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Abstract

We give an unified framework to solve rough differential equations. Based

on flows, our approach unifies the former ones developed by Davie, Friz-

Victoir and Bailleul. The main idea is to build a flow from the iterated

product of an almost flow which can be viewed as a good approximation of

the solution at small time. In this second article, we give tractable conditions

under which the limit flow is Lipschitz continuous and its links with unique-

ness of solutions of rough differential equations. We also give perturbation

formulas on almost flows which link the former constructions.
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1 Introduction

Rough paths theory was introduced to deal with differential equations driven by
an irregular deterministic path multidimensional x of the type

yt “ a`

ż t

0

fpyrq dxr, (1)
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where a is an initial condition and f a smooth function. Typically, the irregularity
of x is measured in α-Hölder (α ď 1) or in p-variation (p ě 1) spaces. Such an
equation is called Rough Differential Equation (RDE) [19, 31].

This theory was very fruitful to study stochastic equations driven by Gaussian
processes which is not covered by the Itô framework, like the fractional Brownian
motion [14, 33]. More generally, rough path framework allows one to separate the
probabilistic from the deterministic part in such equation and to overcome some
probabilistic conditions such as using adapted or non-anticipative processes.

Recently, the ideas of rough path theory were extended to stochastic partial differ-
ential equations (SPDE) with the works of [23, 24] which have led to significant
progress in the study of some SPDE. This theory also found applications in ma-
chine learning and the recognition of the Chinese ideograms [11, 30].

Since the seminal article [31] by T. Lyons in 1998, several approaches emerged to
solve (1). They are based on two main technical arguments: fixed point theorems
[22, 31] and flow approximations [2, 13, 15, 17, 20]. In particular, the rough flow
theory allows one to extend work about stochastic flows, which has been developed
in ’80s by Le Jan-Watanabe-Kunita and others, to a non-semimartinagle setting [4].

The main goal of this article is to give a framework which unifies the approaches
by flow and pursue further investigations on their properties and their relations
with families of solutions to (1).

A flow is a family of maps tψt,su from a Banach space to itself such that ψt,s˝ψs,r “
ψt,r for any r ď s ď t. Typically, the map which associates the initial condition a
to the solution of (1) is expected to have a flow property. The existence of a such
flow heavily depends on the existence and uniqueness of the solution. However, it
was proved in [8, 9] and extended to the rough path case in [7] that when non-
uniqueness holds, it is possible to build a measurable flow by a selection technique.
In this article we are interested by the construction of a Lipschitz flows.

The main idea to build the flow associated is to find a good approximation φt,s of
ψt,s when |t ´ s| is small enough. We iterate this approximation on a subdivision
π “ ts ď ti ď ¨ ¨ ¨ ď tj ď tu of rs, ts by setting

φπ
t,s :“ φt,tj ˝ ¨ ¨ ¨ ˝ φti,s.

If φπ converges when the mesh of π goes to zero, φπ, the limit is necessarily a flow.

This computation is similar to the ones of numerical schemes as Euler’s methods
of different order [12]. Moreover, this idea is found among the Trotter’s formulas
for bounded or unbounded linear operators which allows to compute the semi-
group of the sum of two non-commutative operators only knowing the semi-groups
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associated to each operator [16]. This property can be used to prove the Feynman-
Kac formula.

Rather than working with a particular choice for the almost flow φ as in [15, 20], we
give here generic conditions on φ. We generalize the multiplicative sewing lemma
of [17] and of [13], introduced to solve linear RDE to a non linear situation. In
this way, we construct directly some flows. In opposite to the additive and multi-
plicative sewing lemma, the limit is not necessarily unique. The approximations
are assumed to be Lipschitz. This is not the case for the limit.

Our framework is close to the one developed by I. Bailleul in [2, 5] as we also
give two conditions which ensure that the iterated composition of the almost flows
remain uniformly Lipschitz continuous, which we called in [7] the UL condition.
One condition corresponds to the C1-approximate flow property of [2]. The other
ones differs from the Regularity property of [2].

This condition, called the 4-points control, ensure that the almost flow satisfies
the UL Condition. In spirit, it aggregates both the spatial and the temporal
regularity into a single condition. We then study various consequences of this
condition: existence of an inverse, unique family of solutions, convergence of the
Euler scheme, ... The 4-points control can be checked on the almost flow, which
is then called a stable almost flow. In [6], we show using Stochastic Differential
Equations that a Lipschitz flow may exist while the UL condition is not satisfied.
We also exhibit a condition that ensure the uniqueness of the flow but which is
weaker than the UL one.

We also study the relationship between almost flows and family of solutions to (1) in
the sense of Davie [15] as they are two different objects. In particular, we show that
when an almost flow is stable, then the family of solutions to the RDE is unique
and Lipschitz continuous. We also relate the distance between two families of
solutions with respect to the distance between two almost flows when one is stable.
Again, consequences of this result will be drawn in [6] where we study consistency
and stability of the almost flows seen as approximations. We also deduce from
the results given here that solutions to RDE are generic with respect to the vector
field. In [28], we still use these results to consider differential equations driven by
rough paths living on general algebraic structures.

We also give several conditions under which perturbations of almost flows, a conve-
nient tool to construct numerical schemes, converge to the same limit flow. These
perturbative arguments are the key to unify expansions that are a priori of differ-
ent nature.

Finally, we apply our framework to recover the results of A.M. Davie [15], P. Friz &
N. Victoir [18, 20] and I. Bailleul [2, 5] using various perturbation arguments. As
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shown in [28], our framework could be applied to deal with branched rough paths,
that are high-order expansions indiced by trees, which are studied in [10] and
shown to fit Bailleul’s framework [3].

Outline. After introducing in Section 2 the main notations and general definitions,
we recall in Section 3 the notion of almost flow which is introduced in our previous
article [7]. In Section 4, we define the 4-point control as well as stable almost
flow φ. We prove that under these conditions, φπ converges to a Lipschitz flow. In
Section 5, we give conditions to modify the almost flow φ by adding a perturbation ǫ
which retains the convergence to a flow. We prove that under suitable conditions,
the inverse of the approximation φ is a good approximation of the inverse of the
flow. The link between uniqueness of the solution of (1) and existence of a flow
is studied in Section 7. In Section 8, our formalism links the former approaches
based on flow [2, 15, 20].

2 Notations

The following notations and hypotheses will be constantly used throughout all this
article.

2.1 Controls and remainders

Let us fix T ą 0, a time horizon. We write T :“ r0, T s as well as

T
2
` :“ tps, tq P T

2 | s ď tu and T
3
` :“ tpr, s, tq P T

3 | r ď s ď tu,

T
2
´ : “ tps, tq P T

2 | s ě tu and T
3
´ :“ tpr, s, tq P T

3 | r ě s ě tu.

We also set T
3 “ T

3
` Y T

3
´.

A control ω is a family from T
2
` :“ t0 ď s ď t ď T u to R` which is super-additive,

that is
ωr,s ` ωs,t ď ωr,t, @pr, s, tq P T

3
`,

and continuous close to its diagonal with ωs,s “ 0, s P T. For example ωs,t “ C|t´s|
where C is a non-negative constant.

