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To discriminate gray-level texture images, spatial texture descriptors can be extracted using the local bi-
nary pattern operator. This operator has been extended to color images at the expense of increased mem-
ory and computation requirements. Some authors propose to compute texture descriptors directly from
raw images provided through a Bayer color filter array, which both avoids the demosaicing step and re-
duces the descriptor size. Recently, multispectral snapshot cameras have emerged to sample more than
three wavelength bands using a multispectral filter array. Such cameras provide a raw image in which a
single spectral channel value is available at each pixel. In this paper we design a local binary pattern oper-
ator that jointly extracts the spatial and spectral texture information directly from a raw image. Extensive
experiments on a large dataset show that the proposed descriptor has both reduced computation cost and
high discriminative power with regard to classical LBP descriptors applied to demosaiced images. © 2018

Optical Society of America

OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (100.0100) Image processing.

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Among multispectral imaging technologies, “linescan” devices
acquire frames of narrow spatial slices for several spectral bands
then, once the whole scene has been scanned, form the mul-
tispectral image by stacking the acquired frames. “Snapshot”
devices can oppositely acquire the multispectral image from
a single shot. Multi-sensor snapshot systems straight form a
fully-defined multispectral image thanks to dichroic beam split-
ters that selectively redirect the incoming light by wavelength
onto the sensors. Because these systems are expensive and are
sensitive to a limited number of bands, single-sensor snapshot
systems have been recently developed [1, 2]. Most of them use a
multispectral filter array (MSFA) laid over the sensor that spec-
trally samples the incident light, like the widely-used Bayer
color filter array (CFA) in color imaging. The MSFA is defined
by a basic periodic pattern in which each filter is sensitive to a
narrow spectral band. Each pixel of the resulting raw image is
then characterized by one single band according to the MSFA.
Such technology achieves a compromise between spatial and
spectral samplings (see Sec. A). The fully-defined multispectral
image is estimated by a demosaicing process (see Sec. B). This
process may be greedy and is prone to generate spatio-spectral
estimation artifacts. We therefore propose to avoid it for tex-
ture classification and design a texture descriptor that is directly
computed from the raw image (see Sec. C).

A. Multispectral filter arrays

Like the Bayer CFA in which the green (G) band is over-
represented with regard to red (R) and blue (B) bands, some
MSFA patterns in the literature include one or several dominant
bands [3]. For instance, Monno et al. [4] propose the 4× 4 ba-
sic pattern shown in Fig. 1a that samples 5 bands in the visible
(Vis) domain. The dominant G band characterizes half of the
pixels and the other four bands evenly characterize the other
half. This is a special case of the generic pattern generated by
a binary tree [5], where the prior probability of the G band is 1

2
and that of the other bands is 1

8 . Thomas et al. [6] propose the
basic redundant pattern shown in Fig. 1b that samples 8 bands
in the visible and near infrared (NIR) domains. The two MSFAs
based on the above basic patterns, called Vis5 and VisNIR8 in the
following, own the desirable properties of spectral consistency
and spatial uniformity [5]. An MSFA is spectrally consistent if
the same bands are sampled the same number of times in the
neighborhood of all filters associated to any given band. Spa-
tial uniformity requires that an MSFA spatially samples each
band as evenly as possible. Both requirements are related to the
demosaicing process that is applied to the raw image. Indeed,
demosaicing independently scans all the pixels associated to
a given band and considers pixels in their neighborhood. This
neighborhood layout should then be same whatever the pixel
considered in the raw image.

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. Basic patterns of different MSFAs: (a) Vis5 [4], (b) Vis-
NIR8 [6], (c) IMEC16 and (d) IMEC25 [7]. Numbers are band
indices. Vis5 band labels (Or=Orange, Cy=Cyan) are those of
[4] but could also be replaced by indices. Dominant G band is
marked as white.

Increasing the number of bands to enhance spectral resolution
is a goal of multispectral imaging. Some MSFAs are then defined
by a basic pattern with no dominant band although this conflicts
with a dense spatial sampling. The two MSFAs whose square
basic patterns are shown in Figs. 1c and 1d are manufactured by
IMEC [7]. They are embedded in a few off-the-shelf MSFA-based
devices available on the market, like XIMEA xiSpec and IMEC
“snapshot mosaic” multispectral cameras, with applications in
medical imaging [8] or terrain classification [9]. The 4× 4 basic
pattern samples 16 bands centered at wavelengths λ1 = 469 nm,
. . . , λ16 = 633 nm (visible domain) and the 5× 5 one samples 25
bands centered at λ1 = 678 nm, . . . , λ25 = 960 nm (visible and
NIR domains). Note that the band centers are not equally spaced
and that they are not ascending in the classical pixel readout
order (see Figs. 1c and 1d). The MSFAs defined by these patterns
(or the corresponding cameras) are shortly called IMEC16 and
IMEC25 in the following.

B. MSFA demosaicing
In the raw image acquired through an MSFA that samples K
bands, a single band value is available at each pixel. A procedure
called demosaicing must be applied to this raw image in order
to obtain a multispectral image with K fully-defined channels,
among which K− 1 ones are estimated at each pixel.

The simplest way to demosaic the raw image is to use a
weighted bilinear (WB) interpolation filter that estimates each
missing band value at a given pixel by using the available values
of the same band at its neighbors. Each neighbor is associated
with a weight that depends on its spatial distance to the con-
sidered pixel [10]. This method only exploits spatial correlation
within each channel to estimate the missing values.

