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Abstract: In this paper, we are interested in the long time behavior of
approximate solutions to a free boundary model which appears in the modeling
of concrete carbonation [1]. In particular, we study the long time regime of
the moving interface. The numerical solutions are obtained by an implicit in
time and finite volume in space scheme. We show the existence of solutions to
the scheme and, following [2, 3], we prove that the approximate free boundary
increases in time following a

√
t-law. Finally, we supplement the study through

numerical experiments.

1 Introduction

The carbonation phenomenon in reinforced concrete is a physico-chemical reac-
tion which produces a moving interface inside the concrete. The carbonation
process can be described as follows: CO2 in gaseous phase which comes from
the atmosphere is quickly transformed in CO2 in aqueous phase. The transfor-
mation of CO2(g) to CO2(aq) leads to the carbonation reaction when CO2(aq)
reacts with Ca(OH)2(aq). This reaction produces a moving interface which
splits the concrete in two parts: the carbonated one which grows in time and
the uncarbonated one. We refer to [1, 2, 3, 6, 8] for more details on the concrete
carbonation reaction.
In [1], Aiki and Muntean have proposed a free boundary system in one dimen-
sion in space modeling concrete carbonation. This model consists in a system
of two weakly coupled reaction-diffusion equations in a varying domain, the car-
bonated zone, whose length is governed by an ordinary differential equation. In
this model, the unknowns u and v represent the mass concentration of CO2 re-
spectively in aqueous and gaseous phase and s represents the penetration depth
which measures the size of the carbonated zone. Let us mention that this sys-
tem is derived from [6].
In this paper, we consider the numerical approximation of the model proposed
in [1]. As mentioned above, this system is defined on a varying domain. For
numerical reasons, it is convenient to rewrite this model on a fixed domain. To
this end, we use a change of variables [8], and in the sequel we consider

Q(T ) = {(t, x) : 0 < x < 1, 0 < t < T},
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and the following system:

s(t)∂t(s(t)u) + ∂xJu = s2(t)f(u, v) in Q(T ), (1a)

s(t)∂t(s(t)v) + ∂xJv = −s2(t)f(u, v) in Q(T ), (1b)

s′(t) = ψ(u(1, t)) for 0 < t < T, (1c)

u(0, t) = g(t) for 0 < t < T, (1d)

v(0, t) = r(t) for 0 < t < T, (1e)

Ju(1, t) = s(t)ψ(u(1, t)) for 0 < t < T, (1f)

Jv(1, t) = 0 for 0 < t < T, (1g)

u(x, 0) = u0(s0x) for 0 < x < 1, (1h)

v(x, 0) = v0(s0x) for 0 < x < 1, (1i)

s(0) = s0. (1j)

The general convection-diffusion fluxes are defined by

Jw = −κw∂xw − s(t)s′(t)xw,

where w = u or v. We refer to [1], where existence and uniqueness of a global
solution to (1) are established. As in the theoretical analysis, we suppose that
the following assumptions are satisfied:

(A1) ψ : R −→ R represents the kinetics of the reaction and is defined by
ψ(x) = αxp with α > 0 and p ≥ 1,
(A2) f : R2 −→ R is given by the Henry’s law and is defined by
f(u, v) = β(γv − u) with β and γ two positive constants,
(A3) g and r belong to H1(0, T ),
(A4) u0 and v0 belong to L∞([0, s0]),
(A5) the diffusive coefficients κu and κv are two positive constants,
(A6) s0 > 0,
(A7) there exist g∗ and r∗ two positive constants with g∗ = γ r∗ such that

0 ≤ g ≤ g∗ and 0 ≤ r ≤ r∗ on [0,+∞[,

0 ≤ u0 ≤ g∗ and 0 ≤ v0 ≤ r∗ on [0, s0].

In [2, 3], Aiki and Muntean show that the penetration depth s follows a
√
t-law

of propagation for constant Dirichlet boundary conditions. In this case, they
prove the existence of two positive constants c and C independent of t such that

c
√
t ≤ s(t) ≤ C

√
1 + t, ∀t ≥ 0. (2)

They extend their result to the case of time dependent Dirichlet boundary con-
ditions in [4]. We notice that there exists a wide literature in the continuous
setting on the long time behavior of the free interface for Stefan like problem,
see for instance [9, 10, 11, 14] and references therein. However, up to our knowl-
edge, there exist no such results in the discrete setting.
In [8], we propose and show the convergence of a finite volume scheme for (1)
and we observe that the approximate penetration depth follows a

√
t-law of

propagation. The aim of this paper is to establish an inequality similar to (2).
In [2, 3], the key idea is to prove an energy equality and then to deduce the
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√
t-bounds satisfied by s. In the discrete setting the main difficulty is to define

a scheme which permits to adapt this proof. To this end, we need to modify
the scheme proposed in [8] and we will consider in this paper a fully implicit in
time and finite volume in space scheme.
The paper is organized as follows: Section 2 introduces the numerical scheme
and states the main results. Theorem 2.1 gives the existence of a solution to
the scheme and Theorem 2.2 gives the long time behavior of the approximate
penetration depth. Section 3 is devoted to the proof of Theorem 2.1, while we
establish in Section 4 a discrete L2(0, T ;H1(0, 1)) estimate needed for the proof
of Theorem 2.2. Theorem 2.2 is then proved in Section 5. We present some
numerical results obtained with the scheme in Section 6. Finally, an Appendix
gives a result required for the theoretical study of the scheme.