A remainder associated to a control ω is a continuous, increasing function ̟ :

r0, ω0,T q Ñ R` such that for some 0 ă κ ă 1,

2̟
´τ
2

¯
ď κ̟pτq, τ ą 0. (2)

A typical example for ̟ is ̟pτq “ τ θ for any θ ą 1. More generally, if f is
a continuous function such that fpτ{2q ď κfpτq for any τ ě with κ ă 1, then

4



̟ : τ ÞÑ τfpτq defines a remainder. Such a function f can be constructed from
s-convex functions for example [26].

Let δ : R` Ñ R` be non-decreasing function with limTÑ0 δT “ 0.

We fix γ P p0, 1s. We also consider a continuous, increasing function η : r0, ω0,T q Ñ
R` such that

ηpωs,tq̟pωs,tq
γ ď δT̟pωs,tq, @ps, tq P T

2
`. (3)

2.2 Function spaces

We denote by pV, |¨|q a Banach space. The space of continuous functions from V

to V is denoted by CpV,Vq. We set }x}8 :“ suptPr0,T s|xt|.

Notation 1. We denote by F`pVq the space of families tφt,sups,tqPT2

`
with φt,s P

CpV,Vq for each ps, tq P T
2
`. We also set F´pVq the space of families tφs,tups,tqPT2

`

with φs,t P CpV,Vq for each ps, tq P T
2
` (note the reversion of the indices).

We now consider a partition π “ tt0 ď ¨ ¨ ¨ ď tnu of r0, T s with a mesh denoted
by |π|.

Notation 2 (Iterated products). For φ P F`pVq, we write

φπ
t,s :“ φt,tj ˝ φtj ,tj´1

˝ ¨ ¨ ¨ ˝ φti`1,ti ˝ φti,s,

where rti, tjs is the biggest interval of such kind contained in rs, ts. We say that
φπ
t,s is the iterated product of φ on a subdivision π. If no such interval exists, then
φπ
t,s “ φt,s.

For φ P F`pVq, we define similarly

φπ
s,t :“ φs,t1 ˝ φt1,t2 ˝ ¨ ¨ ¨ ˝ φtj´1,tj ˝ φtj ,t.

For any partition π, φπ P F˘pVq when φ P F˘pVq. A trivial but important remark
is that from the very construction,

φπ
t,s “ φπ

t,r ˝ φπ
r,s for any r P π.

In particular, tφπ
t,sups,tqPT2

˘
, s,tPπ enjoys a (semi-)flow property (Definition 3). A

natural question is then to study the limit of φπ as the mesh of π decreases to 0.

Finally, for any pr, s, tq P T
3
˘ we write φt,s,r :“ φt,s ˝ φs,r ´ φt,r.

5



Notation 3. We extend the norm |¨| on F
˘pVq by

}φ}̟ :“ sup
ps,tqPT2

˘

s “t

}φt,s}8

̟pωs,tq
,

where ω, ̟ are defined in Section 2.1. Possibly, }φ}̟ “ 8. Actually, this norm is
mainly used to consider the distance between two elements of F˘pVq. With this
norm, pF˘pVq, }¨}̟q is a Banach space.

Definition 1. We define the equivalence relation „ on F˘pVq by φ „ ψ if and
only if there exists a constant C such that

}φt,s ´ ψt,s}8 ď C̟pωs,tq, @ps, tq P T
2.

In other words, φ „ ψ if and only if }φ ´ ψ}̟ ă `8. Each quotient class of
F˘pVq{ „ is called a galaxy, which contains elements of F˘pVq which are at finite
distance from each others.

Notation 4 (Lipschitz semi-norm). The Lipschitz semi-norm of a function f from
a Banach space pV, | ¨ |q to another Banach space pW, | ¨ |1q is

}f}Lip :“ sup
a,bPV,
a‰b

|fpaq ´ fpbq|1

|a´ b|
,

whenever this quantity is finite. And if A Ă V is a non-empty subset of V, we say
that f is Lipschitz continuous on A when

}f}Lip,A :“ sup
a,bPA,
a‰b

|fpaq ´ fpbq|1

|a ´ b|
ă `8.

Notation 5 (Hölder spaces). For γ P p0, 1q, an integer r and two Banach spaces
V1, V2, we denote by C

r`γ
b pV1,V2q the space of bounded continuous functions

from V1 to V2 with bounded (Fréchet) derivatives up to order r and a r order
derivative which is γ-Hölder continuous. We also denote by LpV1,V2q the set of
continuous linear maps from V1 to V2.

3 Almost flow and Uniform Lipschitz condition

In this section, we recall some notions and results introduced in [7], which are
useful in next sections. As we are working on Banach spaces instead of metric
spaces, we have a slightly stronger notion of almost flow than in [7].

We denote by i the identity map from V to V.
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Definition 2 (Almost flow). An element φ P F
`pVq is an almost flow if for any

T ą 0 and any pr, s, tq P T
3
`, a, b P V,

φt,t “ i, (4)

}φt,s ´ i}8 ď δT , (5)

|φt,spbq ´ φt,spaq| ď p1 ` δT q|b´ a| ` ηpωs,tq|b´ a|γ , (6)

}φt,s,r}8 ď M̟pωr,tq, (7)

where M ě 0 and φt,s,r :“φt,s˝φs,r´φt,r. If we replace pr, s, tq P T
3
` by pr, s, tq P T

3
´,

we say that φ is a reverse almost flow.

Definition 3 (Semi-flow and Flow). A semi-flow ψ is a family of functions pψt,sqps,tqPT2

`

from V to V such that ψt,t “ i and

ψt,s ˝ ψs,r “ ψt,r (8)

for any a P V and pr, s, tq P T
3
`. It is a flow if each ψt,s is invertible with an inverse

equal to ψs,t for any ps, tq P T
2
` and (8) holds for any pr, s, tq P T

3 :“ T
3
` Y T

3
´.

Remark 1. The inverse of ψt,s is ψs,t for ps, tq P T
2.

Theorem 1 ([7]). Let φ be an almost flow (Definition 2) with M ě 0 and δT ,
κ defined in Section 2.1 Then there exists a time horizon T small enough and a
constant L ď 2M{p1 ´ p1 ` δT qκ´ δT q such that

}φπ
t,s ´ φt,s}8 ď L̟pωs,tq (9)

for any ps, tq P T
2
` and any partition π of T.

Definition 4 (Condition UL). An almost flow φ such that }φπ
s,t}Lip ď 1 ` δT for

any ps, tq P T
2
` whatever the partition π is said to satisfy the uniform Lipschitz

(UL) condition.

We give a sufficient condition on an almost flow to get a Lipschitz flow in a galaxy.

Proposition 1. Let φ be an almost flow which satisfies the condition UL. Then
there exists a Lipschitz flow ψ with }ψt,s}Lip ď 1 ` δT for any ps, tq P T

2
` such that

φπ
t,spaq converges to ψt,spaq for any a P V and any ps, tq P T

2
`.

On the other hand, there could be at most one flow in a galaxy if one is Lipschitz.

Proposition 2. Assume that there is a Lipschitz flow ψ in a galaxy G. Then ψ

is the unique flow in G. Moreover, for any almost flow φ „ ψ, φπ
s,tpaq converges to

ψs,tpaq for any ps, tq P T
2
` and a P V.
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We then complete the results of [7] with the following ones.

Proposition 3. Let φ be an almost flow which satisfies the condition UL. Then
φπ is an almost flow for any partition π.

