi. As measurements are accumu-
lated over Y , it is now possible to account for the change of
entropy—a discrete calculus of uncertainty. One can now see
that this leads to

H(X) ≤ H(X|Yk−1) ≤ H(X|Yk), and (4)

I(X|Yk) ≥ I(X;Yk−1) ≥ · · · ≥ I(X|Y1) (5)

Use of chain rule now lets us aggregate this information in
the form

I(X|Yk) = H(X)−H(X|Yk)

= −
k∑

i=1

∆H(X)

∆Yi
−

k∑
i>j=1

∆2H(X)

∆Yi∆Yj
− · · · ,(6)

where the second term on the right is just I(X;Yj)|Yi) −
I(X;Yj). Information aggregation produces both a synergy
and a redundancy of aggregation and these relationships and
their extensions let us formalize information gain and translate
them to probability distributions. For example, information
gain about X from a pair (Y1 and Y2) is the sum of inde-
pendent mutual information with X and an additional term.
The first here is independent mutual information with X and
the second is the correlations between the Y1 and Y2 variables.

One can see in this aggregation picture the ability to extract
features as a synergy. The simplest examples are logical gates
such as NAND, NOR, XOR. These can be viewed both
as a neural network as well as feature extractor. They tell
us about the synergy that exists at the input that the gate
aggregates and where the mutual information and convolutions
matter. The information theory view here has related to us the
entropic notions about how this information aggregation has
taken place and its informational features. The problem of
statistical inference gains from the insights of this discussion.

III. THERMODYNAMIC IMPLICATIONS FOR INFERENCE

For the difficult reverse problem of inference, machine
learning approaches employ a number of thoughts that we
have already mentioned. Fisher’s measure—the maximum
likelihood estimate—is one. Maximum entropy as a guide to
prescribe initial probabilities is another one since it leads to
inferences being dependent only on the data and the conditions
for which there is no prior information. Introduction of noise—
randomness—is a tool to faster computation and is also useful
where priors cause problem.

Thermodynamics teaches us a number of important prin-
ciples. One is the principle of maximum likelihood where
the best estimators should most duplicate data. The second
is the principle of maximum entropy which prescribes no
bias to internal states of the variables. The entropies from
these two views need balancing. The third important principle
from thermodynamics is the need to balance minimum energy
and maximum entropy at any temperature. This view can be
integrated in the algorithms of machine learning[6].

For information, postulate the Kullback-Leibler divergence
between distribution of a target and an empirical distribution



Fig. 1. The Kullback-Leibler divergences between estimated probability
functions and true probability functions based on maximum likelihood,
maximum entropy and minimum free energy estimate. The problem assumes
an entropy of 0.5 with 3 internal states.

as the internal energy. By regarding fluctuation in data size as
a thermal fluctuation, temperature can be postulated through
the distortion between estimator and the probability function
estimated where one data has been removed. The free energy
(a Helmholtz energy, F = U − H/β, where F is the free
energy, U is the internal energy and β represents a data tem-
perature) then follows from the internal information energy,
the Shannon entropy and the temperature. And now one can
apply the constraint that the probability functions are to arise
from minimization of the free energy. In this formulation, the
maximum likelihood is approached when the number of data
points is high. This is the condition in the energy equation
where β → 1.

If the number of data points is low—the condition when
many of machine learning algorithms have large error—the
minimum free energy estimate can be more accurate.

Only when the number data points is high does β → 1, and
maximum likelihood is approached. However, this minimum
free energy estimate continues to be applicable to the small
data limit. Figure 1 shows the divergences for the different
approaches and the efficacy of this minimum free energy
approach is quite noticeable. For N < 15 the three approaches
give widely different estimates with the minimum free energy
approach being the most accurate.

This figure also shows through the divergence at the low
N count, the issue of errors. Techniques such as resorting
to Occam’s razor in drawing inference can produce serious
errors. In the physical world and this machine world, one
also encounters Mencken’s rule, which states that for every
complex problem, there is an answer that is clear, simple and
wrong. Simplest explanations do not always comport.

This broad outline describes a mapping of the statistical
physical techniques to information data, and similar properties
as those derived in statistical physics, such as energy fluctua-
tions, variances, et cetera, may be found. The approach shows
that ranging over small to large sample sizes, the approach
gives more accurate estimations compared to maximum likeli-
hood or maximum entropy approaches alone. It reduces error

bounds.

