N

N
N

HAL

open science

Edge Weights and Vertex Colours: Minimizing Sum
Count

Olivier Baudon, Julien Bensmail, Hervé Hocquard, Mohammed Senhaji, Eric

Sopena

» To cite this version:

Olivier Baudon, Julien Bensmail, Hervé Hocquard, Mohammed Senhaji, Eric Sopena. Edge Weights
and Vertex Colours: Minimizing Sum Count. Discrete Applied Mathematics, 2019, 270, pp.13-24.

hal-01839537v2

HAL Id: hal-01839537
https://hal.science/hal-01839537v2
Submitted on 7 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01839537v2
https://hal.archives-ouvertes.fr

Edge Weights and Vertex Colours: Minimizing Sum Count™

Olivier Baudon®P, Julien Bensmail®¢, Hervé Hocquard®P,
Mohammed Senhaji*", Eric Sopena®P

“Univ. Bordeauzr, LaBRI, UMR5800, F-33400 Talence, France
®CNRS, LaBRI, UMR5800, F-33400 Talence, France
¢ Université Cote d’Azur, CNRS, Inria, 13S, France

Abstract

Neighbour-sum-distinguishing edge-weightings are a way to “encode” proper vertex-colourings
via the sums of weights incident to the vertices. Over the last decades, this notion has been
attracting, in the context of several conjectures, ingrowing attention dedicated, notably, to
understanding, which weights are needed to produce neighbour-sum-distinguishing edge-
weightings for a given graph.

This work is dedicated to investigating another related aspect, namely the minimum
number of distinct sums/colours we can produce via a neighbour-sum-distinguishing edge-
weighting of a given graph GG, and the role of the assigned weights in that context. Clearly,
this minimum number is bounded below by the chromatic number x(G) of G. When using
weights of Z, we show that, in general, we can produce neighbour-sum-distinguishing edge-
weightings generating x(G) distinct sums, except in the peculiar case where G is a balanced
bipartite graph, in which case x(G) + 1 distinct sums can be generated. These results are
best possible. When using k consecutive weights 1, ..., k, we provide both lower and upper
bounds, as a function of the maximum degree A, on the maximum least number of sums
that can be generated for a graph with maximum degree A. For trees, which, in general,
admit neighbour-sum-distinguishing 2-edge-weightings, we prove that this maximum, when
using weights 1 and 2, is of order 2logy A. Finally, we also establish the NP-hardness of
several decision problems related to these questions.

Keywords: Neighbour-sum-distinguishing edge-weightings; Number of sums.

1. Introduction

Let W be a set of integers. For a graph G, a W-edge-weighting w : E(G) — W
is an assignment of weights from W to the edges. From w, one can compute, for every
vertex v of G, the sum o(v) of weights incident to v, which is 3~ ¢y, w(vu). We call w
neighbour-sum-distinguishing if, for every edge uv of G, we have o(u) # o(v).

Neighbour-sum-distinguishing edge-weightings have been intensively studied over the
last decades; as a relevant example, we refer the interested reader to e.g. the dynamic
survey [4] by Gallian, in which over 250 variations of that notion, which appeared in
more than 2500 references to date, are listed. These edge-weighting notions have been
particularly studied with respect to several concerns. In general, the first ever question
of interest is about determining, for a given graph, whether, under specific circumstances,
neighbour-sum-distinguishing edge-weightings exist at all. In situations where such edge-
weightings do exist, the next question is about which weights can be used to realize one.

*The second author was supported by PEPS grant “POCODIS”.

Preprint submitted to ... June 7, 2019

For instance, if we restrict ourselves to N*-edge-weightings, one way to translate those
questions is e.g. to Which graphs admit neighbour-sum-distinguishing N*-edge-weightings?
and What is the least k¥ € N* such that every such “weightable” graph admits a neighbour-
sum-distinguishing [k]-edge-weighting (where [k] := {1,...,k})? These exact questions are
related to the well-known 1-2-3 Conjecture, posed in 2004 by Karonski, Luczak and Thoma-
son [6], which states that every connected graph G different from K verifies xx(G) < 3,
i.e., admits a neighbour-sum-distinguishing 3-edge-weighting. In this very context, a graph
with no connected component isomorphic to Ky is called a nice graph, for that reason.

One way to motivate neighbour-sum-distinguishing edge-weightings is that they can
be regarded as a way to encode proper vertex-colourings, i.e., assignments of colours to
the vertices such that no two adjacent ones get the same sum. For instance, the 1-2-3
Conjecture states that, for nearly all graphs G (with the exception of those having Ky has
a connected component), though a proper vertex-colouring might require up to A(G) + 1
colours (by Brooks’ Theorem), encoding one via the sums derived from an edge-weighting
can be done using the three weights 1, 2 and 3 only.

One consequence, however, of using few distinct weight values in a neighbour-sum-
distinguishing edge-weighting w of a graph G, is that the resulting proper vertex-colouring
o might be far from optimal, i.e., the number of distinct obtained sums might be larger
than x(G), the chromatic number of G (being the least number of colours in a proper
vertex-colouring). Consider for instance the case of a locally irregular graph G, i.e., no
two adjacent vertices of G have the same degree. Clearly, assigning 1 to every edge of G
yields a neighbour-sum-distinguishing edge-weighting (so xx(G) = 1); but the number of
obtained distinct sums (colours by o) is exactly the number of distinct degree values over
the vertices of G. Obviously, this number can be arbitrarily larger than x(G) (consider,
for instance, the case where G is bipartite).

This aspect seems of interest to us, as, usually, when designing a proper vertex-
colouring, we aim at getting a number of distinct colours being as close to the chromatic
number as possible. Intuitively, the minimum number of distinct sums that can be ob-
tained via a neighbour-sum-distinguishing edge-weighting is dependent of the edge weights
we are allowed to use. There should thus be some trade-off between using a relatively large
number of distinct edge weights and generating a relatively small number of distinct sums.
To the best of our knowledge, though this aspect might have been discussed in references
of the literature, we are not aware of any one dedicated to this very aspect.

This paper is dedicated to investigating those questions, which are mostly related to
the following general parameter: For a given graph G and a set W of integers, we denote
by vw (G) the least number of distinct sums by a neighbour-sum-distinguishing W-edge-
weighting of G (if any). As already mentioned, when vy (G) is defined, we have x(G) <
yw (G); from this, two interesting and natural questions arise, namely How much larger
than x(G) can v (G) be? and For which sets W do we have vy (G) = x(G)?