2 Numerical scheme and main results

2.1 The fully implicit finite volume scheme

In order to write a finite volume scheme we introduce notations related to the
discretisation of [0, 1] × [0, T ]. A mesh T , consists in a finite sequence of cells
denoted (xi− 1

2
, xi+ 1

2
), for 1 ≤ i ≤ l, with

0 = x 1
2
< x 3

2
< ... < xl− 1

2
< xl+ 1

2
= 1.

We note hi = xi+ 1
2
− xi− 1

2
, for 1 ≤ i ≤ l, the length of the i-th cell. The mesh

size is defined as h = max{hi, 1 ≤ i ≤ l}. Moreover, for 1 ≤ i ≤ l, we define xi
as the center of the cell (xi− 1

2
, xi+ 1

2
), x0 = x 1

2
and xl+1 = xl+ 1

2
. We set

hi+ 1
2

= xi+1 − xi for 0 ≤ i ≤ l.

For the discretisation of [0, T ], we define a time step ∆t and an integer NT such
that NT ∆t = T . We consider the sequence (tn)0≤n≤NT

with tn = n∆t.

Then, for 1 ≤ i ≤ l and 0 ≤ n ≤ NT − 1, the scheme writes

sn+1 = sn + ∆t ψ(un+1
l+1 ), (3)

his
n+1 s

n+1 un+1
i − sn uni

∆t
+
(
Fn+1

u,i+ 1
2

−Fn+1
u,i− 1

2

)
=

hi (sn+1)2 f(un+1
i , vn+1

i ), (4)

his
n+1 s

n+1 vn+1
i − sn vni

∆t
+
(
Fn+1

v,i+ 1
2

−Fn+1
v,i− 1

2

)
=

− hi (sn+1)2 f(un+1
i , vn+1

i ). (5)

It remains to define the numerical fluxes. We define

σn+1 = sn+1 s
n+1 − sn

∆t
, (6)
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and we define a generic numerical flux, that is:

Fn+1
w,i+ 1

2

= κw

B

(
hi+ 1

2
σn+1 xi+ 1

2

κw

)
wn+1

i −B

(
−hi+ 1

2
σn+1 xi+ 1

2

κw

)
wn+1

i+1

hi+ 1
2

, (7)

for w = u or v. For B, we should consider the upwind fluxes B(x) = Bup(x) =
1+x− with x− = max(−x, 0) (see [7]) or the Scharfetter-Gummel fluxes B(x) =
Bsg(x) = x/(ex − 1) with B(0) = 1 introduced by Il’in in [12] and Scharfetter
and Gummel in [13]. We notice that in both cases the function B satisfies the
following assumptions:

B is LB-Lipschitz continuous on R, (8a)

B(0) = 1 and B(x) > 0, ∀x ∈ R, (8b)

B(x) ≤ 1, ∀x ∈ R+, (8c)

B(x)−B(−x) = −x, ∀x ∈ R. (8d)

We supplement the numerical scheme with the discretization of the boundary
conditions

vn0 = rn =
1

∆t

∫ tn+1

tn

r(t) dt, un0 = gn =
1

∆t

∫ tn+1

tn

g(t) dt, (9)

for 0 ≤ n ≤ NT and

Fn+1
v,l+ 1

2

= 0, (10)

Fn+1
u,l+ 1

2

= sn+1 ψ(un+1
l+1 ). (11)

Moreover, thanks to (3) and (6), we have for 0 ≤ n ≤ NT

Fn+1
u,l+ 1

2

= sn+1 ψ(un+1
l+1 ) = σn+1. (12)

Finally, for the initial conditions we define for 1 ≤ i ≤ l

s0 = s0, (13)

w0
i =

1

h

∫ x
i+1

2

x
i− 1

2

w0(s0x)dx and w0
l+1 = w0(s0), (14)

for w = u or v. We denote by (S) the scheme (3)-(14).

Remark 2.1. Let us notice that thanks to the hypothesis (8d) we have for
1 ≤ i ≤ l and n ≥ 0 two decomposition formulae for the fluxes, either an
upwind reformulation

Fn+1
w,i+ 1

2

= −κw B

(
hi+ 1

2
σn+1 xi+ 1

2

κw

)
wn+1

i+1 − w
n+1
i

hi+ 1
2

− σn+1 xi+ 1
2
wn+1

i+1 , (15)

4



or a centered one

Fn+1
w,i+ 1

2

= −κw Bc

(
hi+ 1

2
σn+1 xi+ 1

2

κw

)
wn+1

i+1 − w
n+1
i

hi+ 1
2

− σn+1 xi+ 1
2

wn+1
i + wn+1

i+1

2
, (16)

with

Bc(x) =
B(x) +B(−x)

2
, ∀x ∈ R. (17)

2.2 Main results

First, we state the existence of a solution to the scheme (S). Let us introduce
for a given T the compact and convex set

K =
{

(u, v) ∈ Rl+2 × Rl+2 : 0 ≤ ui ≤ g∗, 0 ≤ vi ≤ r∗, ∀ 0 ≤ i ≤ l + 1
}
.

