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PIECEWISE DETERMINISTIC MARKOV PROCESSES AND THEIR

INVARIANT MEASURE

ALAIN DURMUS, ARNAUD GUILLIN, PIERRE MONMARCHÉ

Abstract. Piecewise Deterministic Markov Processes (PDMPs) are studied in a gen-
eral framework. First, different constructions are proven to be equivalent. Second, we
introduce a coupling between two PDMPs following the same differential flow which
implies quantitative bounds on the total variation between the marginal distributions
of the two processes. Finally two results are established regarding the invariant mea-
sures of PDMPs. A practical condition to show that a probability measure is invariant
for the associated PDMP semi-group is presented. In a second time, a bound on the
invariant probability measures in V -norm of two PDMPs following the same differen-
tial flow is established. This last result is then applied to study the asymptotic bias of
some non-exact PDMP MCMC methods.

1. Introduction

Piecewise Deterministic Markov Processes (PDMP), similarly to diffusion processes,
form an important class of Markov processes, which are used to model random dynamical
systems in numerous fields (see e.g. [18, 1]). Recently, interest has grown for their use in
MCMC algorithms [4, 22, 5]. To this end, natural questions arise as to the stationarity
of the target measure, the ergodicity of the corresponding process and possible bias
introduced by the method. In mathematical physics [6] and biology [7], the long time
behaviour of these processes has been the subject of several works. In this context, these
studies are done through the Kolmogorov Fokker Planck operator A⋆ of the PDMP of
interest given for all smooth density ρ on R

2d by

A⋆ρ = −〈Ξ,∇ρ〉+K(λρ)− λρ ,

where Ξ is a smooth vector field of R2d, λ : R2d → R+ and K is a non-local collision
operator.

The relevance of the present work emerged while writing the companion paper [12],
concerned with the geometric ergodicity of the Bouncy Particle Sampler (BPS) [5], an
MCMC algorithm which, given a target distribution π on R

d, introduces a PDMP for
which π is invariant. In order to make rigorous several arguments in [12], technical
lemmas had to be established, in particular to cope with the fact that Markov semi-
groups associated to PDMP lack the regularity properties of (hypo-)elliptic diffusions,
and thus implies additional difficulties and technicalities. These results, of interest in a
more general framework, are gathered here with the hope that it will set a framework
where for example verification of the invariance of a measure becomes a mere calculus
via the generator (as for diffusion). The BPS is used as a recurrent example.

Let us present these different results, together with the organization of the paper.
Section 2 contains the basic definitions of our framework, and in particular presents
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the construction of a PDMP. Alternative constructions are shown in Sections 3 and 4
to give the same process (i.e. to give a random variable with the same law on the
Skorokhod space). Conditions which ensure that PDMPs are non explosive are presented
in Section 5. The synchronous coupling of two PDMPs is defined in Section 6, which
aims to construct simultaneously two different PDMPs, starting at the same initial state,
in such a way that they have some probability to stay equal for some time. It yields
estimates on the difference of the corresponding semi-groups in total variation norm. In
Section 8, conditions are established under which the semi-group associated to a PDMP
leaves invariant the space of compactly-supported smooth functions. Using this result, a
practical criterion to ensure that a given probability measure µ is invariant for a PDMP
is obtained. Indeed, it is classical that, denoting by (Ā,D(Ā)) the strong generator
of the Markov semi-group associated to the PDMP, then µ is invariant if and only if
∫

Āfdµ = 0 for all f in a core of Ā. Nevertheless, due to the lack of regularization
properties of the semi-group, it is generally impossible to determine such a core. We
will prove that, under some simple assumptions, it is enough to consider compactly-
supported smooth functions f . Finally, in Section 10, we are interested in bounding the
V -norm between two invariant probability measures µ1 and µ2 of two PDMPs sharing
the same differential flow but with different jump rates and Markov kernels, sometimes
called perturbation theory in the litterature (see for example the recent [23]). This
question is here mainly motivated by the thinning method used to sample trajectories
of PDMPs [17, 16]. Indeed, a PDMP can be exactly sampled (in the sense that no time
discretization is needed) provided that the associated differential flow can be computed
and a simple upper bound on the jump rate is known. When this is not the case, a
PDMP with a truncated jump rate can be sampled, and our result gives a control on
the ensuing error.

Notations and conventions. For all a, b ∈ R, we denote a+ = max(0, a), a ∨ b =
max(a, b), a ∧ b = min(a, b). Id stands for the identity matrix on R

d.
For all x, y ∈ R

d, the scalar product between x and y is denoted by 〈x, y〉 and
the Euclidean norm of x by ‖x‖. For all x ∈ R

d, r > 0, we denote by B (x, r) =
{

w ∈ R
d : ‖w − x‖ 6 r

}

the ball centered at x with radius r. The closed ball centered

in x with radius r is denoted by B (x, r). For any d-dimensional matrix M , define by
‖M‖ = supw∈B(0,1) ‖Mw‖ the operator norm associated with M .

Let (M, g) be a smooth closed Riemannian sub-manifold of RN and B(M) the associ-
ated Borel σ-field. The distance induced by g is denoted by dist. With a slight abuse
of notations, the ball (respectively closed ball) centered at x ∈ M with radius r > 0 is
denoted by B (x, r) (respectively B (x, r)).

For all function F : M → R
m and compact set K ⊂ M, denote ‖F‖∞ = supx∈M ‖F (x)‖,

‖F‖∞,K = supx∈K ‖F (x)‖. Denote by B(M) the set of all measurable and bounded

functions from M to R. The space B(M) is endowed with the topology associated with
the uniform norm ‖·‖∞. Let C(M) stand for the set of continuous function from M

to R and, for all k ∈ N
∗, let Ck(M) be the set of k-times continuously differentiable

function from M to R. Denote for all k ∈ N, Ck
c (M) and Ck

b (M) the set of functions in

Ck(M) with compact support and the set of bounded functions in Ck(M) respectively.
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For f ∈ Ck(M), we denote by Dkf , the kth differential of f . For all function f : M → R,
we denote by ∇f and ∇2f the gradient and the Hessian of f respectively, if they exist.

We denote by P(M) the set of probability measures onM. For µ, ν ∈ P(M), ξ ∈ P(M2)
is called a transference plan between µ and ν if for all A ∈ B(M), ξ(A×M) = µ(A) and
ξ(M×A) = ν(A). The set of transference plan between µ and ν is denoted Γ(µ, ν). The
random variables X and Y on M are a coupling between µ and ν if the distribution of
(X,Y ) belongs to Γ(µ, ν). The total variation norm between µ and ν is defined by

‖µ − ν‖TV = 2 inf
ξ∈Γ(µ,ν)

∫

M2

1∆M
(x, y) dξ(x, y) ,

where ∆M =
{

(x, y) ∈ M2 : x = y
}

. For all µ ∈ P(M), define the support of µ by

suppµ = {x ∈ M : for all open set U ∋ x, µ(U) > 0} .

In the sequel, we take the convention that inf ∅ = +∞. All the random variables
considered in this paper are defined on a fixed probability space (Ω,F ,P).

2. A first definition of Piecewise Deterministic Markov Processes

Definitions and further notations.

Let (M, g) be a smooth closed Riemannian sub-manifold of RN . A PDMP onM is defined
using a triple (ϕ, (λ,Q)i∈J1,ℓK), ℓ ∈ N

∗, referred to as the local characteristics of a PDMP,
where

• ϕ is a differential flow on M: ϕ : (t, h, x) 7→ ϕt,t+h(x) is a measurable function
from R+ ×R+ ×M to M, such that for all t, h1, h2 > 0 ϕt+h1,t+h1+h2 ◦ ϕt,t+h1 =

ϕt,t+h1+h2 , ϕt,t = Id. Moreover, for all (t, x) ∈ R+ × M, h̃ 7→ ϕ
t,t+h̃

(x) is

continuous differentiable from R+ to M and for all t, h ∈ R+, x̃ 7→ ϕt,t+h(x̃) is a
C1-diffeomorphism of M. The flow ϕ is (time)-homogeneous if for all t, h ∈ R+,
ϕt,t+h = ϕ0,h, in which case we denote ϕh = ϕ0,h.

• For all i ∈ J1, ℓK, λi : R+ × M → R+ is a measurable function referred to as a
jump rate on M which is locally bounded, in the sense that ‖λi‖∞,K < ∞ for all

compact K ⊂ R+ × M. The jump rate λi is (time)-homogeneous if it does not
depend on t.

• For all i ∈ J1, ℓK, Qi : R+ × M × B(M) → [0, 1] is an inhomogeneous Markov
kernel on M: for all A ∈ B(M), (t, x) 7→ Qi(t, x,A) is measurable, and for all
(t, x) ∈ R+×M, Qi(t, x, ·) ∈ P(M). The Markov kernel Qi is (time)-homogeneous
if it does not depend on t.

If ϕ is a homogeneous differential flow and, for all i ∈ J1, ℓK, λi, Qi are homogeneous as
well, the local characteristics (ϕ, (λi, Qi)i∈J1,ℓK) are said to be homogeneous. A (homo-
geneous) jump mechanism on M is a pair (λ,Q) constituted of a (homogeneous) jump
rate and a (homogeneous) Markov kernel on M.

A first construction of a PDMP. For all i ∈ J1, ℓK, consider a representation Gi of
the Markov kernel Qi, i.e. a measurable function Gi : t, x, u 7→ G(t, x, u) from R+×M×
[0, 1] to M such that for all (t, x,A) ∈ R+ ×M× B(M), Qi(t, x,A) = P(Gi(t, x, U) ∈ A),
where U is a random variable uniformly distributed on [0, 1]. By [3, Corollary 7.16.1],
such a representation always exists.
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Then, a PDMP (Xt)t>0 based on the local characteristics (ϕ, (λi, Qi)i∈J1,ℓK) and the
initial distribution µ0 can be defined recursively through a Markov chain (X ′

k, Sk)k∈N on
(M ∪ {∞}) × (R+ ∪ {+∞}). For all k ∈ N, X ′

k will be the state of the process (Xt)t>0

at times Sk. Between two times Sk and Sk+1, (Xt)t>0 will be a deterministic function of
X ′

k and Sk. More precisely, consider the following construction.

Construction 1. Let W0 be a random variable with distribution µ0 ∈ P(M) and
((Ej,k)j∈J1,ℓK, Uk)k∈N∗ be an i.i.d. sequence, independent of W0, such that for all k ∈ N

∗

and j ∈ J1, ℓK, Uk is uniformly distributed on [0, 1] and Ej,k is an exponential random
variable with parameter 1, independent of Uk and from Ei,k for i 6= j. Let ∞ /∈ M be a
cemetery point.
Set S0 = 0, X ′

0 = W0, and suppose that (X ′
k, Sk) and (Xt)t6Sk

have been defined for
some k ∈ N, with X ′

k ∈ M and Sk ∈ R+. For all j ∈ J1, ℓK, set

Sj,k+1 = inf

{

t > Sk : Ej,k+1 <

∫ t

Sk

λj

(

s, ϕSk,s(X
′
k)
)

ds

}

, Sk+1 = min
j∈J1,ℓK

Sj,k+1 .

• If Sk+1 = +∞, set Sm = +∞, X ′
m = ∞, Im = 1 for all m > k, and Xt =

ϕSk,t(X
′
k) for all t > Sk.

• If Sk+1 < +∞, set

Ik+1 = min{j ∈ J1, ℓK, Sj,k+1 = Sk+1} , X ′
k+1 = GIk+1

(

Sk+1, ϕSk ,Sk+1
(X ′

k), Uk+1

)

.

For t ∈ (Sk, Sk+1], set Xt = ϕSk ,t(X
′
k) and X ′

k+1 = XSk+1
.

For t > supk∈N Sk, set Xt = ∞.

Note that, when Sk+1 < +∞, k ∈ N, the probability of {Sj,k+1 = Si,k+1 = Sk+1} for
two indexes i 6= j in J1, ℓK is zero, but the definition of Ik+1 ensures that the process
(X ′

k, Sk) is defined not only almost everywhere on Ω, but in fact on all Ω.
Let (F ′

k)k∈N be the filtration associated with (X ′
k, Sk, Ik)k∈N. Then taking a random

variable I0 on J1, ℓK, (X ′
k, Sk, Ik)k∈N is an inhomogeneous Markov chains since for all

k ∈ N, A ∈ B(M), t > Sk, j ∈ J1, ℓK,

P
(

X ′
k+1 ∈ A, Sk+1 6 t, Ik+1 = j

∣

∣Fk

)

= 1M(X ′
k)

∫ t

Sk

Qj(s, ϕSk ,s(X
′
k),A)λj(s, ϕSk ,s(X

′
k))

× exp

{

−
ℓ
∑

i=1

∫ s

Sk

λi(u, ϕSk ,u(X
′
k))du

}

ds .(1)

Note that the sequence (X ′
k, Sk)k∈N is an inhomogeneous Markov chain as well, whose

kernel can be straightforwardly deduced from (1).
Then, (Xt)t>0 is a stochastic process on M ∪ {∞}, i.e. it is a random variable from

(Ω,F ,P) to the space D(R+,M ∪ {∞}) of càdlàg functions from R+ to M ∪ {∞}, en-
dowed with the Skorokhod topology, see [15, Chapter 6]. Moreover, (Xt)t>0 is a Markov
process [14, Theorem 7.3.1], from the class of piecewise deterministic Markov processes

(PDMPs). We say that a stochastic process (X̃t)t>0 is a PDMP with local character-
istics (ϕ, (λi, Qi)i∈J1,nK) and initial distribution µ0 if it has the same distribution on
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D(R+,M ∪ {∞}) as (Xt)t>0. We will denote by PDMP
(

ϕ, (λi, Qi)i∈J1,ℓK, µ0

)

this distri-
bution. In the sequel, we will see that a given PDMP can admit several local character-
istics. Note that, as ϕ is a C1-diffeomorphism, (Xt)t>0 is completely determined by the
Markov chain (X ′

k, Sk)k∈N, referred to as the embedded chain associated to the process.
The sequence (Sk)k∈N is said to be the jump times of the process (Xt)t>0.

A PDMP is said to be homogeneous if its local characteristics are (time) homogeneous.

For (X̃t)t>0 ∈ D(R+,M ∪ {∞}), we call τ∞(X̃) = inf{t > 0 : X̃t = ∞} the

explosion time of the process (X̃t)t>0. A process (X̃t)t>0 is said to be non-explosive

if τ∞(X̃) = +∞ almost surely. PDMP characteristics are said to be non-explosive if for
all initial distribution the associated PDMP is non-explosive.

Construction 1 associated with the characteristics (ϕ, (λi, Qi)i∈J1,ℓK defines a Markov
semi-group (Ps,t)t>s>0 for all x ∈ M, A ∈ B(M) and t > s > 0 by

Ps,t(x,A) = P(X̄s,x
t−s ∈ A) ,

where (X̄s,x
u )u>0 is a PDMP started from x with characteristics ((ϕs+u,s+t)t>u>0, (λi(s+

·, ·), Qi(s+ ·, ·, ·))i∈J1,ℓK). Its left-action on C(M) and right-action on P(M) are then given
by

Ps,tf(x) = E
[

f(X̄x,s
t )
]

, νPs,t(A) =

∫

M

P(X̄x,s
t ∈ A)dν(x) ,

for all f ∈ C(M), x ∈ M, ν ∈ P(M), A ∈ B(M) and t > s > 0. The Markov property of
(Xt)t>0 is equivalent to the semi-group property Pu,sPs,t = Pu,t for all t > s > u > 0.
If (ϕ, (λi, Qi)iJ1,ℓK) is non explosive, then Ps,t is a Markov kernel for all t > s > 0 and
we say that (Ps,t)t>s>0 is non explosive. Else, it is only a sub-Markovian kernel. For a
homogeneous process, we simply write Pt = P0,t for all t > 0.

For a PDMP (Xt)t>0 with jump times (Sk)k∈N, we say that at time Sk+1, k > 0, a true
jump occurred ifXSk+1

6= ϕSk,Sk+1
(XSk

). Else, we say that at time Sk+1 a fantom jumped
occurred. Note that, in the definition of homogeneous PDMPs with characteristics
(ϕ, λ,Q) given in [9, standard conditions p. 62], fantom jumps are impossible, since it
is assumed that for all x ∈ M, Q(x, {x}) = 0. This is not the case with the definition
we gave in Section 2, where the notion of jump times depends on the jump mechanisms
used to define the process. We will see that in Section 4 that under our settings, based
on characteristics (ϕ, (λi, Qi)i∈J1,ℓK) which define a PDMP (Xt)t>0, we can always define
some characteristics (ϕ, λ,Q) which define a PDMP (Zt)t>0 with the same distribution
as (Xt)t>0 but no fantom jump.