To improve the demosaicing performances, some authors also
use spectral (inter-channel) correlation. Brauers and Aach [10]
compute the channel differences and Mizutani et al. [11] iter-
ate this scheme a number of times given by the spectral dis-
tance between band centers of the considered pair of bands.
Wang et al. [12] extend the CFA demosaicing method based on
the discrete wavelet transform to MSFA demosaicing. Mihoubi et

al. [13] estimate the pseudo-panchromatic image (PPI) from the
raw image and propose a demosaicing scheme based on PPI
differences (PPID).

When the MSFA includes a dominant band (as does Vis5 in
Fig. 1a), a standard approach is to pre-estimate the dominant
channel, then to rely on it to estimate the other missing channels.
The binary tree-based edge-sensing method of Miao et al. [5]
estimates missing values from the edge information of the pre-
estimated dominant channel. However, this method is only
applicable when the prior probability of each band is 1

2n , n ∈N,
which notably excludes IMEC25 MSFA. Monno et al. propose
three demosaicing methods that exploit the dominant G band of
their Vis5 MSFA. The original algorithm [4] that uses an adaptive
kernel up-sampling is improved by guided filtering [14], and
further on by residual interpolation [15].

C. Our contribution to texture classification
To classify multispectral texture images acquired by single-
sensor snapshot cameras, the classical approach is to demosaic
the raw images, extract texture features from the estimated im-
ages, then compare features that are computed from images
thanks to a similarity measure.

In this paper, we focus on texture features based on local
binary patterns (LBPs). The many variants of LBP operators
have indeed proved to be very efficient for a wide variety of
applications [16]. LBP-based texture classification has first been
performed on gray-level images since the original operator only
uses the spatial information of texture [17]. Later, Palm [18] has
shown that classification based on a color analysis outperforms
that based on the spatial information only. Texture feature ex-
traction is then extended to the color domain by taking both
spatial and spectral textural information into account.

Recent advances in multispectral imaging lead us to extend
the color texture features to the multispectral domain (see Sec. 2).
But the computational cost significantly increases with the num-
ber of channels due to demosaicing and feature extraction. Thus
we propose a new computationally-efficient LBP-based descrip-
tor that is directly computed from raw images, which allows
us to avoid the demosaicing step (see Sec. 3). Extensive experi-
ments on a large dataset of multispectral texture images prove
the relevance of our approach (see Sec. 4).

2. SPECTRAL TEXTURE FEATURES BASED ON LOCAL
BINARY PATTERNS

Below we formulate several LBP-based texture features for any
fully-defined K-channel image, that we generically denote as I =
{Ik}K

k=1 for simplicity whatever the value of K and even it has
been estimated by demosaicing. For a given pixel p, we consider
the neighborhood Np defined by its support N P,d made of P
pixels at spatial uniform distance d from p. We now detail how
the LBP operator compares the pixel values in the neighborhood
Np with respect to the value of p.

A. Marginal LBPs
The marginal LBP operator (see Fig. 2) is defined for each band
(index) k ∈ {1, ..., K} at each pixel p as

LBPk[I](p) = ∑
q∈Np

s
(

Ik
q , Ik

p

)
· 2ε(q), (1)

where Ik
p is the value of channel Ik at p, ε(q) ∈ {0, ..., P− 1} is

the index of each neighboring pixel q in Np, and s(·) is the unit
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Fig. 2. Marginal LBP operator applied to a pixel p of channel Ik.

step function:

s(α, β) =

{
1 if α ≥ β,
0 otherwise.

(2)

Each channel Ik is characterized by the 2P-bin un-normalized
histogram of its LBP values. The multispectral texture image
I is then described by the concatenation of the K histograms
of {LBPk[I]}K

k=1. This feature, whose size is K · 2P, represents
the spatial interaction between neighboring pixels within each
channel independently.

Note that we only consider the basic LBP operator in this
paper even though many LBP variants have been described in
the literature [16]. Also note that the definition of Eq. (1) ignores
border effects for readability sake and that only those pixels at
which Np is fully enclosed in the image are actually taken into
account to compute the LBP histogram.

B. Moment LBPs

Mirhashemi [19] proposes an LBP-based spectral feature using
mathematical moments to characterize the reflectance spectrum
shape. The LBP operator of Eq. (1) is no longer applied to pixel
values but to moment values of the pixel spectral signatures.

Different moments can be extracted from the reflectance
{Rp(λk)}K

k=1 sampled over K bands at each pixel p. Raw and
central type-I moments of order n ∈N are defined as

Mn(p) =
K

∑
k=1

(
λk
)n

Rp(λ
k)

and µn(p) =
K

∑
k=1

(
λk − M1(p)

M0(p)

)n
Rp(λ

k).

(3)

Type-II moments are estimated moments of the probability den-
sity function from which reflectance values are sampled. Raw
and central type-II moments are expressed as

M̂n(p) =
1
K

K

∑
k=1

(
Rp(λ

k)
)n

and µ̂n(p) =
1
K

K

∑
k=1

(
Rp(λ

k)− M̂1(p)
M̂0(p)

)n

.