Theorem 2.1. Under the assumptions (A1)-(A7) and (8) and for a given mesh
T and a given ∆t then (S) admits a solution (sn, un, vn) for all 0 ≤ n ≤ NT

such that

(un, vn) ∈ K and sn ≥ s0 > 0, ∀0 ≤ n ≤ NT . (18)

Moreover

0 ≤ sn+1 − sn

∆t
≤ α (g∗)p, ∀0 ≤ n ≤ NT − 1. (19)

We prove Theorem 2.1 in Section 3. The proof is based on the Brouwer’s
fixed-point theorem.
As already said, our main result concerns the long time behavior of the approx-
imate penetration depth. This result is given in Theorem 2.2.

Theorem 2.2. For a given ∆t, let the hypothesis (A1) − (A7) and (8) hold,
assume that g(t) = g∗ and r(t) = r∗ for t ∈ [0,+∞) with g∗ + r∗ < 1. Then,
there exist two positive constants c and C independent of ∆t such that

c
√
T ≤ sNT ≤ C

√
T + 1. (20)

We show Theorem 2.2 in Section 5. For the proof, we establish two energy
inequalities, see Proposition 5.1 and Proposition 5.2. Then, we prove the lower
and upper bound of (20).

3 Existence of a solution to the scheme

In this Section, we prove Theorem 2.1. The proof of existence is done by in-
duction on n and we follow some ideas developed in [5]. Let us note that the
element s0 is defined by (13) and the vectors u0 and v0 are defined by (14).
Hypothesis (A7) ensures that u0 and v0 fulfill the condition (18).
We suppose that, for some n ≥ 0, (sn, un, vn) is known and satisfies (18)
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and (19). We want to establish the existence of (sn+1, un+1, vn+1) solution
to (S) satisfying (18) and (19). To this end, we introduce the application
Tn : K −→ Rl+2 × Rl+2, such that Tn(u, v) = (û, v̂). The definition of Tn

is based on the linear scheme proposed in [8] and defined in two steps.

• First, for (u, v) ∈ K we define the element

ŝ = sn + ∆t α (ul+1)p. (21)

• Then, we define (û, v̂) as the solution to the following linear scheme

hi ŝ
ŝ v̂i − sn vni

∆t
+
(
Ĝv̂,i+ 1

2
− Ĝv̂,i− 1

2

)
= −hi (ŝ)2 f(ui, v̂i),

hi ŝ
ŝ ûi − sn uni

∆t
+
(
Ĝû,i+ 1

2
− Ĝû,i− 1

2

)
= hi (ŝ)2 f(ûi, v̂i),

for 1 ≤ i ≤ l and

Ĝv̂,l+ 1
2

= 0, Ĝû,l+ 1
2

= ŝ α ûl+1 (ul+1)p−1,

where

Ĝŵ,i+ 1
2

= κw

B

(
hi+ 1

2
σ xi+ 1

2

κw

)
ŵi −B

(−hi+ 1
2
σ xi+ 1

2

κw

)
ŵi+1

hi+ 1
2

,

with

σ = ŝ
ŝ− sn

∆t
.

We supplement this scheme by the boundary conditions

v̂0 = rn+1 and û0 = gn+1,

with rn+1 and gn+1 defined by (9).

We notice two important facts. First, the assumption (A7) ensures that v̂0 and
û0 satisfy

0 ≤ v̂0 ≤ r∗ and 0 ≤ û0 ≤ g∗.

Furthermore, since

0 ≤ ŝ− sn

∆t
≤ α (g∗)p,

and using the boundary condition for v̂ at x = 1 and the hypothesis (8), we
rewrite v̂l+1 as

v̂l+1 = ω v̂l, (22)

with ω a positive constant. Then, it suffices to study the two decoupled linear
systems which can be written as

Mû Û = bû and Mv̂ V̂ = bv̂,
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with Û = (û1, · · · , ûl+1)t, V̂ = (v̂1, · · · , v̂l)t, Mû ∈ Ml+1(R), Mv̂ ∈ Ml(R),
bû ∈ Rl+1 and bv̂ ∈ Rl. The matrices Mû and Mv̂ are tridiagonal. Moreover,
Mû and Mv̂ are M-matrices and thus invertible and monotone, see [8]. Since,
bû ≥ 0 and bv̂ ≥ 0, we deduce thanks to the induction hypothesis that Û ≥ 0,
V̂ ≥ 0 and by (22) we conclude that v̂l+1 ≥ 0.
Finally, following the proof of [8], we show that for all i ∈ {1, · · · , l+1} we have

ûi ≤ g∗ and v̂i ≤ r∗.

Thus, Tn stabilizes the set K and then, thanks to the Brouwer’s fixed-point
theorem, Tn has a fixed-point in K, denoted by (un+1, vn+1). Eventually, we
construct sn+1 by

sn+1 = sn + ∆t α (un+1
l+1 )p.

Hence, we deduce the existence of (sn+1, un+1, vn+1) solution to (S) such that
un+1, vn+1 and sn+1 satisfy (18). As a by-product, we deduce (19) since un+1 ∈
K and sn+1 ≥ sn ≥ 0.