Due to the number of parameters (x(G), W, G) involved in such questions, it seems
tough providing ultimate answers. Our contribution in this work is thus providing first
step answers to some of them:

e In Section 2, we show, in Theorem 2.1, that we have 77(G) = x(G), unless when
G is a balanced bipartite graph in which case vz(G) = x(G) + 1. This shows that
balanced bipartite graphs form a very peculiar family for our considerations.

e In Section 3, we consider these questions when using strictly positive weights (1, ..., k)
only. We first provide, see summarizing Corollary 3.4, general bounds on the maxi-
mum value that v (G) can take for a graph G. For the class of nice trees T', which all

verify xx(T') = 2, we prove, see Corollary 3.7, that the maximum value that «9(T)
can take is roughly 2logy A(T).

e In Section 4, we investigate several complexity aspects related to the parameter ~yy .
More precisely, we establish the NP-hardness of several decision problems arising
when fixing some of the parameters involved in . Our main result, Theorem 4.6,
states that, for a given bipartite graph G, determining whether 79)(G) < k is NP-
hard for every k > 3. As a side result, we also establish, in Theorem 4.7, that finding
the least k& such that 7};)(G) < 3 is NP-hard for bipartite graphs G. The bipartite
restriction is here important, as it was recently established that determining yx(G)
for a bipartite graph G' can be done in polynomial time [9]. Hence, adding sum
restrictions is sufficient to make problems related to neighbour-sum-distinguishing
edge-weightings gain a level of complexity.

2. Weighting with elements of Z

As a main result in this section, we prove that vz(G) = x(G) holds for every nice graph
G, unless G is a balanced bipartite graph in which case 1z(G) = x(G) + 1. Recall that
a bipartite graph G = (AU B, E) (with partite sets A and B) is said balanced whenever
Al = [B.

Theorem 2.1. For every nice connected graph G, we have x(G) < vz(G) < x(G) + 1.
Furthermore, the upper bound is attained if and only if G is a balanced bipartite graph.

To make the proof of Theorem 2.1 more readable, we prove all its aspects through
several auxiliary results. We start off by showing that vz(G) = x(G) whenever x(G) > 3
(Theorem 2.3). Next, we prove that y7(G) < 3 = x(G) + 1 whenever G is bipartite
(Theorem 2.4). Finally, we prove that v2(G) = 2 = x(G) whenever G is a connected
unbalanced bipartite graph (Theorem 2.5), while v7(G) > 2 = x(G) whenever G is a
connected balanced bipartite graph (Theorem 2.6).

Let w be a neighbour-sum-distinguishing edge-weighting of some graph. Throughout
this paper, assuming S denotes the set of sums obtained on the vertices by w, we call w a
neighbour-sum-distinguishing edge-weighting with sums from S. In most of the upcoming
proofs, we will often have to modify weights through multiplications, resulting in Q-edge-
weightings. To eventually get Z-edge-weightings, we will make use of the following obvious
claim.

Observation 2.2. Let o # 0 be a non-zero integer. When multiplying all edge weights
of a neighbour-sum-distinguishing {wi, ..., wy } -edge-weighting w by «, we get a neighbour-
sum-distinguishing {ows, ..., cwy }-edge-weighting w'. Furthermore, if w takes sums from
{s1,..., 8¢}, then w' takes sums from {asi,...,asp}.

Theorem 2.3. For every connected graph G with x(G) > 3, we have v7(G) = x(G).

Proof. Let ¢ : V(G) — [x] be a proper x-vertex-colouring of G, where x := x(G) > 3. In
what follows, we produce a neighbour-sum-distinguishing Q-edge-weighting w of G where
o(v) = ¢(v) for every v € V(G). This implies the result for vz(G), as one can then just
multiply all edge weights by a same judicious integer (Observation 2.2).

We start off with w assigning arbitrary weights (e.g. 0) to the edges of G. Obviously,
w might be far from being neighbour-sum-distinguishing and from fulfilling the required
additional sum condition. We thus consider all vertices of G one by one, and, for every

considered vertex v, if o(v) # ¢(v), then we apply a fixing procedure for v, which does not
alter the sums of the other vertices.

The fixing procedure is as follows. Because G is not bipartite, there has to exist an
odd-length closed walk W containing v, i.e., a cycle with odd length containing v having,
possibly, vertices or edges repeating. Such a W can be found e.g. as follows. Since G is
not bipartite, it has to contain an odd-length cycle C. If v is a vertex of C, then we can
consider W = C. Otherwise, W can be obtained by considering a shortest path P from v
to a vertex u of C, then going all the way around C back to u, and eventually going back
to v through P again.

Since o(v) # ¢(v), we have § := o(v) — ¢(v) # 0. Then we go through all edges of
W starting from v, applying +53/2,—8/2,+/3/2, ... alternately to the weights by w to the
traversed edges, until we go back to v. Note that this does not alter the sum of any vertex
of W different from v (it is actually altered by 0), while the sum of v is altered by precisely
B/2+ /2 = B, due to the odd length of W. Hence we get o(v) = ¢(v), as required.

Repeating this procedure until all deficient vertices of G have been fixed, we eventually
turn w to a neighbour-sum-distinguishing Q-edge-weighting of G with sums from [x]. O

Theorem 2.4. For every nice connected bipartite graph G, we have y7(G) < 3 = x(G)+1.

Proof. Let G = (AU B, E) be such a nice bipartite graph, and let s4,sp € Z be two
distinct integers. We below describe a procedure for deducing (in general) a neighbour-
sum-distinguishing Q-edge-weighting w such that “most” vertices of A have sum s, while
“most” vertices of B have sum sp. Again, recall that such a neighbour-sum-distinguishing
Q-edge-weighting can eventually be turned into a neighbour-sum-distinguishing Z-edge-
weighting generating the same number of distinct sums, according to Observation 2.2.

We first describe how to prove the claim for G being a nice tree, as this case will
naturally imply the whole claim. Let r be a vertex of G with degree at least 2. Regarding
r as the root of G, we naturally come up with a natural root-to-leaves (virtual) orientation
of G, where every vertex v % r has a unique parent, i.e., a vertex that is closer to r than
v is. Conversely, v is a child of its parent. For every non-root vertex, we call its unique
incident edge to its parent the parent edge. Finally, we define the level of any vertex to be
its distance to r.

Still assuming that G is a tree, we deduce the desired w through several modification
steps. Initially, we start by assigning weight 0 to all edges of G. We then modify w level
by level from the deepest ones so that, once a level ¢ > 0 has been treated, we do have
the desired sum (s or sp) by w for every vertex of that level. This is done by adjusting
the weight of the parent edges adequately. More precisely, assume that all vertices of the
(14 1)th level have been treated, and let v be a vertex of the ith level. Assume the ith level
is included in A; so the (i + 1)th level is included in B and its vertices currently all have
sum sp. Assuming v currently has sum s, we just assign weight sy — s to the parent edge
(which current has weight 0) of v, so that v gets sum s4. This adjustment alters the sum
of the other end of the parent edge, but that vertex will be treated later in the procedure.