(4)

Alternatively, these moments can be computed from the re-
flectance normalized by its L1-norm at each pixel p: rp(λk) =

Rp(λk)

∑K
i=1 Rp(λi)

. We then denote type-I and type-II raw moments as

mn(p) and m̂n(p).
Mirhashemi assesses the texture classification performance of

all the possible moment-based features (namely the 38 moment
LBP histograms obtained for n = 1..6), either considered alone
or concatenated in 2- or 3-feature combinations. The most pow-
erful combinations use three features based on the following
moments: m1(p) or m̂1(p), M1(p) or M̂1(p), and µ3(p), µ5(p),
µ̂3(p), or µ̂5(p) [19]. The texture feature is then a concatenated
histogram with 3 · 2P bins.

C. Map-based LBPs
Dubey et al. [20] propose two kinds of LBP operators that can
theoretically be applied to any K-channel image. These operators
use the spectral information in the encoding scheme by testing
the sum of the marginal comparison patterns between each pixel
p and its neighbors over all channels. The adder-based LBPs
{maLBPm}K

m=0 are defined as

maLBPm[I](p) = ∑
q∈Np

{
2ε(q) if ∑K

k=1 s(Ik
q , Ik

p) = m,
0 otherwise.

(5)

The decoder-based LBPs {mdLBPn}2K−1
n=0 are defined as

mdLBPn[I](p) = ∑
q∈Np

{
2ε(q) if ∑K

k=1 s(Ik
q , Ik

p) · 2(K−k) = n,
0 otherwise.

(6)
The concatenation of the operator’s histograms provides the
final feature of size (K + 1) · 2P (maLBPs) or 2K · 2P (mdLBPs).

D. Luminance–spectral LBPs
By analogy with the luminance–chrominance model for a color
image, a multispectral image can be represented as both a
panchromatic channel and the joint information computed from
two or more channels. The PPI that carries the spatial informa-
tion of the luminance is computed as the average value over all
channels at each pixel p [13]:

Īp =
1
K

K

∑
k=1

Ik
p. (7)

To form the final feature, the histogram of the output of the
LBP operator applied to Ī is concatenated with a histogram
based on the spectral content according to one of the following
propositions that we extend here to the multispectral domain:

• Cusano et al. [21] define the local color contrast (LCC) oper-
ator that depends on the angle between the value of a pixel
p and the average value Īp = 1

P ∑q∈Np
Iq of its neighbors in

the spectral domain:

LCC[I](p) = cos−1
( 〈Ip, Īp〉
||Ip|| · ||Īp||

)
, (8)

where 〈·, ·〉 and || · || denote the inner product and the Eu-
clidean norm. The histogram of LBP[ Ī] is concatenated to
that of LCC[I] quantized on 2P bins to provide the final
feature of size 2 · 2P.

• Lee et al. [22] consider I in a K-dimensional space and com-
pute spectral angular patterns between bands at each pixel.
Specifically, for each pair of bands (k, l) ∈ {1, ..., K}2, k 6= l,
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the authors apply the LBP operator to the image Ĩk,l defined
at each pixel p as the angle between the axis of the band
k and the projection of Ip onto the plane associated with
bands k and l:

Ĩk,l
p = tan−1

(
Ik
p

Il
p + η

)
, (9)

where η is a small-valued constant to avoid division by
zero. The histogram of LBP[ Ī] is concatenated to the K(K−
1) histograms of {LBP[ Ĩk,l ]}K

k,l=1,k 6=l to provide the final

feature of size (1 + K(K− 1)) · 2P.

E. Opponent band LBPs
To fully take spectral correlation into account, Mäenpää et al. [23]
apply the opponent color LBP (OCLBP) operator to each pair of
channels of a color image. This operator can be directly general-
ized as the opponent band LBP (OBLBP) applied to each pair of
channels (Ik, Il), (k, l) ∈ {1, ..., K}2, of a multispectral image:

OBLBPk,l [I](p) = ∑
q∈Np

s
(

Il
q, Ik

p

)
· 2ε(q). (10)

Bianconi et al. [24] similarly consider both intra- and inter-
channel information but with a different thresholding scheme.
Their improved OBLBP (IOBLBP) operator uses a local average
value rather than the sole central pixel value as threshold:

IOBLBPk,l [I](p) = ∑
q∈{p}∪Np

s
(

Il
q, Īk

p

)
· 2ε(q), (11)

where Īk
p = 1

P+1 ∑r∈{p}∪Np
Ik
r and ε(p) = P.

In both cases, the texture feature is the concatenation of the
K2 2P-bin histograms of {(I)OBLBPk,l [I]}K

k,l=1.

3. MSFA TEXTURE FEATURE BASED ON LOCAL BI-
NARY PATTERNS

We intend to design an LBP-like operator to characterize multi-
spectral texture images directly from the raw image acquired by
snapshot cameras. A similar approach was proposed by Losson
and Macaire [25] for color texture representation from raw CFA
images. Rather than a straightforward extension that would
neglect spectral correlation, we here propose a new operator
dedicated to raw MSFA images and inspired by OBLBPs.

We first present the raw image in details in this section, in-
cluding the specific neighborhoods defined by the MSFA. Then
we describe our operator based on these MSFA neighborhoods,
and we explain how it is related to OBLBPs.

A. MSFA neighborhoods
An MSFA associates a single spectral band with each pixel. It can
be defined as a function MSFA: S→ {1, . . . , K} over the set S of
all pixels. Let Sk = {p ∈ S, MSFA(p) = k} be the pixel subset
where the MSFA samples the band k, such that S =

⋃K
k=1 Sk. In

other words, Sk is the subset of pixels that are associated with
the band k. Figure 3 shows the example of the IMEC16 MSFA
and one among its 16 pixel subsets.