4 Discrete L2(0, T ;H1(0, 1)) estimate on the ap-
proximate solutions

Following [2, 3], we establish in this Section a discrete L2(0, T ;H1(0, 1)) esti-
mate. This estimate is the discrete counterpart of Lemma 3.4 in [2]: under the
assumptions (A1) − (A7) and if we assume that g(t) = g∗ and r(t) = r∗ on
[0,+∞). Then, we have the following estimate

∫ T

0

s0
[

1

α1/p
(s′)

(p+1)/p
+

1

2α2/p
(s′)

(p+2)/p
]

+ κu

∫ T

0

∫ 1

0

|∂xu|2

+ κv γ

∫ T

0

∫ 1

0

|∂xv|2 ≤
1

2

∫ T

0

∫ 1

0

s s′ (u2 + γv2)

+
s2(T )

2

(
(g∗)2 + g∗ + γ (r∗)2

)
+

1

2

∫ 1

0

s20
[
(u0(s0x)− g∗)2 + γ (v0(s0x)− r∗)2

]
.

(23)

In order to state the discrete version of (23), let us remark that there exists a
positive constant τ such that

Bc(x) ≥ τ, ∀x ∈ R.

We refer to Appendix A where we prove the existence of τ . Moreover, we notice
that in the case of the upwind fluxes or the Scharfetter-Gummel fluxes τ = 1.
We now state the discrete L2(0, T ;H1(0, 1)) estimate.

Proposition 4.1. Let the hypothesis (A1)− (A7) and (8) hold and assume that
g(t) = g∗ and r(t) = r∗ on [0,+∞). Then, for a given ∆t and a given mesh T
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we have

NT−1∑
n=0

∆ts0

[
1

α1/p

(
sn+1 − sn

∆t

)(p+1)/p

+
1

2α2/p

(
sn+1 − sn

∆t

)(p+2)/p
]

+ κu τ

NT−1∑
n=0

∆t

l∑
i=0

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

+ γ κv τ

NT−1∑
n=0

∆t

l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

≤ (sNT )2
(
(g∗)2 + g∗ + γ (r∗)2

)
+

(s0)2

2

l∑
i=1

hi
[
(u0i − g∗)2 + γ(v0i − r∗)2

]
+

1

2

NT−1∑
n=0

∆t

l∑
i=0

hi σ
n+1

[
(un+1

i )2 + γ (vn+1
i )2

]
. (24)

Proof of Proposition 4.1
We multiply (4) by ∆t (un+1

i −g∗) and we sum over i and n, we obtain E+F = G,
with

E =

NT−1∑
n=0

∆t

l∑
i=1

hi s
n+1 (sn+1 un+1

i − sn uni )

∆t

(
un+1
i − g∗

)
,

F =

NT−1∑
n=0

∆t

l∑
i=1

(
Fn+1

u,i+ 1
2

−Fn+1
u,i− 1

2

) (
un+1
i − g∗

)
,

G =

NT−1∑
n=0

∆t

l∑
i=1

hi (sn+1)2 f
(
un+1
i , vn+1

i

) (
un+1
i − g∗

)
.

We notice that we can rewrite E as

E =

NT−1∑
n=0

l∑
i=1

his
n+1
[
sn+1 (un+1

i − g∗)− sn (uni − g∗)

+ g∗ (sn+1 − sn)
]
(un+1

i − g∗).

Using the formula (a− b) a ≥ (a2 − b2)/2 we obtain

E ≥ 1

2

NT−1∑
n=0

l∑
i=1

hi

[
(sn+1)2 (un+1

i − g∗)2 − (sn)2 (uni − g∗)2
]

+ g∗
NT−1∑
n=0

∆t

l∑
i=1

hi σ
n+1 (un+1 − g∗).

Theorem 2.1 implies that un+1
i ≥ 0 and sn+1 ≥ sn for 1 ≤ i ≤ l and 0 ≤ n ≤ NT .

Then, we deduce that

E ≥ 1

2

l∑
i=1

hi

[
(sNT )2 (uNT

i − g∗)2 − (s0)2 (u0i − g∗)2
]

− (g∗)2
NT−1∑
n=0

l∑
i=1

hi

(
(sn+1)2 − (sn)2

)
.
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Hence, we obtain

E ≥ −1

2

l∑
i=1

hi (s0)2(u0i − g∗)2 − (g∗)2
(
sNT

)2
. (25)

For F , a discrete integration by parts leads to F = F1 + F2, with

F1 = −
NT−1∑
n=0

∆t

l∑
i=0

Fn+1
u,i+ 1

2

(un+1
i+1 − u

n+1
i ),

F2 =

NT−1∑
n=0

∆tFn+1
u,l+ 1

2

(un+1
l+1 − g

∗).

For F1, we use the decomposition formula (16) and we get

F1 = κu

NT−1∑
n=0

∆t

l∑
i=0

Bc

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )2

hi+ 1
2

+
1

2

NT−1∑
n=0

∆t

l∑
i=0

xi+ 1
2
σn+1

((
un+1
i+1

)2 − (un+1
i

)2)
.

We reorder the convective terms and since by Lemma 7.1, Bc(x) ≥ τ for all
x ∈ R, we obtain

F1 ≥ κu τ
NT−1∑
n=0

∆t

l∑
i=0

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

− 1

2

NT−1∑
n=0

∆t

l∑
i=0

hi σ
n+1 (un+1

i )2 +
1

2

NT−1∑
n=0

∆t σn+1 (un+1
l+1 )2.