Assume 7 € A. Once all vertices of the first level have been treated, we have o(a) = sa
for every a € A\ {r} and o(b) = sp for every b € B. If o(r) # sp, then we are done
(we get either two sums in case o(r) = s4, or three sums otherwise). Otherwise, w is
not neighbour-sum-distinguishing because, for every edge rv, we have o(r) = o(v) = sp.
Recall that there are at least two such edges, by our choice of r. Assuming the sum s of
7 is currently strictly smaller (resp. bigger) than s4, we add (resp. remove) (s4 — s)/d(r)
to (resp. from) the weight of every edge incident to r. This way, the sum of r gets equal

to s4, while every vertex of the first level gets sum
s+ (54 —5)/d(r) # sa > sp +2[(sa — s)/d(r)]

(resp. sp — (sa — s)/d(r) # sa < sp — 2[(sa — s)/d(r)]. So w becomes neighbour-sum-
distinguishing, and at most three sums are assigned to the vertices (being s4, sp, or the
new sum of the vertices of the first level).

To get the claim for every nice connected bipartite graph G, it suffices to consider any
spanning tree T" of GG, then deduce a neighbour-sum-distinguishing Z-edge-weighting of T" as
described above, and extend it to G by assigning weight 0 to all edges of E(G)\ E(T"). O

Theorem 2.5. For every connected unbalanced bipartite graph G, we have vz(G) = x(G) =
2.

Proof. Let G be such a graph with bipartition (A4, B), where we set ng := |A| and np :=
|B|. We prove that G always admits a Z-edge-weighting w such that all vertices of A have
sum npg, while all vertices of B have sum n4. Since ngq # np, this ensures that w is
neighbour-sum-distinguishing, and it assigns two sums only.

For the same reasons as in the proof of Theorem 2.4, free to assign weight 0 to some
edges, we may assume that G is an unbalanced tree with root r € A. Recall that the level
1 of a vertex is its distance to r. Since we assume that r € A, every i-level vertex with ¢
odd is in B, while it is in A otherwise. For any ¢ > 1, when referring to the edges of the ith
level of G, we mean all edges with one end in the ith level and other end in the (: — 1)th
level. We denote by FEj; the set of edges of the ith level. Since G is assumed to be a tree,
for every vertex of any level i, there is exactly one incident edge in F;. For every level i,
we denote by x; the number of vertices of the ith level.

We deduce w by just applying the exact same bottom-up procedure as that described
in the proof of Theorem 2.4. That is, we start from all edges assigned weight 0, and then
we consider the vertices level by level from the deepest one to the first one. Whenever
considering a vertex v of the ith level, it has some initial sum emerging from the weighting
of the edges of E;;1. We then make sure that v gets the desired sum (np if i is even, ny
otherwise) by altering the weight of the parent edge of v accordingly.

Once all levels have been treated, all vertices in A\ {r} have sum np while all vertices
of B have sum n4. We show that under all our assumptions, actually also r has sum np;
hence our conclusion.

Let d denote the deepest vertex level, and consider the x4 vertices in level d. Assume
these vertices are in A, without loss of generality. Since all these vertices have sum ng by
w, we know that > . w(e) = z4-np. Now consider all z4_1 vertices in level d — 1. Since
these vertices have sum n 4, we have

Tig—1-nA= Z w(e) + Z w(e),
ecky ecFEy 4

which implies that > .. p w(e) = (z4-1-n4) — (T4 nB).
Repeating this argument level by level starting from the deepest one, it can easily be
checked that we have

Z w(e) = (z; + Tiy2 + Tiga + ...) na — (Tiy1 + Tiys + Tivs +...) - np
ecE;
for every odd ¢, while we have

Z w(e) = (i + Tit2 + Tiga+ ...) - nB — (Tit1 + Tixs + Tiys +...) 1A
ecE;

for every even i. Recall that r € A, and note that o(r) = X.cp,w(e). From this, we have
o(r)=(z1+x3+ x5+ ...) - ng— (r2+ x4 + 26+ ...) - NB.
Since z1 + 3 + x5 + ... = np and x92 + x4 + 6 + ... = ng — 1, this yields o(r) =np. O

Theorem 2.6. For every nice connected balanced bipartite graph G, we have vy (G) > 2
for any set W of integers. In particular, vz(G) > 2.

Proof. Assume that for such a bipartite graph G = (A U B, E), where |A| = |B]|, there
exists a neighbour-sum-distinguishing W-edge-weighting w such that o(a) = s4 for all
a € A and o(b) = sp for all b € B (where s4 # sp by definition). From the point of
view of A, we have) _,0(a) = sa - |A|, while, from the point of view of B, we have
> pep@(b) = sp-|B|. Since G is connected, this implies that s4-|A| = sp-|B|, hence that
s4 = sp since |A| = |BJ. So all vertices of G have the same sum by w, a contradiction to
the fact that it is neighbour-sum-distinguishing. O

3. Weighting with elements of N*

In this section, we now consider general properties, for a given graph G, of v[k}(G)
for fixed values of k, which finds several connections to the literature, as neighbour-sum-
distinguishing k-edge-weightings (assigning strictly positive weights only) are one of the
most investigated variants. We start off by establishing general bounds (involving the
maximum degree) on the maximum value that ;(G) can reach. Then, we focus on the
particular case of 7y (7') for T being a nice tree, which is of interest as x=(7') < 2 always
holds.

3.1. Bounds on 7y in the general case

A general upper bound on p(G) can be derived for k > 5 from the best known
result towards the 1-2-3 Conjecture by Kalkowski, Karonski and Pfender [5], which states
that xx(G) < 5 for every nice graph G. Since, by a neighbour-sum-distinguishing 5-edge-
weighting, the sum of every vertex of G lies in {0(G), ..., 5A(G) }, this result directly implies
the following:

Theorem 3.1. For every nice graph G, we have v5(G) < 5A(G).

The exact same approach yields an improved upper bound for graphs G verifying xx»(G) <
5. That is, Yy () (G) < x=(G)A(G). The 1-2-3 Conjecture, if true, would imply that
v31(G) < 3A(G) for every nice graph G (and, by inclusion, the similar result for any set
[k] with k& > 3).

More specific improvements can sometimes be obtained. For instance, nice subcubic
graphs verify the 1-2-3 Conjecture [6], and we thus have 7(3(G) < 9 for these graphs G.
Actually, the proof in [6] yields that for every proper 3-vertex-colouring Vo U Vi U Vo of
a nice 3-colourable subcubic graph G, we can deduce a neighbour-sum-distinguishing 3-
edge-weighting such that the vertices in Vj have sum 3, 6 or 9 (multiple of 3), the vertices
in V4 have sum 1, 4 or 7 (multiple of 3 plus 1), while the vertices in V5 have sum 2, 5 or
8 (multiple of 3 plus 2). Note that, by considering a proper 3-vertex-colouring where all
degree-1 vertices lie in Vj or Va, we can then deduce neighbour-sum-distinguishing 3-edge-
weighting such that no vertex gets sum 1. Thus, 7}3(G) < 8 for nice 3-colourable subcubic
graphs G. Since this is also true for Ky, this bound holds for all nice subcubic graphs as
well.