The condition imposed by [9] implying that a PDMP has no fantom jump can be very
useful since it allows a one-to-one correspondence between the path of the continuous-
time process (Xt)t>0 and of its embedded chain (X ′

k, Sk)k∈N. With our construction, the
continuous process is completely determined by its embedded chain but not the opposite.

On the other hand, adding fantom jumps sometimes turns out to be convenient. Here
is an example: let (ϕ, λ,Q) be the characteristics of a PDMP (Xt)t>0, and suppose that
there exists λ∗ > 0 such that λ(t, x) 6 λ∗ for all t > 0 and x ∈ M. From Proposi-
tion 5 below, (Xt)t>0 has the same distribution as the PDMP (Zt)t>0 obtained through

Construction 1 from the characteristics (ϕ, λ∗, Q̃) with for all (t, x,A) ∈ R+×M×B(M),

Q̃(t, x,A) =
λ(t, x)

λ∗
Q(t, x,A) +

{

1−
λ(t, x)

λ∗

}

δx(A) .
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The jump times of (Zt)t>0 are given by a Poisson process with intensity λ∗. The method
of adding fantom jumps so that the distribution of the jump times get simpler (for
sampling purpose, for instance) is called thinning (see [16] and references therein for
more details).

Another use of fantom jump is presented in [8]. The stability or ergodicity of a
PDMP (Xt)t>0 and of its embedded chain (X ′

k, Tk)k∈N may differ, but this is no more
the case if fantom jumps are added at constant rate, i.e. if we consider the PDMP with
characteristics (ϕ, λ+ 1, Q̃), where Q̃ is given for all (t, x,A) ∈ R+ ×M× B(M) by

Q̃(t, x,A) =
λ(t, x)

1 + λ(t, x)
Q(t, x,A) +

1

1 + λ(t, x)
δx(A)

and its embedded chain. See [8] for more details.
There are a other differences between the assumptions we made on the characteristics

of a PDMP and those made in [9, standard conditions p. 62]. For simplicity, we consider
that the flow cannot exit M contrary to [9]. In addition, to prevent the artificial problem
of an infinity of fantom jumps in a finite time, we assume that λ is locally bounded,
instead of the following weaker condition that would be sufficient to define (Xt)t>0: for

all (t, x) ∈ R+ × M, there exists h > 0 such that
∫ t+h

t
λ(s, ϕt,s(x))ds < +∞. On the

other hand, we don’t assume a priori that PDMPs are non-explosive.

Examples.

Several examples of PDMP can be found in [18] and references therein. In the present
paper, special attention will be paid to the family of velocity jump PDMP, described
as follows. Let V ⊂ R

d be a smooth complete Riemannian submanifold, and set M =
R
d × V. Then, M is a smooth complete Riemannian submanifold of R2d endowed with

the canonical Euclidean distance and tensor metric. We say that a PDMP (Xt, Yt)t>0

on M (where Xt ∈ R
d and Yt ∈ V for all t > 0) with characteristics (ϕ, (λi, Qi)i∈J1,ℓK) is a

velocity jump PDMP if ϕ is homogeneous and given for any t ∈ R+ and (x, v) ∈ R+×V

by

ϕt(x, y) = (x+ ty, y)

and if for all i ∈ J1, ℓK, all A ∈ B(Rd) and all (t, x, y) ∈ R+ × R
d × V,

Qi(t, (x, y),A × V) = δx(A) .

Consider the PDMP (Xt, Yt)t>0 associated with this choice of characteristics and
(X ′

k, Y
′
k, Sk)k>0 the corresponding embedded chain. Note that by construction for all

t ∈ [Sk, Sk+1), k ∈ N, Xt = X ′
k+(t−Sk)Y

′
k and Yt = Y ′

k. Therefore for all t < supk∈N Sk,

Xt =
∫ t

0 Ysds and only (Yt)t>0 can be discontinuous in time.
The class of velocity jump processes gathers the Zig-Zag process [4], the Bouncy

Particle Sampler (BPS) [22] and many of their variants. The choice for the jump rates
and Markov kernels of these different (but similar) processes are mainly of one of the
following type (here we only consider homogeneous mechanisms):

• refreshment mechanism: the rate λ(x, y) only depends on x ∈ R
d, and the kernel

Q is constant, i.e. there exists ν ∈ P(V) such that for all (x, y) ∈ R
d ×V and all

(A,A′) ∈ B(M)× B(V)

Q((x, y),A × A
′) = δx(A)ν(A

′) .
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• deterministic bounce mechanism: there exists a measurable function g : Rd → R
d

such that for all (x, y) ∈ M, λ(x, y) = 〈g(x), y〉+ and Q((x, y), {x}×{Ψ(x, y)}) =

1, for a measurable function Ψ : M → Y. A particular example in the case Y = Sd

or Y = R
d, is Ψ = R where R is given for all (x, y) ∈ M by

(2) R(x, y) =

{

y − 2 ‖g(x)‖−2 〈g(x), y〉 g(x) if g(x) 6= 0 ,

y otherwise .

Note that R(x, y) is simply the orthogonal reflection of y with respect to g(x) if
g(x) 6= 0.

• randomized bounce mechanism: there exists a measurable function g : Rd → R
d

such that for all (x, y) ∈ M and A ∈ B(Rd), A′ ∈ B(Y), λ(x, y) = 〈g(x), y〉+ and

Q((x, y),A×A′) = δx(A)Q̃((x, y),A′), where Q̃ is a Markov kernel on M×B(Y).

For instance, [6] studies the velocity jump process associated with the linear Boltz-
mann equation, which gives an exemple of refreshment mechanism. The Zig-Zag (ZZ)
process [4] and the Bouncy Particle Sampler (BPS) [22, 21, 10] are recently proposed
PDMP used to sample from a target density π ∝ exp(−U), where U : R

d → R

is a continuously differentiable function. The ZZ process is a velocity jump process
with Y = {−1, 1}d and d deterministic bounce mechanisms (λi, Qi)i∈J1,dK given for all

i ∈ J1, dK, x ∈ R
d, y ∈ {−1, 1}d and A ∈ B(Rd) by

λi(x, y) = (yi∂U(x)/∂xi)+ , Qi((x, y), {x} × {−y}) = 1 .

Note that in this case, for all x ∈ R
d, gi(x) = (∂U(x)/∂xi)ei where ei is the ith vector

of the standard basis of Rd. Additional refreshment mechanisms can be added to the
process. In the rest of this paper, we will repeatedly use the BPS process as an illustration
to our different results.

Example-Bouncy Particle Sampler 1. Let V be a smooth closed sub-manifold of Rd

rotation invariant, i.e. for any rotation O of Rd, OV = V. Let λc > 0 and µv ∈ P(V).
The BPS process associated with the potential U , refreshment rate λc and refreshment
distribution µv is the PDMP on M = R

d × V with characteristics (ϕ, (λi, Qi)i∈J1,2K)

where ϕ is given by (2) and for all (x, y) ∈ R
d × V, A ∈ B(Rd), λ1(x, y) = 〈y,∇U(x)〉+,

λ2(x, y) = λc, Q1((x, y),A × {R(x, y)}) = δx(A) and Q2((x, y), ·) = δx ⊗ µv, where R
is given by (2) with g(x) = ∇U(x). Note that (λ1, Q1) is the pure bounce mechanism
associated with g, and (λ2, Q2) is a refreshment mechanism.

Variants of the BPS with randomized bounces have been recently introduced in [20,
26, 24].

3. Alternative constructions

Consider PDMP characteristics (ϕ, (λi, Qi)i∈J1,ℓK), an initial distribution µ0 ∈ P(M)
and the associated process (Xt)t>0 defined in Section 2. The goal of this Section is to
construct another process (Yt)t>0 on the same probability space (Ω,F ,P) with the same
distribution on D(R+,M ∪ {∞}) as (Xt)t>0.
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Construction 2. Let W0 be a random variable with distribution µ0 ∈ P(M) and
(Ej,k, Uj,k)j∈J1,ℓK,k∈N∗ be an i.i.d. family, independent of W0, such that for all k ∈ N

and j ∈ J1, ℓK, Uj,k is uniformly distributed on [0, 1] and Ej,k is an exponential random
variable with parameter 1, independent of Uj,k.

Set S̃0 = 0, Y ′
0 = W0, H̃j,1 = Ej,1 and Ñj,0 = 1 for j ∈ J1, ℓK. Suppose that

(Y ′
k, S̃k, (H̃j,k+1, Ñj,k+1)j∈J1,ℓK) and (Yt)t6Sk

have been defined for some k ∈ N, with

Y ′
k ∈ M and S̃k ∈ R+. Set

S̃j,k+1 = inf

{

t > S̃k : H̃j,k+1 <

∫ t

S̃k

λj

(

s, ϕS̃k,s
(Y ′

k)
)

ds

}

, S̃k+1 = min
j∈J1,ℓK

S̃j,k+1 .

• If S̃k+1 = +∞, set S̃m = +∞, Y ′
m = ∞, Ĩm = 1 for all m > k and Yt = ϕS̃k,t

(Y ′
k)

for t > S̃k.
• If S̃k+1 < +∞, set

Ĩk+1 = min{j ∈ J1, ℓK, S̃j,k+1 = S̃k+1} , H̃Ĩk+1,k+2 = EĨk+1,Ñk+1
,

Y ′
k+1 = GĨk+1

(S̃k+1, ϕS̃k,S̃k+1
(Y ′

k), UĨk+1,Ñk+1
) , ÑĨk+1,k+2 = ÑĨk+1,k+1 + 1 ,

and for j 6= Ĩk+1,

H̃j,k+2 = H̃j,k+1 −

∫ S̃k+1

S̃k

λj

(

s, ϕS̃k ,s
(Y ′

k)
)

ds .

Set Yt = ϕS̃k,t
(Y ′

k) for t ∈
(

S̃k, S̃k+1

)

and YS̃k+1
= Y ′

k+1.

For t > supk∈N S̃k, set Yt = ∞.

We show in the following result that the two constructions we consider define the
same distribution on D(R+,M ∪ {∞}).

Proposition 2. The two Markov chains (X ′
k, Sk, Ik)k∈N and (Y ′

k, S̃k, Ĩk)k∈N have the

same distribution on ((M∪{∞})× (R+∪{+∞}))N. Therefore, (Xt)t>0 and (Yt)t>0 have
the same distribution on D(R+,M ∪ {∞}).

We preface the proof by a lemma. Denote by (F̃k)k∈N and (F̃ ′
k)k∈N the filtration

associated with the sequence of random variables (Y ′
k, S̃k, Ĩk)k∈N and (Y ′

k, S̃k)k∈N.

Lemma 3. For all k ∈ N, given {S̃k < +∞}, (H̄j,k+1)j∈J1,ℓK are i.i.d. exponential

random variables with parameter 1, independent of F̃ ′
k. In addition, for all i ∈ J1, ℓK,

given {Ĩk = i} ∩ {S̃k < +∞}, (H̃j,k+1)j∈J1,ℓK\{i} are i.i.d. exponential random variables

with parameter 1, independent of F̃ ′
k.

Proof. Set for all k ∈ N
∗ and j ∈ J1, ℓK, Bj,k = 1R+(S̃k)

∫ S̃k

S̃k−1
{λj(s, ϕS̃k−1,s

(Y ′
k−1))}ds.

Note that the second statement is equivalent to for all k ∈ N
∗ and i ∈ J1, ℓK, (H̃j,k −

Bj,k)j∈J1,ℓK\{i} are i.i.d. exponential random variables with parameter 1, independent of
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σ(F̃ ′
k−1, S̃i,k) given {S̃k = S̃i,k} since for all A ∈ F̃ ′

k, {S̃k = S̃i,k} ∩ A ∈ σ(F̃ ′
k−1, S̃i,k),

which is the result that we will show.
The proof is by induction on k ∈ N

∗. For k = 1, by definition the first statement holds.
The second part follows from the memoryless property of the exponential distribution
and because for all i ∈ J1, ℓK, (H̃1,j = E1,j)j∈J1,ℓK\{i}, is independent of σ(F̃

′
0, S̃1,i).

Assume now that the result holds for k ∈ N
∗. Then for all t1, . . . , tℓ > 0, we have

using the induction hypothesis, the definition of (H̃j,k+1)j∈J1,ℓK, the memoryless property

of the exponential distribution and since given {S̃k = S̃i,k}, Ei,Ñk+1
is independent of

σ(F̃ ′
k, S̃k, (H̃j,k)j∈J1,ℓK) for all i ∈ J1, ℓK,

1R+(S̃k)P





ℓ
⋂

j=1

{H̃j,k+1 > tj}

∣

∣

∣

∣

∣

∣

F̃ ′
k





= 1R+(S̃k)

ℓ
∑

i=1

P





ℓ
⋂

j=1

{H̃j,k+1 > tj} ∩ {S̃k = S̃i,k}

∣

∣

∣

∣

∣

∣

F̃ ′
k





= 1R+(S̃k)
ℓ
∑

i=1

P





ℓ
⋂

j=1,j 6=i

{H̃j,k+1 > tj} ∩ {S̃k = S̃i,k} ∩ {Ēi,N̄k+1
> ti}

∣

∣

∣

∣

∣

∣

F̃ ′
k





= 1R+(S̃k) exp



−
ℓ
∑

j=1

tj



 .

which shows the first part of the statement. Finally we show the second statement of
the induction. Note that (H̃j,k+1)j∈J1,ℓK\{i} is an independent family of random vari-

ables, independent of F̃ ′
k and S̃i,k+1, for i ∈ J1, ℓK and therefore given {Ĩk+1 = i},

(H̃j,k+1)j∈J1,ℓK\{i} is independent of (Bj,k+1)j∈J1,ℓK\{i}. Then, using the first statement
and the memoryless property of the exponential distributions, we have for all t1, . . . , tℓ >
0,

1R+(S̃k+1)P





ℓ
⋂

j=1,j 6=i

{H̃j,k+1 −Bj,k+1 > tj} ∩ {S̃k+1 = S̃i,k+1}

∣

∣

∣

∣

∣

∣

σ(F̃ ′
k, S̃i,k+1)





= 1R+(S̃k+1)P





ℓ
⋂

j=1,j 6=i

{

{H̃j,k+1 −Bj,k+1 > tj} ∩ {H̃j,k+1 > Bj,k+1}
}

∣

∣

∣

∣

∣

∣

σ(F̃ ′
k, S̃i,k+1)





= 1R+(S̃k+1) exp



−
ℓ
∑

j=1,j 6=i

tj



 .

�

Proof of Proposition 2. We show that the two processes (X ′
k, Sk, Ik)k∈N and (Y ′

k, S̃k, Ĩk)k∈N
have the same distribution. Note that, since (X ′

0, S0, I0) and (Y ′
0 , S̃0, Ĩ0) have the same

distribution, this result is equivalent to show that (Y ′
k, S̃k, Ĩk)k∈N is also a Markov chain
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with a Markov kernel characterized by (1). Let k ∈ N
∗, A ∈ B(M), t > S̃k, i ∈ J1, ℓK.

By Lemma 3 and definition of (Y ′
k̃
, S̃

k̃
, Ĩ

k̃
)
k̃∈N, since, given {Ĩk+1 = i} ∩ {S̃k+1 < +∞},

Y ′
k+1 = G(S̃i,k+1, ϕS̃k,S̃i,k+1

(Y ′
k), Ui,Nk+1

) and Ui,Nk+1
is independent of F̃k, then setting

Gk+1,i = σ(F̃k, H̃i,k+1, Ui,Nk+1
) and Bj,k+1 = 1R+(S̃i,k+1)

∫ S̃i,k+1

S̃k
λj(s, ϕS̃k ,s

(Y ′
k))ds, for

j ∈ J1, ℓK \ {i}, we have

P

(

Y ′
k+1 ∈ A, S̃k+1 6 t, Ĩk+1 = i

∣

∣

∣ F̃k

)

= P

(

Y ′
k+1 ∈ A, S̃i,k+1 6 t, S̃i,k+1 < S̃j,k+1, for all j ∈ J1, ℓK \ {i}, Ĩk+1 = i

∣

∣

∣ F̃k

)

= E





1A(Y
′
k+1)1[S̃k,t](S̃i,k+1)P





⋂

j∈J1,ℓK,j 6=i

{S̃i,k+1 6 S̃j,k+1}

∣

∣

∣

∣

∣

∣

Gk+1,i





∣

∣

∣
F̃k





= E





1A(Y
′
k+1)1[S̃k,t](S̃i,k+1)P





⋂

j∈J1,ℓK,j 6=i

{Bj,k+1 < H̃j,k+1}

∣

∣

∣

∣

∣

∣

Gk+1,i





∣

∣

∣
F̃k





= E





1A(Y
′
k+1)1[S̃k,t](S̃i,k+1) exp







−
ℓ
∑

j=1,j 6=i

∫ S̃i,k+1

t

λj(u, ϕS̃k ,u
(Y ′

k))du







∣

∣

∣F̃k



 .