Using α (un+1
l+1 )p = (sn+1 − sn)/∆t and sn+1 ≥ s0 for the last term of the right

hand side, we deduce that

F1 ≥ κu τ
NT−1∑
n=0

∆t

l∑
i=0

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

− 1

2

NT−1∑
n=0

∆t

l∑
i=0

hi σ
n+1 (un+1

i )2 +

NT−1∑
n=0

∆t s0

2α2/p

(
sn+1 − sn

∆t

)(p+2)/p

.

For F2, we apply (12) and we have

F2 =

NT−1∑
n=0

∆t
sn+1

α1/p

(
sn+1 − sn

∆t

)(p+1)/p

− g∗
NT−1∑
n=0

sn+1 (sn+1 − sn)

≥
NT−1∑
n=0

∆t s0

α1/p

(
sn+1 − sn

∆t

)(p+1)/p

− g∗ (sNT )2.
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We conclude that

F ≥ κu τ
NT−1∑
n=0

∆t

l∑
i=0

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

− 1

2

NT−1∑
n=0

∆t

l∑
i=0

hi σ
n+1 (un+1

i )2

+

NT−1∑
n=0

∆t s0

2α2/p

(
sn+1 − sn

∆t

)(p+2)/p

+

NT−1∑
n=0

∆t s0

α1/p

(
sn+1 − sn

∆t

)(p+1)/p

− g∗ (sNT )2. (26)

Then, we obtain from equation E + F = G, inequalities (25) and (26)

NT−1∑
n=0

∆t s0

[
1

α1/p

(
sn+1 − sn

∆t

)(p+1)/p

+
1

2α2/p

(
sn+1 − sn

∆t

)(p+2)/p
]

+ κu τ

NT−1∑
n=0

∆t

l∑
i=0

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

≤ (sNT )2 ((g∗)2 + g∗) +
(s0)2

2

l∑
i=1

hi (u0i − g∗)2

+

NT−1∑
n=0

∆t

l∑
i=1

hi (sn+1)2 f(un+1
i , vn+1

i ) (un+1
i − g∗) +

1

2

NT−1∑
n=0

∆t

l∑
i=0

hi σ
n+1 (un+1

i )2.

(27)

As previously, we multiply (5) by γ∆t(vn+1 − r∗) and we sum over i and n, so
that we obtain similarly E + F = G. Thus, applying the same techniques as
before, we deduce that

γ κv τ

NT−1∑
n=0

∆t

l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

≤ (sNT )2 γ (r∗)2

+
γ

2

NT−1∑
n=0

∆t

l∑
i=0

hi σ
n+1 (vn+1

i )2 +
γ (s0)2

2

l∑
i=1

hi(v
0
i − r∗)2

− γ
NT−1∑
n=0

∆t

l∑
i=1

hi (sn+1)2 f(un+1
i , vn+1

i ) (vn+1
i − r∗).

(28)

Finally, we notice that, for 0 ≤ n ≤ NT − 1 and 1 ≤ i ≤ l, we have

f(un+1
i , vn+1

i )(un+1
i − g∗)− γ f(un+1

i , vn+1
i )(vn+1

i − r∗)
= −β (γ vn+1

i − un+1
i )2 ≤ 0. (29)

Thus, we sum (27) and (28) and we deduce, thanks to (29), the inequality (24).

Corollary 4.1. Let the hypothesis (A1) − (A7) and (8) hold and assume that
g(t) = g∗ and r(t) = r∗ on [0,+∞). Then, for a given ∆t and a given mesh T ,
there exists a constant C which depends on g∗, r∗, τ , ||u0−g∗||20 and ||v0−r∗||20
such that

κu

NT−1∑
n=0

∆t

l∑
i=0

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

+ κv γ

NT−1∑
n=0

∆t

l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

≤ C
(
sNT

)2
.

(30)

10



Proof of Corollary 4.1
Since s0 ≤ sNT we deduce from Proposition 4.1 that

κu τ

NT−1∑
n=0

∆t

l∑
i=0

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

+ γ κv τ

NT−1∑
n=0

∆t

l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

≤
(
sNT

)2 [
(g∗)2 + g∗ + γ (r∗)2 +

1

2

l∑
i=1

hi
[
(u0i − g∗)2 + γ (v0i − r∗)2

]
+

(g∗)2 + γ (r∗)2

2

]
.

This concludes the proof of Corollary 4.1.

5 The long time behavior of the approximate
penetration depth

In this Section, we prove Theorem 2.2. As already mentioned, in the continuous
setting the key idea is to establish an energy equality and then to deduce the√
t-bounds for the penetration depth. This equality is established in Lemma 3.3

in [2], see also Lemma 2.4 in [3], and could be stated as follows: assume that
the assumptions (A1)-(A7) hold, then we have

∫ 1

0

s2(T )x
(
u(x, T ) + v(x, T )

)
+

1

2
s2(T ) + κu

∫ T

0

∫ 1

0

∂xu(x, t)

+ κv

∫ T

0

∫ 1

0

∂xv(x, t) =
1

2
s20 +

∫ 1

0

s20 x
(
u0(s0 x) + v0(s0 x)

)
. (31)

However, at the discrete level the techniques employed in [2, 3] for the estab-
lishment of (31) do not directly apply. Hence, in order to prove Theorem 2.2 we
establish two discrete energy inequalities and then we will deduce the

√
t-bounds

satisfied by the approximate penetration depth.