A first lower bound on vj)(G) arises, by definition, from the connection between
neighbour-sum-distinguishing edge-weightings and the proper vertex-colourings they en-
code. That is:

Observation 3.2. For every nice graph G' and k > x=(G), we have x(G) < v (G).

More elaborated lower bounds on 7y (G) arise from the potential existence, in G, of
vertices with sufficiently different degrees. Precisely, if G has two vertices u and v’ with
degree d and d', respectively, such that {d,...,kd} N {d',...,kd’} = 0, then, necessarily,
o(u) # o(u') by every neighbour-sum-distinguishing k-edge-weighting of G. Another way
to have different sums in a neighbour-sum-distinguishing edge-weighting is to have several
sets of vertices with about the same degree being adjacent. Using these two natural ideas,
we can construct, for every k > 2, graphs with “large” value of 7). In particular, 'y[k](G)
is not, in general, bounded away from x(G) by an additive constant term.

Theorem 3.3. For every k > 2, there exist graphs G with arbitrarily large mazximum
degree A (independent of k) and

kA 1
Yk (G) = [k—l : (1 - k“ngM>—‘ — [logy A].

Proof. For a vertex with degree d, the possible sums by a k-edge-weighting lie in {d, ..., kd}.
This implies that vertices with degree A, [(A —1)/k], [(|[(A —=1)/k] —1)/k], [(|([(A —
1)/k]) = 1)/k] —1)/k], etc. necessarily receive distinct sums by such an edge-weighting.

To make the computations easier, we consider a value of A in the series 1,k + 1, k(k +
1)+1,..., i.e., the series defined by up = 1 and u,, = ku,—1 +1 (which is k" —1) for n > 0.
Consider, as G, the following graph having “many” vertices with the same degree inducing
a clique. Start from disjoint complete graphs Q1, Q2, @3, ... where Q1 has dy := A vertices,
Q2 has dy := (A —1)/k vertices, Q3 has do := ((A —1)/k) — 1)/k vertices, and so on. For
each Q;, let u;, v; be two distinct vertices, if any (in case @; has only one vertex, we define
it to be v;). Next, for every i such that Q;y; exists (i.e., all i’s but the last one), join Q;
and ;41 via the edge u;v;+1. Finally, add pendant vertices to G so that the vertices of
@1 have degree dy, the vertices of ()2 have degree dy, and so on.

It is not complicated checking that a graph G with such a structure indeed admits
neighbour-sum-distinguishing 2-edge-weightings w, essentially because complete graphs
verify the 1-2 Conjecture [8] (each vertex sum can be altered locally by at most 2), the
total version of the 1-2-3 Conjecture, and degree-1 vertices cannot be involved in sum
conflicts. Furthermore, according to the arguments above, the dy vertices of Q)1 will get
dp distinct sums from {A,...,kA}, the d; vertices of Q2 will get d; distinct sums from
{(A=1)/k,....,k(A —1)/k}, and so on, while all these sets of sums are non-intersecting
due to our choice of A.

For each n > 0, we have

g =1 _dpa 1A SR A .
L A A T

So, in general, the number of distinct sums by w is at least

A A

Now, since up to [log, A] cliques @; where added in order to construct G,

1 1 1
d0+d1+d2+"'+dl—logkA-| ZA<1+k+l-€2++/{|—mgch|> — DngA},

which yields the claimed upper bound.]
Summarizing Theorems 3.1 and 3.3, we have the following.

Corollary 3.4. There are arbitrarily large values of A for which

5A 1
[4 . <1 — 5U°gsNﬂ — [logs A] < {Gzir(lgﬁA}ws}(G) < 5A.

3.2. Bounds on 7y in the tree case

It is known that, for nice trees T, we have yx(T) < 2 (see [2]). A natural question is
thus to wonder what is the maximum value of vy (T), for a tree T. Here we prove that
this value is of order 2logy A(T).

The logarithmic lower bound can be derived from a slight modification of the construc-
tion in the proof of Theorem 3.3. This time, though, note that we cannot have many
adjacent vertices with the same degree being all adjacent.

Theorem 3.5. There exist trees T' with arbitrarily large mazimum degree A and ~yg) (T) >
2[logy A].

Proof. Choose any value of A in the series 1,3,7,15, ..., i.e., the series defined recursively
as ug = 1 and wu, = 2up—1 + 1 (which is 2" — 1) for n > 0. Now consider any tree T
having two adjacent vertices w1, v} with degree A, two adjacent vertices ug, uj, with degree
(A —1)/2, two adjacent vertices ugz,us with degree ((A —1)/2) —1)/2, and so on. Note
that, by our choice of A, we create [logy A| such pairs u;, u}.

Now, in any neighbour-sum-distinguishing 2-edge-weighting w of T' (there exist some,
since xx(T) < 2), necessarily u; and u} get different sums for every i; more precisely, u;
and u} get two distinct sums from {A,...,2A}, vertices ug and u) get two distinct sums
from {(A —1)/2,...,2(A —1)/2}, and so on, while it is easily seen that any two of these
sets are non-intersecting due to our choice of A.]

We finish off by exhibiting an algorithm showing that every nice tree T admits a
neighbour-sum-distinguishing 2-edge-weighting using at most 2|logy(A(T) —2)| + 5 sums
whenever A(T) > 3. We do not consider when A(T") = 2, as, in that case, T is a path and
the exact value of 73 (T) can be computed easily.

Theorem 3.6. For every nice tree T with mazimum degree A > 3, we have 7y (T) <
2|logy(A —2)| + 5.

Proof. We produce a neighbour-sum-distinguishing 2-edge-weighting w of T" such that, for
every vertex degree d € {1,..., A(G)}, all vertices with degree d (if any) have sum in a
particular set Sy defined as follows. We set Sp := {1,2} and Sy := {2,3,4}. The remaining
sets S; with ¢ > 3 are then defined accordingly to the following procedure: For the next
20 = 1 values of i, that is for i = 3, we set S3 := {4,5}. For the next 2! = 2 values of
i, that is for i = 4,5, we set Sy, S5 := {6,7}. For the next 22 = 4 values of i, that is
for i = 6,7,8,9, we set Sg, S7,Ss, S := {10,11}. In general, for the next 27 values of 1,
assuming these are i = ¢, ...,0 + j — 1, we set Sy, ..., Seqj—1 := {20 — 2,20 — 1}.