The prototypical example for the next result is ̟pτq “ τ θ for some θ ą 1. In this
case, it slightly improves the rate of convergence as θ ´ 1 with respect to the one
given in [7] which is θ ´ 1 ´ ǫ for any ǫ ą 0.

Proposition 4 (Rate of convergence). Let φ be an almost flow in the same galaxy
as a Lipschitz flow ψ with }ψt,s}Lip ď p1 ` δT q and }ψt,s ´ φt,s}8 ď K̟pωs,tq for
any ps, tq P T

2
`. Let us assume that ̟ is such that for a bounded function µ,

τ´1̟pτq ď µpτq for any τ ą 0. Then

}ψt,spaq ´ φπ
t,spaq}8 ď KMpπqω0,T p1 ` δT q with Mpπq :“ sup

pr,tq successive
points in π

µpωr,tq.

Proof. The proof follows the one of Theorem 10.30 in [20, p. 238]. Let ttiui“0,...,n

be the points of π Y ts, tu such that t0 “ s, tn “ t and pti, ti`1q are successive
points in π Y ts, tu. Set zk “ ψt,tkpφtk ,tpaqq. Then

|ψt,spaq ´ φπ
t,spaq| “ |zn ´ z0| ď

n´1ÿ

i“0

|zi`1 ´ zi|.

Since ψt,s is Lipschitz and

|zi`1 ´ zi| ď p1 ` δT q|ψtk`1,tkpφtk`1,tkpaqq ´ ψtk`1,tkpφtk`1,tkpaqq|.

The result follows easily.

4 Stable almost flows

In the previous section, we have recalled some results from [7] which underline the
importance of the uniform Lipschitz (UL) condition. However, the UL condition
is not easy to verify as one has to control uniformly iterated products of almost
flows. A natural approach is then to focus on conditions on the almost flow alone.
In this section, we give a sufficient condition on an almost flow φ to ensure that it
satisfies the UL condition and then that its galaxy contains a unique flow which
is Lipschitz.
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4.1 The 4-points control

In this section V,V1,V2,V3 are Banach spaces and we denote by |¨| their norms.

Definition 5 (The 4-points control). A function f : V1 Ñ V2 is said to satisfy a

4-points control if there exists a non-decreasing, continuous function pf : R` Ñ R`

and a constant f : ě 0 such that

|fpaq ´ fpbq ´ fpcq ` fpdq|

ď pfp|a´ b| _ |c´ d|q ˆ p|a´ c| _ |b ´ d|q ` f :|a ´ b´ c` d| (10)

for any pa, b, c, dq P V1.

Any Lipschitz function f satisfies a 4-points control with pf “ 2}f}Lip and f : “ 0.
However, for our purpose, we need to consider later more restrictive conditions
on f : and pf .

Let us start with a simple example. When the derivative of f is γ-Hölder continu-
ous, it restates [15, Leamm 3.5].

Lemma 1. Let f P C
1pV1,V2q, 0 ă γ ď 1, with a bounded derivative which

is uniformly continuous with a modulus of continuity νpτq :“ sup|x´y|ďτ |∇fpyq ´
∇fpxq|. Then f satisfies a 4-points control with

pfpxq :“ νpxq, x ě 0, and f : :“ }∇f}8.

Proof. For any a, b, c, d P V1,

fpaq ´ fpbq ´ fpcq ` fpdq

“ pa ´ bq

ż 1

0

∇fpau ` p1 ´ uqbq du´ pc´ dq

ż 1

0

∇fpcu` p1 ´ uqdq du

“ pa´ bq

ż 1

0

r∇fpau` p1 ´ uqbq ´ ∇fpcu` p1 ´ uqdqs du

` pa´ b ´ c` dq

ż 1

0

∇fpcu` p1 ´ uqdq du,

which yields to the result.

Here are a few properties of functions satisfying a 4-points control.

Lemma 2. Let f, g satisfying a 4-points control with g Lipschitz continuous.
(i) The function f is locally Lipschitz continuous.
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(ii) If f, g : V1 Ñ V2, then for any λ, µ P R, λf ` µg satisfies a 4-points control.
(iii) If f : V1 Ñ V2 and g : V3 Ñ V1, then f ˝ g : V3 Ñ V2 satisfies a 4-points

control.
(iv) If g : V Ñ V with }g}Lip ă 1, then i ` g is invertible and k :“ pi ` gq´1

is Lipschitz and satisfies a 4-points control with pkpxq “ pgp}k}Lipxq}k}Lip for
}k}Lip ď 1{p1 ´ }g}Lipq, and k: “ 1{p1 ´ g:q.

Proof. For showing (i), we choose a “ d and b “ c in (10) and then,

|fpaq ´ fpbq| ď
”

pfp|a ´ b|q ` f :
ı

|a´ b|,

which proves that f is locally Lipschitz continuous.

Moreover, we can choose {λf ` µg “ |λ| pf ` |µ|pg and pλf ` µgq: “ |λ|f : ` |µ|g: to
obtain a 4-points control on λf ` µg. This proves (ii).

To show (iii), we use the fact that g is Lipschitz according to (i). With h “ f ˝ g,

|hpaq ´ hpbq ´ hpcq ` hpdq|

ď pfp|gpaq ´ gpbq| _ |gpcq ´ gpdq|q r|gpaq ´ gpcq| _ |gpbq ´ gpdq|s

` f :pgp|a´ b| _ |c´ d|q r|a´ c| _ |b ´ d|s ` f :g:|a´ b ´ c` d|

ď pfp}g}Lip|a ´ b| _ |c ´ d|q}g}Lipp|a´ c| _ |b ´ d|q

` f :pgp|a´ b| _ |c´ d|qr|a´ c| _ |b ´ d|s ` f :g:|a ´ b ´ c` d|.

This proves that h satisfies the 4-points control.

It remains to show (iv). From the Lipschitz inverse function theorem [1, p. 124],
i ` g is invertible with an inverse k that satisfies }k}Lip ď p1 ´ }g}Lipq´1. Besides,

|a ´ b´ c` d ` pgpaq ´ gpbq ´ gpcq ` gpdqq| ě p1 ´ g:q|a ´ b´ c` d|

´ pgp|a´ b| _ |c´ d|q ˆ r|a ´ c| _ |b ´ d|s ,

which yields to

p1 ´ g:q|kpaq ´ kpbq ´ kpcq ` kpdq| ď |a´ b ´ c` d|

` pgp}k}Lip|a´ b| _ |c´ d|q}k}Lip r|a´ c| _ |b ´ d|s .

Hence, for x P R`, pk “ pgp}k}Lipxq}k}Lip and k: “ p1´ g:q´1. Therefore, k satisfies
a 4-points control.
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The reason for introducing the 4-points control lies in its good behavior with
respect to composition. More precisely, if f satisfies a 4-points control while g and
h are Lipschitz continuous and bounded,

}f ˝ g ´ f ˝ h}Lip ď pfp}g ´ h}8q}g}Lip _ }h}Lip ` f :}g ´ h}Lip,

}f ˝ g ´ f ˝ h}8 ď
´

pfp0q ` f :
¯

}g ´ h}8.

4.2 Definition of a stable almost flow

Definition 6 (̟-compatible 4-points control). A family φ P F
`pV q is said to sat-

isfy a ̟-compatible 4-points control if there exists a family of functions ppφt,sqps,tqPT2

`

and constants pφ:
t,sqps,tqPT2 such that for any rs, ts Ă r0, T s the estimate (10) holds

and

pφs,t ď pφu,v for any rs, ts Ă ru, vs (11)

pφt,spα̟pωs,tqq ď φfpαq̟pωs,tq for any α ě 0, ps, tq P T
2
`, (12)

where φf is a non-negative function from R` Ñ R`.