The proof then follows from the definition of S̃i,k+1 and Y ′
k+1, and Lemma 3. �

For k > 1 with Sk < ∞, we say that, at time Sk, the process (Xt)t>0 given by
Construction 1 has made a jump of type Ik, or equivalently that Sk is a jump time of
type Ik. Denote

(3) T (j) = inf {Sk : k > 1, Ik = j}

the first jump time of type j. Then, one example of application of Proposition 2 is the
following result.

Proposition 4. Let ℓ = ℓ1 + ℓ2 with ℓ1, ℓ2 ∈ N
∗. Let (Xt)t>0 be a PDMP on M

with characteristics (ϕ, (λi, Qi)i∈J1,ℓK) given by Construction 1 and initial distribution

µ0. Define T = min{T (i) : i ∈ Jℓ1 + 1, ℓK}, where T (j) is given by (3) for all j ∈ J1, ℓK .
Then the cumulative distribution function of T is given for all u > 0 by

(4) P (T 6 u) = P



E <

ℓ
∑

i∈Jℓ1+1K

∫ u∧τ∞(Z)

0
λi (s, Zs) ds



 ,

where (Zt)t>0 is a PDMP with characteristics (ϕ, (λi, Qi)i∈J1,ℓ1K) and initial distribution
µ0, and E is a standard exponential random variable independent of (Zt)t>0.

Proof. Let (Yt)t>0 be a PDMP defined by Construction 2 with characteristics (ϕ, (λi,
Qi)i∈J1,ℓK) and initial distribution µ0. Define similarly to (Xt)t>0 for all j ∈ J1, ℓK,

T̃ (j) = inf{S̃k : k > 1, Ĩk = j} and T̃ = min{T̃ (i) : i ∈ Jℓ1 + 1, ℓ2K}. Note that since

by Proposition 2, (X ′
k, Sk, Ik)k∈N and (Y ′

k, S̃k, Ĩk)k∈N has the same distribution, T and

T̃ have the same distribution and it suffices to show that the cumulative distribution
function of T̃ is given by (4).
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Let (Zt)t>0 be a PDMP with characteristics (ϕ, (λi, Qi)i∈J1,ℓ1K) and initial distribution
µ0 defined by Construction 2 and based on the random variablesW0, (Ej,k, Uj,k)j∈J1,ℓ1K,k∈N,
and let (Z ′

k, Rk, Jk)k∈N be the corresponding embedded chain. By construction, for all

t 6 T̃ ∧ τ∞(Z), Yt = Zt. In addition, define

N = inf
{

k ∈ N
∗ : there exists i ∈ Jℓ1 + 1, ℓK , Ĩk = i

}

.

By definition, T̃ = S̃N on {T̃ < +∞} and for all k ∈ N
∗, on {N = k} for all t ∈ [0, S̃k],

Yt = Zt, and for all n 6 k, Y ′
n = Z ′

n, S̃n = Rn. Therefore, for all k ∈ N
∗, on {N >

k} ∩ {τ∞(Z) > t}, for all i ∈ Jℓ1 + 1, ℓK, we have by induction

S̃i,k = inf

{

t > Rk−1 : H̃i,k <

∫ t

Rk−1

λi

(

s, ϕRk−1,s(Z
′
k)
)

ds

}

= inf

{

t > 0 : Ei,0 <

∫ t

0
λi (s, Zs) ds

}

.

Since {T̃ < τ∞(Z)} ⊂ {T̃ < +∞}, we thus obtain

{T̃ < τ∞(Z)} ∩ {T̃ > t} = {T̃ < τ∞(Z)} ∩







⋂

k∈N∗, i∈Jℓ1+1,ℓK

{S̃i,k > t} ∩ {N = k}







= {T̃ < τ∞(Z)} ∩







⋂

i∈Jℓ1+1,ℓK

{

Ei,0 >

∫ t

0
λi (s, Zs) ds

}







.(5)

In addition, since {T̃ = +∞} ⊂ {τ∞(Z) = τ∞(Y )} ⊂ {T̃ > τ∞(Z)}, we have

{T̃ > τ∞(Z) ∨ t} = {T̃ = +∞} =
⋂

i∈Jℓ1+1,ℓK, k∈N∗

{S̃i,k > Rk}

=
⋂

i∈Jℓ1+1,ℓK

{

Ei,0 >

∫ τ∞(Z)

0
λi (s, Zs) ds

}

.(6)

Combining (5) and (6) and since (Ei,0)i∈Jℓ1+1,ℓ2K is independent of (Zs)s>0, we get

P

(

T̃ > t
)

= P





⋂

i∈Jℓ1+1,ℓK

{

Ei,0 >

∫ τ∞(Z)∧t

0
λi (s, Zs) ds

}





= E



exp



−
ℓ
∑

i=ℓ1+1

∫ τ∞(Z)∧t

0
λi (s, Zs) ds







 ,

which concludes the proof. �
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4. Superposition and splitting of jump mechanisms

We now introduce a tool to deal with PDMP: superposition and splitting of jump
mechanisms.

Proposition 5. Let (λi,1, Qi,1)i∈J1,ℓ1K and (λi,2, Qi,2)i∈J1,ℓ2K be two families of jump
mechanisms on M. Suppose that for all (t, x,A) ∈ R+ ×M× B(M),

ℓ1
∑

i=1

λi,1(t, x)(Qi,1(t, x,A)− δx(A)) =

ℓ2
∑

i=1

λi,2(t, x)(Qi,2(t, x,A)− δx(A)) .(7)

Then, for all differential flow ϕ and initial distribution µ0 ∈ P(M),

PDMP(ϕ, (λi,1, Qi,1)i∈J1,ℓ1K, µ0) = PDMP(ϕ, (λi,2, Qi,2)i∈J1,ℓ2K, µ0) .

If (λi, Qi)i∈J1,ℓK is a family of jump mechanisms, we define the associated minimal
jump mechanism (λm, Qm) and the associated total jump mechanism (λT, QT) for all
(t, x,A) ∈ R+ ×M× B(M), by

(8)

λm(t, x) =
ℓ
∑

i=1

λi(t, x)Qi(t, x,M \ {x})

Qm(t, x,A) =

{

λ−1
m (t, x)

∑ℓ
i=1 λi(t, x)Qi(t, x,A \ {x}) if λm(t, x) 6= 0,

δx(A) else.

λT(t, x) =

ℓ
∑

i=1

λi(t, x)

QT(t, x,A) =

{

λ−1
T (t, x)

∑ℓ
i=1 λi(t, x)Qi(t, x,A) if λT(t, x) 6= 0,

δx(A) else.

The jump mechanism (λm, Qm) is minimal in the sense that if λm(t, x) 6= 0, for t ∈
R+, x ∈ M, then Qm(t, x, {x}) = 0. As a consequence, if (Xt)t>0 is a PDMP with
characteristics (ϕ, λm, Qm) and jump times Sk, k ∈ N, then almost surely XSk+1

6=
ϕSk,Sk+1

(XSk
), and therefore (Xt)t>0 has no fantom jumps.

Since, for all (t, x,A) ∈ R+ ×M× B(M) and i ∈ J1, nK,

Qi(t, x,A \ {x}) − δx(A)Qi(t, x,M \ {x}) = Qi(t, x,A)− δx(A) ,

the minimal jump mechanisms associated to (λ1
i , Q

1
i )i∈J1,ℓ1K and (λ2

i , Q
2
i )i∈J1,ℓ2K are equal

if (7) holds. Therefore, the statement of Proposition 5 is equivalent to

PDMP(ϕ, (λ1
i , Q

1
i )i∈J1,ℓ1K, µ0) = PDMP(ϕ, λT, QT, µ0) = PDMP(ϕ, λm, Qm, µ0).

We first show the first equality in the following Lemma.

Lemma 6. Let (λT, QT) be the total jump mechanism associated to (λi, Qi)i∈J1,ℓK. Then,
for all flow ϕ and µ0 ∈ P(M), PDMP(ϕ, (λi, Qi)i∈J1,ℓK, µ0) = PDMP(ϕ, λT, QT, µ0).

Proof. Let (Xt)t>0 be a PDMP with characteristics (ϕ, (λi, Qi)i∈J1,ℓK) and initial distri-
bution µ0 defined by Construction 1, and (X ′

k, Sk)k∈N be its embedded chain. Since the
process is completely determined by its embedded chain, and by the Markov property,
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it is sufficient to prove that the Markov kernel of (X ′
k, Sk)k∈N is equal to the Markov

kernel of the embedded chain associated to a PDMP with characteristics (ϕ, λT, QT).
Summing out (1) over j ∈ J1, ℓK, we get for all t > 0 and A ∈ B(M)

P
(

X ′
k+1 ∈ A, Tk+1 6 t

∣

∣Fk

)

= 1M(X
′
k)

∫ t

Sk

ℓ
∑

j=1

Qj(s, ϕSk ,s(X
′
k),A)λj(s, ϕSk ,s(X

′
k)) e

−
∑ℓ

i=1

∫ s

Sk
λi(u,ϕSk,u(X

′

k
))du

ds

= 1M(X
′
k)

∫ t

Sk

QT(s, ϕSk ,s(X
′
k),A)λT(s, ϕSk ,s(X

′
k)) e

−
∫ s

Sk
λT(u,ϕSk,u(X

′

k
))du

ds ,

which concludes, since from (1) this is exactly the Markov kernel of the embedded chain
associated to a PDMP with characteristics (ϕ, λT, QT). �

Before showing Proposition 5, we need the following technical lemma. In the following,
we denote by Id the Identity Markov kernel, defined by Id(t, x,A) = δx(A) for all t > 0,
x ∈ M, A ∈ B(M). The following lemma gives a rigorous proof of the intuitive idea that
adding fantom jumps does not change the distribution of the process.

Lemma 7. For any characteristics (ϕ, λ,Q), jump rate λ′ : M → R+ and µ0 ∈ P(M),

PDMP(ϕ, λ,Q, µ0) = PDMP(ϕ, {(λ,Q), (λ′ , Id)}, µ0) .

Proof. We consider (Yt)t>0 a PDMP with characteristics (ϕ, {(λ,Q), (λ′ , Id)}) and ini-
tial distribution µ0 defined from random variables W0 and (Ej,k, Uj,k)j∈{1,2},k∈N by Con-

struction 2, and its embedded chain (Y ′
k, S̃k, jk)k∈N. Let R0 = 0 and, for k > 1, let

Rk = inf{S̃i > Rk−1 : i ∈ N, Ĩi = 1} be the kth jump of type 1 (i.e. associated with

the jump mechanism (λ,Q)). For i > 1 such that Ĩi = 2, the ith jump is a fantom one,
i.e. YS̃i

= ϕS̃i−1,S̃i
(YS̃i−1

). By the flow property ϕs,u ◦ ϕt,s = ϕt,u, this implies that

Yt = ϕRk ,t(YRk
) for all k ∈ N and t ∈ [Rk, Rk+1 ∧ τ∞(Y )).

If k ∈ N is such that Rk < ∞, then {ϕRk ,t(YRk
) : t ∈ [Rk, (1 + Rk) ∧ Rk+1]} is a

compact set of M, on which λ′ is bounded (as a locally bounded function). Hence, there
cannot be an infinite number of jump of second type between times Rk and (1 +Rk) ∧
Rk+1. In particular, necessarily, sup {Rk : k ∈ N} = sup{S̃k : k ∈ N} = τ∞(Y ). As a
consequence, Yt = ϕRk ,t(YRk

) holds for all k ∈ N and t ∈ [Rk, Rk+1) on {Rk < +∞}.

Define for all k ∈ N
∗, Nk = inf{i > Nk−1 : Ĩi = 1}, setting N0 = 0. Construction 2

is such that, then, for all k ∈ N, on {Rk < +∞} ∩ {Nk+1 < +∞},

Rk+1 = inf

{

t > Rk : E1,k+1 <

∫ t

Rk

λ(s, ϕRk ,s(YRk
))ds

}

.

In addition, for all k ∈ N,

{Rk < +∞} ∩ {Nk+1 = +∞} ∩ {Rk = +∞}

= {Rk < +∞} ∩ {Nk+1 = +∞} ∩







⋂

i>Nk

{

H̃1,i+1 >

∫ t

Si

λ(s, ϕSi,s(YSi
))ds

}







= {Rk < +∞} ∩ {Nk+1 = +∞} ∩

{

E1,k+1 >

∫ +∞

Rk

λ(s, ϕRk ,s(YRk
))ds

}

.
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Therefore, on {Rk < +∞} ∩ {Nk+1 = +∞},

Rk+1 = +∞ = inf

{

t > Rk : E1,k+1 <

∫ t

Rk

λ(s, ϕRk ,s(YRk
))ds

}

,

and, if Rk+1 < ∞, YRk+1
= G1(Rk+1, ϕRk ,Rk+1

(YRk
), U1,k).

Therefore, denoting Z ′
k = YRk

for all k ∈ N, then (Z ′
k, Rk) is the embedded chain

associated to a PDMP (Zt)t>0 with characteristics (ϕ, λ,Q) and constructed with the
random variables W0 and (E1,k, U1,k)k>0 (through either Construction 1 or 2, since there
is only one jump mechanism so that both coincides). For all k ∈ N and t ∈ [Rk, Rk+1),
Zt = ϕRk ,t(Z

′
k) = Yt, which concludes. �

Proof of Proposition 5. As previously mentioned, to show Proposition 5, it is sufficient
to prove that, for all differential flow ϕ and initial distribution µ0,

PDMP(ϕ, (λ1
i , Q

1
i )i∈J1,ℓ1K, µ0) = PDMP(ϕ, λT, QT, µ0) = PDMP(ϕ, λm, Qm, µ0)

holds, where (λT, QT) and (λm, Qm) are the total and minimal jump mechanism respec-
tively associated to both (λ1

i , Q
1
i )i∈J1,ℓ1K and (λ2

i , Q
2
i )i∈J1,ℓ2K defined by (8). The first

identity is given by Lemma 6, therefore it remains to show the second one.
By Lemma 7, since λT − λm is by definition a jump rate (i.e. a positive and locally

bounded measurable function), we get for all differential flow ϕ and initial distribution
µ0 that

PDMP(ϕ, λm, Qm, µ0) = PDMP(ϕ, {(λm, Qm), (λT − λm, Id)}, µ0) .

The proof is concluded upon noting that the total jump mechanism associated with
{(λm, Qm), (λT − λm, Id)} is equal to (λT, QT) and using Lemma 6 again. �

Example - Bouncy Particle Sampler. By Proposition 5, the BPS process defined in
Example 1 is a PDMP with characteristics (ϕ, λ,Q), where for all t > 0, (x, y) ∈ R

d×Y,
and A ∈ B(Rd × Y), ϕt(x, y) = (x+ ty, y),

(9) λ(x, y) = 〈∇U(x), y〉+ + λc ,

and

Q((x, y),A) = λ−1(x, y)
{

〈∇U(x), y〉+ δ(x,R(x,y))(A) + λc(δx ⊗ µv)(A)
}

,

where R is defined in (2) with g = ∇U .

5. Non-explosion

It is generally easier to prove that a given particular PDMP is non-explosive than to
provide good general conditions that ensure non-explosion for PDMPs. Nevertheless, we
give here two results on that topic that will prove useful in the rest of this work, and
may be of interest in other situations.

Proposition 8. Let (Xt)t>0 be a PDMP with characteristics (ϕ, (λi, Qi)i∈J1,ℓK) and
initial distribution µ0 be given by Construction 1 for some random variables W0 and
((Ej,k)j∈J1,ℓK, Uk)k∈N. For all M > 0, let (XM

t )t>0 be a PDMP with characteristics
(ϕ, (M ∧ λi, Qi)i∈J1,ℓK) and initial distribution µ0 be given by Construction 1 for the
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same random variables W0 and ((Ej,k)j∈J1,ℓK, Uk)k∈N as (Xt)t>0. The process (Xt)t>0 is
non-explosive if and only if, for all t > 0,

lim
M→+∞

P
(

Xs = XM
s , for all s ∈ [0, t]

)

= 1 .