The main property of interest of these sets is that, for every ¢ > 2, there are, in .S;, two
distinct values whose unique decomposition « + 23 into a 1’s and 8 2’s (where a + 8 = 1)
verifies @ > 1, and, similarly, two distinct values with such a decomposition fulfilling 5 > 1.
Indeed, for i = 2, we note that 2=1+1and3 =142 (a>1),and4 =2+2and 3 =1+2
(8 > 1) fulfil this property in Sy. For every i > 3, this follows from the fact that the

exactly two values included in S; are, by construction, not the smallest or biggest element
of the set {i,...,2i}. Furthermore, we note that the set S := 57 U ... U Sa contains

2([loga(A —=2)| +1)+3 =2logy(A—2)] +5

values.

We now describe how to construct w in such a way that it has sums from S, hence our
conclusion. More precisely, every vertex with degree d will take sum from S;. We reuse the
terminology used in the proof of Theorem 2.5 to describe the process. Root T at any vertex
r, and define the levels from r. We propagate w level by level, starting from level 0 (7),
and going towards the leaves. Assuming r has degree d, we consider any element s; € Sy
and the unique decomposition sq = a4 23 of s4 into 1’s and 2’s (where a+ 5 = d). Then
we assign weight 1 to any « edges incident to r, and weight 2 to the remaining 8 edges.
This way, we get o(r) = sq.

Consider now any vertex v (assumed of degree d) of level i such that all vertices from
level ¢ — 1 have been treated. Then the parent edge of v has already been assigned a
weight «, being either 1 or 2. By construction, there are, in Sy, two distinct values sq, s,
whose unique decomposition a + 28 with o+ 8 = d verifies a > 1 if x =1, and § > 1 if
x = 2. By weighting the edges going to the children of v only, we can thus still make the
sum of v reach any of s; and s/, (no matter what is). Then, weighting these edges, we
realize any of these two sums being different from the sum of the parent of v. This makes
v being not involved in a sum conflict with its parent.

Going on this way towards the leaves, we propagate w until all edges of 1" are weighted,
and no sum conflict arises. Recall, in particular, that the leaves of T' cannot be involved
in any sum conflict. By construction, all sums obtained on the vertices belong to S. O

Corollary 3.7. There are arbitrarily large values of A for which

2flogy A] < T) < 2[logy(A — 2)] +5.
logy AT < max ai(T) < 2[loga(A - 2)] +

4. Complexity aspects

In this section, we consider complexity aspects related to neighbour-sum-distinguishing
edge-weightings yielding particular sums. Several aspects and parameters seem of interest
to us, such as 1) the edge weights to be assigned, 2) the maximum number of vertex sums
we want to get, and 3) the structure of the graph to weight. By playing with some of these
parameters, we get the following natural decision problems, which are the main ones we
consider below:

[2]-EDGE-WEIGHTING WITH GIVEN SUMS

Input: A graph G, and a set S of sums.

Question: Does G admit a neighbour-sum-distinguishing [2]-edge-weighting with sums
from S7?7

[2]-EDGE-WEIGHTING WITH k SUMS
Input: A graph G.
Question: Do we have v9)(G) < k?

These problems are clearly in NP, as; given an edge-weighting w of a graph G, one can
compute o and check that all requirements (types of weights, obtained sums) are met. The
whole procedure can clearly be achieved in polynomial time. Thus, below, we focus on
proving the NP-hardness of those problems, to establish their NP-completeness.

For a given bipartite graph G, determining whether x5 (G) < 2 can be done in poly-
nomial time [9], while the problem is NP-complete for general graphs [3]. To show that
the sum requirement in our two problems above does add a level of complexity, we estab-
lish their hardness when restricted to bipartite graphs. In the first of our two complexity
results, we even get a hardness restriction to locally irregular bipartite graphs, which we
think is interesting as, for the original problem of determining xy, locally irregular graphs
form a trivial class.

Theorem 4.1. [2]-EDGE-WEIGHTING WITH GIVEN SUMS is NP-hard, even when re-
stricted to instances where |S| =3 and G is locally irreqular and bipartite.

Proof. We show the result by reduction from CuBiC MONOTONE 1-IN-3 SAT, which was
proved NP-complete in [7|. An instance of this problem is a 3CNF formula F' with positive
variables only, each appearing in exactly three clauses. In other words, F' can be modelled
by a cubic bipartite graph with the clauses in one part, the variables in the other part, and
in which an edge indicates that a given variable appears in a given clause. The question is
whether F' can be 1-in-3 satisfied, meaning whether there is a 1-in-3 truth assignment, i.e., a
truth assignment to the variables such that every clause has exactly one true variable. Note
that, in F', we may assume that no clause contains the same variable twice, as otherwise
F' could be simplified.

Note further that the formula F' := F A F A F is 1-in-3 satisfiable if and only if
F is. Furthermore, under the assumption that F' is cubic, in F” all variables appear in
exactly nine distinct clauses. From F”, we construct (in polynomial time) a bipartite graph
G = (AUB,E) and a 3-set S such that F’ is 1-in-3 satisfiable if and only if G admits a
neighbour-sum-distinguishing [2]-edge-weighting with sums from S. The construction of G
is straightforward: For every clause C' of F’, we add a clause verter ac to A, while, for
every variable x of F’, we add a variable vertex b,; finally, for every variable z appearing
in clause C of F’, we add the edge acb, to G. Note that G is indeed locally irregular, with
degrees 3 and 9. The set S we consider is S := {5, 9, 18}.

Note that in every neighbour-sum-distinguishing [2]-edge-weighting w with sums from
S of GG, necessarily all clause vertices have sum 5. This is because they have degree 3, so
their possible sums lie in {3,4,5,6}. Furthermore, for a degree-3 vertex to have sum 5,
necessarily one incident edge must be weighted 1, while the other two incident edges must
be weighted 2. On the other hand, since the variable vertices have degree 9, their possible
sums lie in {9, ..., 18}, which means that, by w, each of them has sum 9 (all incident edges
weighted 1) or 18 (all incident edges weighted 2).

To see that the equivalence between the two instances holds, just consider that having
an edge acb, weighted 1 (resp. 2) models the fact that variable brings value true (resp.
false) to C. In w, the fact that every clause vertex has incident edges with weights 1,2, 2
models the fact that, by a 1-in-3 truth assignment, each clause must contain only one true
variable. On the other hand, each variable vertex must be incident to edges weighted 1 only
or 2 only. This models the fact that, by a 1-in-3 truth assignment, a variable brings the
same truth value to all clauses containing it. From these arguments, we can easily deduce a
1-in-3 truth assignment of F’ from a neighbour-sum-distinguishing [2]-edge-weighting with
sums from S of GG, and vice versa. O

The proof of our main result in this section, Theorem 4.5, which establishes the NP-
hardness of [2]-EDGE-WEIGHTING WITH 3 SUMS, is based on a modification of the re-
duction in the proof of Theorem 4.1. The construction of the reduced graph is by means
of several operations and pieces, which we call gadgets below, connected in a particular

10

as

ay az
—2—0—1

by ba b3
.—2—0—1—.\1

1 e2 e3 eq e er €eg
3) 2—.—1—0—1—.—2—?—2—.—1—0—1—.