Definition 7 (Stable almost flow). We say that an almost flow φ with γ “ 1 in (6)
is a stable almost flow if

(i) it satisfies a ̟-compatible 4-points control with

φ:
t,s ď 1 ` δT ,

(ii) there is a constant C ě 0 such that for pr, s, tq P T
3
`,

}φt,s,r}Lip ď C̟pωr,tq, (13)

where φt,s,r :“ φt,s ˝ φs,r ´ φt,r.
We denote the family of stable almost flow SAδT ,̟pV q. If we replace assumption
pr, s, tq P T

3
` by pr, s, tq P T

3
´, we say that φ is a reverse stable almost flow.

Remark 2. Condition (13) in (ii) is the Condition H2 (“ C1-approximate flow prop-
erty”) of [2, Theorem 2.1]. The conditions in (i) is an alternative to Condition H1
(“regularity”) of [2, Theorem 2.1]. Theorem 2 belows leads to similar conclusions
in spirit to [2, Theorem 2.1]. Other results have their counterparts in [2, 3].

Remark 3. A stable almost flow is necessarily Lipschitz, so that (6) in Definition 2
holds with γ “ 1 or η “ 0. Lipschitz flows are the central object of this study.
However, in [6], we weaken the Lipschitz regularity while ensuring the limiting flow
is unique in its galaxy.
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Let us end this section with a simple yet practical example to the Young differential
equation, that is approximation of differential equation driven by a path not too
irregular so that it implies a Young integral. This example does not focus on a
particular kind of path, but shows the interplay between the modulus of continuity
of the driving path and the regularity of the vector field. In Section 8, we consider
various kind of approximations to deal with RDE.

Lemma 3. Fix m, d ě 1. We choose as control ωs,t :“ t ´ s. Let x : r0, T s Ñ R
d

be a continuous path with modulus of continuity µ, that is |xs,t| ď µpt ´ sq where
xs,t :“ xt ´ xs for ps, tq P T

2
` For i “ 1, . . . , d, we consider a family of functions

fi P C1pRm,Rmq We assume that each ∇fi is uniformly continuous. We set

νpτq :“ max
i“1,...,d

sup
|y´x|ďτ

|∇fipyq ´ ∇fipxq| and }∇kf}8 :“ max
i“1,...,d

}∇kfi}8

for k “ 0, 1. We assume that for any α ě 0 small enough, there exists a constant
νfpαq such that

sup
0ăτďµpT q

νpατq

νpτq
ď νfpτq.

We define

φt,spaq :“ a ` fpaqxs,t “ a`
dÿ

i“1

fipaqxis,t, ps, tq P T
2
`, a P V

and
̟pτq :“ maxtνpµpτq

˘
µpτq, µpτq2u.

If ̟ is a remainder (See Section 2), then for T small enough, φ :“ tφt,sups,tqPT2

`
is

a stable almost flow.

Proof. Clearly, φ satisfies (4)-(6). With Lemma 1, for any a, b, c, d P R
m and any

ps, tq P T
2
`,

|φt,spaq ´ φt,spbq ´ φt,spcq ` φs,tpdq| ď |a ´ b´ c` d| p1 ` }∇f}8|xs,t|q

` |xs,t|νp|a´ c| _ |b´ d|q ¨ p|a ´ b| _ |c ´ d|q.

Therefore, φt,s satisfies the 4-points control with

xφt,spρq :“ νpρqµpt´ sqνfp}f}8 _ 1q and φ:
t,s :“ 1 ` }∇f}8 ¨ µpT q

From our construction of ̟, for any α ě 0,

xφt,spα̟pt´ sqq ď µpt´ sqν
`
maxtνpµpt´ sqq, µ2pt´ squµpt´ sq

˘
νfpαqνfp}f}8 _1q

12



Since ν is a modulus of continuity, νpµpτqq ď µpτq. Provided that τ is small enough

so that µpτq ď 1, then xφt,s satisfies (12). It also clearly satisfies (11). Thus, φ
satisfies a ̟-compatible 4-points control.

Since for any pr, s, tq P T
3
`, xr,s ` xs,t “ xr,t, a standard computation shows that

φt,s,rpaq “ fpa` fpaqxr,sqxs,t ´ fpaqxs,t for any pr, s, tq P T
3
`.

With our choice of ̟,

}φt,s,r}8 ď }∇f}8}f}8µpt´ rq2 ď }∇f}8}f}8̟pt´ rq2.

Hence, (7) is satisfies and φ is an almost flow.

Again using Lemma 1, for any a, b P V and any pr, s, tq P T
3
`,

|φt,s,rpbq ´ φt,s,rpaq| ď

|a ´ b|νp}f}8|xs,t|q|xs,t|p1 ` }∇f}8|xr,s|q ` |a´ b| ¨ }∇f}8 ¨ |xr,s| ¨ |xs,t|

ď |a´ b|̟pt ´ rqνfp}f}8qp1 ` }∇f}8q.

This proves that φ satisfies also (ii) and is a stable almost flow.

Example 1. The Young case corresponds to µpτq “ τα for some α P p0, 1s and
νpτq “ Cτγ for some γ P p0, 1s with αp1` γq ą 1 (and then α ą 1{2). This choice
of ν means that the derivative of f is γ-Hölder continuous. This way,

̟pτq :“ Cταp1`γq _ τ 2α.

which satisfies (2) as αp1 ` γq ą 1 and 2α ą 1.

4.3 Non linear sewing lemma for stable almost flow

In this section, we introduce our main tools to control the iterated products (No-
tation 2) on a partition. The key idea is borrowed from the claim in [15, p. 6].

Definition 8 (Successive points). Let π be a partition of r0, T s. Two points s and
t of π are said to be at distance k if there are k ´ 1 points between them in π.
Points at distance 1 are then successive points in π.

Lemma 4. Let us consider a family U :“tUs,tus,tPπ,sďt with values in R` satisfying
for any pr, s, tq P π

Ş
T
3,

Ur,s ď D̟pωr,sq when r and s are successive points,

Ur,t ď p1 ` αT qUr,s ` p1 ` αT qUs,t ` B̟pωr,tq, (14)

13



for some constants D ě 1, B ě 0 and αT ě 0 that decreases to 0 as T Ñ 0.

Then for all T ą 0 such that κp1 ` αT q2 ` δT ă 1,

Ur,t ď A̟pωr,tq, @pr, tq P r0, T s X π2, (15)

with A :“
Dp1 ` δT qp1 ` αT q2 ` Bp2 ` αT q

1 ´ pκp1 ` αT q2 ` δT q
. (16)

In particular, A does not depend on the choice of the partition.

Proof. We perform an induction on the distance m between points in π.

If m “ 1, then (15) is true since that A ě D.

Let us assume that this is true for any two points at distance m. Fix two points
r and t at distance m ` 1 in π. Hence, there exists two successive points s and s1

in π such that
ωr,s ď

ωr,t

2
and ωs1,t ď

ωr,t

2
.