Proof. Suppose that (Xt)t>0 is non-explosive. Then for almost all ω ∈ Ω, the pro-
cess only jumps a finite number of time between times 0 and t, so that {Xs : s ∈
[0, t]} is a compact set of M. Since the rate jumps are locally bounded, λ⋆(ω) =

sup{
∑ℓ

j=1 λj(s,Xs) : s ∈ [0, t]} is finite for almost all ω ∈ Ω. We get for all ω ∈ Ω

and M > λ⋆(ω), by definition that sups∈[0,t]
∣

∣Xs −XM
s

∣

∣ = 0 and therefore, for almost

all ω ∈ Ω, limM→+∞ 1{0}(sups∈[0,t] |Xs −XM
s |) = 1. Thus, since {Xs = XM

s , for all s ∈

[0, t]} = {sups∈[0,t] |Xs−XM
s | = 0}, the proof is concluded using the Lebesgue dominated

convergence theorem.
Now, to prove the converse, remark that (XM

t )t>0 is non-explosive for all M > 0,
since its jump rates are bounded. In particular, XM

t ∈ M for all t > 0, so that

P(τ∞(X) > t) = P(Xt ∈ M) > P(Xt = XM
t )

for all M > 0. The conclusion then follows taking M → +∞. �

In particular, Proposition 8 implies that, if (ϕ, (λi, Qi)i∈J1,ℓK) is non explosive, denot-

ing by (Ps,t)t>s>0 and (PM
s,t )t>s>0 the Markov semi-group associated to characteristics

(ϕ, (λi, Qi)i∈J1,ℓK) and (ϕ, (M ∧ λi, Qi)i∈J1,ℓK), M > 0 then, since for all µ0 ∈ P(M) and
all t > 0,

‖µ0P0,t − µ0P
M
0,t‖TV = sup

A∈B(M)

∣

∣P(Xt ∈ A)− P(XM
t ∈ A)

∣

∣ 6 2P(Xt 6= XM
t ) ,

we get limM→+∞ ‖µ0P0,t − µ0P
M
0,t‖TV = 0.

The second result concerning non-explosion of PDMPs is the following:

Proposition 9. Let (ϕ, (λi, Qi)i∈J1,ℓK) be homogeneous characteristics with ℓ > 1. As-
sume that the characteristics (ϕ, (λi, Qi)i∈J1,ℓ−1K) are non-explosive and ‖λℓ‖∞ < +∞.
Then (ϕ, (λi, Qi)i∈J1,ℓK) are non-explosive as well.

Proof. Let µ0 ∈ P(M) and (Yt)t>0 be a PDMP with characteristics (ϕ, (λi, Qi)i∈J1,ℓK)
and initial distribution µ0 given by Construction 2 based on random variables W0 and
(Ej,k, Uj,k)j∈J1,ℓK,k∈N. Let (Y ′

k, S̃k, Ĩk)k∈N be the corresponding embedded chain. First,
consider the decomposition

(10) P

(

sup
n∈N

S̃n < +∞

)

= P

(

sup
n∈N

S̃n < +∞, sup
n∈N∗

Ñℓ,n = +∞

)

+ P

(

sup
n∈N

S̃n < +∞, sup
n∈N∗

Ñℓ,n < +∞

)

.

Let us show that both terms of the right-hand-side are equal to 0.

Define recursively (N
(ℓ)
n )n∈N by N

(ℓ)
0 = 0 and for all n ∈ N,

N
(ℓ)
n+1 = inf

{

k > N (ℓ)
n : Ĩk = ℓ

}

.
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Note that

(11) N (ℓ)
n = k if and only if Ñℓ,k = n .

Then, on {supn∈N∗ Ñℓ,n = +∞}, for all n ∈ N, N
(ℓ)
n < +∞ almost surely. Hence, on

{supn∈N∗ Ñn,ℓ = +∞}, for all n ∈ N
∗, by definition we have almost surely

sup
k∈N∗

S̃k >

n
∑

k=1

{

S̃
N

(ℓ)
k

− S̃
N

(ℓ)
k−1

}

>

n
∑

i=1

(Eℓ,i/ ‖λℓ‖∞) ,

where the last inequality follows from the bound on {N
(ℓ)
k < +∞},

S̃
N

(ℓ)
k

= S̃
ℓ,N

(ℓ)
k

= inf







t > S̃
N

(ℓ)
k

−1
: H

ℓ,N
(ℓ)
k

<

∫ t

S̃
N

(ℓ)
k

−1

λℓ(Xs)ds







= inf











t > S̃
N

(ℓ)
k−1

: Eℓ,k <

∫ t

S̃
N

(ℓ)
k−1

λℓ(Xs)ds











> S̃
N

(ℓ)
k−1

+ Eℓ,k/ ‖λℓ‖∞ .

Therefore by the law of large number,

P

(

sup
n∈N

S̃n < +∞, sup
n∈N∗

Ñℓ,n = +∞

)

6 inf
n∈N∗

P

(

n
∑

i=1

(Eℓ,i/ ‖λℓ‖∞) < +∞

)

= 0 .

We bound now the second term in (10). Let k ∈ N
∗. Note that by Construction 2,

on {supn∈N Ñℓ,n = k}, for all i ∈ J1, k − 1K, {Xt : t ∈ [S̃
N

(ℓ)
i

, S̃
N

(ℓ)
i+1

)} is a PDMP with

characteristics (ϕ, (λi, Qi)i∈J1,ℓ−1K) with initial data XS̃
N

(ℓ)
i

. Then, by (11), the Markov

property and an immediate induction using that (ϕ, (λi, Qi)i∈J1,ℓ−1K) is non explosive,

we have that on {supn∈N∗ Ñℓ,n = k}, almost surely XS̃
N

(ℓ)
i

∈ M, for i ∈ J1, kK. The proof

is then concluded since, using that (ϕ, (λi, Qi)i∈J1,ℓ−1K) is non explosive, Construction 2

and the Markov property again on {supn∈N Ñℓ,n = k}, {Xt : t ∈ [S̃
N

(ℓ)
k

,+∞)} is a

PDMP with characteristics (ϕ, (λi, Qi)i∈J1,ℓ−1K) started at XS̃
N

(ℓ)
k

. �

Let us come back to our main example.

Example - Bouncy Particle Sampler.

Proposition 10. The BPS process defined in Example 1 is non-explosive for any initial
distribution.

Proof. Using the notations of Example 1, consider (X̄t, Ȳt)t>0 the PDMP on R
d × Y

with characteristics (ϕ, λ1, Q1) and initial condition (X̄0, Ȳ0) = (x, y) ∈ M defined by
Construction 1 from an i.i.d. sequence of random variables (Ek, Uk)k∈N, associated
with the sequence of jump times (Sk)k∈N. Note that almost surely

∥

∥Ȳt

∥

∥ = ‖y‖ for all

t ∈ [0, supn∈N Sn), so that
∥

∥X̄t − x
∥

∥ 6 t ‖y‖ and

λ1(X̄t, Ȳt) 6 C(t) = ‖y‖ sup
{

∥

∥∇U(x′)
∥

∥ : x′ ∈ R
d,
∥

∥x′ − x
∥

∥ 6 t ‖y‖
}

.
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Therefore on {supn∈N Sn < +∞}, by Construction 1 almost surely there exists C > 0
such that

Sn+1 − Sn > En/(C + 1) for all n ∈ N
∗ .

Then, we have on {supn∈N Sn < +∞}, that almost surely there exists C > 0 such that

+∞ > sup
n∈N

Sn =
∑

n∈N

{Sn+1 − Sn} >
∑

n∈N∗

{En/(C + 1)} .

As a result,

P

(

sup
n∈N

Sn < +∞

)

6 P

(

⋃

ℓ∈N∗

{

∑

n∈N∗

En/(ℓ+ 1) < +∞

})

6 0 .

It follows that the PDMP with characteristics (ϕ, λ1, Q1) is non-explosive. By Proposi-
tion 9, the BPS is non-explosive. �

6. Comparison of PDMP via Synchronous coupling

The result of this section is crucial in many aspects: first, it gives stability estimates
with respect to the jump rates and the underlying Markov kernel for a modification
of a PDMP for example for an approximate thinning procedure. Second, it will be an
essential tools to verify assumptions for the BPS in the following sections. The main
goal of this section is to prove the following:

Proposition 11. Let (P 1
s,t)t>s>0 and (P 2

s,t)t>s>0 be two non-explosive PDMP semigroups
with characteristics (ϕ, λ1, Q1) and (ϕ, λ2, Q2) respectively. Suppose that there exists a
measurable g : R+ → R+ satisfying for all t > 0,
(12)
g(t) > sup

x∈M,
A∈B(M)

{λ1(t, x) ∧ λ2(t, x) |Q1(t, x,A)−Q2(t, x,A)|}+ sup
x∈M

|λ1(t, x)− λ2(t, x)|

or alternatively

(13) g(t) > sup
x∈M,

A∈B(M)

|λ1(t, x)(Q1(t, x,A)− δx(A))− λ2(t, x)(Q2(t, x,A)− δx(A))| .

Then for all t > 0 and x ∈ M,

‖δxP
1
0,t − δxP

2
0,t‖TV 6 2

{

1− exp

(

−

∫ t

0
g(s)ds

)}

.

Remark 12. Note that if (λi)i=1,2 and (Qi)i=1,2 are two locally bounded jump rates and
Markov kernels respectively, then

(14) sup
x∈M,

A∈B(M)

{λ1(t, x) ∧ λ2(t, x) |Q1(t, x,A) −Q2(t, x,A)|}

6 sup
x∈M,

A∈B(M)

{|λ1(t, x)Q1(t, x,A)− λ2(t, x)Q2(t, x,A)|} .
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Indeed, let x ∈ M and A ∈ B(M). Without loss of generality, we can assume that
λ1(t, x) > λ2(t, x). If Q1(t, x,A) > Q2(t, x,A), then we have

λ1(t, x) ∧ λ2(t, x) |Q1(t, x,A)−Q2(t, x,A)|

6 λ1(t, x)Q1(t, x,A)− λ2(t, x)Q2(t, x,A) = |λ1(t, x)Q1(t, x,A)− λ2(t, x)Q2(t, x,A)| .

Otherwise Q1(t, x,A
c) > Q2(t, x,A

c) and we get

λ1(t, x)∧λ2(t, x) |Q1(t, x,A)−Q2(t, x,A)| 6 |λ1(t, x)Q1(t, x,A
c)− λ2(t, x)Q2(t, x,A

c)| .

Therefore, for all x ∈ M and A ∈ B(M),

λ1(t, x) ∧ λ2(t, x) |Q1(t, x,A)−Q2(t, x,A)|

6 sup
Ã∈B(M)

∣

∣

∣
λ1(t, x)Q1(t, x, Ã)− λ2(t, x)Q2(t, x, Ã)

∣

∣

∣
,

which implies (14). Therefore, to establish that (12), it is sufficient to show that there
exists a measurable function g : R+ → R+ such that for all t ∈ R+,

(15) g(t) > 2 sup
x∈M,

A∈B(M)

{|λ1(t, x)Q1(t, x,A)− λ2(t, x)Q2(t, x,A)|} ,

Conversely, we easily get for all t ∈ R+,

(16) sup
x∈M,

A∈B(M)

{|λ1(t, x)Q1(t, x,A)− λ2(t, x)Q2(t, x,A)|}

6 sup
x∈M,

A∈B(M)

{λ1(t, x) ∧ λ2(t, x) |Q1(t, x,A)−Q2(t, x,A)|}+ sup
x∈M

|λ1(t, x)− λ2(t, x)| .

Therefore (12) and (15) are essentially equivalent up to a factor 2.

The proof of Proposition 11 relies on the construction of a Markovian synchronous
coupling between (P 1

s,t)t>s>0 and (P 2
s,t)t>s>0. More precisely, we want to construct a

PDMP (Xt, Yt)t>0 on M2 starting from (x, y) ∈ M2 such that the distributions of (Xt)t>0

and (Yt)t>0 are PDMP(ϕ, λ1, Q1, δx) and PDMP(ϕ, λ2, Q2, δy) respectively. In the case
where x = y, the synchronous coupling attempts to keep Xs = Ys for all s ∈ [0, t] by
ensuring that, as much as possible, both processes jump at the same time and, when
they do, jump as much as possible to the same point. Let us give its precise definition.

First, by [25, Corollary 5.22], there exists a jump kernel K0 on M2, such that for all
t ∈ R+ and (x, y) ∈ M2, K0(t, (x, y), ·) is an optimal transference plane of Q1(t, x, ·) and
Q2(t, y, ·), where optimal means that

(17) 2K0(t, (x, y),∆
c
M) = ‖Q1(t, x, ·)−Q2(t, y, ·)‖TV .

Define, for i = 0, 1, 2 and j = 1, 2 the jump rate ri and the jump kernel Kj on M2 as
follows: for t ∈ R+,(x, y) ∈ M2 and A,B ∈ B(M),

(18)

r0(t, (x, y)) = λ1(t, x) ∧ λ2(t, y) ,

r1(t, (x, y)) = (λ1(t, x)− λ2(t, y))+ , K1(t, (x, y),A × B) = Q1(t, x,A)δy(B) ,

r2(t, (x, y)) = (λ2(t, x)− λ1(t, y))+ , K2(t, (x, y),A × B) = δx(A)Q2(t, y,B) .
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Let ϕ⊗ be the flow on M2 defined for all t ∈ R+ and (x, y) ∈ M2 by

ϕ⊗(t, (x, y)) = (ϕ(t, x), ϕ(t, y)) .

Lemma 13. Let (x, y) ∈ M2 and (Xt, Yt)t>0 be a PDMP on M2 with initial distribution
δ(x,y) and characteristics (ϕ⊗, (ri,Ki)i∈J0,2K). Suppose that it is non explosive. Then

(Xt)t>0 and (Yt)t>0 have distributions PDMP(ϕ, λ1, Q1, δx) and PDMP(ϕ, λ2, Q2, δy)
respectively.

As a consequence, (Xt, Yt)t>0 is referred to as a synchronous coupling of (δxP
1
0,t)t>0

and (δxP
2
0,t)t>0 .

Proof. We only show the result for (Xt)t>0, the case for (Yt)t>0 being similar. Consider
the Markov kernel on M2 × B(M2) defined for all (x, y) ∈ M2 and A ∈ B(M2) by

K̃((x, y),A) =

{

r0(x,y)K0((x,y),A)+r1(x,y)K1((x,y),A)
r0(x,y)+r1(x,y)

if r0(x, y) + r1(x, y) 6= 0

δ(x,y)(A) otherwise .

and let (Xt, Yt)t>0 be a PDMP with characteristics (ϕ⊗, r0 + r1, K̃, r2,K2) with ini-
tial distribution δ(x,y) defined by Construction 2 based on some random variables (Ej,k,

Uj,k)j∈J1,2K,k∈N. By Proposition 5, PDMP(ϕ⊗, r0 + r1, K̃, r2,K2, δx ⊗ δy) = PDMP(ϕ⊗,
(ri,Ki)i∈J0,2K, δx ⊗ δy). Therefore, by definition, it suffices to show that (Xt)t>0 is dis-

tributed according to PDMP(ϕ, λ1, Q1, δx). Let ((X ′
k, Y

′
k), S̃k, Ĩk)k∈N be the embedded

chain associated with (Xt, Yt)t>0. Set R0 = 0 and, for k ∈ N,

Rk+1 = inf
{

S̃i > Rk : i ∈ N, Ĩi = 1
}

.

The process being non-explosive, supn∈N S̃n = +∞, so that supn∈NRn = +∞. For all
k ∈ N, set X̄k = XRk

if Rk < ∞ and X̄k = ∞ otherwise.
By definition of K2 and ϕ⊗, for all k ∈ N such that Rk < ∞ and all t ∈ [Rk, Rk+1),

then Xt = ϕRk ,t(X̄k). Moreover, similarly to the proof of Lemma 7, for all t > 0 and
(x, y) ∈ M2, r0(t, (x, y)) + r1(t, (x, y)) = λ1(t, x), so that

(19) Rk+1 = inf

{

t > Rk : E1,k+1 <

∫ t

Rk

λ1(s, ϕRk ,s(X̄k))ds

}

,

and, if Rk+1 < ∞, denoting G1 the representation of K̃ used in the construction of the
process,

(XRk+1
, YRk+1

) = G1(Rk+1, (ϕRk ,Rk+1
(X̄k), Ȳk+1), U1,k+1) ,(20)

where Ȳk+1 = ϕS̃i−1,S̃i
(YS̃i−1) with i ∈ N

∗ such that Rk+1 = S̃i. Now, for all k ∈ N,

t > 0, (x, y) ∈ M2 and A ∈ B(M),

λ1(t, x)P(G1(t, (x, y), U1,k+1) ∈ A×M)(21)

= r0(t, (x, y))K0(t, (x, y),A ×M) + r1(t, (x, y))K1(t, (x, y),A ×M)

= (r0(t, (x, y)) + r1(t, (x, y)))Q1(t, x,A) = λ1(t, x)Q1(t, x,A) .
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Let (Fk)k∈N be the filtration associated with (X̄k, Rk)k∈N. In particular, E1,k+1 and
U1,k+1 are independent of Fk, so that (19), (20) and (21) yield, for all k ∈ N, t > Rk

and A ∈ B(M),

P
(

X̄k+1 ∈ A, Rk+1 6 t
∣

∣Fk

)

= 1M(X̄k)

∫ t

Rk

P
(

G1(s, (X̄k+1, Ȳk+1), U1,k+1) ∈ A
∣

∣Fk ∨ σ(U1,k+1)
)

λ1(s, ϕRk ,s(X̄k)) exp

{

−

∫ s

Rk

λ1(u, ϕRk ,u(X̄k))du

}

ds

= 1M(X̄k)

∫ t

Rk

Q1(s, x,A)λ1(s, ϕRk ,s(X̄k)) exp

{

−

∫ s

Rk

λ1(u, ϕRk ,u(X̄k))du

}

ds .