5.1 The lower bound

In this Section, we show the lower bound of (20). To this end, we first state an
energy inequality.

Proposition 5.1. Let the hypothesis (A1)-(A7) and (8) hold. Then, for a given
∆t and a given mesh T a solution to (S) satisfies

3 g∗ + 3 r∗ + 1

2
(sNT )2 + κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )

+ κv

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κv

)
(vn+1

i+1 − v
n+1
i ) ≥ 0. (32)

11



Proof of Proposition 5.1
We multiply (4) by ∆t xi and we sum over i and n, we obtain E +F = G, with

E =

NT−1∑
n=0

∆t

l∑
i=1

hi xi s
n+1 (sn+1un+1

i − snuni )

∆t
,

F =

NT−1∑
n=0

∆t

l∑
i=1

xi

(
Fn+1

u,i+ 1
2

−Fn+1
u,i− 1

2

)
,

G =

NT−1∑
n=0

∆t

l∑
i=1

hi xi (sn+1)2 f(un+1
i , vn+1

i ).

For E we notice that

E =

NT−1∑
n=0

l∑
i=1

hi xi

(
(sn+1)2 un+1

i − (sn)2 uni

)
−

NT−1∑
n=0

∆t

l∑
i=1

hi xi s
n (sn+1 − sn)uni .

Then, using the telescopic sum and Theorem 2.1 we have

E ≤
l∑

i=1

hi xi
(
sNT

)2
uNT
i −

l∑
i=1

hi xi
(
s0
)2
u0i ≤ g∗

(
sNT

)2
. (33)

For F , a discrete integration by parts leads to

F = −
NT−1∑
n=0

∆t

l∑
i=0

hi+ 1
2
Fn+1

u,i+ 1
2

+

NT−1∑
n=0

∆tFn+1
u,l+ 1

2

.

Then, using the decomposition formula (15) and the equation (12), we obtain

F = κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )

+

NT−1∑
n=0

∆t

l∑
i=0

hi+ 1
2
xi+ 1

2
σn+1 un+1

i+1 +

NT−1∑
n=0

∆t σn+1.

Since un+1
i ≤ g∗ for all 1 ≤ i ≤ l + 1, we deduce that

F ≤ κu
NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )

+ (g∗ + 1)

NT−1∑
n=0

∆t σn+1.

Moreover, the inequality −sn+1 ≤ −sn yields to

F ≤ κu
NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )

+
g∗ + 1

2

NT−1∑
n=0

(
(sn+1)2 − (sn)2

)
. (34)

12



Then, applying (33) and (34) in the equation E + F = G we get

3 g∗ + 1

2

(
sNT

)2
+κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 −u
n+1
i ) ≥ G.

(35)

If we use the same techniques for v we have

3 r∗

2

(
sNT

)2
+ κv

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κv

)
(vn+1

i+1 − v
n+1
i ) ≥ −G.

(36)

Finally, we sum (35) and (36) and we deduce (32).

Now, let us show the lower bound of (20). Thanks to Proposition 5.1 we
obtain the inequality E + F +G ≥ 0 with

E =
3 g∗ + 3 r∗ + 1

2

(
sNT

)2
,

F = κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i ),

G = κv

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κv

)
(vn+1

i+1 − v
n+1
i ).

We rewrite F as F = F1 + F2 with

F1 = κu

NT−1∑
n=0

∆t

l∑
i=1

(
B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
− 1

) (
un+1
i+1 − u

n+1
i

)
,

F2 = κu

NT−1∑
n=0

∆t

l∑
i=1

(
un+1
i+1 − u

n+1
i

)
.

For |F1|, the Cauchy-Schwarz inequality yields to

|F1| ≤ κu
NT−1∑
n=0

∆t

 l∑
i=1

hi+ 1
2

(
B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
− 1

)2
1/2

(
l∑

i=1

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

)1/2

.

Since 0 ≤ B(x) ≤ 1 for x ≥ 0 then (B(x) − 1)2 ≤ 1 for x ≥ 0 and we obtain
using the Cauchy-Schwarz inequality

|F1| ≤
√
κu T

(
κu

NT−1∑
n=0

∆t

l∑
i=1

(un+1
i+1 − u

n+1
i )2

hi+ 1
2

)1/2

.
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Thanks to Corollary 4.1, we deduce the existence of a constant c1 independent
of ∆t such that

|F1| ≤ c1
√
κu T s

NT .

Then, the Young inequality leads to the existence of a positive constant, still
denoted c1, independent of ∆t such that

|F1| ≤ c1
(
sNT

)2
+
κu g

∗

8
T. (37)

For F2, using the telescopic sum and (3) we have

F2 =

NT−1∑
n=0

∆t κu
α1/p

(
sn+1 − sn

∆t

)1/p

− κu g∗ T.

Applying Hölder inequality, we get

NT−1∑
n=0

∆t κu
α1/p

(
sn+1 − sn

∆t

)1/p

≤ κu
α1/p

(
NT−1∑
n=0

∆t

(
sn+1 − sn

∆t

))1/p

T (p−1)/p

≤ κu
α1/p

(
sNT

)1/p
T (p−1)/p.

