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Abstract

Finite frames are sequences of vectors in finite dimensional Hilbert spaces that
play a key role in signal processing and coding theory. In this paper, we study
the class of tight unit-norm frames for Cd that also form regular schemes, called
tight regular schemes (TRS). Many common frames that arise in applications such
as equiangular tight frames and mutually unbiased bases fall in this class. We
investigate characteristic properties of TRSs and prove that for many constructions,
they are intimately connected to weighted 1-designs—arising from quadrature rules
for integrals over spheres in Cd—with weights dependent on the Voronoi regions of
each frame element. Aided by additional numerical evidence, we conjecture that all
TRSs in fact satisfy this property.

1 Introduction

Finite frames play an important role in signal processing and coding theory as a means
of providing redundant representations of elements in finite dimensional complex Hilbert
spaces. For example, frames form the basis for the construction of good measurement
matrices in compressed sensing [3], codebooks for vector quantization [6], and coding
for erasures [12]. Connections have also been established to measurement operators in
quantum information theory [10].

Despite the range of applications there are a few special classes of frames are ubiqui-
tous, including equiangular tight frames (ETFs) [12] and mutually unbiased bases (MUBs)
[16]. A key feature of these frames is that they are tight unit-norm frames with a low
coherence; that is, the maximum squared absolute value of inner products, or angles, be-
tween distinct frame elements is small. Low coherence is a particularly important property
for reconstruction of signals from a sparse approximation [3].

Construction of tight frames with a low coherence has proven to be a difficult challenge.
One approach to tackle this problem is to restrict the number of distinct angles presented
by the frame. In [5], constructions of real valued tight frames with at most k angles were
derived. In [13], unitary representations of cyclic and dihedral groups were exploited to
obtain tight frames with few angles and low coherence.
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In this paper, we study finite unit-norm tight frames that are regular schemes, called
tight regular schemes (TRSs). This class of frames includes ETFs and MUBs as special
cases [8, 9], as well as a wide range of frames constructed using unitary representations
of finite groups. The defining feature of frames that are regular schemes is the presence
of the property that the set of angles from any frame element obtained by taking inner
products with all other frame elements is the same. Due to the restricted number of
distinct angles, this provides a basis to control the coherence.

We investigate special cases of TRSs for different size angle sets. A key observation
is that for angle sets of size one and two, ETFs and MUBs, respectively, naturally arise.
We also demonstrate that the existence of TRSs with a full angle set depends on whether
or not the size of the frame is even or odd.

We also observe that certain subsets of unitary representations of finite groups yield
TRSs; namely, the group covariant set. As a consequence, TRSs include a large class of
unit-norm tight frames. We also show that such TRSs have Voronoi regions with equal
area.

Although the coherence describes one aspect of the geometry of a frame, the Voronoi
regions capture properties of the geometry beyond pairwise relationships between frame
elements. As group-based TRSs have Voronoi regions with equal area, this implies that
these frames form weighted 1-designs [11] with weights given by the areas of the Voronoi
regions. A natural question is then whether other TRSs have the same property. We
show that a finite frame obtained via Alltop’s quadric polyphase construction [1] also
forms a weighted 1-design with weights given by the areas of the Voronoi regions, which
are not all equal. Numerical experiments also suggest that this property also holds for
MUBs obtained from Alltop’s quadric and cubic polyphase constructions [1] as well as
ETFs obtained from difference sets [17] and Steiner systems [7]. Based on this theoretical
and numerical evidence, we conjecture that in fact all TRSs form weighted 1-designs with
weights determined by Voronoi region areas.

2 Preliminaries

A family of vectors (ϕi)
M
i=1 in Cd is called a finite frame for Cd if there exist constants

0 < A ≤ B <∞ such that

A‖x‖2 ≤
M∑
i=1

|〈x,ϕi〉|2 ≤ B‖x‖2, ∀x ∈ Cd. (1)

If A = B, then (ϕi)
M
i=1 is called a tight frame. If ‖ϕi‖ = 1, i = 1, 2, . . . ,M then

(ϕi)
M
i=1 is called a unit norm frame.