For a given pixel p ∈ Sk, k ∈ {1, . . . , K}, let Bk = {l ∈
{1, . . . , K}, MSFA(q) = l}q∈Np be the set of bands that are asso-
ciated with the neighboring pixels in Np according to the MSFA.
Note that Np is always composed of pixels with the same associ-
ated bands whatever the location of p. Moreover, we assume that
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Fig. 4. Neighborhood Np defined by the support N 8,1 for two
pixels p ∈ S2 (bold squares) in (a) IMEC16 and (b) VisNIR8
MSFAs, with associated bands B2 shown in solid circles.

any neighbor q ∈ Np is always associated with the same band for
a given relative position with respect to p in the MSFA pattern.
A necessary but not sufficient condition for this assumption to
be fulfilled is spectral consistency. Then, the neighborhood of
p ∈ Sk can be decomposed into

Np =
⋃

l∈Bk

Nk,l
p , (12)

where Nk,l
p = Np ∩ Sl is the MSFA-based neighborhood made

of the neighboring pixels of p that belong to Sl . Let us notice
that Nk,l

p 6= ∅ ⇐⇒ l ∈ Bk and stress out that Bk and Nk,l
p both

depend on N P,d and on the basic MSFA pattern.
For illustration purposes, let us consider the IMEC16 and

VisNIR8 MSFAs and focus on the 3× 3 neighborhood defined
by the support N 8,1 as shown in Fig. 4. In the IMEC16 MSFA
of Fig. 4a, the neighbors of any pixel p ∈ S2 are associated with
the bands B2 = {12, 10, 9, 4, 1, 8, 6, 5} and |N2,l

p | = 1 for all
l ∈ B2, where | · | is the cardinal operator. In the VisNIR8 MSFA
of Fig. 4b, we have B2 = {4, 7, 3, 5, 6, 8} and |N2,l

p | = 1 for
l ∈ {5, 6, 7, 8}, but |N2,3

p | = |N2,4
p | = 2.

B. MSFA-based LBPs

A snapshot multispectral camera provides a raw image Iraw

in which a single band is associated with each pixel according
to the MSFA. Then, Iraw can be seen as a spectrally-sampled
version of the reference fully-defined image I = {Ik}K

k=1 (that is
unavailable in practice) according to the MSFA:

∀p ∈ S, Iraw
p = IMSFA(p)

p . (13)
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Fig. 5. Normalized SSFs of IMEC16 (left) and IMEC25 (right) cameras. Captions: band center wavelengths {λk}K
k=1 in ascending

order.

To design a texture feature dedicated to the raw image, let us
first consider applying the basic LBP operator of Eq. (1) directly
to Iraw considered as a gray-level image:

MLBP [Iraw] (p) = ∑
q∈Np

s(Iraw
q , Iraw

p ) · 2ε(q). (14)

The LBP operator is here renamed as MSFA-based LBP (MLBP)
to make clear the key difference introduced by its application
to Iraw and its dependency upon the considered MSFA. Unlike
Eq. (1), Eq. (14) combines the spectral information of BMSFA(p),
i.e, the different bands that are associated with the neighbors
of p.

Because this set of bands depends on the band MSFA(p)
associated with p, we separately consider each pixel subset Sk

to compute the LBP histogram. Specifically, we compute the
histogram of MLBP[Iraw] for each band k ∈ {1, ..., K}:

hk [MLBP [Iraw]]: [0, 2P − 1]→{0, . . . , |Sk|}
j 7→

∣∣∣
{

p ∈ Sk, MLBP [Iraw] (p) = j
}∣∣∣ .

(15)
Let us point out that only pixels in Sk are considered to compute
the k-th histogram. The concatenation of all the K histograms
provides the final feature of size K · 2P.

C. Relation between MSFA-based and opponent band LBPs
To show that the MSFA-based LBP defined by Eq. (14) bears
an analogy to OBLBP (see Eq. (10)), let us consider its output
as the direct sum of the sparse outputs of the same operator
restrictively applied to each pixel subset Sk:

im
{

MLBP [Iraw]
}
=

K⊕

k=1

im
{

MLBP
∣∣
Sk [Iraw]

}
, (16)

where im{·} is a function output. According to the definition of
Sk, we have Iraw

p = Ik
p for each pixel p ∈ Sk. From Eq. (14) and

the decomposition of the neighborhood Np according to Eq. (12),
we can then express MLBP

∣∣
Sk from {Ik}K

k=1 as

MLBP
∣∣
Sk [Iraw] (p) = ∑

l∈Bk
∑

q∈Nk,l
p

s(Il
q, Ik

p) · 2ε(q) . (17)

Fig. 6. Samples of HyTexiLa texture images rendered in sRGB
under E (top), D65 (middle) and A (bottom row) illuminants,
from left to right: vegetation, stone, food, textile, and wood.

Therefore, MLBP is related to OBLBP since both operators take
opponent bands into account. But unlike OBLBP that considers
any band l at all the neighbors of p, each MLBP code combines
opponent band information from the |Bk| bands that are avail-
able at the neighbors of p ∈ Sk.