Then, we apply the Young inequality and we deduce the existence of a constant
c2 independent of ∆t such that

NT−1∑
n=0

∆t κu
α1/p

(
sn+1 − sn

∆t

)1/p

≤ c2 sNT +
κu g

∗

4
T.

Thus

F2 ≤ c2 sNT − 3κu g
∗

4
T. (38)

For G, thanks to Corollary 4.1 we deduce that there exists a positive constant
c3 independent of ∆t such that

κv

NT−1∑
n=0

∆t

l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

≤ c3
(
sNT

)2
. (39)

Applying the Cauchy-Schwarz inequality, we obtain

G ≤ κv
NT−1∑
n=0

∆t

(
l∑

i=0

hi+ 1
2
B2

(
hi+ 1

2
σn+1 xi+ 1

2

κv

))1/2 ( l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

)1/2

.

Since B(x) ≤ 1 for all x ∈ R+ we deduce that

G ≤ κv
NT−1∑
n=0

∆t

(
l∑

i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

)1/2

.
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Using the Cauchy-Schwarz inequality we end up with

G ≤ κv

(
NT−1∑
n=0

∆t

l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

)1/2

T 1/2.

Hence, applying (39) and the Young inequality we obtain that there exists a
constant c4 independent of ∆t such that

G ≤ c4
(
sNT

)2
+
κu g

∗

8
T. (40)

Then, from equation E + F +G ≥ 0 and (37)–(40) we deduce that(
3 g∗ + 3 r∗ + 1

2
+ c1 + c4

) (
sNT

)2
+ c2 s

NT ≥ κu g
∗

2
T.

If T > 1, applying the Young inequality we obtain

c2 s
NT ≤ c2 sNT T 1/2 ≤ κu g

∗

4
T +

c22
κu g∗

(
sNT

)2
.

We deduce the existence of a positive constant c, independent of ∆t, such that

sNT ≥ c
√
T .

In the case 0 ≤ T ≤ 1, we have

sNT ≥ s0 ≥ s0 T 1/2.

This concludes the proof of the lower bound of (20).

5.2 The upper bound

In this Section, we prove the upper bound of (20). As previously, we first
establish an energy inequality:

Proposition 5.2. Let the hypothesis (A1)-(A7) and (8) hold and assume that
g∗+r∗ < 1. Then, for a given ∆t and a given mesh T a solution to (S) satisfies

1− (g∗ + r∗)
2

(
sNT

)2
+ κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )

+κv

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κv

)
(vn+1

i+1 −v
n+1
i ) ≤

l∑
i=1

hi xi (s0)2 (u0i +v0i )

+
1− (g∗ + r∗)

2

(
s0
)2
. (41)

Proof of Proposition 5.2
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We multiply (4) by ∆t xi and we sum over i and n, we obtain E +F = G, with

E =

NT−1∑
n=0

∆t

l∑
i=1

hi xi s
n+1 (sn+1un+1

i − snuni )

∆t
,

F =

NT−1∑
n=0

∆t

l∑
i=1

xi

(
Fn+1

u,i+ 1
2

−Fn+1
u,i− 1

2

)
,

G =

NT−1∑
n=0

∆t

l∑
i=1

hi xi (sn+1)2 f(un+1
i , vn+1

i ).

For E we notice that

E =

NT−1∑
n=0

l∑
i=1

hi xi

(
(sn+1)2 un+1

i − (sn)2 uni

)
−

NT−1∑
n=0

∆t

l∑
i=1

hi xi s
n (sn+1 − sn)uni .

Then, using the telescopic sum and Theorem 2.1 we have

E ≥ −
l∑

i=1

hi xi
(
s0
)2
u0i − g∗

NT−1∑
n=0

∆t σn+1. (42)

For F , a discrete integration by parts leads to

F = −
NT−1∑
n=0

∆t

l∑
i=0

hi+ 1
2
Fn+1

u,i+ 1
2

+

NT−1∑
n=0

∆tFn+1
u,l+ 1

2

.

Then, using the decomposition formula (15) and the equation (12), we obtain

F = κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )

+

NT−1∑
n=0

∆t

l∑
i=0

hi+ 1
2
xi+ 1

2
σn+1 un+1

i+1 +

NT−1∑
n=0

∆t σn+1.

Since un+1
i ≥ 0 for 1 ≤ i ≤ l + 1, we deduce that

F ≥ κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i ) +

NT−1∑
n=0

∆t σn+1.

(43)

Then, applying (42) and (43) in the equation E + F = G we get

(1− g∗)
NT−1∑
n=1

∆t σn+1 + κu

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i )

≤ G+

l∑
i=1

hi xi (s0)2 u0i . (44)
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If we use the same techniques for v we have

− r∗
NT−1∑
n=1

∆t σn+1 + κv

NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κv

)
(vn+1

i+1 − v
n+1
i )

≤ −G+

l∑
i=1

hi xi (s0)2 v0i . (45)

Finally, summing (44) and (45) and using the hypothesis g∗ + r∗ < 1 we de-
duce (41).

Now, let us establish the upper bound of (20). Thanks to Proposition 5.2
we obtain the inequality E ≤ F +G+H with

E =
1− (g∗ + r∗)

2

(
sNT

)2
,

F = −κu
NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
(un+1

i+1 − u
n+1
i ),

G = −κv
NT−1∑
n=0

∆t

l∑
i=0

B

(
hi+ 1

2
σn+1 xi+ 1

2

κv

)
(vn+1

i+1 − v
n+1
i ),

H =

l∑
i=1

hi xi (s0)2 (u0i + v0i ) +
1− (g∗ + r∗)

2

(
s0
)2
.