An important characterization of tight frames is via the frame potential [2].

Definition 1. If (ϕi)
M
i=1 in Cd is a unit-norm frame, the frame potential of (ϕi)

M
i=1 is

given by

FP((ϕi)
M
i=1) =

M∑
i,j=1

|ϕ†iϕj|2. (2)
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Theorem 2. [2] The unit-norm frame (ϕi)
M
i=1 in Cd is tight if and only if the frame

potential is minimized; that is,

FP((ϕi)
M
i=1) =

M2

d
. (3)

The coherence of a unit-norm frame (ϕi)
M
i=1 in Cd is defined as

max
i 6=j
|ϕ†iϕj|2. (4)

By a theorem of Welch [15], the coherence is lower bounded by

max
i 6=j
|ϕ†iϕj|2 ≥

M − d
d(M − 1)

, (5)

known as the Welch bound.
In this paper, we are concerned with the class of tight frames known as regular schemes

[9]. These frames are defined by their angle set, which for the frame (ϕi)
M
i=1 in Cd is

A = (|ϕ†jϕk|2)1≤j<k≤M (6)

and define

Aj = (|ϕ†jϕk|2)k 6=j (7)

Associated to each frame element ϕj and angle α ∈ A is the sub-degree of (ϕi)
M
i=1,

which is defined as

dα(j) = |{1 ≤ k ≤M : k 6= j, |ϕ†jϕk|2 = α}|. (8)

Definition 3. Let (ϕi)
M
i=1 be a unit norm frame in Cd with angle set A. If for each

α ∈ A, the sub-degree dα(i) is independent of i, then (ϕi)
M
i=1 is called a regular scheme.

If a regular scheme (ϕi)
M
i=1 also forms a tight frame, then (ϕi)

M
i=1 is said to be a tight

regular scheme (TRS).

A useful alternative characterization of TRSs is given in the following proposition,
which follows immediately from the definition.

Proposition 4. Let (ϕi)
M
i=1 in Cd be a tight unit norm frame. Then, (ϕi)

M
i=1 is a TRS if

and only if the sets Aj, j = 1, . . . ,M are identical.

3 Examples of Tight Regular Schemes

3.1 Tight Regular Schemes and Spherical t-Designs

There is a long-known connection between regular schemes and spherical t-designs (hence-
forth called t-designs) [8]. Following [9], let Hom(k, l) be the subset of the polynomial ring
C[x1, . . . , xd, y1, . . . , yd] that consists of all polynomials that are homogeneous of degree
k in the variables x1, . . . , xd and homogeneous of degree l in the variables y1, . . . , yd. To
each polynomial p in Hom(k, l) associate a function p◦ on the sphere Sd−1 by defining
p◦(ζ) = p(ζ, ζ∗) for ζ ∈ Sd−1. Define Hom(k, k)◦ = {p◦ : p ∈ Hom(k, k)}.
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Definition 5. Let µ be the unique normalized U(d)-invariant Haar measure on CSd−1.
A finite non-empty subset X of CSd−1 is a t-design in CSd−1 if and only if the cubature
formula

1

|X|
∑
x∈X

f(x) =
1

µ(CSd−1)

∫
CSd−1

f(x)dµ(x) (9)

holds for all f ∈ Hom(t, t)◦.

Intuitively, a t-design provides a means of expressing the expectation of homogeneous
polynomials in terms of an average over a finite set on points. The following theorem due
to Hoggar [8] provides a link between regular schemes and t-designs.

Theorem 6. [8, Theorem 2.4] Let (ϕi)
M
i=1 in Cd be a regular scheme with angle set A.