As a consequence, (X̄k, Rk)k∈N is the embedded chain associated to a PDMP with char-
acteristics (ϕ, λ1, Q1). The fact that Xt = ϕRk ,t(X̄k) for all k ∈ N such that Rk < ∞
and all t ∈ [Rk, Rk+1[ concludes the proof. �

Proof of Proposition 11. The proof is divided in two main steps. In the first one, we
assume that λ1 and λ2 are uniformly bounded and the second one is the extension of
the first result in the case where the jump rates are not bounded.

(1) Assume for the moment that
∥

∥λi
∥

∥

∞
< M , for i = 1, 2 and some M > 0. Let

(P 1
s,t)t>s>0 and (P 2

s,t)t>s>0 be two PDMPs semigroups with characteristics (ϕ,Q1, λ1)

and (ϕ,Q2, λ2) respectively. Since λ1 and λ2 are uniformly bounded, the synchronous
characteristics (ϕ, (ri,Ki)i∈J0,2K), where (ri,Ki)i∈J0,2K is defined in (17) and (18), are
non explosive. From Lemma 13, the synchronous coupling defined above is a Markov
coupling between these two semigroups. Then, by characterisation of the total variation
distance by couplings, to get an estimate on ‖δxP

1
0,t−δxP

2
0,t‖TV for t > 0, we just need to

bound the probability that this coupling stay equal on [0, t] if it starts from (x, x) ∈ M2.
However, to do so, we consider different characteristics from (ϕ⊗, (ri,Ki)i∈J0,2K).

Define the Markov kernels, for all (x, y) ∈ M2 and (A,B) ∈ B(M)2, dropping the subscript
M for the diagonal ∆

K0,∆((x, y),A × B) =







K0((x, y),A × B ∩∆)

K0((x, y),∆)
if K0((x, y),∆) 6= 0

δ(x,y)(A× B) otherwise ,

K0, 6=((x, y),A × B) =







K0((x, y),A × B ∩∆c)

K0((x, y),∆c)
if K0((x, y),∆

c) 6= 0

δ(x,y)(A× B) otherwise ,

K1,∆((x, y),A × B) =







K1((x, y),A ∩ {x} × B)

K1((x, y), {x} ×M)
if K1((x, y), {x} ×M) 6= 0

δ(x,y)(A× B) otherwise ,

K1, 6=((x, y),A × B) =







K1((x, y),A \ {x} ×M)

K1((x, y),M \ {x} ×M)
if K1((x, y),M \ {x} ×M) 6= 0

δ(x,y)(A× B) otherwise ,



PDMP AND THEIR INVARIANT MEASURE 21

K2,∆((x, y),A × B) =







K2((x, y),A × B ∩ {x})

K2((x, y),M × {x})
if K2((x, y),M × {x}) 6= 0

δ(x,y)(A× B) otherwise ,

K2, 6=((x, y),A × B) =







K2((x, y),A × B \ {x})

K2((x, y),M ×M \ {x})
if K2((x, y),M ×M \ {x}) 6= 0

δ(x,y)(A× B) otherwise .

Define also the rate jumps for all (x, y) ∈ M2 by

r0,∆(x, y) = K0((x, y),∆)r0(x, y) , r0, 6=(x, y) = K0((x, y),∆
c)r0(x, y) ,

r1,∆(x) = K1((x, y), {x} ×M)r1(x) , r1, 6=(x) = K1((x, y),M \ {x} ×M)r1(x) ,

r2,∆(x) = K2((x, y), {y} ×M)r2(x) , r2, 6=(x) = K2((x, y),M ×M \ {y})r2(x) .

By Proposition 5, for any initial distribution µ0 on M2,

PDMP(ϕ⊗, (ri,Ki)i∈J0,2K, µ0) = PDMP(ϕ⊗, (ri,◦,Ki,◦)i∈J0,2K,◦∈{∆, 6=}, µ0) .

Let (Xt, Yt)t>0 be a PDMP associated with the characteristics (ϕ, (ri,◦,Ki,◦)i∈J0,2K,◦∈{∆, 6=})

and let (S 6=,i
n )n∈N, i∈J0,2K be the jump times associated with the jump rates r0, 6=, r1, 6=, r2, 6=

respectively. By Lemma 13 since (Xt, Yt)t>0 is non-explosive and Proposition 4, we get
for all t > 0

P (Xt 6= Yt) 6 1− P

(

min
i∈J0,2K

S 6=,i
1 > t,Xs = Ys for all s ∈ [0, t]

)

6 1− E

[

exp

[

−

∫ t

0

{

r0, 6=(s, (X̄s, X̄s)) + r1, 6=(s, (X̄s, X̄s)) + r2, 6=(s, (X̄s, X̄s))
}

ds

]]

,

where (X̄s, X̄s)s>0 is a PDMP with characteristics (ϕ̃, (ri,∆,Ki,∆)i∈J0,2K) starting at
(x, x). This result concludes the proof since by definition, (17), (18) and (12), for all
y ∈ M and s > 0, we have

r0, 6=(s, (y, y)) + r1, 6=(s, (y, y)) + r2, 6=(s, (y, y)) 6 g(s) .

(2) In the case where λ1 and λ2 are not uniformly bounded, consider for all M > 0

the two semi-group (P 1,M
s,t )t>s>0 and (P 2,M

s,t )t>s>0 associated with the characteristics

(ϕ, λ1 ∧ M,Q1) and (ϕ, λ2 ∧ M,Q2) respectively. Then for all M > 0 the triangle
inequality yields

‖δxP
1
0,t−δxP

2
0,t‖TV 6 ‖δxP

1
0,t−δxP

1,M
0,t ‖TV+‖δxP

1,M
0,t −δxP

2,M
0,t ‖TV+‖δxP

2,M
0,t −δxP

2
0,t‖TV .

Using Proposition 8 and the assumption that the semi-groups we consider are non-
explosive,

(22) ‖δxP
1
0,t − δxP

2
0,t‖TV 6 lim sup

M→+∞
‖δxP

1,M
0,t − δxP

2,M
0,t ‖TV .

On the other hand, by the first part of the proof for all M > 0,

(23) ‖δxP
1,M
0,t − δxP

2,M
0,t ‖TV 6 2

{

1− exp

(

−

∫ t

0
g(s)ds

)}

,

where g satisfies (12) since for all t ∈ R+ and M > 0,
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g(t) > sup
x∈M,

A∈B(M)

{M ∧ λ1(t, x) ∧ λ2(t, x) |Q1(t, x,A)−Q2(t, x,A)|}

+ sup
x∈M

|M ∧ λ1(t, x)−M ∧ λ2(t, x)| .

Combining (22) and (23) concludes the proof.
(3) Let us finish the proof by establishing (13) via our results on superposition. In-
deed by Proposition 5, for all initial distribution µ0 ∈ P(M), PDMP(ϕ,Q1, λ1, µ0) =

PDMP(ϕ, Q̃1, λ̃1, µ0) and PDMP(ϕ,Q2, λ2, µ0) = PDMP(ϕ, Q̃2, λ̃2, µ0) where λ̃
1 = λ̃2 =

λ1 ∨ λ2 and for t ∈ R+, x ∈ M, A ∈ B(M) and i = 1, 2

Q̃i(t, x,A) =
λi(t, x)

λ1(t, x) ∨ λ2(t, x)
Qi(t, x,A) +

(

1−
λi(t, x)

λ1(t, x) ∨ λ2(t, x)

)

δx(A) .

Therefore, (P 1
s,t)t>s>0 and (P 2

s,t)t>s>0 are also associated with the characteristics (ϕ, Q̃1, λ̃1)

and (ϕ, Q̃2, λ̃2). Applying the case where g is given by Equation (12) to these charac-
teristics concludes.

�

7. Generator

From this section, only homogeneous processes are considered. Nevertheless, some
results below can be applied to inhomogeneous PDMP since if (Xt)t>0 is such a process
on M with characteristics (ϕ,Q, λ), then the process (Xt, t)t>0 is a homogeneous PDMP
on (M × R+,B(M × R+)) with characteristics (ϕ̄, Q̄, λ) defined for all t, s ∈ R+, x ∈ M

and A ∈ B(M× R+) by

ϕ̄s((x, t)) = (ϕt,t+s(x), t+s) , Q̄((x, t),A) =

∫

M×R+

1A((y, u))Q(x,dy)⊗δt(du) .

This section is devoted to the introduction of the strong and extended generator of a
non-explosive PDMP.

Consider a homogeneous PDMP semigroup (Pt)t>0 with non-explosive characteristics
(ϕ, λ,Q). Note that (Pt)t>0 is a contraction semigroup on B(M), i.e. for all s, t ∈ R+,
Ps+t = PtPs and for all function f ∈ B(M), ‖Ptf‖∞ 6 ‖f‖∞. In addition, define the
subset B0(M) ⊂ B(M) by

B0(M) =
{

f ∈ B(M) : lim
t→0

‖Ptf − f‖∞ = 0
}

.

By [9, p.28-29], B0(M) is a closed subspace of B(M) and a Banach space for the uniform
norm. Then by definition, (Pt)t>0 is a strongly continuous semigroup on B0(M), i.e. for
all f ∈ B0(M), limt→0 ‖Ptf − f‖∞ = 0.

Define (Ā,D(Ā)) the strong generator of (Pt)t>0 by

D(Ā) =
{

f ∈ B0(M) : there exists g : M → R lim
t→0

∥

∥t−1(Ptf − f)− g
∥

∥

∞
= 0
}

,

Āf = g for all f ∈ D(Ā) .

A subset D ⊂ D(Ā) is a core of (Ā,D(Ā)) if the closure of the restriction of Ā to D is
equal to (Ā,D(Ā)). One use of the strong generator of (Pt)t>0 is to show that a given



PDMP AND THEIR INVARIANT MEASURE 23

measure on (M,BM) is an invariant measure for (Pt)t>0. Indeed by [13, Proposition 9.2],
µ is invariant measure for (Pt)t>0 if only if for all f ∈ D, where D is a core for (Ā,D(Ā)),
∫

M
Āf(x)µ(dx) = 0. Therefore, the strong generator (Ā,D(Ā)) is an essential tool to

study (Pt)t>0. Unfortunately, characterizing the domain D(Ā) is in general not possible.
In addition, while it would be possible to only use a core of (Ā,D(Ā)), there is very
few results giving such a subset for PDMPs contrary to diffusion processes (see e.g. [13,
Chapter 8]). However, we will see in this section that for a class of PDMPs, to show that
a measure µ is invariant, it is sufficient to show that for all f ∈ C1

c(M),
∫

M
Af(x)dµ(x),

where (A,D(A)) is the extended generator of (Pt)t>0, defined as follows.
For x ∈ M, denote Px the distribution PDMP(ϕ, λ,Q, δx) on D(R+,M) and Ex the

corresponding expectation. Let (X̄t)t>0 be the cannonical process on D(R+,M), defined
by (X̄t)t>0(ω) = ω for all ω ∈ D(R+,M), and let (Ft)t>0 be its associated filtration. Let
S̄0 = 0 and, for k ∈ N, S̄k+1 = inf{t > S̄k : X̄t 6= ϕt−S̄k

(X̄S̄k
)} be its true jump times.

Define for all t ∈ R+, N̄t =
∑

k∈N∗ 1[0,t](S̄k) and consider the following assumption

A1. For all x ∈ M and t ∈ R+, Ex

[

N̄t

]

< +∞.

For all t > 0 and for all measurable functions f, g : M → R, such that, for all x ∈ M,
s 7→ g(X̄s) is Px-almost surely locally integrable, denote

Mf,g
t = f(X̄t)− f(X̄0)−

∫ t

0
g(X̄s)ds .

The (extended) generator and its domain (A,D(A)) associated with the semi-group
(Pt)t>0 are defined as follows: f ∈ D(A) if there exists a measurable function g : M → R

such that (Mf,g
t )t>0 is a local martingale under Px for all x ∈ M and, for such a function,

Af = g. Despite its very formal definition, (A,D(A)) associated with (Pt)t>0 can be
easily described. Indeed, under A 1, [9, Theorem 26.14] shows that D(A) = E1 ∩ E2

where

E1 = {f ∈ M(M) : t 7→ f(ϕt(x)) is absolutely continuous on R+ for all x ∈ M} ,

and E2 is the set of measurable functions f : M → R such that there exists an increasing
sequence of (Ft)t>0-stopping time (σn)n>0, such that for all x ∈ M, limn→+∞ σn = +∞
Px-almost surely and for all n ∈ N,

Ex

[

+∞
∑

k=0

1{S̄k+16σn}

∣

∣

∣f(X̄S̄k+1
)− f

(

ϕt−S̄k
(X̄S̄k

)
)

∣

∣

∣

]

< +∞ .

Then, for all f ∈ D(A) and x ∈ M,

(24) Af(x) = Dϕf(x) + λ(x) (Qf(x)− f(x)) ,

where

Dϕf(x) =

{

limt→0
f(ϕt(x))−f(x)

t
, if this limit exists

0 otherwise .

In fact, in [9, Theorem 26.14], Q is required to satisfy Q(x, {x}) = 0 for all x ∈ M, but
if it is not the case, from Proposition 5, we can apply this result with the minimal jump
rate associated to (λ,Q) such as introduced in Section 4.
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Note that D(Ā) ⊂ D(A) and for all f ∈ D(Ā), Af = Āf , since by [9, Proposition

14.13], for all f ∈ D(Ā), (Mf,Āf
t )t>0 is a (Ft)t>0-martingale.

In addition, C1(M) ⊂ D(A) and, if f ∈ C1
c(M), then Af is bounded, therefore

(Mf,Af
t )t>0 is a (Ft)t>0-martingale. Moreover, since we supposed that b(x) = (∂t)t=0ϕt(x)

exists for all x ∈ M, thenDϕf(x) = 〈b(x),∇f(x)〉 for all f ∈ C1(M) and x ∈ M. However,
we need some conditions on λ and Q to show that that C1

c(M) ⊂ D(Ā).

A 2. Let (Pt)t>0 be a non explosive PDMP semi-group with characteristics (ϕ, λ,Q).
Assume that for all T > 0, there exists M > 0 such that for all x ∈ M and t ∈ [0, T ],
supp{Pt(x, ·)} ⊂ B(x,M).

Lemma 14. Assume A2.

(a) For all f ∈ Cc(M), T ∈ R+, there exists a bounded set A such that Ptf(x) = 0,
for all x 6∈ A and t ∈ [0, T ].

(b) Condition A1 is satisfied.

Proof. (a) Let f ∈ Cc(M), T ∈ R+. By assumption, there exist Mf ,MT ∈ R+ such that

supp(f) ⊂ B (x0,Mf ), x0 ∈ M, and supp{Pt(x, ·)} ⊂ B (x,M) for all t ∈ [0, T ], x ∈ M.

Therefore, we get that, for all x 6∈ B (x0,MT +Mf + 1),

Ptf(x) =

∫

M

1B(x,MT )∩B(x0,Mf)(y)f(y)Pt(x,dy) = 0 .

Indeed, by construction B (x,MT ) ∩ B (x0,Mf ) = ∅ since by the triangle inequality,
dist(x, y) 6 MT implies that dist(x0, y) > Mf + 1.
(b) Let (Xt)t>0 be a PDMP process with characteristics (ϕ, λ,Q) started from x ∈ M,
given by Construction 1, with jump times (Sk)k∈N. Note that by definition, for all
k ∈ N, Sk 6 S̄k, where (S̄k)k∈N is the true jump times of the process. Therefore,
defining Nt =

∑+∞
k=1 1[0,t](Sk), we have for all t > 0, N̄t 6 Nt, and to show that A1

holds, it suffices to show that E[NT ] < +∞ for all T ∈ R+ and x ∈ M.
Let T > 0 and M > 0 be such that for all t ∈ [0, T ] and y ∈ M, supp{Pt(y, ·)} ⊂

B(0,M). Then, since (Xt)t∈R+ is a càdlàg process, almost surely, for all t ∈ [0, T ],

Xt ∈ B (x,M). Therefore, for all k ∈ N,

1[0,t](Sk+1)(Sk+1 − Sk) 6 Ek+1/(1 + ‖λ‖∞,B(x,M)) .

Then, for all t ∈ [0, T ], Nt is bounded by
∑+∞

k=1 1[0,t](Ek+1/(1 + ‖λ‖∞,B(x,M))), which is

a Poisson process with rate 1 + ‖λ‖∞,B(x,M). Therefore, for all t ∈ [0, T ], E[Nt] < +∞.
�

Proposition 15. Let (Pt)t>0 be a non explosive PDMP semigroup with characteristics
(ϕ, λ,Q). Assume A2, (t, x) 7→ ϕt(x) ∈ C1(R+ ×M), λ ∈ C(M) and for all f ∈ Cc(M),
λQf ∈ Cc(M). Then C1

c(M) ⊂ D(Ā).