We rewrite F as F = F1 + F2 with

F1 = −κu
NT−1∑
n=0

∆t

l∑
i=1

(
B

(
hi+ 1

2
σn+1 xi+ 1

2

κu

)
− 1

)(
un+1
i+1 − u

n+1
i

)
,

F2 = −κu
NT−1∑
n=0

∆t

l∑
i=1

(
un+1
i+1 − u

n+1
i

)
.

For |F1|, using the same techniques as in the previous Section, we obtain the
existence of a positive constant C1 independent of ∆t such that

|F1| ≤ C1

√
κu T s

NT .

Then, the Young inequality leads to the existence of a positive constant, still
denoted C1, independent of ∆t such that

|F1| ≤
2C1 κu

1− (g∗ + r∗)
T +

1− (g∗ + r∗)
8

(
sNT

)2
. (46)

For F2, applying the telescopic sum and the fact that un+1
l+1 ≤ 0, we end up with

F2 ≤ κu g∗ T. (47)
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We also rewrite G as G = G1 +G2 with

G1 = −κv
NT−1∑
n=0

∆t

l∑
i=1

(
B

(
hi+ 1

2
σn+1 xi+ 1

2

κv

)
− 1

)(
vn+1
i+1 − v

n+1
i

)
,

G2 = −κv
NT−1∑
n=0

∆t

l∑
i=1

(
vn+1
i+1 − v

n+1
i

)
.

Then, using the same techniques as before for |G1| and G2 we obtain

|G1| ≤
2C2 κv

1− (g∗ + r∗)
T +

1− (g∗ + r∗)
8

(
sNT

)2
, (48)

and

G2 ≤ κv r∗ T, (49)

with C2 a constant independent of ∆t. We apply (46)–(49) in the inequality
E ≤ F +G+H and we end up with

1− (g∗ + r∗)
4

(
sNT

)2 ≤ [κu g∗ + κv r
∗ +

4C3

1− (g∗ + r∗)

]
T +H,

with C3 = max{κu C1, κv C2}. Eventually, we deduce the existence of a positive
constant C independent of ∆t such that

sNT ≤ C
√

1 + T .

This concludes the proof of Theorem 2.2.

6 Numerical experiments

In this Section, we present some numerical experiments. The test case is
described in Table 1. Furthermore, as already observed in [8], the upwind

κu κv s0 α β
1 0.1 0.5 1 7.5

Table 1: Definition of parameters used in the test case.

scheme gives the same results than the Scharfetter-Gummel scheme. Since the
Scharfetter-Gummel scheme is more accurate for diffusion-convection problem,
we consider in the sequel that B = Bsg. Let us mention that the numerical
results are obtained using Newton’s method with a tolerance equal to 1e− 8 on
a uniform mesh made of 100 cells and ∆t = 1e− 2.

In Figure 1, we illustrate the behavior of s in logarithmic scale for dif-
ferent values of p up to T = 1000 with g∗ = 0.5, r∗ = 0.25, γ = 2 and
u0(x) = v0(x) = 0.25 for all x ∈ [0, 1]. We observe that the penetration depth
follows a

√
t-law of propagation.
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Figure 1: Profiles of s in logarithmic scale with the Scharfetter-Gummel fluxes
for different values of p with g∗ + r∗ < 1.

In Figure 2, we illustrate the behavior of s in logarithmic scale for p = 2 up
to T = 1000 with g∗ = 15, r∗ = 2.25, γ = 6.67 and u0(x) = v0(x) = 1 for all
x ∈ [0, 1]. We observe that, even if g∗ + r∗ > 1, the scheme (S) preserves the√
t-law of propagation for the approximate penetration depth. Let us mention

that we obtain similar profiles for s for different values of p in the case g∗+r∗ > 1.
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Figure 2: Profiles of s in logarithmic scale with the Scharfetter-Gummel fluxes
for p = 2 with g∗ + r∗ > 1.
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7 Conclusions

In this paper, we have justified the long time behavior of solutions of a finite
volume scheme for the carbonation model introduced in [1]. Let us mention
that the Corollary 4.1 and the techniques used in [8] could be adapted in order
to show the convergence of (S). Moreover, the numerical experiments seem to
confirm the existence of a constant Λ∗ independent of p such that s(t) ∼ Λ∗

√
t

for t large enough. Nevertheless, a rigorous justification of the existence of Λ∗

is still an open problem.

Appendix A. Property of the B function

We prove in this Appendix the following result:

Lemma 7.1. Under the hypothesis (8), there exists a positive constant τ such
that

Bc(x) =
B(x) +B(−x)

2
≥ τ, ∀x ∈ R. (50)

Proof of Lemma 7.1
To this end, we first notice that thanks to (8b) and (8d) we have

B(x) ≥ −x.

Then, lim
x↓∞

B(x) = +∞. Moreover, we have

Bc(x) ≥ B(x)

2
and Bc(x) ≥ B(−x)

2
.

Thus, we deduce that

lim
x↓∞

Bc(x) = lim
x↑∞

Bc(x) = +∞.

Finally, since B(x) > 0 for x ∈ R we conclude that there exists τ > 0 such
that (50) is satisfied.
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