1 2
0—2—0—1—0/1 ¢
c1 c2 c3 f
o—2—0O0—1

dy do ds

Figure 1: The initiating gadget for the proof of Theorem 4.5, and the way a neighbour-sum-distinguishing
[2]-edge-weighting with three sums is propagated towards es (neglecting eg).

fashion. To ease the exposition, we first introduce all gadgets we need and point out some
of their properties of interest.

Our gadgets are to be connected by identifying some of their vertices or edges. For
that reason, in every upcoming proof establishing the property of a specific gadget H, the
degree of some vertices of H cannot be regarded as fully established. Whenever considering
[2]-edge-weightings with particular sums of H, we thus voluntarily neglect the sums of such
vertices, meaning that such a neighbour-sum-distinguishing edge-weighting is considered
correct even when a neglected vertex is involved in a sum conflict.

We start off with the initiating gadget, depicted in Figure 1, which we deal with using
the notations given in the figure. Its vertex eg is called the root, as it will be used to attach
the gadget to another graph. As described earlier, this means that the degree of eg will be
altered upon attachment, which is why, in Proposition 4.2 below, we neglect it.

Roughly speaking, we will mainly use the initiating gadget to “force” precise sums by a
neighbour-sum-distinguishing [2]-edge-weighting with at most three sums. More precisely,
this gadget has the following properties:

Proposition 4.2. Let w be any neighbour-sum-distinguishing [2]-edge-weighting with sums
from S, neglecting eg, of the initiating gadget. If |S| < 3, then:

1) S =1{2,3,6};
2) w(eres) =1 and o(e7) = 2.

Proof. Figure 1 illustrates how such an edge-weighting propagates in the initiating gadget.
If w(ajaz) = 1, then, so that o(a2) # o(as), we have w(asze;) = 2. In that case, S is
either {1,2,3} (case where w(agas) = 1), or {1,3,4} (otherwise). However, we note that
d(e1) = 5, and, thus, it is not possible to get o(e;) € S, a contradiction. So w(ajas) = 2.
Again, we have w(age;) = 1; and thus we have w(asas) = 1 as otherwise we would get
S ={2,3,4}, which again would not be compatible with the degree of e;. These arguments
apply similarly along the paths bybsbse;, cicacser and didadse;.

So we have w(age;) = w(bse1) = w(czer) = w(dse;) = 1, and {2,3} C S. Suppose
now that w(ejez) = 1; then o(e1) = 5, and S = {2,3,5}. So that o(ez) # o(e3), we need
w(eseq) = 2, and thus w(egez) = 1 as otherwise ez would have sum 4 € S. So w(eszeq) = 2
and o(e3) = 3; then we get to the point where there is no correct weight for e4e;. Hence,
we necessarily have w(ejeg) = 2, which implies that o(e;) = 6 and that S = {2,3,6},
which proves Item 1). By similar arguments as above, we have w(ese3) = w(ezeq) = 1 and
w(eqes) = 2; and o(e2) = o(eq) = 3, while o(e3) = 2.

Now, since f is a leaf, we necessarily have w(esf) = 2; and w(eseg) = 2 so that
o(es) = 6. Then, again, we have w(ereg) = 1 so that o(eg) # o(er). Lastly, since

11

S = {2,3,6}, we have w(egey) = 1, which yields o(eg) = 3 and o(ey) = 2. We have
o(eg) =1 ¢ S, but recall that we neglect eg. This proves Item 2). O

An operation we need is the fork operation. Let G be a graph with two pendant edges
wv and zw, where d(v) = d(w) = 1 and u # z. By forking uv and zw, we mean identifying
v and w, and joining a new pendant vertex y to the resulting identified vertex. The edges
uv and xw that served for the forking are called the inputs of the resulting fork, while the
pendant edge incident to y is called its output.

The main property of interest of the fork operation is that forks can be used as a mech-
anism, given a neighbour-sum-distinguishing [2]-edge-weighting with sums from {2, 3,6},
to check that the two input edges are assigned the same weight:

Proposition 4.3. Let G be a graph with a fork with inputs wv, xv and output vy, and let
w be any neighbour-sum-distinguishing [2]-edge-weighting with sums from S := {2,3,6},
neglecting y, of G. Then:

1) w(uwv) = w(zwv);
2) if w(uwv) = w(azv) =1 and o(u),o(x) # 3, then w(vy) =1 (and o(v) = 3);
3) if w(uv) = w(azv) =2 and o(u),o(x) # 6, then w(vy) =2 (and o(v) =6).

Proof. Item 1) follows from the fact that if {w(uv),w(zv)} = {1,2}, then o(v) € {4,5},
and thus o(v) ¢ S. Items 2) and 3) follow from the fact that once w(uv) and w(xv) (which
must be equal) are known, there is only one possibility for w(vy) that makes o(v) to lie in
S (assuming o(u) and o(x) are not equal to that value). Recall that we neglect y, so we
do not have to consider whether it is involved in a sum conflict. O

We will also have to prolong some pendant paths to make a neighbour-sum-distinguishing
[2]-edge-weighting with sums from {2, 3,6} to propagate in a certain way. For a given graph
G with a pendant edge uv (where v is the degree-1 vertex), by delaying uv we mean subdi-
viding it twice, resulting in a new pendant path uwwzv of length 3 (where w, x have degree 2
and v has degree 1). We call zv the output (resulting from the delaying).

Assuming we are considering neighbour-sum-distinguishing [2]-edge-weightings with
sums from {2,3,6}, delaying an edge is a way to “propagate”’ (actually invert) an edge
weight, without having vertices with sum 6 nearby. This is actually a more general prop-
erty of “long” pendant paths; more precisely:

Proposition 4.4. Let G be a nice graph with a pendant path wvwx of length 3, where
d(u) > 2 and d(x) = 1, and let w be any neighbour-sum-distinguishing [2]-edge-weighting
with sums from S := {2,3,6}, neglecting x, of G. Then:

1) w(uv) # w(wzx) and w(vw) = 1;
2) necessarily o(u) € {3,6}, and:

2.1) if o(u) =6 and w(uv) = 1, then o(w)
2.2) if o(u) =6 and w(uv) = 2, then o(w)
2.3) if o(u) = 3, then necessarily w(uv) = 1, and o(w) = 3.

3;
2

Proof. Ttem 1) follows from the fact that if w(uv) = w(wz), then we would have o(v) =
o(w); So w(uv) # w(wz), and having w(vw) = 2 would make one of o(v),o(w) to have
value 4 ¢ S. We now prove Item 2). Since d(u) > 2, the only way to have o(u) = 2 is to

12

Figure 2: Illustration of (part of) the reduction in the proof of Theorem 4.5 for a variable appearing in
clauses C1, ..., Cs, and the way a neighbour-sum-distinguishing [2]-edge-weighting with sums from {2, 3,6}
is propagated towards v.

have d(u) = 2 and w(uv) = 1. Under that assumption, Item (1) implies that o(v) = o(u), a
contradiction. So o(u) € {3,6}. Item (1) now directly implies Items (2.1), (2.2) and (2.3).
We do not discuss the sum of z, as it is assumed neglected.]