4. EXPERIMENTS

A. Experimental settings
A.1. Texture dataset and classification scheme

In order to perform texture classification, we use HyTexiLa
database that contains the reflectance images of 112 textured
materials (see Fig. 6) and is currently the most suitable database
in the VisNIR domain [26]. We consider three CIE standard illu-
minants (E, D65, and A) to simulate three fully-defined images
from the reflectance of each texture. Finally, we sample these im-
ages according to several MSFAs to simulate the raw images that
would be acquired by various snapshot multispectral cameras.

We consider the four MSFAs of Fig. 1 since they are either
related to research works with detailed publications (Vis5, Vis-
NIR8) or available in consumer cameras (IMEC). The spectral
sensitivity functions (SSFs) of Vis5 and VisNIR8 can be found in
the respective papers [27] and [6]. Figure 5 shows the normal-
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ized SSFs of IMEC16 and IMEC25 cameras [7] that respectively
sample the visible light around λ1 = 469 nm, . . . , λ16 = 633 nm
and NIR light around λ1 = 678 nm, . . . , λ25 = 960 nm. This
figure shows that the SSFs of bands with close centers may over-
lap to a large extent. Note that the SSFs include the optics and
sensor sensitivities and the optical band-pass filter that removes
spectral artifacts.

HyTexiLa reflectances are defined on 186 bands whose cen-
ters range from λmin = 405.37 nm to λmax = 995.83 nm with a
step of 3.19 nm. From these data and the three illuminations
provided by Thomas et al. [6] (that extend A and E illuminants
to the NIR domain and simulate D65), we compute the images
of illuminated textures as [13]

Ik
p = Q

(
λmax

∑
λ=λmin

E(λ)Rp(λ)SSFk(λ)

)
. (18)

In this equation, Q(·) is the radiance quantization function on
8 bits, and E(λ), Rp(λ), and SSFk(λ) are the illumination, the
reflectance of the surface elements captured at pixel p, and the
camera-specific SSF of the band k, respectively. The values of
these discrete functions of λ are obtained at 1-nm resolution by
linear interpolation of the original values. To prevent satura-
tion in the simulated images, illuminations and SSFs are scaled
so that maxλ E(λ) = 255 and maxk ∑λ SSFk(λ) = 1, and re-
flectance values above 1 (that correspond to specular surfaces)
are clipped to 1. This normalization practically corresponds to
setting the integration time of the camera as the limit before
saturation when a white patch is observed. This has an effect on
the dynamic range of channels [28].

For each of the considered four cameras and three illu-
minations, these simulations provide 112 raw images of size
1024× 1024 pixels. Each image is then split (leaving out the last
four columns and rows) into 25 sub-images of size 204× 204
pixels, among which 12 are randomly picked for training and
the 13 others for testing.

In order to determine the most discriminative texture feature,
we retain the 1-nearest neighbor classifier coupled with the sim-
ilarity measure based on intersection between histograms [29]
since this classification scheme requires no parameter.

A.2. MSFA neighborhoods

As explained in Sec. 3A, the neighbors of any pixel p are asso-
ciated with different bands according to the MSFA. It is thus
impossible to consider interpolated values in a circular neigh-
borhood of p as is usually done for LBP-like operators. To avoid
interpolation, we therefore consider the uniform spatial distance
(hence square neighborhoods) rather than the Euclidean one.
Moreover, LBP operators classically use neighborhoods with
P = 8, 16, or 24 pixels. But P = 16 with d = 3 does not match
the image lattice and requires interpolation, and P = 24 would
yield extremely large features. We therefore set P = 8 and con-
sider the three supportsN 8,d with uniform distance d ∈ {1, 2, 3}
as shown in Fig. 7.

Figure 7 also shows that the number of bands available in the
neighborhood of a pixel p generally depends on the distance d
for a given MSFA. This number is formalized by |Bk|, where
k = MSFA(p) ∈ {1, . . . K} is the band associated with p (i.e.,
p ∈ Sk), and its dependency upon d is summarized in Tab. 1. In
VisNIR8 for instance (see Fig. 7b), the neighborhood of p ∈ S3

contains eight different bands for d = 1 and d = 3, but only the
bands 3 and 4 for d = 2. |Bk| is also lower for d = 2 with Vis5 and
IMEC16 MSFAs but is constant to eight whatever d ∈ {1, 2, 3}
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Fig. 7. Neighborhood Np of a pixel p (bold square) in (a) Vis5,
(b) VisNIR8, (c) IMEC16, and (d) IMEC25 MSFAs, consider-
ing the supports N 8,1 (solid circles), N 8,2 (dashed), and N 8,3

(dotted).



Research Article Journal of the Optical Society of America A 7

Table 1. Number of available bands |Bk|, k ∈ {1, . . . , K}, in the
neighborhood of any pixel according to each MSFA and each
distance.

MSFA d = 1 d = 2 d = 3

Vis5 3 or 5 1 or 2 3 or 5

VisNIR8 6 2 6

IMEC16 8 3 8

IMEC25 8 8 8

with IMEC25 due to the large 5× 5 basic pattern of this MSFA.
Note that |Bk| reflects the degree to which spectral correlation is
taken into account by an MSFA neighborhood.