Then, (ϕi)
M
i=1 is a t-design if and only if

1 + αr1d1 + · · ·+ αrsds = M
(1)r
(d)r

, r = 0, 1, . . . , t (10)

where (a)r = a(a+ 1) · · · (a+ r − 1).

We now turn to classes of tight regular schemes constrained by the size of their angle
sets.

3.2 |A| = 1

Consider the case that |A| = 1. We first observe that in this case, TRSs are intimately
linked to ETFs which have a coherence achieving equality in the Welch bound.

Definition 7. Let (ϕi)
M
i=1 be a unit-norm frame in Cd. Then, (ϕi)

M
i=1 is an equiangular

tight frame (ETF) if and only if

max
j 6=i
|ϕ†iϕj|2 =

M − d
d(M − 1)

. (11)

That is, (ϕi)
M
i=1 satisfies the Welch bound [12].

Proposition 8. Suppose that (ϕi)
M
i=1 in Cd is a TRS with A = {α}. Then, (ϕi)

M
i=1

achieves equality in the Welch bound. That is, (ϕi)
M
i=1 is an equiangular tight frame.

Proof. It follows from the definition of (ϕi)
M
i=1 and Theorem 2 that

1 + (M − 1)α =
M

d
. (12)

Hence,

α =
M − d
d(M − 1)

, (13)

as required.
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3.3 |A| = 2

As in the case |A| = 1, frames with extremal angle sets also arise for |A| = 2. To formalize
this claim, first recall the Levenshtein bound.

Theorem 9 (Levenshtein). Let (ϕi)
M
i=1 in Cd be a unit norm finite frame. Then,

max
1≤i<j≤M

|ϕ†iϕj|2 ≥
2M − d2 − d

(d+ 1)(M − d)
. (14)

Proposition 10. Suppose that (ϕi)
M
i=1 in Cd is a TRS with A = {0, α}. Then, (ϕi)

M
i=1

forms a complex projective 2-design if and only if (ϕi)
M
i=1 achieves equality in the Leven-

shtein bound.

Proof. Since (ϕi)
M
i=1 is a complex projective 2-design by [8, Theorem 2.4],[9, Theorem 1]

if and only if

1

M
(1 + dαα

2) =
2

d(d+ 1)
. (15)

and

M∑
j=1

|ϕ†iϕj|2 = 1 + αdα =
M

d
, i = 1, . . . ,M (16)

which implies that dα = M−d
dα

. It then follows that

1

M

(
1 +

M − d
d

α

)
=

2

d(d+ 1)
. (17)

Solving for α then yields

α =
2M − d2 − d

(d+ 1)(M − d)
, (18)

which is precisely the condition for equality in the Levenshtein bound.

Although MUBs are known to be complex projective 2-designs, the proof above is not
limited to this case. Moreover, the result shows that the more fundamental properties are
that MUBs are tight, have an angle set of the form {0, α} and minimize the Levenshtein
bound. However, to the best of the author’s knowledge, the only known examples of TRSs
that satisfy the conditions in Proposition 10 are mutually unbiased bases [9].

3.4 |A| = M − 1

We now consider TRSs with angle sets |A| = M−1. The following example demonstrates
that it is not always possible to construct such a TRS (ϕi)

M
i=1 in Cd for all M .

Sequences and Their Applications (SETA) 2018 5
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Example 11. Let M = 3 and d = 2 and suppose that (ϕi)
M
i=1 in C2 has Gram matrix

G. Define the matrix M = G ◦G, and consider the completion problem

M =

 a1 a2 a3
a2 a1 ?
a3 ? a1

 (19)

This completion problem does not have a solution such that M is symmetric as there is
either a violation of the requirement that each column should have distinct elements or
that each row should have distinct elements. As such, the TRS (ϕi)

M
i=1 with |A| = 2 does

not exist.

In fact, TRSs with |A| = M −1 do not exist for any odd M > 1. This is proven in the
following theorem, which relies on a connection to the existence problem of symmetric
Latin squares.