Proof. Let f ∈ C1
c(M). By Lemma 14 and since λQf ∈ Cc(M), there exists a compact

set K ⊂ M, such that for all x 6∈ K, Ptf(x) = 0, for all t ∈ [0, 1], λ(x)Qf(x) = 0 and
f(x) = 0. Therefore, for all t ∈ [0, 1],

(25)
∥

∥t−1(Ptf(x)− f(x))−Af(x)
∥

∥

∞
=
∥

∥t−1(Ptf(x)− f(x))−Af(x)
∥

∥

∞,K
.
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As seen above, (Mf,Af
t )t>0 is a (Ft)t>0-martingale. Therefore, for all x ∈ M,

t−1 {Ptf(x)− f(x)} − Af(x) = t−1
Ex

[∫ t

0

{

Af(X̄s)−Af(x)
}

ds

]

.

Then since f ∈ C1
c(M), (t, x) 7→ ϕt(x) is continuously differentiable, λ is locally bounded

and λQf is bounded, there exists C1 > 0 such that for all t > 0 and x ∈ M, we have

(26)
∣

∣t−1 {Ptf(x)− f(x)} − Af(x)
∣

∣ 6 C1Px

(

S̄1 6 t
)

+ t−1
Ex

[

1[0,t)(S̄1)

∫ t

0

{

A1
s +A2

s +A3
s

}

ds

]

,

where

A1
s = 〈(∂u)u=0{ϕu}(ϕs(x)),∇f(ϕs(x))〉 − 〈(∂u)u=0{ϕu}(x),∇f(x)〉

A2
s = λ(ϕs(x))Qf(ϕs(x))− λ(x)Qf(x) , A3

s = −λ(ϕs(x))f(ϕs(x))− λ(x)f(x) .

Using that (x, s) 7→ ϕs(x) is locally bounded on R+ ×M and λ on M, there exists C2

such that for all t ∈ [0, 1] and x ∈ K,

(27) Px

(

S̄1 6 t
)

6

∫ t

0
dsλ(ϕs(x)) exp

(

−

∫ s

0
duλ(ϕu(x))

)

6 C2t .

In addition, using that (t, x) 7→ ϕt(x) ∈ C1(M), there exists C3 > 0 such that for all
t ∈ [0, 1] and x ∈ K, dist(ϕt(x), x) 6 tC3. Then, since 〈(∂u)u=0ϕu,∇f〉, λQf and λf are
continuous, they are uniformly continuous on K + B (0, C3) and therefore for all ε > 0,
there exists η > 0 such that for all x ∈ K and s ∈ [0, η],

∣

∣Ai
s

∣

∣ 6 ε, i = 1, 2, 3. Combining
this result and (27) in (26), we get for all x ∈ K, ε > 0 and t ∈ [0, η ∧ 1],

∣

∣t−1 {Ptf(x)− f(x)} − Af(x)
∣

∣ 6 C1C2t+ 3ε .

Therefore, by (25) we get for all ε > 0,

lim sup
t→0

∥

∥t−1 {Ptf(x)− f(x)} − Af(x)
∥

∥

∞
6 3ε .

Taking ε → 0 concludes the proof. �

Let us finish by our running example.

Example - Bouncy Particle Sampler. Consider the BPS process defined in Exam-
ple 1 and suppose that Y is bounded. It is then easy to verify that A2 is verified, and
the generator is given for all f ∈ C1

c(M) by

Af(x, y) = 〈y,∇f(x, y)〉+ (〈y,∇U(x)〉)+ (f(x,R(x, y))− f(x, y))

+ λc

(
∫

Y

f(x,w)dµv(w)− f(x, y)

)

.
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8. Regularity estimates for PDMP semigroups

The main goal of this section is to provide a modest alternative to the (hypo-)elliptic
regularity theory of diffusions for PDMP (see also [2] on that topic). To do so, we need
the following definition.

Definition 16. We say that a differential flow ϕ on M and a Markov kernel Q are
compactly compatible if for all compact set K ⊂ M and T > 0, there exists a compact set
K̃ ⊂ M satisfying: for all n ∈ N

∗, (ti)i∈J1,nK ∈ R
n
+,
∑n

i=1 ti 6 T , there exists a sequence
(Ki)i∈J1,nK of compact sets of M such that, setting K0 = K,

(i) for all i ∈ J1, nK, Ki only depends on (tj)j∈J1,iK and ∪n
i=0Ki ⊂ K̃;

(ii) for all i ∈ J0, n − 1K, si+1 ∈ [0, ti+1] and sn+1 ∈ [0, T −
∑n

j=1 tj ],

⋃

x∈Ki

supp{Q(ϕti+1(x), ·)} ⊂ Ki+1 , ϕsi+1(Ki) ⊂ K̃ , ϕsn+1(Kn) ⊂ K̃

Note that by definition, if ϕ and Q are compactly compatible and the PDMP semi-
group with characteristics (ϕ, λ,Q) is non explosive, for all T > 0 and all compact set

K ⊂ M, there exists a compact set K̃ ⊂ M, such that P(Xt ∈ K̃, for all t ∈ [0, T ]) = 1,
where (Xt)t>0 is a PDMP process with characteristics (ϕ, λ,Q) and starting fromX0 ∈ K.

A3. The characteristics (ϕ, λ,Q) satisfy

(i) the flow ϕ and the Markov kernel Q are compactly compatible;
(ii) λ ∈ C1(M) and for all f ∈ C1(M), λQf ∈ C1(M) and there exists a locally

bounded function Ψ : M → R+ such that for all x ∈ K,

‖∇(λQf)(x)‖ 6 ‖Ψ‖∞,K sup {|f(y)|+ ‖∇f(y)‖ : y ∈ supp{Q(x, ·)}} ;

(iii) for all compact K ⊂ M,

sup {‖∇ϕs(x)‖ : s ∈ [0, t] , x ∈ K} < +∞ .

Lemma 17. Let (Pt)t>0 be a non explosive PDMP semigroup on M with corresponding
characteristics (ϕ, λ,Q) satisfying A3. Then for all f ∈ C1(M), T ∈ R+, PT f ∈ C1(M)
and for all compact set K ⊂ M, there exists C > 0 such that for all t ∈ [0, T ],

(28) sup
x∈K

{|Ptf | (x) + ‖∇(Ptf)(x)‖} 6 C .

Proof. For all x ∈ M denote by (Xx
t )t>0 a PDMP starting from x associated with the

characteristics (ϕ, λ,Q) and defined by Construction 1. Let (Sx
n)n∈N be the jump times

of (Xx
t )t>0 for all x ∈ M and (Ft)t>0 the associated filtration. Let f ∈ C1(M), T > 0 and

a compact set K ⊂ M. For T = 0, the result is straightforward so we consider T > 0.
Let K̃ satisfying for all n ∈ N, (ti)i∈J1,n+1K ∈ R

n
+,
∑n+1

i=1 ti 6 T , (i)-(ii) in Definition 16.

Since for all x ∈ K, P(Xx
t ∈ K̃, for all t ∈ [0, T ]) = 1, for all t ∈ [0, T ] and x ∈ M,

(29) |Ptf(x)| = |E [f(Xt)]| 6 sup
y∈K̃

|f | (y) .
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Furthermore, (Pt)t>0 is assumed to be non explosive. Therefore supn∈N Sx
n = +∞ and

we can consider the following decomposition for all t ∈ [0, T ] and x ∈ K

(30) Ptf(x) =

+∞
∑

n=0

E

[

1[Sx
n,S

x
n+1)

(t)f(Xx
t )
]

.

We show that for all n ∈ N,

Fn,t : x 7→ E

[

1[Sx
n,S

x
n+1)

(t)f(Xx
t )
]

,

is continuously differentiable and in addition there exists C > 0 such that for all n ∈ N,
t ∈ [0, T ]

(31) sup
x∈K

‖∇Fn,t(x)‖ 6 Cn/n! .

Assume for the moment that this result holds. Then, we have for all t ∈ [0, T ],

lim
N→+∞

∞
∑

n=N

sup
x∈K

‖∇Fn,t(x)‖ = 0 .

By (30), it implies that x 7→ PT f(x) is continuously differentiable. In addition, for all
compact set K ⊂ M, there exists C > 0 such that for all t ∈ [0, T ], ‖∇Ptf(x)‖K 6 C.
This result and (29) imply (28).

We now turn in showing that for all n ∈ N, Fn is continuously differentiable and (31)
holds. We first show this result for n = 0. In a second time, we make an induction on
n ∈ N

∗.
For all x ∈ K and t ∈ [0, T ], we have

F0,t(x) = f(φt(x)) exp

(

−

∫ t

0
λ(φs(x))ds

)

.

Therefore, for all x ∈ K and t ∈ [0, T ], we obtain by A3-(ii)-(iii)

∇F0,t(x) = {∇f(ϕt(x))}∇(ϕt)(x) exp

(

−

∫ t

0
λ(ϕs(x))ds

)

+ f(ϕt(x))

[∫ t

0
{∇λ(ϕs(x)) · ∇(ϕs)(x)} ds

]

exp

(

−

∫ t

0
λ(ϕs(x))ds

)

.

Since for all x ∈ K and t ∈ [0, T ], ϕt(x) ∈ K̃, f ∈ C1(M) and using A3-(ii)-(iii), we get
there exists C0 > 0 such that for all t ∈ [0, T ],

(32) sup
x∈K

[|F0(x)|+ ‖∇F0(x)‖] 6 C0 .

We now show the result for n ∈ N
∗. We give first an explicit expression of Fn for all

n ∈ N
∗. Indeed, we have conditioning successively on FSx

n+1
, · · · ,FSx

1
, for all x ∈ K and

t ∈ [0, T ]

Fn,t(x) =

∫ t

0
dt1 exp

(

−

∫ t1

0
λ {ϕs1(x)} ds1

)∫

M

K(ϕt1(x),dx1)

∫ t−t1

0
dt2 exp

(

−

∫ t2

0
λ {ϕs2(x1)} ds2

)∫

M

K(ϕt2(x1),dx2)
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· · ·

∫ t−
∑n−1

i=1 ti

0
dtn exp

(

−

∫ tn

0
λ {ϕsn(xn−1)} dsn

)

∫

M

K(ϕtn(xn−1),dxn)f(ϕt−
∑n

i=1 ti
(xn))

exp

(

−

∫ t−
∑n

i=1 ti

0
λ
{

ϕsn+1(xn)
}

dsn+1

)

,

where K is the kernel defined on (M,B(M)) for all x ∈ M and A ∈ B(M) by

K(x,A) = λ(x)Q(x,A) .

We introduce a sequence of operator (Q(n))n∈N∗ , defined for all g : R+ × M → R,
bounded on all compact of [0, T ]×M and measurable, t ∈ [0, T ] and x ∈ M by

Q(n)g(t, x) =

∫ t

0
dt1 exp

(

−

∫ t1

0
λ {ϕs1(x)} ds1

)∫

M

K(ϕt1(x),dx1)

· · ·

∫ t−
∑n−1

i=1 ti

0
dtn exp

(

−

∫ tn

0
λ {ϕsn(xn−1)} dsn

)

∫

M

K(ϕtn(xn−1),dxn)g(t −
n
∑

i=1

ti, xn) .

Taking for g the function gF : (s, y) 7→ f(ϕs(y)) exp(−
∫ s

0 duλ(ϕu(y))), we have Fn,t =

Q(n)gF (t, ·). Since f ∈ C1(M) and by A 3-(iii), gF is measurable, for all s ∈ [0, T ],
y 7→ gF (s, y) is continuously differentiable on M and satisfies for all T ′ ∈ [0, T ], K′ ⊂
M compact, sups∈[0,T ′],y∈K′{|gF (s, y)| + ‖∇xgF (s, y)‖} < +∞. Therefore if we show

that for all measurable function g : R+ × M → R+ such that for all s ∈ [0, T ], y 7→
g(s, y) is continuously differentiable on M satisfying for all T ′ ∈ [0, T ], K′ ⊂ M compact,
sups∈[0,T ′],y∈K′ |g(s, y)| + ‖∇xg(s, y)‖ < +∞: 1) for all t ∈ [0, T ] and x ∈ K, x 7→

Q(n)g(t, x) is differentiable at x 2) there exists C > 0 such that for all n ∈ N
∗, x ∈ K

and t ∈ [0, T ],

(33)
∣

∣

∣Q(n)g(t, x)
∣

∣

∣ +
∥

∥

∥∇xQ
(n)g(t, x)

∥

∥

∥ 6 Cn/(n!) .

This result and (32) show that (31) holds and the proof is finished. Denote by G([0,T]×M)
the set of function g satisfying the assumptions above.

Note the following relation between Q(n−1) and Q(1) which will be essential in our next
reasonings: for all g : R+×M → R, bounded on all compact of R+×M and measurable,
t ∈ [0, T ] and x ∈ M

(34)

Q(n)g(t, x) =

∫ t

0
dt1 exp

(

−

∫ t1

0
λ {ϕs1(x)} ds1

)
∫

M

K(ϕt1(x),dx1)Q
n−1g(t− t1, x1)

= Q(1)[Q(n−1)g](t, x) .

First, we make an induction on i ∈ J1, nK to show that for all i ∈ J1, nK and g ∈ G, that

(s, x) 7→ Q(i)g(s, x) ∈ G([0,T]×M), which will show that for all t ∈ [0, T ], y 7→ Qng(t, y)
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is continuously differentiable. For i = 1, note that for all s ∈ [0, T ] and y ∈ M,

(35) Q(1)g(s, y) =

∫ s

0
dt1 exp

(

−

∫ t1

0
λ {ϕs1(y)} ds1

)∫

M

K(ϕt1(y),dy1)g(s − t1, y1) .

Let T ′ ∈ [0, T ], K′ ⊂ M be compact and K̃′ given by Definition 16 associated with K′

and T ′. Then for all s ∈ [0, T ′], t1 ∈ [0, s], ϕt1(y) ∈ K̃′ for all y ∈ K′. Therefore we have
by assumption on g, A3-(ii)-(iii), y 7→

∫

M
K(ϕt1(y),dy1)g(s − t1, y1) for all s ∈ [0, T ′],

t1 ∈ [0, s], is differentiable and there exists C > 0 such that for all s ∈ [0, T ′], t1 ∈ [0, s]

sup
y∈K′

{|Kg(s− t1·)(ϕt1(y))| + ‖∇xKg(s− t1·)(ϕt1(y))‖} < C

By (35), we get then the result for i = 1. The result for i ∈ J2, nK is then a straightforward
consequence of (34) and the case i = 1.

We now show that for all g ∈ G([0,T]×M) that there exists C > 0 such that for all
x ∈ K and t ∈ [0, T ], (33) holds. By an induction on N ∈ J1, nK, we show that for all

t ∈ [0, T ], (ti)i∈J1,n−NK ∈ R
n−N
+ ,

∑n−N
j=1 tj 6 t, there exists (Ki)i∈J0,n−NK satisfying (i)-(ii)

in Definition 16 with respect to K, T , K̃, (ti)i∈J1,n−NK and the following bound holds

(36) sup
xn−N∈Kn−N

∣

∣

∣

∣

∣

∣

QNg



t−
n−N
∑

j=1

tj, xn−N





∣

∣

∣

∣

∣

∣

+

∥

∥

∥

∥

∥

∥

∇QNg



t−
n−N
∑

j=1

tj, xn−N





∥

∥

∥

∥

∥

∥

6 CN
1

{

sup
s∈[0,T ],y∈K̃

|g(s, y)| + sup
s∈[0,T ],y∈K̃

‖∇xg(s, y)‖

}



t−
n−N
∑

j=1

tj





N
/

(N !) ,

where

(37) C1 = ‖λ‖∞,K̃ + C2 , C2 = sup
s∈[0,T ]

‖∇xϕs(x)‖∞,K̃ (T ‖∇λ‖∞,K̃ + ‖Ψ‖∞,K̃) .

Then, the result for N = n will conclude the proof.
For N = 1, let t ∈ [0, T ], (ti)i∈J1,n−1K ∈ R

n−1
+ ,

∑n−1
j=1 tj 6 t. Note that for all y ∈ M,

setting un−1 =
∑n−1

i=1 ti,

Q(1)g (t− un−1, y) =

∫ t−un−1

0
dtne

−
∫ tn
0 λ{ϕsn (y)}dsn

∫

M

K(ϕtn(y),dyn)g(t−un−1−tn, yn) .