We now have all tools in hands for describing the main reduction in this section. To
ease the exposition, when talking of a gadget (either initiating or fork), we mean a new
copy of it.

Theorem 4.5. [2]-EDGE-WEIGHTING WITH 3 SUMS is NP-hard, even when restricted to
instances where G is bipartite.

Proof. The reduction builds upon that described in the proof of Theorem 4.1. This time,
though, we consider the 3CNF formula F’ := F A F, with F being an instance of CUBIC
MONOTONE 1-IN-3 SAT. So every clause has exactly three variables, each variable ap-
pearing in exactly six clauses. We construct, in polynomial time, a bipartite graph G, such
that [is 1-in-3 satisfiable if and only if yj9(G) < 3.

The construction of G is performed as follows. For every clause C' of F’, we add one
initiating gadget Ic, and call its root ve the clause vertex associated to C. For every
variable z in every clause C, we add an edge vcv, ¢, where v, ¢ is a new vertex. Since
all three variables in every clause C of F’ are different, this yields three edges per C. We
now consider all variables of F’ in turn. Assume we are currently considering variable x,
and let (', ..., Cg be the six distinct clauses containing x. See Figure 2 for an illustration
of the upcoming explanations. We first delay each of the six edges v, vz 0y s vy Vs Ve, -
Calling e, ..., eg the six resulting output edges, we then fork e; and es, then es and e4, and
then es and eg. Let €], €5, 5 denote the three resulting outputs. Next, we delay each of
e}, €h, €4, resulting in three output edges €Y, e, ef. Finally, we identify the three pendant
vertices of ef, e, €4 to a single variable verter v,. Note that G is indeed bipartite, as the
initiating gadget is a tree, the graph modelling the variable-clause membership of F’ is
bipartite, and the delaying and fork operations, when performed consistently as we did,
preserve bipartiteness (as notably illustrated in Figure 2).

The equivalence between finding a 1-in-3 truth assignment ¢ of F’ and finding a
neighbour-sum-distinguishing [2]-edge-weighting w with three sums of G follows from argu-
ments similar to those used in the proof of Theorem 4.1. To make all arguments clear, let
us describe, step by step, how w behaves in G, starting from the initiating gadgets towards
the variable vertices. First of all, due to the initiating gadgets in G, necessarily w creates

13

1 1
! TR Y
: 2 2
.—2—0—1/ g’lé)---(l)gé

’ / J
10 bio €10

Figure 3: An extension for the initiating gadget, and the way a neighbour-sum-distinguishing [2]-edge-
weighting is propagated towards eg (neglecting eg). Vertices e] and ej are supposed to have degree 11,
their neighbours being €5, ¢!, ..., cio and ej, eg, f1, ..., f5, respectively.

sums from S := {2, 3,6}, according to Proposition 4.2. Still according to Proposition 4.2,
the edge eyes (where eg = v¢) of every initiating gadget I is weighted 1, and o(e7) = 2.
Since d(vc) = 4, necessarily we have o(vc) = 6 € S. Assuming C' = (z1 V x2 V x3), this
implies that {w(vs, c),w(vey,c),w(vay,c)} = {1,2,2}, which, as in the reduction in the
proof of Theorem 4.1, models the fact that, by ¢, every clause is required to have exactly
one true variable.

For every variable z of F’, all forking operations over the edges VO Vg, Cy s +++> VO Uz, C
(where C1, ..., Cg are the clauses containing) were made to make sure that all these edges
are assigned the same weight by w. This is because, under all our assumptions, for every
fork it is mandatory that the two inputs have the same weight, recall Proposition 4.3. The
vertex v, also serves this purpose as, if its three incident edges receive different weights,
we get o(vy) € S. Using the properties exhibited in Propositions 4.4 and 4.3, it is a simple
matter checking, as illustrated in Figure 2, that w can correctly be extended towards the
v;’s under the assumption that all edges corresponding to a given variable x are weighted
the same way. In particular, the delaying operation is necessary to “propagate” a given
weight with making sure that the sum 6 is not used anywhere nearby. This is mandatory,
notably for forks whose two inputs (and thus output) are weighted 2. O

Slight modifications of the reduction in the proof of Theorem 4.5 yield a generalization
of the result for sets of k£ sums, for every k& > 3.

Theorem 4.6. For every k > 3, [2]-EDGE-WEIGHTING WITH k SUMS is NP-hard, even
when restricted to instances where G is bipartite.

Proof. Assume [2]-EDGE-WEIGHTING WITH k—1 SuMS is known to be NP-hard (for some
k—1 > 3), and consider proving the same claim for [2]-EDGE-WEIGHTING WITH k SUMS.
The idea is to modify the reduced graph G in such a way that a unique big-degree vertex
v* is added to the graph. Indeed, if d(v*) is sufficiently larger than all the other vertex
degrees, then it will force .S to include a sum s* dedicated to v* only. Meanwhile, all the
other vertices will have sums in S\ {s*}, because their degrees are too small. Hence, from
the point of view of the rest of the graph, this is like having S containing one less sum,
which is hence equivalent to an instance of [2]-EDGE-WEIGHTING WITH k — 1 SUMS.

Let us give a concrete modification example for & = 4, as the NP-hardness of [2]-
EDGE-WEIGHTING WITH 3 SUMS was established in Theorem 4.5 (but the modifications
generalize naturally to bigger values of k). Let G be a graph constructed in the proof of
Theorem 4.5 from an instance of CUBIC MONOTONE 1-IN-3 SAT. Note that A(G) = 5,
because of the initiating gadgets. Thus, by a [2]-edge-weighting of GG, the maximum value
of o(v) over all vertices v is 10.

14

Yol el Yol el Uely ol
1 1 1 1 1 1

a as :

*—3—0—2

by ba ba \ﬁ{ \ﬁ{ \ﬁ{

*—3—O0— 2—0\ 1 2 2 2
B 1—.—2—0—3—.—1—?—1—0—2—0—2—0 3 3 3

1 3

o—i—o—2—@ | ® é)\ 1) /

“a €2 €3 f 1 1 1

o—3—o0—2—4¢ \l/

d d d3 v

Figure 4: How to get a neighbour-sum-distinguishing 3-edge-weighting with sums from {3, 4, 5}, mentioned
in the proof of proof of Theorem 4.7, of the reduced graphs constructed in the proof of Theorem 4.5.