Definition 12. Let {1, . . . ,M} be the alphabet. An order M Latin square L is a M×M
matrix constructed such that each row and column contains each element of the alphabet
only once. The Latin square L is symmetric if L = LT .

Theorem 13. Let a1 = 1 and a2, . . . , aM be the elements of the angle set A of the TRS
(ϕi)

M
i=1 in Cd. If a1, . . . , aM are distinct. Then, M is even.

Proof. Let G be the Gram matrix of (ϕi)
M
i=1 and M = G ◦GT . Suppose the elements

of M are mapped to the elements of a matrix L via ai 7→ i. Under the assumption that
each ai is distinct, L is a Latin square with alphabet {1, . . . ,M}. Suppose that only the
diagonal of L is specified, then it is not always possible to complete the Latin square and
hence guarantee that (ϕi)

M
i=1 is a TRS with |A| = M − 1. In fact by [4, Section 3], for

the completion of a prescribed diagonal to a symmetric M ×M Latin square to exist, it
is necessary and sufficient that the diagonal contains each element exactly once for odd
M and an even number of times for even M . Since a1 appears M times on the diagonal
of L, it follows that M must be even.

It is straightforward to construct TRSs that have M − 1 distinct angles when M is
even. We present an example below.

Example 14. An example of a TRS (ϕi)
4
i=1 in C2 with M − 1 distinct elements in its

angle set can be obtained as follows. Define the matrices

M1 =

(
1 0
0 1

)
, M2 =

(
0 −1
1 0

)
, M3 =

(
1 0
0 −1

)
, M4 =

(
0 −1
−1 0

)
(20)

and the vector

φ =

(
0.9425
0.3343

)
. (21)

Then, the frame with elements

ϕi = Miφ (22)

can be readily shown to be tight and hence is a TRS with angle set A = {0, 0.603, 0.397}.
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In fact, the construction in Example 14 exploits the group structure of the matrices
{Mi}. We further develop the connection between TRSs and groups in the following
section.

4 Group Covariant Tight Regular Schemes

We now consider a class of TRSs that are obtained from unitary representations of finite
groups.

Definition 15. A finite group G ⊂ U(Cd) is irreducible if, for every φ 6= 0, φ ∈ Cd,

span(Gφ) = Cd. (23)

Lemma 16. Let G ⊂ U(d) be an irreducible finite group. Then, the G-orbit1 of every
unit-norm φ ∈ Cd is a TRS (ϕi)

M
i=1 in Cd.

Proof. By [14, Theorem 6.3], (ϕi)
M
i=1 is tight. All that remains is to show that each angle

set is the same. To this end, observe that for all i = 1, . . . ,M

Ai = {|ϕ†iϕj|2 : j ∈ {1, 2, . . . ,M}}
= {|ϕ†1U

†
iUjϕ1|2 : j ∈ {1, 2, . . . ,M}}

= {|ϕ†1Ukϕ1|2 : k ∈ {1, 2, . . . ,M}}
= A1, (24)

where we used the fact that UiUj ∈ G for all i, j ∈ {1, 2, . . . ,M}.

Definition 17. Let {Ui}Mi=1 be a set of unitary matrices in U(d). The set {Ui}Mi=1 is
group covariant if for all j, k = 1, . . . ,M , UjUk = eiθjkUl for some θjk ∈ [0, 2π) and
Ul ∈ {Ui}Mi=1.

Proposition 18. Let G be a group, φ ∈ Cd be unit-norm and H be the set of group
covariant matrices obtained from G. If Gφ is a tight frame, then Hφ is a TRS.

Proof. We first establish tightness. Since Gφ is tight, it follows that∑
U∈G

Uφφ†U† =
|G|
d

I. (25)

Equivalently, ∑
U∈H

|I(d)|Uφφ†U† =
|G|
d

I, (26)

1A G-orbit of a vector φ ∈ Cd is the set {gφ : g ∈ G}.