The basic pattern of the Vis5 MSFA (see Fig. 1a) is particular
because of its single dominant G band. Unlike in the other
considered MSFAs, |Bk| in Vis5 depends on d but also on p (i.e.,
on k) (see Tab.1). Considering d = 1 for instance, the neighbors
of a pixel p1 ∈ SG belong to all the bands (hence |BG| = 5)
while those of a pixel p2 ∈ SCy belong to BCy = {R, G, Or}.
Moreover, Vis5 contradicts our assumption that a neighbor of
p ∈ Sk is always associated with the same band for a given
relative position whatever the location of p. Indeed, for two
pixels associated with the G band, vertical neighbors may either
be associated with R and Or or with B and Cy. To fulfill our
assumption and compute MLBP with Vis5, we therefore split
SG into four pixel subsets {SGi}4

i=1 as shown in Fig. 7a. The
information of {MLBP

∣∣
SGi [I

raw]}4
i=1 is then merged into a single

histogram hG [MLBP [Iraw]] for the G band.

A.3. Feature extraction

Table 2 summarizes the sizes of the texture features described in
Sec. 2 as the size of each histogram (that depends on P) and the
number of histograms (that depends on K). Setting P = 8 makes
the histogram size to be 256 but the mdLBP operator provides a
prohibitively large number of histograms when K ≥ 16. All ap-
proaches but mdLBP are hence tested against our MSFA-based
LBP in the experiments. Besides, among the 16 moment combina-
tions from the format {m1|m̂1}{M1|M̂1}{µ3|5|µ̂3|5} (see Sec. 2B),
we only retain m1 M1µ3 whose LBP histogram provides the best
classification result on average over all the experiments.

The number of histograms may impact classification accuracy
and computational burden. The approaches can then be divided
into three groups, depending on whether this number is constant
(Cusano and Moment LBPs), proportional to K (Marginal LBPs,
maLBP, and MLBP), or to K2 (OBLBP, IOBLBP, and Lee LBPs).

Computation cost also deserves some attention as an
implementation-independent indication of the required process-
ing time. The last two columns of Tab. 2 show this cost as the
number of elementary operations per pixel required to compute
a feature. This estimation includes all arithmetic operations at
the same cost of 1 but excludes array indexing.

All features but ours first require to estimate a fully-defined
multispectral image by demosaicing. In our experiments, we
only consider WB [10] that is both the most simple and generic
method (see Sec. 1B) and PPID [13] that provides the best demo-
saicing results in most cases. We have adapted PPID to the Vis5
MSFA and we retain it because it globally yields better classifica-
tion results than the dedicated guided filtering method provided
by [27]. Since demosaicing is neither our main concern nor the
greedier feature computation step, we minimally evaluate its

number of operations as that of the weighted average of two
values required by WB to estimate each missing value at a pixel,
namely 4(K− 1).

The feature computation costs given in the last column of
Tab. 2 result from the equation(s) of each feature recalled in the
second column. As previously stated, the computation cost of
mdLBP is prohibitive. Our MLBP-based feature requires 24 op-
erations per pixel. In contrast, the cost of Marginal LBPs, maLBP,
and Cusano LBPs grows with K, and that of other approaches
with K2. By considering both the feature size and computation
cost, Lee LBPs, OBLBP and IOBLBP are the most greedy features.
MLBP is the most efficient and is represented by the same num-
ber of histograms as Marginal LBPs and maLBP. This should be
kept in mind while analyzing the classification results.

B. Experimental results
B.1. Accuracy vs. computation cost

We first propose a study to highlight the above remark about
feature computation costs. Let us consider the case d = 1 and the
D65 illuminant, and assess the classification accuracy provided
by each feature with regard to its cost. For all approaches except
MLBP, WB is chosen to demosaic the raw image.

Figure 8 separately shows the results for the four considered
MSFAs. OBLBP globally outperforms other features but at a
very high computation cost. MLBP provides only slightly lower
results than OBLBP for Vis5 and VisNIR8 MSFAs and similar
results for IMEC MSFAs, at about a K2 times smaller cost. Con-
sidering features with comparable costs, Lee LBPs and IOBLBP
perform worse than OBLBP. Moment LBPs generally provide
fair results with regard to the other three features with moderate
costs (marginal LBPs, maLBP, and Cusano LBPs). MLBP clearly
outperforms the latter four features in all cases with the benefit
of reduced computation requirements.

B.2. Classification results and discussion

We now extensively assess the performances of our MLBP-based
feature with respect to those of other features in various exper-
imental conditions. Table 3 shows the classification accuracies
provided by the different features for each of the four MSFAs
using three illuminants (E, D65, and A), three distance values
(d ∈ {1, 2, 3}), and two demosaicing methods (WB and PPID).
For each combination of experimental settings (illuminant, dis-
tance, and demosaicing method), the better classification accura-
cies than that of our descriptor are highlighted as bold.

Let us first study the behavior of our MLBP-based feature
with respect to the different settings. The neighborhood distance
d slightly influences MLBP performances for IMEC25 MSFA (see
Tab. 3d) whereas d = 2 provides clearly lower performances
than d ∈ {1, 3} for IMEC16 (see Tab. 3c). This was expected
since d determines the number |Bk| of available bands in a pixel
neighborhood, that does not depend on d for IMEC25 but is
reduced from 8 to 3 bands when d = 2 for IMEC16 (see Tab. 1).
Regarding Vis5 and VisNIR8, there is no systematic performance
loss for d = 2 though |Bk| is reduced. This is because the poor
information about spectral (inter-channel) correlation in these
cases is completed by taking spatial (intra-channel) correlation
into account. When d = 2 indeed, k ∈ Bk (see Figs. 7a and
7b), which means that MLBP takes both intra- and inter-channel
correlation into account. No such case occurs with IMEC16 and
IMEC25 (see Figs. 7c and 7d) with which MLBP only takes inter-
channel correlation into account because k 6∈ Bk whatever the
value of d. Two other outstanding results are obtained with
Vis5 MSFA and illuminant A when d ∈ {1, 3}. We explain these
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Table 2. Feature size (histogram size and number of concatenated histograms) and required number of operations per pixel for each
approach according to the number K of spectral bands.