For all tn ∈ R+, such that
∑n

i=1 ti < t, by A 3-(i), there exists (Ki)i∈J0,nK satisfying
(i)-(ii) in Definition 16. In particular, (Ki)i∈J0,n−1K only depends on (ti)i∈J1,n−1K. Then,
using A3, we get for all xn−1 ∈ Kn−1,
∣

∣

∣Q(1)g (t− un−1, xn−1)
∣

∣

∣

6 ‖λ‖∞,K̃

∫ t−un−1

0
dtn sup {|g| (t− un−1 − tn, yn) : yn ∈ supp{Q(ϕtn(xn−1),dyn)}}

6 ‖λ‖∞,K̃

∫ t−un−1

0
dtn sup {|g| (t− un−1 − tn, yn) : yn ∈ Kn} ,
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and
∥

∥

∥
∇xQ

(1)g (t− un−1, xn−1)
∥

∥

∥

6 C2

∫ t−un−1

0
dtn sup {|g| (t− un−1 − tn, yn) : yn ∈ supp{Q(ϕtn(xn−1),dyn)}}

+ C2

∫ t−un−1

0
dtn sup {‖∇xg(t− un−1 − tn, yn)‖ : yn ∈ supp{Q(ϕtn (xn−1),dyn)}}

6 C2

∫ t−un−1

0
dtn sup

{

|g| (t− un−1 − tn, y
1
n) +

∥

∥∇xg(t− un−1 − tn, y
2
n)
∥

∥ : y1n, y
2
n ∈ Kn

}

,

where C2 is given by (37). Combining these two results and using that Kn ⊂ K̃ for all
tn,
∑n

i=1 ti < t give (36) for N = 1.

Now assume that the result holds for N ∈ J1, n − 1K and let (ti)i∈J1,n−N−1K ∈ R
n−N−1
+ .

By induction hypothesis, for all tn−N ∈ R+, such that
∑n−N

i=1 ti < t, there exists

(Ki)i∈J0,n−NK satisfying (i)-(ii) in Definition 16 with respect to K, T , K̃, (ti)i∈J1,n−NK.

Then, using A3 and (34), we get for all xn−N−1 ∈ Kn−N−1, setting un−N−1 =
∑n−N−1

i=1 ti
and An−N = supp{Q(ϕtn−N

(xn−N−1),dyn−N )}
∣

∣

∣Q(N)g (t− un−N−1, xn−N−1)
∣

∣

∣

6 ‖λ‖∞,K̃

∫ t−un−N−1

0
dtn−N sup

{∣

∣

∣
Q(N−1)g

∣

∣

∣
(t− un−N−1 − tn−N , yn−N ) : yn−N ∈ An−N

}

6 ‖λ‖∞,K̃

∫ t−un−N−1

0
dtn−N sup

{∣

∣

∣
Q(N−1)g

∣

∣

∣
(t− un−N−1 − tn−N , yn−N ) : yn−N ∈ Kn−N

}

,

and
∥

∥

∥
∇xQ

(N)g (t− un−N−1, xn−N−1)
∥

∥

∥

6 C2

∫ t−un−N−1

0
dtn−N sup

{∣

∣

∣Q(N−1)g
∣

∣

∣ (t− un−N−1 − tn−N , yn−N ) : yn−N ∈ An−N

}

+C2

∫ t−un−N−1

0
dtn−N sup

{∥

∥

∥∇xQ
(N−1)g(t− un−N−1 − tn−N , yn−N )

∥

∥

∥ : yn−N ∈ An−N

}

6 C2

∫ t−un−N−1

0
dtn−N sup

{∣

∣

∣Q(N−1)g
∣

∣

∣ (t− un−N−1 − tn−N , yn−N ) : yn−N ∈ Kn−N

}

+C2

∫ t−un−N−1

0
dtn−N sup

{∥

∥

∥∇xQ
(N−1)g(t− un−N−1 − tn−N , yn−N )

∥

∥

∥ : yn−N ∈ Kn−N

}

,

where C2 is given by (37). Combining these two results using Kn−N ⊂ K̃ for all tn−N ,
∑n−N

i=1 ti < t and the induction hypothesis conclude the proof of (36).
�

Remark 18. Lemma 17 can be generalized under the condition that for some k ∈ N
∗,

the characteristics (ϕ, λ,Q) satisfy

(i) the flow ϕ and the Markov kernel Q are compactly compatible;
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(ii) λ ∈ Ck(M) and for all f ∈ Ck(M), λQf ∈ Ck(M) and there exists a locally
bounded function Ψ : M → R+ such that for all x ∈ K, i ∈ J1, kK,
∥

∥Di(λQf)(x)
∥

∥ 6 ‖Ψ‖∞,K sup
{∥

∥Dif(y)
∥

∥ : y ∈ supp{Q(x, ·)} , i ∈ J1, kK
}

;

(iii) for all t ∈ R+, we have x 7→ ϕt(x) is k-times continuously differentiable and for
all compact K ⊂ M,

sup
{∥

∥Diϕs(x)
∥

∥ : s ∈ [0, t] , x ∈ K , i ∈ J1, kK
}

< +∞ .

Then for all function f ∈ Ck(M), and T ∈ R+, PT f ∈ Ck(M). In addition, for all
compact set K ⊂ M, and T ∈ R+, there exists C > 0 such that for all t ∈ [0, T ],
supx∈K |Ptf |(x) + supx∈K,i∈J1,kK

∥

∥DiPtf(x)
∥

∥ 6 C.

Combining Lemma 14-Proposition 15-Lemma 17 and [13, Proposition 3.3, Chapter 1],
we get the following result.

Corollary 19. Assume the PDMP characteristics (ϕ, λ,Q) satisfies A2-A3 and (t, x) 7→
ϕt(x) ∈ C1(M). Then, C1

c(M) is a core for the strong generator of (Pt)t>0.

Example - Bouncy Particle Sampler. For the BPS process, λ is not in C1(M) so
that we cannot apply the previous theory. One aim of the following section will then be
to introduce a framework where we may overpass this limitation.

9. Invariant measures of PDMP

The main purpose of this Section is to provide a practical conditions on characteristics
(ϕ, λ,Q) such that if a probability measure µ on (M,B(M)) satisfies for all f ∈ C1

c(M),
∫

M
Af(x)dµ(x) = 0, where A is the weak generator of the semigroup (Pt)t>0 associated

with (ϕ, λ,Q), then µ is invariant for (Pt)t>0.

Definition 20. We say that the PDMP semi-group (Pt)t>0 with characteristics (ϕ, λ,Q)
is smoothly and compactly approximable if for all ε > 0 there exist characteristics
(ϕ, λε, Qε) satisfying A2-A3 and

(38) sup
x∈M

A∈B(M)

{λε(x) ∧ λ(x) |Qε(x,A)−Q(x,A)|+ |λε(x)− λ(x)|} 6 ε .

We may now give the main result of this section.

Proposition 21. Let (Pt)t>0 be a non explosive PDMP semigroup with characteristics
(ϕ, λ,Q) such that A1 holds. Assume that (Pt)t>0 is smoothly and compactly approx-
imable and

∫

M
|λ| (x)µ(dx) < +∞. In addition, assume that the generator A associated

with (Pt)t>0 satisfies for all f ∈ C1
c(M),

(39)

∫

M

Af(x)µ(dx) = 0 .

Then µ is invariant for (Pt)t>0.

Before proceeding to the proof, let us present this technical lemma.
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Lemma 22. Let (P 1
t )t>0 and (P 2

t )t>0 be non explosive PDMP semigroups with charac-
teristics (ϕ, λ1, Q1) and (ϕ, λ2, Q2) respectively such that A1 holds. Assume that there
exists η > 0, such that

sup
x∈M

A∈B(M)

∣

∣λ1(x)Q1(x,A)− λ2(x)Q2(x,A)
∣

∣ 6 η .

Then for all f ∈ C1
c(M),

∥

∥A1f −A2f
∥

∥

∞
6 2η ‖f‖∞ ,

where A1, A2 are the extended generators of (P 1
t )t>0, (P 2

t )t>0 respectively defined by
(24).

Proof. Let ε > 0 and f ∈ C1
c(M). Since C1

c(M) belongs to the domain of A1 and A2, we
have for all x ∈ M by [11, Section III.1]
∣

∣A1f(x)−A2f(x)
∣

∣ =
∣

∣λ1(x)Q1f(x)− λ1(x)f(x)− [λ2(x)Q2f(x)− λ2(x)f(x)]
∣

∣

6 2 ‖f‖∞ sup
A∈B(M)

∣

∣λ1(x)Q1(x,A)− λ2(x)Q2(x,A)
∣

∣ 6 2η ‖f‖∞ ,

which concludes the proof. �

Proof of Proposition 21. Since C1
c(M) is dense in L∞(µ), where L∞(µ) is the space of

measurable function with bounded essential supremum with respect to µ, it is sufficient
to show that

∫

M

Ptf(x)µ(dx) =

∫

M

f(x)µ(dx)

for all t > 0 and f ∈ C1
c(M). Consider ε > 0, a PDMP semi-group (P ε

s )s>0 with
characteristics (ϕ, λε, Qε) satisfying A2-A3 and (38), and t > 0 . By Proposition 11, we
have for all x ∈ M, ‖δxPt − δxP

ε
t ‖TV 6 2(1− e−tε), therefore we get for all f ∈ C1

c(M)
∣

∣

∣

∣

∫

M

Ptf(x)µ(dx)−

∫

M

f(x)µ(dx)

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

M

{Ptf(x)− P ε
t f(x)}µ(dx)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

M

{P ε
t f(x)− f(x)}µ(dx)

∣

∣

∣

∣

6 2(1− e−εt) ‖f‖∞ +

∣

∣

∣

∣

∫

M

{P ε
t f(x)− f(x)}µ(dx)

∣

∣

∣

∣

.(40)

Furthermore, by Corollary 19, C1
c(M) is a core for the strong generator associated

with (P ε
s )s>0. Thus, it belongs to the domain of the strong generator of (P ε

t )t>0 and by
Dynkin formula [13, Proposition 1.5-(c)], we get

∫

M

P ε
t f(x)µ(dx) =

∫

M

f(x)µ(dx)−

∫

M

∫ t

0
AεP ε

s f(x)ds µ(dx) .

Therefore,

(41)

∣

∣

∣

∣

∫

M

P ε
t f(x)µ(dx)−

∫

M

f(x)µ(dx)

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

M

∫ t

0
{Aε −A}P ε

s f(x)dsµ(dx)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

M

∫ t

0
AP ε

s f(x)ds µ(dx)

∣

∣

∣

∣

.
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In addition, by (28) in Lemma 17, A3-(iii) and Lemma 14,
∫

M

∫ t

0 |AP ε
s f(x)| dsµ(dx) <

+∞. Therefore, by Fubini’s theorem and (39), we get
∫

M

∫ t

0 AP ε
s f(x)dsµ(dx) = 0.

Combining this result, (41) becomes

(42)

∣

∣

∣

∣

∫

M

P ε
t f(x)µ(dx)−

∫

M

f(x)µ(dx)

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

M

∫ t

0
{Aε −A}P ε

s f(x)dsµ(dx)

∣

∣

∣

∣

.

Note that by (16), (38) and Lemma 22, for all f ∈ C1
c(M)

‖Af −Aεf‖∞ 6 ε ‖f‖∞ .

Using this result in (42), we obtain

(43)

∣

∣

∣

∣

∫

M

P ε
t f(x)µ(dx)−

∫

M

f(x)µ(dx)

∣

∣

∣

∣

6 εt sup
x∈M
s∈[0,t]

|Psf(x)| 6 εt ‖f‖∞ .

Plugging (43) in (40), we finally obtain
∣

∣

∣

∣

∫

M

Ptf(x)µ(dx)−

∫

M

f(x)µ(dx)

∣

∣

∣

∣

6 (2(1 − e−εt) + εt) ‖f‖∞ .

Taking the limit as ε goes to 0 concludes the proof. �

With this notion of smoothly approximable semigroup, we will be able to consider the
BPS process.

Example - Bouncy Particle Sampler.

Proposition 23. Let U ∈ C2(Rd), λc > 0 and µv ∈ P(Y) with Y ⊂ R
d bounded.

Then the associated BPS on R
d × Y, given by Example 1, is smoothly and compactly

approximable.

Proof. Let (ϕ, λ,Q) be the characteristics of the BPS given by Section 4. Let ε > 0,
λε : M → R+ and Qε be a Markov kernel on (Rd × Y,B(Rd × Y)) defined for all
(x, y) ∈ R

d × Y and A ∈ B(Rd) by

λε(x, y) = λε
1(x, y) + λ̄ , λε

1(x, y) = (〈y,∇U(x)〉 − ε)2+/(ε+ (〈y,∇U(x)〉 − ε)+) ,

Qε((x, y),A) = (1/λε(x, y))
{

λε
1δ(x,R(x,y))(A) + λc(δx ⊗ µv)(A)

}

,

where R is defined by (2) for g = ∇U . Then, similarly to the BPS process, (ϕ, λε, Qε)
defines a non explosive semi-group (P ε

t )t>0 on (Rd × Y) × B(Rd × Y). In addition we
have

sup
(x,y)∈Rd×Y

∣

∣

∣λ(ε)(x, y)− λ(x, y)
∣

∣

∣ 6 2ε .

Therefore, using Remark 12, we get

sup
(x,y)∈Rd×Y

A∈B(Rd×Y)

{λε(x, y) ∧ λ(x, y) |Qε((x, y),A) −Q((x, y),A)| + |λε(x, y)− λ(x, y)|}

6 2 sup
(x,y)∈Rd×Y

A∈B(Rd×Y)

|λε(x, y)Qε((x, y),A) − λ(x, y)Q((x, y),A)| 6 4ε ,

which shows (38).
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Since Y is assumed to be bounded, Y ⊂ B (0,MY), with MY ∈ R+. Therefore by
definition, for all t ∈ R+ and (x, y) ∈ R

d × Y, we have P ε
t ((x, y),B (x, tMY) × Y) = 1

and P ε
t satisfies A2.

Finally, we show that A3 is satisfied. A3-(iii) trivially holds by definition of ϕ.
For all closed ball, B (0,M) ⊂ R

d, M ∈ R+, Qε((x, y),B (0,M) × Y) = 1 for all
x ∈ B (0,M). For all compact set K ⊂ B(0,M)×Y ⊂ R

d×Y, M > 0, and T ∈ R+, define

K̃ = B(0,M + TR) × Y, with R = supy∈Y ‖y‖. Then, for all n ∈ N
∗, (ti)i∈J1,nK ∈ R

n
+,

∑n
i=1 ti 6 T , conditions (i)-(ii) of Definition 16 are satisfied with K̃, and (Ki)i∈J1,nK given

by

Ki = B(0, Ri)× Y , Ri = M +R
i
∑

j=0

tj .

Thus, ϕ and Qε are compactly compatible.
Then note that for all ε > 0, λε is continuously differentiable on M since t 7→ (t −

ε)2+/(ε+ (t− ε)+) is on R; and its gradient is given for all x ∈ M by

∇(λ(ε))(x, y) =

{

(〈y,∇U(x)〉−ε)(〈y,∇U(x)〉+ε)

〈y,∇U(x)〉2

(

∇2U(x)y,∇U(x)
)

if 〈y,∇U(x)〉 > ε

0 otherwise .

In addition, for all continuously differentiable function f : Rd ×Y → R, (x, y) ∈ R
d ×Y,

we have λε(x, y)Qεf(x, y) = A1(x, y) +A2(x, y) where

A1(x, y) = λε
1(x, y)f(x,R(x, y)) , A2(x, y) = λc

∫

Y

f(x, ỹ)µv(dỹ) .

We show that A1 and A2 are continuously differentiable and satisfy for i = 1, 2, for all
compact set K ∈ R

d × Y, for all (x, y) ∈ K,

(44) ‖∇Ai(x, y)‖ 6 sup
(w,z)∈K

{Ψi(w, z)} sup {|f | (x, ỹ) + ‖∇f(x, ỹ)‖ : ỹ ∈ Y} ,

where Ψi : R
d × Y → R+, i = 1, 2, are bounded on compact sets of Rd × Y. Note that

if we show (44), since for all (x, y) ∈ R
d × Y, supp{Q((x, y), ·)} = {x} × Y, this result

concludes the proof that A3-(ii) holds.
First, for all (x, y) ∈ R

d×Y, R is continuously differentiable at (x, y) is 〈y,∇U(x)〉 6= 0.
Since f , λε

1 are continuously differentiable and λε
1(x, y) = 0 if 〈y,∇U(x)〉 6 ε, A1 is

continuously differentiable and satisfies for all (x, y) ∈ R
d × y, 〈y,∇U(x)〉 > ε

(45)
‖∇A1(x, y)‖ 6 ‖∇λε

1(x, y)‖ |f | (x,R(x, y))+λε
1(x, y)(1+ ‖∇R(x, y)‖) ‖∇f(x,R(x, y))‖ .