Sequences and Their Applications (SETA) 2018 7
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where |I(d)| is the size of the normal subgroup of G arising from the equivalence relation
g ∼ eiθg. As a consequence, ∑

U∈H

Uφφ†U† =
|H|
d

I, (27)

since |H||I(d)| = |G| by Lagrange’s theorem. Hence Hφ is tight.
Now, Hφ is group covariant and hence,

Ai = {|φ†U†gφ|2}U∈H
= {|φ†eiθUφ|2}U∈H
= A1. (28)

This implies that Hφ is also a regular scheme, completing the proof.

5 Tight Regular Schemes and Weighted 1-Designs

A feature of any TRS (ϕi)
M
i=1 in Cd constructed from a set of group-covariant unitary

matrices is that the area of the Voronoi regions corresponding to the elements ϕi are
equal. Let Sd−1 be the unit sphere in Cd. The Voronoi region corresponding to ϕi is then
defined by

{z ∈ Sd−1 : |z†ϕi|2 ≥ |z†ϕj|2, j 6= i}. (29)

The area of the Voronoi region corresponding to ϕi is given by

Vi = µ({z ∈ Sd−1 : |z†ϕi|2 ≥ |z†ϕj|2, j 6= i}), (30)

where µ is the unique normalized U(d)-invariant Haar measure. We then have the follow-
ing result.

Theorem 19. Let {Ui}Mi=1 be a group covariant set of d×d unitary matrices and φ ∈ Cd

a unit norm vector. If (ϕi)
M
i=1 in Cd is a frame with elements (Uiφ)Mi=1, then Vi = 1

M
.

Proof. Observe that

Vi = µ({z ∈ Sd−1 : |z†ϕi|2 ≥ |z†ϕj|2, j 6= i})
= µ({z′ = U†iz ∈ Sd−1 : |z′†U†iϕi|2 ≥ |z′†ϕj|2, j 6= i})
= V1. (31)

Since µ is a normalized measure, the result follows.

Since the frame (ϕi)
M
i=1 is tight, by Theorem 2 it follows that

M∑
i,j=1

ViVj|ϕ†iϕj|2 =
1

d
. (32)

As a consequence, TRSs constructed from sets of group covariant unitary matrices are
closely related to a variation of t-designs, defined as follows.

Sequences and Their Applications (SETA) 2018 8
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Definition 20. Let (ϕi)
M
i=1 in Cd be a unit norm frame and (wi)

M
i=1 be weights satisfying∑M

i=1wi = 1. Then, (ϕi)
M
i=1 is a weighted 1-design with weights (wi)

M
i=1 if for all

1 ≤ k ≤ t

M∑
i,j=1

wiwj|ϕ†iϕj|2 =
1

d
. (33)

In light of Definition 20, (ϕi)
M
i=1 forms a weighted 1-design with weights (Vi))

M
i=1 in

(30).

A natural question is whether other TRSs are weighted 1-designs with weights depen-
dent on the areas of Voronoi regions. We now present an example to demonstrate that it
can also hold for other classes of TRSs. Consider the frame obtained from quadric Alltop
construction generated from cyclic shifts of the following four vectors [1]:

a1 =
1√
5

(1, ω5, ω
4
5, ω

4
5, ω5)

a2 =
1√
5

(1, ω2
5, ω

3
5, ω

3
5, ω

2
5)

a3 =
1√
5

(1, ω3
5, ω

2
5, ω

2
5, ω

3
5)

a4 =
1√
5

(1, ω4
5, ω5, ω5, ω

4
5), (34)

where ω5 = exp(2πi/5). This collection of vectors is known to be equivalent to a set
of MUBs [1, Theorem 1]. We have already seen that MUBs form complex projective
2-designs (see Proposition 10) and now seek to understand when they are also weighted
1-designs with non-uniform weights given by the areas of Voronoi regions of the frame
elements.