Approach Eq.
Feature size Number of operations

Hist. size Number of hist. Demosaicing Feature computation

Marginal LBPs [17] Eq. (1)

2P

K

4K− 4

24K

Moment LBPs [19] Eq. (3), Eq. (4) 3 K2 + 10K + 69

maLBP [20] Eq. (5) K + 1 17K + 8

mdLBP [20] Eq. (6) 2K 2K + 24K + 7

Cusano LBPs [21] Eq. (8) 2 15K + 27

Lee LBPs [22] Eq. (9) 1 + K(K− 1) 27K2 − 26K + 24

OBLBP [23] Eq. (10) K2 24K2

IOBLBP [24] Eq. (11) 2P+1 K2 27K2 + 10K

MLBP (ours) Eq. (14), Eq. (15) 2P K 0 24

lower accuracies by the shape of illuminant A that increases with
respect to the wavelength, which makes pixel values in B and Cy
channels significantly lower than in R and Or. Besides, values of
pixels in SB ∪ SCy are always compared to neighboring pixels in
SOr ∪ SR (or vice versa) when d ∈ {1, 3}, whereas R values are
compared to Or values and B values to Cy values when d = 2
(see Fig. 7a). Therefore, due to the particular band arrangement
in Vis5 MSFA, MLBP is less discriminative and performances
are notably reduced when d ∈ {1, 3} with A illuminant.

Let us now compare the performances reached by our de-
scriptor with those of other approaches. Table 3 shows that,
except with Vis5 MSFA images simulated under A illuminant,
our MLBP-based feature always outperforms approaches with
either smaller (Cusano and Moment LBPs) or similar-size fea-
tures (Marginal LBPs and maLBP). Moreover, our lightweight
approach obtains close results to greedy ones (Lee LBP, OBLBP
and IOLBP), especially with IMEC MSFAs, and even performs
better than them in 95 out of the 216 tested cases. The best ac-
curacy reached by MLBP is 97.32% (with IMEC16 MSFA under
D65 illuminant using d = 1) while the best descriptor (OBLBP)
reaches 97.60% (with the same settings and PPID demosaicing).

5. CONCLUSION

In this paper, we introduce a conceptually simple and highly-
discriminative LBP-based feature for multispectral raw images.
In addition to its algorithmic simplicity, our operator is directly
applied to raw images, which allows it to avoid the demosaicing
step and keeps its computational cost low. We perform extensive
experiments of texture classification on simulated multispectral
images with four well-referenced MSFAs. The results show
that the proposed approach outperforms existing ones using
features of similar sizes, and provides comparable results to that
of features with large size and high computational cost.

Future works will further study how our feature embeds
spatial and spectral correlations according to the MSFA and
neighborhood parameters. Since MLBP is a small-size feature,
there is room for additional correlation information that could
still improve its classification results. For instance, it could be
made more robust to the neighborhood distance by concatenat-
ing several MLBP histograms computed with different distances.
Another approach to improve how our feature accounts for spa-
tial correlation would be to use a demosaiced dominant channel.
Other investigations could at last focus on the spectral distance

among the considered neighbors.
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Table 3. Classification accuracy (%) of the different approaches for each experimental setting (illuminant, neighborhood distance,
demosaicing method) and each MSFA: (a) Vis5 (K = 5), (b) VisNIR8 (K = 8), (c) IMEC16 (K = 16), and (d) IMEC25 (K = 25).

(a)

Approach
E D65 A

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3
WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID

Marginal LBPs [17] 87.71 86.95 88.39 87.50 88.67 88.46 87.36 87.23 88.60 88.26 88.46 88.60 84.89 84.62 87.71 87.84 88.05 88.19
Moment LBPs [19] 90.11 88.05 88.26 88.67 86.74 86.13 90.32 88.53 89.29 89.01 88.53 87.36 87.98 87.16 86.74 86.74 85.99 85.71
maLBP [20] 82.83 84.55 86.06 86.40 85.65 86.95 81.11 82.01 84.34 84.89 85.30 86.13 81.66 82.21 85.99 86.20 86.88 88.32
Cusano LBPs [21] 87.64 87.36 88.60 88.26 88.80 89.15 86.88 87.36 88.46 88.39 89.29 89.22 88.80 89.01 90.52 90.25 90.32 90.87
Lee LBPs [22] 93.41 93.75 95.40 95.12 95.60 94.85 92.99 93.13 94.57 94.44 95.47 95.47 91.48 91.96 94.23 93.82 94.64 94.37
OBLBP [23] 97.39 97.46 97.39 97.53 97.12 97.46 96.84 96.70 97.18 97.39 97.12 97.39 94.64 94.51 95.67 95.95 96.29 96.57
IOBLBP [24] 96.02 95.95 95.60 96.29 96.70 96.09 95.05 94.57 95.81 96.15 96.36 96.15 91.55 92.24 93.06 93.41 94.57 94.09
MLBP (ours) 93.82 92.86 94.99 94.92 92.45 96.63 84.48 92.99 89.90