Applying (14) twice with pr, s, tq and ps, s1, tq,

Ur,t ď p1 ` αT qUr,s ` p1 ` αT qUs,t ` B̟pωr,tq

ď p1 ` αT qUr,s ` p1 ` αT q2pUs,s1 ` Us1,tq ` p2 ` αT qB̟pωr,tq.

Both Ur,s and Us,t satisfy the induction property. With (2),

Ur,t ď 2Ap1 ` αT q2̟
´ωr,t

2

¯
` p1 ` αT q2D̟pωs,s1q ` p2 ` αT qB̟pωr,tq

ď
“
A

`
κp1 ` αT q2 ` δT

˘
` Dp1 ` αT q2p1 ` δT q ` p2 ` αT qB

‰
̟pωr,tq.

Our choice of A ě D in (16) ensures the results at level m ` 1. The control (15)
is then true whatever the partition.

The following proposition justifies Definition 7.

Theorem 2. If φ P SAδT ,̟pVq is a stable almost flow then for any partition π,

}φπ
t,s ´ φt,s}Lip ď L̟pωs,tq, @ps, tq P T

2
`, (17)

where L is a constant that depends on T , T ÞÑ δT , κ, ω, pφ, φf and C in (13). In
particular, the almost flow φ satisfies the condition UL, up to changing δT .

Remark 4. When φ is a stable almost flow, we assume that γ “ 1 in Definition 2.
This implies that (6) becomes

|φt,spbq ´ φt,spaq| ď p1 ` δT q|b ´ a|. (18)

14



Proof. Let us choose a partition π. Let r P T be fixed and ps, tq P T
2
`, such that

r ď s,
Uπ
s,t :“ }φπ

t,r ´ φt,s ˝ φπ
s,r}Lip.

For any 0 ď r ď s ď t ď u ď T ,

Uπ
s,u ď Uπ

t,u ` }φu,t ˝ φπ
t,r ´ φu,t ˝ φt,s ˝ φπ

s,r}Lip ` }φu,t ˝ φt,s ˝ φπ
s,r ´ φu,s ˝ φπ

s,r}Lip.

(19)

With the 4-points control on φu,t,

}φu,t ˝ φπ
t,r ´ φu,t ˝ φt,s ˝ φπ

s,r}Lip

ď pφu,t

`
}φπ

t,r ´ φt,s ˝ φπ
s,r}8

˘
ˆ

`
}φπ

t,r}Lip _ p1 ` δT q}φπ
s,r}Lip

˘
` φ

:
u,tU

π
s,t.

According to (9) for T small enough,

}φπ
t,r ´ φt,s ˝ φπ

s,r}8 ď C̟pωs,tq.

Since yφu,t satisfies (11)-(12), with the control (6) with γ “ 1 of the Definition 2 of
almost flow,

}φu,t ˝ φπ
t,r ´ φu,t ˝ φt,s ˝ φπ

s,r}Lip

ď φfpCq̟pωr,tq
`
}φπ

t,r}Lip _ p1 ` δT q}φπ
s,r}Lip

˘
` φ

:
u,tU

π
s,t.

For bounding the last term of (19), (13) yields

}φu,t ˝ φt,s ˝ φπ
s,r ´ φu,s ˝ φπ

s,r}Lip ď C̟pωs,uq}φπ
s,r}Lip.

Assuming that r, s, t and u belong to π and combining these inequalities and the
fact the φ is stable (see Definition 7),

Uπ
s,u ď Uπ

t,u ` p1 ` δT qUπ
s,t ` LπpφfpCqp2 ` δT q ` Cq̟pωs,uq

where
Lπ :“ sup

ps,tqPT2

`

s,tPπ

}φπ
t,s}Lip.

For two successive points s and t ě s of π (See Definition 8), φπ
t,r “ φt,s ˝ φπ

s,r so
that Uπ

s,t “ 0.

We assume that T is small enough so that κp1 ` δ2T ` δT q ă 1. From Lemma 4,

Uπ
s,t ď LπαT̟pωs,tq with αT :“ p2 ` δT q

pφfpCqp2 ` δT q ` Cq

1 ´ κp1 ` δ2T ` δT q
. (20)
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In particular, for r “ s, Ur,t “ }φπ
t,r ´ φt,r}Lip.

Let us bound Lπ. For this, with (20) and (6) with γ “ 1,

Lπ ď sup
ps,tqPT2

`

}φπ
t,s ´ φt,s}Lip ` max

ps,tqPT2

`

}φt,s}Lip

ď LπαT̟pω0,T q ` 1 ` δT .

For T small enough so that αT̟pω0,T q ď 1{2, Lπ is uniformly bounded. Injecting
this control of Lπ in (20),

}φπ
t,r ´ φt,r}Lip ď K̟pωr,tq, @pr, tq P T

2
`, r, t P π, (21)

for some constant K that does not depend on the partition π.

It remains to establish (21) for any pair of time pr, tq P T
2
`.

For this, let tπ (resp. rπ) be the greatest (resp. smallest) point of π below (resp.
above) t (resp. r). Then with the definition of φπ (Notation 2),

φπ
t,r ´ φt,r “ φt,tπ ˝ φπ

tπ ,r
´ φt,tπ ˝ φtπ,r ` φt,tπ,r.

With (13) and (6) of Definition 2 with γ “ 1,

}φπ
t,r ´ φt,r}Lip ď p1 ` δT q}φπ

tπ,r
´ φtπ ,r}Lip ` C̟pωr,tq. (22)

Similarly,
φπ
tπ ,r

´ φtπ ,r “ φπ
tπ,rπ

˝ φπ
rπ,r

´ φtπ,rπ ˝ φrπ,r ` φtπ,rπ,r.

Using (9) and (21),

}φπ
tπ,r

´ φtπ,r}Lip ď }φπ
tπ,rπ

´ φtπ ,rπ}Lip ¨ }φrπ,r}Lip ` C̟pωr,tq

ď p1 ` δT qK̟pωr,tq ` C̟pωr,tq. (23)

Inequality (17), which is (21) applied for any pr, tq P T
2
`, stems from (21), (22)

and (23).

Corollary 1. If φ P SAδT ,̟pVq is a stable almost flow then there exists a unique
Lipschitz flow ψ in the galaxy containing φ. Moreover, there is a constant L ě 0

such that for all ps, tq P V,

}ψt,s ´ φt,s}Lip ď L̟pωs,tq. (24)

Proof. According to Theorem 2, φ satisfies the UL condition of Proposition 4.
Hence, it converges in the sup-norm to a Lipschitz flow ψ „ φ. According to
Proposition 2, ψ is the only flow in the galaxy of φ.

Passing to the limit in (17) leads to (24).
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5 Perturbations

In [7], we have introduced the notion of perturbation of almost flow. This notion
still gives an almost flow.

5.1 Additive perturbations

We recall that η, δT and γ are defined in Section 2.1.

Definition 9 (Perturbation). A perturbation is an element ǫ P FpVq such that for
any ps, tq P T

2
` and a, b P V,

ǫt,t “ 0, (25)

}ǫt,s}8 ď C̟pωs,tq, (26)

|ǫt,spbq ´ ǫt,spaq| ď δT |b´ a| ` ηpωs,tq|b ´ a|γ, (27)

where η is defined by (3) and C ě 0 is a constant.

Proposition 5 ([7, Proposition 1]). If φ P FpVq is an almost flow and ǫ P FpVq
is a perturbation, then ψ :“ φ` ǫ is an almost flow in the same galaxy as φ.