To this end, observe that the elements can all be generated by applying the following
unitary transformations.

U1 =


1 0 0 0 0
0 ω5 0 0 0
0 0 ω4

5 0 0
0 0 0 ω4

5 0
0 0 0 0 ω5

 , U2 =


1 0 0 0 0
0 ω2

5 0 0 0
0 0 ω3

5 0 0
0 0 0 ω3

5 0
0 0 0 0 ω2

5

 (35)

U3 =


1 0 0 0 0
0 ω3

5 0 0 0
0 0 ω2

5 0 0
0 0 0 ω2

5 0
0 0 0 0 ω3

5

 , U4 =


1 0 0 0 0
0 ω4

5 0 0 0
0 0 ω5 0 0
0 0 0 ω5 0
0 0 0 0 ω4

5

 (36)
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The frame obtained from (34) is then obtained from {σjUi
1√
5
1}j,i, where {σj} is the

unitary representation of the group of cyclic shifts on 5 letters. It then follows that

U1 = σU4 (37)

and

U2 = σ′U3, (38)

where σ, σ′ are elements of the unitary representation for the group of permutations on 5
letters.

Now observe that

Vi = µ({z ∈ Sd−1||z†ϕi|2 ≥ |z†ϕj|2, j 6= i})
= µ({z ∈ Sd−1||z†σϕi|2 ≥ |z†ϕj|2, j 6= i}), (39)

which means that the permutations ofϕi (obtained from Ui
1√
5
1) all have the same Voronoi

areas. Moreover, since (37) and (38) hold, it follows that ϕ1 and ϕ4 (and all their cyclic
shifts) have the same Voronoi areas. Similarly ϕ2 and ϕ3 have the same Voronoi areas.

To show that equality is achieved in (32), observe that∑
i

∑
j

|ϕ†iϕj|2ViVj = 10α2 + 10β2 + 50α2/5 + 50β2/5 + 200αβ/5

= 20(α2 + β2) + 40αβ, (40)

where α, β are the Voronoi areas. Furthermore, 10α + 10β = 1, which means that∑
i

∑
j

|ϕ†iϕj|2ViVj = 20/100 = 1/5 = 1/d, (41)

as required.
We remark that a large class of TRSs appear to be weighted 1-design with weights given

by the areas of frame element Voronoi regions. To illustrate this, we have numerically
estimated via Monte Carlo simulations the value

Q =
∑
i

∑
j

|ϕ†iϕj|2ViVj (42)

for several constructions of ETFs and MUBs. A selection of the results are presented
in Table 1. Observe that the results suggest that for each construction, the weighted
1-design property holds.

We also remark that these numerical results complement Theorem 19, which shows
that all TRSs constructed via group covariant sets are such weighted 1-designs. Moreover,
the maximal ETFs corresponding to the case M = d2 in [10] are obtained through the
action of the Weyl-Heisenberg group and hence by Theorem 19, they are also weighted
1-designs with weights determined by the Voronoi regions.

These observations motivate the following conjecture linking TRSs and weighted 1-
designs.

Conjecture 21. In (ϕi)
M
i=1 in Cd is a TRS, then it is also a weighted 1-design with weights

given by the areas of the Voronoi regions Vi in (30) for each frame element.

Sequences and Their Applications (SETA) 2018 10
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Table 1: Numerical Study of TRSs

Construction Estimated Q in (42) 1
d

(2, 2, 4)-Steiner system ETF [7, Section 2] 0.1666 1
6

{1, 2, 3}-Difference set ETF [17] 0.3333 1
3

Alltop Quadric MUB N = 7 [1] 0.1428 1
7

Alltop Cubic MUB p = 5 [1] 0.2000 1
5

6 Conclusion

We have studied the class of TRSs for Cd. Our key observation is that many TRSs form
1-designs with weights governed by the Voronoi area of each frame element. We conjecture
that this is in fact a characteristic feature of all TRSs.
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