(b)

Approach
E D65 A

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3
WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID

Marginal LBPs [17] 84.89 86.40 85.44 85.78 86.06 86.13 87.09 88.94 87.50 88.67 87.64 88.53 84.00 85.51 85.03 85.37 85.78 85.51
Moment LBPs [19] 86.26 86.40 85.85 85.37 86.06 84.75 84.89 84.62 85.71 84.55 85.51 85.23 82.76 83.04 83.93 83.79 84.20 83.79
maLBP [20] 77.75 77.88 79.46 79.33 82.55 79.95 77.54 79.33 80.22 81.11 79.95 79.95 78.23 76.99 79.12 78.78 81.46 80.29
Cusano LBPs [21] 82.49 82.55 83.93 83.72 84.34 85.03 85.58 85.51 87.16 87.09 87.16 87.57 80.77 80.43 82.42 82.01 82.49 83.17
Lee LBPs [22] 91.28 91.69 93.96 93.89 95.05 95.26 89.35 91.41 91.83 91.69 93.48 93.41 91.62 92.86 93.82 93.89 95.26 94.16
OBLBP [23] 96.29 96.91 96.63 96.57 96.57 96.63 96.09 96.22 96.15 95.67 96.09 95.54 95.19 95.40 95.47 95.12 95.12 95.33
IOBLBP [24] 94.09 93.61 94.64 94.30 94.44 94.57 94.30 94.02 93.82 93.61 94.23 93.48 92.10 93.34 92.65 92.31 92.86 92.51
MLBP (ours) 93.75 95.67 94.57 94.57 94.71 94.64 93.06 94.02 93.20

(c)

Approach
E D65 A

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3
WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID

Marginal LBPs [17] 81.59 85.10 83.79 86.54 83.86 86.20 81.11 84.89 83.72 86.95 85.30 87.16 80.70 84.89 83.10 85.92 85.71 87.50
Moment LBPs [19] 85.30 89.56 87.50 90.32 87.71 90.04 84.41 88.67 88.12 89.42 87.02 89.90 84.34 88.05 88.05 89.84 88.05 89.15
maLBP [20] 74.93 78.57 75.21 76.17 76.51 78.57 73.56 79.12 75.41 77.13 75.34 80.08 75.07 77.13 74.52 73.97 76.51 74.86
Cusano LBPs [21] 84.07 86.40 86.20 87.98 85.92 87.98 85.30 86.20 86.33 87.91 86.54 87.02 85.44 86.61 87.02 88.19 87.16 88.67
Lee LBPs [22] 89.77 95.40 92.45 96.02 93.68 95.95 89.22 95.26 92.58 95.95 93.41 95.81 87.09 94.44 90.93 94.09 92.93 94.64
OBLBP [23] 96.91 96.57 96.22 96.77 96.09 96.50 97.25 97.60 97.05 97.05 96.84 96.98 95.67 96.09 95.47 95.81 95.05 95.95
IOBLBP [24] 95.40 96.36 95.19 95.88 95.33 95.47 96.02 96.91 95.88 96.57 95.74 96.29 93.54 94.71 94.44 94.78 93.61 94.64
MLBP (ours) 96.22 90.87 96.29 97.32 94.92 97.05 95.33 90.32 95.19

(d)

Approach
E D65 A

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3 d = 1 d = 2 d = 3
WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID WB PPID

Marginal LBPs [17] 73.15 78.57 74.93 78.71 75.62 78.50 73.63 78.71 75.76 80.01 77.47 79.81 72.87 78.09 74.45 78.43 75.82 77.54
Moment LBPs [19] 79.46 83.17 80.56 83.72 80.77 84.27 78.98 84.20 81.25 85.51 81.46 85.16 78.71 83.31 80.15 83.93 80.36 84.07
maLBP [20] 63.67 78.64 61.26 78.50 67.03 76.79 68.27 78.09 62.77 77.06 65.73 75.14 64.08 77.88 60.37 78.37 67.17 75.55
Cusano LBPs [21] 77.13 81.80 78.57 82.69 77.68 81.39 75.34 80.15 76.51 82.35 78.98 82.14 76.65 81.18 78.64 81.94 77.75 80.70
Lee LBPs [22] 87.77 92.58 92.03 93.89 92.79 94.57 89.49 94.16 91.14 94.78 92.31 94.92 88.12 91.96 91.96 93.54 92.65 94.23
OBLBP [23] 94.02 95.05 93.41 94.92 93.48 94.71 94.99 95.88 94.51 95.95 94.51 95.60 93.75 94.51 93.13 94.71 93.06 94.16
IOBLBP [24] 92.93 94.37 91.83 93.68 91.21 92.58 94.09 94.92 93.82 95.33 92.79 94.85 92.51 93.48 91.35 93.54 90.73 92.24
MLBP (ours) 94.30 93.13 92.03 95.40 95.33 94.78 94.71 91.76 92.24
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Fig. 8. Classification accuracy (%) vs. computation cost (num-
ber of operations per pixel) of the different approaches (with
D65 illuminant, d = 1, and WB demosaicing) for each MSFA:
(a) Vis5 (K = 5), (b) VisNIR8 (K = 8), (c) IMEC16 (K = 16), and
(d) IMEC25 (K = 25).
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