Regarding A2, we have for all (x, y) ∈ R
d × Y, since ∇f is bounded on all compact sets

of Rd × Y and the Lebesgue dominated convergence theorem,

‖∇A2(x, y)‖ 6 λc

∫

Y

‖∇xf(x, ỹ)‖µv(ỹ) 6 λc sup
y∈Y

‖∇f(x, ỹ)‖ ,

where ∇x is the differential operator with respect to the x-variable. Combining this
result and (45), we get that (44) holds and therefore A3-(ii) as well.

�
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Proposition 24. Consider the BPS characteristics (ϕ, λ1, Q1, λ2, Q2) defined in Ex-
ample 1, and let (Pt)t>0 be the corresponding semigroup. Assume that µv is rotation
invariant, i.e. for all O ∈ R

d×d, OTO = Id, µv(OA) = µv(A), for all A ∈ B(Y). In
addition, suppose that

(46)

∫

Rd

(1 + ‖∇U(x)‖)e−U(x)dx < ∞ ,

∫

Y

‖y‖µv(dy) < ∞ .

Then π̃ = π⊗µv is invariant for (Pt)t>0, where π is the probability measure on (Rd,B(Rd))

with density with respect to the Lebesgue measure proportional to x 7→ e−U(x).

Proof. Consider first the case where Y is bounded. Then, by Proposition 23, (Pt)t>0 is
smoothly and compactly approximable and the other assumptions of Proposition 21 are
easily checked. In particular, for all f ∈ C1

c(R
d × Y),

∫

Rd Af(x)π(dx) = 0 follows from
an integration by parts and because Y and µv is rotation invariant, see e.g. [21] for more
details.

Now, in the general case where Y may be unbounded, consider the conditional distri-
bution associated with µv defined for all A ∈ B(Y),

µR
v (A) = µv(B (0, R) ∩ A)/µv(B (0, R)) ,

for R large enough such that µv(B (0, R)) 6= 0. Consider a BPS semi-group (PR
t )t>0

associated with U and µR
v , i.e. with characteristics (ϕ, λ,QR) with ϕ given by (2), λ by

(9) and QR is defined for all (x, v) ∈ R
d × Y, A ∈ B(Rd × Y) by

QR((x, y),A) = λ−1(x, y)
{

〈∇U(x), y〉 δ(x,R(x,y))(A) + λc(δx ⊗ µR
v )(A)

}

.

Note that since Y∩B(0, R) is bounded, π̃R = π⊗µR
v is an invariant measure for (PR

t )t>0.
Therefore for any f : Rd×Y → R, bounded and measurable, t > 0, we have for all R > 0
large enough,
∣

∣

∣

∣

∫

Rd×Y

Ptf(x, y)dπ̃(x, y)−

∫

Rd×Y

f(x, y)dπ̃(x, y)

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

Rd×Y

Ptf(x, y)dπ̃(x, y)−

∫

Rd×Y

Ptf(x, y)dπ̃
R(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Rd×Y

Ptf(x, y)dπ̃
R(x, y)−

∫

Rd×Y

PR
t f(x, y)dπ̃R(x, y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Rd×Y

f(x, y)dπ̃R(x, y)−

∫

Rd×Y

f(x, y)dπ̃(x, y)

∣

∣

∣

∣

6 2 ‖f‖∞ µv

(

R
d \ B(0, R)

)

+

∣

∣

∣

∣

∫

Rd×Y

Ptf(x, y)dπ̃
R(x, y) −

∫

Rd×Y

PR
t f(x, y)dπ̃R(x, y)

∣

∣

∣

∣

.

Since limR→+∞ µv(R
d \B (0, R)) = 0, it remains to show that the last term in the right-

hand side goes to 0 as R → +∞ and the proof will be finished. Besides, note that this
result holds if for t > 0, we show that for all (x, y) ∈ R

d × Y,

(47) lim
R→+∞

‖δ(x,y)Pt − δ(x,y)P
R
t ‖TV = 0 .



36 A. DURMUS, A. GUILLIN, P. MONMARCHÉ

But by Proposition 11 and definition of characteristics of (Ps)s>0 and (PR
s )s>0, we get

for all t > 0, (x, y) ∈ R
d × Y,

‖δ(x,y)Pt − δ(x,y)P
R
t ‖TV 6 2(1− exp(−λcµ(Y \ B (0, R)))) ,

which shows that (47) holds. �

10. Stabiility of invariant measure and jump rate

We conclude this work with an asymptotic counterpart of the comparison theorems
established in Section 6. For a measurable function V : M → [1,+∞) and ν1, ν2 ∈ P(M),
ν1(V ), ν2(V ) < +∞, define the V -norm between ν1 and ν2 by

‖ν1 − ν2‖V = sup

{∣

∣

∣

∣

∫

M

fdν1 −

∫

M

fdν2

∣

∣

∣

∣

, ‖f/V ‖∞ 6 1

}

.

We say that a semi-group on M with invariant probability measure µ is V -uniformly
geometrically ergodic with constants C, ρ > 0 if for all ν ∈ P(M), ν(V ) < +∞ and
t > 0,

‖µ− νPt‖V 6 Ce−ρtν(V ) .

Proposition 25. Let (P 1
t )t>0 and (P 2

t )t>0 be two non-explosive homogeneous PDMP
semi-group with characteristics (ϕ, λ1, Q1) and (ϕ, λ2, Q2) respectively. Let µ1, µ2 ∈
P(M) be invariant for (P 1

t )t>0 and (P 2
t )t>0 respectively. Suppose that (P 1

t )t>0 is V -
uniformly geometrically ergodic with constants C, ρ ∈ R

∗
+ for a function V : M → [1,+∞)

such that µ2(V ) < +∞. Assume in addition that

C1
c(M) ⊂ B1

0(M) =
{

f ∈ B(M) : lim
t→0

∥

∥P 1
t f − f

∥

∥

∞
= 0
}

,

and that for all t ∈ R+ and f ∈ C1
c(M), x 7→

∫ t

0 P
1
s f(x)ds ∈ D(Ā2), where (Ā2,D(Ā2))

is the strong generator of (P 2
t )t>0. Then

‖µ1 − µ2‖V 6 Cρ−1 sup

{∫

M

|λ1Q1h− λ2Q2h+ (λ2 − λ1)h| dµ2 : ‖h/V ‖∞ 6 1

}

.

Proof. By density, it is sufficient to bound |µ1(f) − µ2(f)| for all f ∈ C1
c(M) with

‖f/V ‖∞ 6 1. Let f ∈ C1
c(M) with ‖f/V ‖∞ 6 1 and, for t > 0, let gt =

∫ t

0 P
1
s (f −

µ1(f))ds. According to [9, Proposition 14.10], for all t > 0, gt ∈ D(Ā1) as a sum of

a constant function and of
∫ t

0 Psfds with f ∈ B1
0(M), where (Ā1,D(Ā1)) is the strong

generator of (P 1
t )t>0; moreover it holds

Ā1gt = Ā1

∫ t

0
Psfds = Ptf − f .

Using that (P 1
t )t>0 is V -uniformly geometrically ergodic and that gt ∈ D(Ā2), we obtain

for all t > 0 and x ∈ M that

|µ1(f)− f(x)− Ā2gt(x)| 6 ‖δxPt − µ1‖V + |Ptf(x)− f(x)− Ā2gt(x)|

6 Ce−ρtV (x) + |Ā1gt(x)− Ā2gt(x)| .
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In addition, by definition of (Ā2,D(Ā2)) and since µ2 is invariant for (P 2
t )t>0, then

µ2(Ā2gt) = 0 for all t > 0, so that

|µ1(f)− µ2(f)| =
∣

∣µ2{µ1(f)− f − Ā2gt}
∣

∣ 6 µ2

(∣

∣(Ā1 − Ā2)gt
∣

∣

)

+ Ce−ρtµ2(V ) .

Since D(Āi) ⊂ D(Ai), i = 1, 2, for all t > 0, (Ā1−Ā2)gt = (A1−A2)gt. Finally, (P
1
t )t>0

being V -uniformly geometrically ergodic, then for all x ∈ M, gt(x) 6 (C/ρ)V (x). The
proof is then concluded taking t → +∞. �

Example - Bouncy Particle Sampler. Let us apply this result in the case of the
Bouncy Particle Sampler. Ergodicity of the BPS is studied in [12], to which we will refer
for details on this matter in the following. For the sake of simplicity, we will work under
restrictive conditions.

Proposition 26. Consider the BPS with characteristics (ϕ, λ1, Q1, λ2, Q2) defined in
Example 1, with U ∈ C2(M) and Y ⊂ B(0, 1), and (Pt)t>0 the corresponding semi-
group. For M > 0, let (PM

t )t>0 be the PDMP semi-group with characteristics (ϕ, λ1 ∧
M,Q1, λ2, Q2).

Assume that µv is rotation invariant and (46) holds. In addition, assume that there
exist R > 0, W ∈ C2(Rd) and F ∈ C2(R) such that U(x) = F (W (x)) for x /∈ B (0, R),
‖∇W‖∞ +

∥

∥∇2W
∥

∥

∞
< +∞,

∫

M
exp(−W (x))dx < ∞, lim‖x‖→+∞W (x) = +∞ and

limw∈+∞ F ′(w) = +∞. Then there exists C > 0 and M̃ > 0 such that for all M > M̃ ,
(PM

t )t>0 admits a unique invariant measure π̃M that satisfies

‖π̃ − π̃M‖eW 6 C

∫

M

(‖∇U(x)‖ −M)+ eW (x)−U(x)dx ,

where π̃ = π ⊗ µv where π is the probability measure on (Rd,B(Rd)) with density with
respect to the Lebesgue measure proportional to x 7→ e−U(x).

For example, if U(x) = 〈x,Ax〉 for some definite positive matrix A outside a ball,

then these conditions are satisfied by W (x) =
√

1 + U(x) and F (w) = w2 − 1. In this
case, Proposition 26 implies that there exist M0, C, c > 0 such that for all M > M0,

‖π̃ − π̃M‖eW 6 Ce−cM2
.

Note that for all M > 0, (PM
t )t>0 can be sampled by thinning procedures, see [17, 16].

Proof. For all ε > 0, in a similar way as in Proposition 23, we can construct a semi-group

(PM,ε
t )t>0 with characteristics (ϕ, λM,ε, Q1, λ2, Q2) where λM,ε is such that (PM,ε

t )t>0

satisfies A2-A3 and that

(48) sup
(x,y)∈Rd×Y

|λ1(x, y) ∧M − λM,ε(x, y)| 6 ε .

Let us show that we can apply Proposition 25 twice, with each time P 1
t = PM,ε

t and P 2
t

equal either to PM
t or Pt. Consider the Lyapunov function defined for all (x, y) ∈ R

d×Y

by V (x, y) = exp(W (x))φ(〈y,∇W (x)〉), where φ ∈ C2(R) is an increasing function, with
φ(r) = 1 for r 6 −2 and φ(r) 6 3 for r > 1.

We show first that (Pt)t>0, (PM
t )t>0 and (PM,ε

t )t>0 are V -uniformly geometrically
ergodic, which will imply that all these semi-groups admit a unique stationary measure
for which V is integrable. For h > 0, let AhW be the generator of the BPS semi-group



38 A. DURMUS, A. GUILLIN, P. MONMARCHÉ

with potential hW , refreshment rate λc > 0 and refreshment law µv. Following [12,
Section 3.2], there exist φ : R → [1, 3] and h0 > 0 such that there exist α,C > 0
satisfying

Ah0WV 6 −αV + C .

Moreover, for all M > 0, denoting AM the generator of (PM
t )t>0,

(AM −Ah0W )V (x, y) =
(

λ1(x, y) ∧M − h0 〈y,∇W (x)〉+
)

× (φ(−〈y,∇W (x)〉)− φ(〈y,∇W (x)〉)) eW (x) .

Note that, since Y ⊂ B (0, 1), W is Lipschitz and F ′ and W going to infinity at infinity,
then for M0 = h0 ‖∇W‖∞ and some R0 > R large enough, for all M > M0, x /∈ B(0, R0)
and y ∈ Y,

λ1(x, y) ∧M − h0 〈y,∇W (x)〉+ >
((

F ′(W (x))− h0
)

〈y,∇W (x)〉+
)

∧ (M − h0 ‖∇W‖∞)

> 0 .

Besides, φ being increasing, φ(−r) − φ(r) 6 0 for all r > 0, so that for all M > M0,
x /∈ B (0, R0) and y ∈ Y,

AMV (x, y) 6 Ah0WV (x, y) 6 −αV (x, y) + C .

Hence, for M > M0 and all (x, y) ∈ R
d × Y,

AMV (x, y) 6 −αV (x, y)+C+ sup
(x,y)∈B(0,R0)×Y

|AMV (x, y) + αV (x, y)| 6 −αV (x, y)+C ′ ,

for some C ′ that does not depend on M > M0, since λ1 is bounded on B (0, R0)×Y. By

a similar argument, denoting AM,ε the generator of (PM,ε
t )t>0,

AM,εV = AMV + (AM,ε −AM)V 6 −αV + 6εeW + C 6 −(α− 12ε)V + C .

Hence, we have obtained M0, ε0, α
′, C ′ > 0 such that for all M > M0, all ε ∈ [0, ε0] then

(49) AM,εV 6 −α′V + C ′ .

Moreover, following [12, Section 3.3], for all compact set K ⊂ R
d × Y, there exist

η, t0 > 0 such that, for all M > M0 and ε ∈ [0, ε0], for all (x, y), (x′, y′) ∈ K and all
t > t0,

(50) ‖δx,yP
M,ε
t − δx′,y′P

M,ε
t ‖TV 6 2(1 − η) .

Note that, indeed, η and t0 do not depend on M or ε since their construction only
involves the supremum of λM,ε over some compact set, which is smaller than ε0 plus the
supremum of λ1 over the same compact (see [12, Section 3.3] for details).

By [19, Theorem 6.1], (49) together with (50) implies that (PM,ε
t )t>0 admits a unique

invariant measure π̃M,ε, π̃M,ε(V ) < +∞ and is V -uniformly ergodic for all M > M0 and
ε ∈ [0, ε0] with some constants that does not depend on M nor ε (see [12, Section 3] for
details). More precisely for all M > M0 and ε ∈ [0, ε0], there exists C > 0 and ρ > 0
such that for all initial distribution ν0, ν0(V ) < +∞,

(51) ‖ν0P
M,ε
t − π̃M,ε‖TV 6 Cρtν0(V ) .
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The case ε = 0 in particular implies that (PM
t )t>0 admits an invariant measure π̃M

that satisfies π̃M (V ) < +∞. Besides, note that for R1 > R0 large enough to ensure that
F (W (x)) > 2W (x) for all x /∈ B(0, R1),

∫

M

eW (x)−U(x)dx 6

∫

B(0,R1)
eW (x)−U(x)dx+

∫

Rd\B(0,R1)
e−W (x)dx < +∞ ,

so that π̃(V ) < +∞. Finally, note that V 6 eW 6 2V , so that the associated V -norms
are equivalent.

In order to apply Proposition 25, it remains to check the regularity conditions. Since

(PM,ε
t )t>0 satisfies A2-A3, by Lemma 17-Lemma 14,

∫ t

0 P
M,ε
s fds ∈ C1

c(R
d × Y) for all

f ∈ C1
c(R

d × Y), t > 0, M,ε > 0. By Proposition 15, for all M,ε > 0, C1
c(R

d × Y) ⊂
D(ĀM,ε)∩D(ĀM )∩D(Ā), where Ā is the strong generator of (Pt)t>0. As a consequence,
we can apply twice Proposition 25 which implies, combining with (51), that there exists
C1 > 0 satisfying for any M > M0 and ε ∈ [0, ε0],

‖π̃ − π̃M‖eW 6 ‖π̃ − π̃M,ε‖eW + ‖π̃M,ε − π̃M‖eW

6 C1 sup

{∫

Rd×Y

|λ1 − λM,ε| (|Q1h|+ |h|)dπ̃ :
∥

∥he−W
∥

∥

∞
6 1

}

+ C1 sup

{
∫

Rd×Y

|λ1 ∧M − λM,ε| (|Q1h|+ |h|)dπ̃M :
∥

∥he−W
∥

∥

∞
6 1

}

,

Using that Q1e
W = eW , (48), π̃(eW ) and π̃M (eW ) < +∞, we obtain that there exists

C2 > 0 such that

‖π̃ − π̃M‖eW 6 C2

[∫

Rd×Y

{λ1 − λ1 ∧M} eWdπ̃ + ε

]

.

Finally, the proof is concluded taking ε → 0 and upon noting that for all (x, y) ∈ R
d×Y,

λ1(x, y)− λ1(x, y) ∧M = (〈y,∇U(x)〉+ −M)1[M,+∞)(〈y,∇U(x)〉+)

6 (‖∇U(x)‖ −M)1[M,+∞)(〈y,∇U(x)〉+) 6 (‖∇U(x)‖ −M)+ .

�
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