IV. NEURAL NETWORKS AS PHYSICAL MODELS

Forms of neural networks have now shown a variety of
properties that correspond to those of physical systems. A
stochastic neural network is a Boltzmann machine, that is,
a thermodynamic model[7]. The example in section III was
a specific example of use of thermodynamic principles as
an approach to understanding the statistical consequences.
Variational renormalization groups have been mapped on the
networks [8] and have been tested with two-dimensional Ising
models. Features such as entanglement entropy are apparently
inherent outcomes of the coarse grained organization in the
networks. It has also been argued[9] that the deeper networks
are an ersatz learning with exponentially fewer parameters
because of how the general physical functions arising in
physical laws can be translated onto a network.

Physics favors simple probability distributions and this is
what the networks also prefer. In the correspondence between
the physical and the network, the correspondence between a
quadratic Hamiltonian to a Gaussian probability distribution,
locality to sparsity, translational symmetry to convolution, and
free energy difference to the Kullback-Leibler divergence (we
employed this in section III), can be easily seen.

An illustration of the success of such a correspondence is the
observation on phase transitions where Ising models are useful
toy models. The neural network—simple or multi-layered—
are a corresponding convenient tool to observe the noise, and
the breaking of symmetries in regions of transition as the
network evolves from a random state to a phase transitioned
state with a change in temperature.

Figure 2(a) and 2(b) show results—of order and of
correlation/randomization—of two-dimensional Ising simula-
tions through a restricted Boltzmann machine by sweeping
temperature. One can see, as the temperature parameter T
is lowered, the appearance of magnetization in (a) and the
frequency of the weight amplitudes in (b) in a restricted
Boltzmann machine. When T is high, the spins are random,
with either polarity of spins evenly distributed, and the weight
histogram is strongly peaked. The hidden layer is “decoupled.”
When T is low, spin is polarized and the frequency is flat.

V. INFORMATION, ERRORS, AND ENERGY

The challenge of rebooting computing and the applicability
of the probabilistic and neural techniques to rebooting com-
puting is multifold.

Machine learning techniques employing neural techniques
in all their forms, probabilistic versions, together with
Bayesian approaches without overfitting constraints are all
still affected by two considerations. The first is that, while
any new observation that fits with the model already learned
is a major success, any observation that does not fit with
the model leads to an error. So correlations or information
synergy not observed before, or fewer data, both lead to
more significant error. The second consideration is that in
any network where the calculation of probabilities, weights,



Fig. 2. (a) shows “magnetization” of the Ising model and (b) shows the
weight distributions as simulations proceed through the point of criticality.

et cetera, are performed through deterministic Boolean algebra
operations, the calculation is traditionally performed to many
significant bits and is therefore very energy consuming.

Section IV noted a direct correspondence between the
physical and the network. Since any neural and probabilistic
computation is going to be subject to the inherent errors arising
in the model that has been learned, it is not unreasonable
to speculate that employing the physical for creation of the
machine learning primitives would be of use. Among these,
low energy probability generations, convolutions, Gaussian
probability distributions, and stochastic noise are all quite
foreseeable. Multiple possibilities exist for each one of these.

The details of how much energy is consumed for a given
task certainly depends on the scale and the nature of task
at hand. Boltzmann entropy change is high at the point of
phase transition in the physical world. The same will also
hold true for the data world’s machine learning. If η is a
scaling factor for kBT that is reflective of the technology’s per
bit manipulation energy, and N bits are being manipulated,
the energy consumed is ηkBTN log2N . Section I had one
example of this energy need in the presence of noise in a
biological spiking arrangement. Physical implementations will
be different. But, this energy is quite small even if η were to be
105. The challenge is to find the model physical embodiments
for these primitives that will perform the function desired in
the machine learning system.

VI. CONCLUSION

In this work, we have explored a few themes to build an
argument related to rebooting of computing. Section I showed
how thermodynamic principles suffice in predicting action
potentials while utilizing noise in a driven nonlinear dynamic
system. Neural networks and probabilistic systems compress
states, employ nonlinearities, and work with noise of data
size with many equivalences to the physical thermodynamic
systems. This thermodynamic basis was employed to explore
the question of information aggregation and separation in
machine learning. As an example, we showed the increased
accuracy of of minimum free energy estimation approach.
We extended this thermodynamic discussion to show the
equivalences at work in neural network environment for a
model physical system. This bringing together of the physical
and the machine approaches have let us make remarks on
errors and energies that are potentially the limits for the set of
problems for which the machine learning approaches are most
suitable. We remain far away from these limits.
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l’écologie, du développement durable et de l’énergie.
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