We introduce now the notion of Lipschitz perturbation, which is a perturbation
on which a control stronger than (27) holds.

Definition 10 (Lipschitz perturbation). A Lipschitz perturbation is a perturbation
ǫ P F

`pVq with satisfies for a constant C ě 0

}ǫt,s}Lip ď C̟pωs,tq, @ps, tq P T
2
`. (28)

Stable almost flows remain stable almost flows under Lipschitz perturbations.

Proposition 6 (Stability of stable almost flow under Lipschitz perturbation). If
φ P SAδT ,̟ is a stable almost flow (see Definition 7) and ǫ is a Lipschitz perturba-
tion, then ψ :“ φ ` ǫ is also a stable almost flow.

Proof. It is proved in Proposition 5 that φ ` ǫ is an almost flow. Here we show
that φ ` ǫ is a stable almost flow.

First, for any a, b, c, d P V ,

|ǫt,spaq ´ ǫt,spbq ´ ǫt,spcq ` ǫt,spdq| ď 2C̟pωs,tq|a ´ c| _ |b ´ d|,

so that ǫt,s satisfies a ̟-compatible 4-points control (see Definition 6) with pǫt,s :“
2C̟pωs,tq and ǫ:

t,s :“ 0. Thus, φ` ǫ satisfies a ̟-compatible 4-points control with
zφ ` ǫ “ pφ` 2C̟pωs,tq and φt,s ` ǫt,s

: “ φt,s
: ď 1 ` δT .
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It remains to show that for any pr, s, tq P T
3
`, }ψt,s,r}Lip ď C̟pωr,tq, with ψt,s,r :“

ψt,s ˝ ψs,r ´ ψt,r. For any a P V , we write

ψt,s,rpaq “ rφt,s ˝ pφs,r ` ǫs,rqpaq ´ φt,s ˝ φs,rpaqslooooooooooooooooooooooomooooooooooooooooooooooon
Ir,s,tpaq

` rǫt,s ˝ pφs,r ` ǫs,rqpaq ´ ǫt,s ˝ ǫs,rpaqsloooooooooooooooooooooomoooooooooooooooooooooon
IIr,s,tpaq

` φt,s,rpaq ` ǫt,s,rpaqlooooooooomooooooooon
IIIr,s,tpaq

.

On the one hand, using the ̟-compatible 4-points control of φt,s, (18), (26) and
(28) we write,

}Ir,s,t}Lip ď xφt,sp}ǫs,r}8qp}φs,r}Lip ` }ǫs,r}Lipq ` φt,s
:}ǫs,r}Lip

ď xφt,spC̟pωr,tqqp1 ` δT ` C̟pω0,T qq ` p1 ` δT qC̟pωr,tq

ď pC 1p1 ` δT ` C̟pω0,T qq ` 1 ` δT q̟pωr,tq,

where C 1 is a constant.

On the other hand, with (6), (28)

}IIr,s,t}Lip ď }ǫt,s}Lipp}φs,r}Lip ` }ǫs,r}Lipq ` }ǫt,s}Lip}ǫs,r}Lip

ď C̟pωr,tqp1 ` δT ` C̟pω0,T qq ` C2̟pω0,T q̟pωr,tq ď KT̟pωr,tq,

where KT Ñ 1 when T Ñ 0.

Finally, with (13) and (28),

}IIIr,s,t}Lip ď }φt,s,r}Lip ` }ǫt,r}Lip ` }ǫt,s}Lip}ǫs,r}Lip ď p2C `C2̟pω0,T qq̟pωr,tq.

This concludes the proof.

Now, we prove another perturbation formula which is useful in Subsection 8.3.

We recall the δT , η and γ are defined in Section 2.1.

Proposition 7. Let ψ be a flow which may be decomposed as

ψt,spaq “ φt,spaq ` ǫs,tpaq, a P V, ps, tq P T
2

with for any ps, tq P T
2
` and a, b P V,

φt,t “ i, ǫt,t “ 0, (29)

|φt,spaq ´ φt,spbq| ď p1 ` δT q|a ´ b| ` ηpωs,tq|a´ b|γ , pa, bq P V, (30)

}φt,s ´ i}8 ď δT , (31)

}ǫs,t}8 ď M̟pωs,tq. (32)
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Then φ is an almost flow in the same galaxy as ψ. Besides, for any partition π

of T,
}φπ

t,s ´ φt,s}8 ď L̟pωs,tq (33)

where L ď 2 rp3 ` δT qM ` δTM
γs {p1 ´ p1 ` δT qκ´ δT q.

Proof. To show that φ is an almost flow, it is sufficient to consider (29)-(32) as
well as controlling φt,s,r. For pr, s, tq P T

3
`,

ψt,s ˝ ψs,rpaq “

Ir,s,thkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj
φt,spφs,rpaq ` ǫs,rpaqq ´ φt,spφs,rpaqq `φt,spφs,rpaqq ` ǫt,spψs,rpaqq.

Since ψ is a flow, ψr,s,t “ 0 and then

φt,s,rpaq “ Ir,s,t ` ǫt,spψs,rpaqq ´ ǫt,rpaq.

With (30),
|Ir,s,t| ď p1 ` δT qM̟pωr,sq ` ηpωs,tqM

γ̟pωr,sq
γ .

With (3),
|Ir,s,t| ď A̟pωr,tq with A :“ p1 ` δT qM ` δTM

γ .

It follows that }φt,s,r}8 ď p2M ` Aq̟pωr,tq. This proves that φ is an almost flow
following Definition 3. The control (33) follows from Theorem 1.

Corollary 2. Assume that V is a finite-dimensional Banach space. Let tψmumPN

be a family of flows with decomposition ψm “ φm ` ǫm where pφm, ǫmq satisfy
(29)-(32) uniformly in m. Assume moreover that

}φm
s,t ´ i}8 ď δt´s, @ps, tq P T

2
`. (34)

Then any possible limit φ of φm
t,s (at least one exists) satisfies (29)-(32) as well

as (34) with the same constants.

Proof. With (34), Lemma 1 in [7] can be applied uniformly. As (30) is also uniform
in m, this proves that for any R ą 0, tφmpaqs,tups,tqPT2

`
, aPBp0,Rq is equi-continuous

where Bp0, Rq is the closed ball of center 0 and some radius R ą 0. The Ascoli-
Arzelà shows that at least one limit of φm exists. Clearly, this limit satisfies the
same properties as φm.
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5.2 Spatial perturbations

We consider now another kind of perturbation.

Another kind of perturbation consists in, given an almost flow φ,

Proposition 8. Let φ be an almost flow and ǫ be a perturbation satisfying Defini-
tion 9. With ψt,s :“ φt,s ˝ pi ` ǫt,sq for any ps, tq P T

2
`, ψ is an almost flow which

lives in the same galaxy as φ.

Proof. Clearly, ψt,t “ 0 since ǫt,t “ 0. Thus, ψ satisfies (4). With (26),

}ψt,s ´ i}8 ď }φt,s ˝ pi ` ǫt,sq ´ ǫt,s}8 ` }ǫt,s}8 ď δT ` C̟pω0,T q.

Hence, ψ satisfies (5).