We will add to G, without spoiling the existing degrees too much, new gadgets in such
a way that G has, among others, vertices with degree 2, vertices with degree 5 and vertices
with degree 11. Note that all these vertices are incompatible in terms of sums (when only
weights 1 and 2 are used), in the sense that at least one sum in {2,...,4} of S has to be
dedicated to the degree-2 vertices, and similarly for at least one sum in {5, ..., 10} for the
degree-5 vertices, and for at least one sum in {11,...,22} for the degree-11 vertices. Since
|S] < 4, this will actually leave at most two sums of S for the adjacent degree-2 vertices.

We remove, in G, the vertices a1, a9,a3 of any one initiating gadget, and, instead,
identify its vertex e; and the vertex ey from a copy of the gadget H depicted in Figure 3.
Now G has both vertices with degree 5 and 11, so the property above applies. Consider H.
We claim that, in every neighbour-sum-distinguishing [2]-edge-weighting w with sums from
S’ (with |S’| < 3), neglecting eg, of H, necessarily 1) S’ must be {2, 3,12}, 2) w(egey) = 1,
and 3) o(e5) = 12. If this is true, note that, in G, a copy of H acts similarly as the three
edges we have removed.

So that only two sums appear onto the vertices €, €4, €}, necessarily the edges €] éb,
ehes, enel, ejer must be weighted 2,2,1,1, or 1,2,2,1, or 1,1,2,2 or 2,1,1,2. The first
possibility is not correct, as the degree-2 vertices would already generate at least three small
sums in S’. The second possibility is also not correct, as none of 1 and 2 would belong to
S’, while H has degree-1 vertices. So 2,3 € S/, and, in both remaining cases, w(ejef) = 2.
Now, we know that w(ab)) = 2 and w(cle]) = 1 for every i = 1,...,10, implying that
o(e}) = 11 (third pattern) or o(e}) = 12 (fourth pattern). Similarly, w(g,f/) = 2 and
w(fler) =1 for every i = 1,...,9. The third pattern is not compatible with ef, since, due
to its degree, we have o(ef) € {12,13}. So the fourth pattern is the only way for w to be
correct, and w(ekeg) = 1. All of Items 1), 2) and 3) are thus proved, which concludes the
proof.

Let us point out that the straight generalization of this method has not impact on the
bipartiteness of the reduced graphs; we thus end up with the claimed graph restriction. [

Our proof of Theorem 4.5 also implies the NP-hardness of the following problem:

WEIGHT MINIMIZATION FOR 3 SUMS
Input: A graph G.
Question: What is the smallest & such that y,(G) < 37

Theorem 4.7. WEIGHT MINIMIZATION FOR 3 SUMS is NP-hard, even when restricted to

instances where G is bipartite.

Proof. This follows from the fact that every reduced graph G obtained via the reduc-
tion described in the proof of Theorem 4.5 admits a neighbour-sum-distinguishing 3-edge-
weighting with sums from {3,4,5}. Hence, the smallest k in the definition of WEIGHT

15

MINIMIZATION FOR 3 SUMS is always at most 3, and it is exactly 2 if and only if the
original instance F' of CUBIC MONOTONE 1-IN-3 SAT is positive. To see that the upper
bound of 3 indeed holds, consider the 3-edge-weighting with sums from {3, 4,5}, neglecting
eg, of the initiating gadget in Figure 4 (left). In G, this weighting of every such gadget
Ic brings, via the edge eyes, weight 2 to vo. Then the three remaining edges incident to
ve can be weighted 1 so that o(ve) = 5. The remaining edges of the graph can then be
weighted correctly, as depicted in Figure 4 (right). O

5. Conclusion and perspectives

In this work, we have studied, for some sets W, the least possible number of distinct
sums that one can generate by a neighbour-sum-distinguishing W-edge-weighting of a given
graph G. When W = Z, we have proved that one can design such a weighting generating
a number of sums that is either the natural lower bound, x(G), or this lower bound plus 1,
X(G) + 1. Furthermore, we were able to identify that the second value is only attained for
a peculiar class of graphs, namely balanced bipartite graphs. Thus, we have completely
settled the case where W = Z.

There is much more room for improvement when W = [k]. Our results show that, in
general, the maximum value that 75 (G) can take for a graph G lies in between about A(G)
and 5A(G). The 1-2-3 Conjecture, if shown true, would lower the upper bound to 3A(G)
for y(31(G), while our lower bound is also slightly improved for k = 3 (recall Theorem 3.3).
An interesting question would thus be to investigate whether there are graphs G for which
713)(G) is rather close to 3A(G).

For nice trees T', for which x»(7) < 2, we have shown that the maximum value of
Y2)(T") is roughly 2logy A(T'). One possible direction for further research could be to
consider other classes of graphs G for which xx»(G) < 2, and investigate the same question.
Bipartite graphs with this property, which were recently identified [9], could be a natural
candidate case.

Although bounded-degree graphs G have ys(G) = 3 in general (this is even true for
subcubic graphs, see [1]), the possible sums we can generate by a 3-edge-weighting is quite
limited for such graphs. As a first step, we believe that determining the maximum value
that 7|3 (G) can take for a subcubic graph G might be interesting. As described in Section 3,
this maximum is bounded above by 8, while it is bounded below by 4 (consider e.g. Kj).

Finally, regarding the complexity results we have established in Section 4, there are
still some holes. In particular, we wonder whether [2]-EDGE-WEIGHTING WITH 2 SUMS
(or even [2]-EDGE-WEIGHTING WITH GIVEN SUMS with |S| = 2) remains NP-hard when
restricted to bipartite graphs, or whether there is a polynomial-time algorithm for solving
such instances.

References

[1] A. Ahadi, A. Dehghan, M-R. Sadeghi. Algorithmic complexity of proper labeling prob-
lems. Theoretical Computer Science, 495:25-36, 2013.

[2] G.J. Chang, C. Lu, J. Wu, Q. Yu. Vertex-coloring edge-weightings of graphs. Tai-
wanese Journal of Mathematics, 15(4):1807-1813, 2011.

[3] A. Dudek, D. Wajc. On the complexity of vertex-coloring edge-weightings. Discrete
Mathematics Theoretical Computer Science, 13(3):45-50, 2011.

16

[4] J.A. Gallian. A Dynamic Survey of Graph Labeling. Electronic Journal of Combina-
torics, DS6, 1997.

[5] M. Kalkowski, M. Karonski, F. Pfender. Vertex-coloring edge-weightings: towards the
1-2-3 Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[6] M. Karonski, T. Luczak, A. Thomason. Edge weights and vertex colours. Journal of
Combinatorial Theory, Series B, 91:151-157, 2004.

[7] C. Moore, J.M. Robson. Hard Tiling Problems with Simple Tiles. Discrete and Com-
putational Geometry, 26(4):573-590, 2001.

[8] J. Przybyto, M. Wozniak. On a 1,2 Conjecture. Discrete Mathematics and Theoretical
Computer Science, 12(1):101-108, 2010.

[9] C. Thomassen, Y. Wu, C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the
1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 121:308-325, 2016.

17