For any a P V and ps, tq P T
2
`, with (6), (26) and (3),

|ψt,spaq ´ φt,spaq| ď |ǫt,spaq| ` ηpωt,sq|ǫt,spaq|γ ď pC ` δT q̟pωt,sq. (35)

Using (5) and (27), for any a, b P V,

|ψt,spbq ´ ψt,spaq| ď |ψt,spbq ´ φt,spbq| ` |φt,spbq ´ φt,spaq| ` |φt,spaq ´ ψt,spaq|

ď |ǫt,spbq ´ ǫt,spaq| ` p1 ` δT q|b´ a| ` ηpωt,sq|b ´ a|γ.

With (27), (6) is satisfied.

Finally, using (5), (26) and (3), for any a P V,

|ψt,s ˝ ψs,rpaq ´ ψt,rpaq|

ď |ψt,s˝ψs,rpaq´ψt,s˝φs,rpaq|`|ψt,s˝φs,rpaq´φt,s˝φs,rpaq|`|φt,s,rpaq|`|φt,rpaq´ψt,rpaq|.
(36)

With (6), (35) and (3), it is easily obtained that ψ satisfies (7).

With (35), ψ and φ belong to the same galaxy.

Proposition 9 (Stability of stable almost flow under Lipschitz spatial perturba-
tion). If φ P SAδT ,̟ is a stable almost flow (see Definition 7) and ǫ is a Lipschitz
perturbation, then ψ :“ φ ˝ pi ˝ ǫq is also a stable almost flow.

Proof. Since φt,s is Lipschitz with }φt,s}Lip ď 1 ` δT , (26) implies that

}ψt,s ´ φt,s}8 ď p1 ` δT qC̟pωs,tq for any ps, tq P T
2
`. (37)
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For any ps, tq P T
2
` and a, b P V,

|ψt,spbq ´ φt,spbq ´ ψt,spaq ` φt,spaq|

ď xφt,sp|ǫt,spaq|_|ǫt,spbq|q¨|b`ǫt,spbq´a´ǫt,spaq|_|b´a|`φf
t,s|b`ǫt,spbq´a´ǫt,spaq|.

Since φ is a stable almost flow, with (26) and (28),

|ψt,spbq ´ φt,spbq ´ ψt,spaq ` φt,spaq|

ď φf
t,spCq̟pωs,tqp1 ` }ǫt,s}Lipq|a´ b| ` φ

:
t,sC}ǫt,s}Lip|a´ b| ď K|a ´ b| (38)

for a constant K that depends on δT and C (here, both a control on }ǫt,s}8

and }ǫt,s}Lip).

Using a computation similar to (36), we then easily obtain from (37) and (38)
that ψ satisfies a ̟-compatible 4-points control and satisfies (13).

6 Inversion of the flow

In this section, we prove that our definition of stable almost (Definition 7) flow is
stable with respect to inversion.

Proposition 10. Let φ P STδT ,̟ be a stable almost flow and ψ the unique flow in
the same galaxy as φ (Corollary 1). We assume that χ :“ φ ´ i satisfies a 4-point
control such that

@ps, tq P T
2
`, χt,s

: “ φt,s
: ´ 1, xχt,s “ xφt,s, and }χt,s}Lip ď δT .

Then, for T such that δT ă 1, φ is invertible and pζs,tqps,tqPT2

`
:“ pφ´1

t,s qps,tqT2

`
is a

stable reverse almost flow which galaxy contains a unique flow which equal to ψ´1.

Proof. According to item (iv) of Lemma 2 and because }χt,s}Lip ď δT we know
that for T ą 0 such that δT ă 1, φt,s is invertible and that φ´1

t,s satisfies a 4-points

control with pφ´1
t,s q

:
“ 1{p1 ´ χt,s

:q and yφ´1
t,s pxq “ xχt,sp}φt,s}Lipxq}φt,s}Lip for any

x P R`. It follows that pφ´1
t,s q

:
ď 1 ` δ1

T , with δ1
T :“ δT {p1 ´ δT q and that φt,s

satisfies a ̟-compatible 4-points control.

Moreover, }φ´1
t,s }Lip ď 1{p1´}χt,s}Lipq and we assume }χt,s}Lip ď δT . It follows that

}φ´1
t,s }Lip ď 1` δ1

T which proves that (6) holds for φ´1. In substituting a by φ´1
t,s paq

in (5) we show that (5) holds for φ´1.
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To prove that pζs,tqps,tqPT2

`
:“ pφ´1

t,s qps,tqPT2

`
is a reverse stable almost flow, it remains

to show that the conditions (7) and (13) hold for any pr, s, tq P T
3
`. Firstly, we

compute with (7), since φt,s ˝ φs,r is one-to-one,

}φ´1
s,r ˝ φ´1

t,s ˝ φt,s ˝ φs,r ´ φ´1
t,r ˝ φt,s ˝ φs,r}8 “ }φ´1

t,r ˝ φt,r ´ φ´1
t,r ˝ φt,s ˝ φs,r}8

ď p1 ` δ1
T q}φt,r ´ φt,s ˝ φs,r}8 ď M̟pωr,tq,

which yields with to }ζr,s ˝ ζs,t ´ ζr,t}8 ď M̟pωr,tq.

Secondly, for any a, b P V and pr, s, tq P T
3
`, we set a1:“φ´1

s,r˝φ´1
t,s paq, b1:“φ´1

s,r˝φ´1
t,s pbq,

and

Φr,s,t :“ pφ´1
s,r ˝ φ´1

t,s ´ φ´1
t,r q ˝ φt,s ˝ φs,rpb

1q ´ pφ´1
s,r ˝ φ´1

t,s ´ φ´1
t,r q ˝ φt,s ˝ φs,rpa

1q

“ φ´1
t,r ˝ φt,rpb

1q ´ φ´1
t,r ˝ φt,s ˝ φs,rpb

1q ´ φ´1
t,r ˝ φt,rpa

1q ` φ´1
t,r ˝ φt,s ˝ φs,rpa

1q.

We know that φ´1
t,r satisfies a ̟-compatible 4-points control and we use (13),

|Φr,s,t| ď yφ´1
t,r p}φt,s,r}8q r}φt,r}Lip _ }φt,s ˝ φs,r}Lips |b1 ´ a1| ` pφ´1

t,r q
:
}φt,s,r}Lip|b1 ´ a1|

ď φ´1,fpMq̟pωr,tqp1 ` δT q2|b1 ´ a1| ` p1 ` δT qC̟pωr,tq|b1 ´ a1|.

Then substituting a1 and b1 by φ´1
s,r ˝ φ´1

t,s paq and φ´1
s,r ˝ φ´1

t,s paq,

}φ´1
s,r ˝φ´1

t,s ´φ´1
t,r }Lip ď rφ´1,fpMq̟pωr,tqp1`δT q2`p1`δT qC̟pωr,tqs}φ´1

s,r ˝φ´1
t,s }Lip

ď
“
φ´1,fpMqqp1 ` δT q2 ` p1 ` δT qC

‰
p1 ` δ1

T q2̟pωr,tq.

Hence ζ is a stable reverse almost flow. According to Corollary 1, ζπ converges to a
unique Lipschitz flow ζ8 in FpVq. But, ζπs,t “ pφπ

t,sq
´1, which yields to ζπs,t ˝φπ

t,s “ i

and passing to limit ζ8
s,t ˝ ψt,s “ i. This concludes the proof.

7 Generalized solution to rough differential equations

Almost flows approximate of flows, similarly to numerical algorithms. In classical
analysis, flows are strongly related to solutions of ordinary differential equations
(ODE). Rough differential equations (RDE) were solved first using fixed point
theorems on paths [31]. The technical difficulty with this approach is that the
solution itself should be a rough path.

Later, A.M. Davie introduced in [15] another notion of solution of RDE which no
longer involves solutions as rough paths, but only as paths. We abstract here this
approach in order to relate almost flows and paths.
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Definition 11 (Generalized solution in the sense of Davie). Let φ be an almost
flow. Let a P V and r P T. A V-valued path tyrñtupr,tqPT2 is said to be a solution in
the sense of Davie of dy “ φ dtpyq with the initial condition a at time r if yrñr “ a

and there exists a constant C such that

|yrñt ´ φt,spyrñsq| ď C̟pωs,tq, @r ď s ď t ď T. (39)

Definition 12 (Manifold of solutions). A family tyrñ¨paqurPT, aPV of solutions
satisfying (39) and yrñrpaq “ a is called a manifold of solutions. We write dy “
φ dtpyq to denote the whole family of solutions.

Definition 13 (Lipschitz manifold of solutions). If a ÞÑ yrñ¨paq is uniformly Lips-
chitz continuous from pV, dq to pCprr, T s,Vq, }¨}8q, then we say that the manifold
of solutions is Lipschitz.

Remark 5. When φt,s “ i`χt,s, then (39) may be written |ys,t´χt,spysq| ď C̟pωs,tq
with ys,t :“ yrñt ´ yrñs. for pr, s, tq P T

`
2 This is the form used by A.M. Davie

in [15].

Flows and manifold of solutions are closely related. Besides, a manifold of solutions
is in relation with a whole galaxy. The proof of the next lemma is immediate so
we skip it.

Lemma 5. A flow ψ generates a manifold of solutions to dy “ ψdtpyq through
yrñtpaq :“ ψt,rpaq, pr, tq P T

`
2 , a P V. Besides, y is also solution to dy “ φ dtpyq

for any almost flow φ in the galaxy containing ψ.

7.1 Existence of a flow from a family of solutions

First, we show how to construct a flow from a suitable family of paths.

Proposition 11. Consider an almost flow φ and T small enough. Assume that
there exists a family ty0ñtpaqutPT,aPV of V-valued paths, continuous in time and
Lipschitz continuous in space such that such that

y0ñ0 “ i, }y0ñt ´ φt,spy0ñsq}8 ď C̟pωs,tq, @ps, tq P T
2
`,

sup
tPT

t}y0ñt ´ i}Lip ` }y0ñt ´ i}8u ď KT where KT ÝÝÝÑ
TÑ0

0.

Then ty0ñtpaqutPT,aPV is a family of Lipschitz diffeomorphisms on V

Moreover, with ψt,spaq :“y0ñt˝y
´1
0ñspaq for ps, tq P T

2 and a P V, tψt,spaqups,tqPT2,aPV

is also a family of Lipschitz diffeomorphisms and defines a flow in the same galaxy
as φ.
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Proof. The Lipschitz inverse mapping shows that y0ñt is invertible with a Lipschitz
continuous inverse y´1

0ñt when KT ă 1 ([1] p. 124).

Assuming that T is small enough, ψt,spaq :“ y0ñt ˝ y´1
0ñspaq for any ps, tq P T

2 and
a P V defines an invertible flow.

Besides, for any ps, tq P T
2
`, ψs,t is Lipschitz continuous since both y0ñt and y´1

0ñs

are Lipschitz continuous.

It remains to prove that φ „ ψ. For a P V, let us set b :“ y´1
0ñspaq. Thus,

|ψt,spaq ´ φt,spaq| “ |ψt,spy0ñspbqq ´ φt,spy0ñspbqq|

ď |φt,spy0ñspbqq ´ y0ñtpbq| ď C̟pωs,tq.

Thus, ψ „ φ.

7.2 Uniqueness and continuity of a solution in the sense of Davie

A stable almost flow φ satisfies the condition UL (see Theorem 2), so that there
exists a unique flow ψ in the same galaxy as φ. Furthermore, ψ is Lipschitz.

The flow ψ generates a manifold of solutions. We show that there exists only
one such manifold with a Lipschitz continuity result. Note that in the following
proposition, ζ is not assumed to be stable.

Proposition 12. Let φ be a stable almost flow and ζ be an almost flow.

Let y and z be two paths from r0, T s to V such that

|yt ´ φt,spysq| ď K̟pωs,tq and |zt ´ ζt,spzsq| ď K̟pωs,tq, @ps, tq P T
2
`.

Let us write αt,s :“ ζt,s ´φt,s and αt,s,r :“ ζt,s,r ´φt,s,r. Let ǫ1, ǫ2, ǫ3 ą 0 be such that
for any pr, s, tq P T

3
`,

|αt,s,rpzrq| ď ǫ1̟pωr,tq, }αs,t}Lip ď ǫ2 and |αs,tpzsq| ď ǫ3.

Then there exists a time T small enough and a constant C that depends only on φ,
K, T ÞÑ δT , κ and suppr,s,tqPT3}φt,s,r}Lip{̟pωr,tq such that

|yt ´ zt| ď Cpǫ1 ` ǫ2 ` ǫ3 ` |y0 ´ z0|q

and |yt ´ φt,spysq ´ zt ` ζt,spzsq| ď Cpǫ1 ` ǫ2 ` ǫ3 ` |y0 ´ z0|q̟pωs,tq

for all ps, tq P T
2.

Corollary 3 below is immediate by applying φ “ ζ to Proposition 12. Its proof
relies of the continuous time version of Lemma 4 which we now state.

24



Lemma 6 (Continuous time version of Lemma 4). Let us consider a family U :“
tUs,tus,tP,T2 with values in R` satisfying for any pr, s, tq P T

3,

Ur,s ď E̟pωr,sq, (40)

Ur,t ď p1 ` αT qUr,s ` p1 ` αT qUs,t ` B̟pωr,tq,

for some constants E ě 1, B ě 0 and αT ě 0 that decreases to 0 as T Ñ 0. Then
for any T such that κp1 ` αT q ă 1,

Ur,t ď A̟pωr,tq, @pr, tq P T
2,

with A :“ B
p2 ` αT q

1 ´ pκp1 ` αT q2 ` δT q
. (41)

In particular, the choice of A in (41) does not depend on the bound E in (40).

Proof. The proof is similar as the one of Lemma 7 in [7] from Eq. (31).

Corollary 3. If φ is a stable almost flow, there exists one and only one manifold
of solutions to dy “ φ dtpyq. Besides, this manifold of solutions is Lipschitz.

Remark 6. As seen in Lemma 5, the notion of manifold of solution is associated
to a galaxy. Hence, a galaxy with a stable almost flow is associated to a unique
manifold of solutions (actually, we have not proved that if φ is a stable almost flow,
then the associated flow is also stable).

Proof of Proposition 12. We define

Vs,t “ |zt ´ ζt,spzsq ´ yt ` φt,spysq|, @ps, tq P T
2.

Clearly, Vs,t ď 2K̟pωs,tq.

For any pr, s, tq P T
3,

zt ´ ζt,rpzrq ´ yt ` φt,rpyrq

“ zt ´ ζt,spzsq ´ yt ` φt,spysq ` ζt,spzsq ´ ζt,spζs,rpzrqq

´ φt,spysq ` φt,spφs,rpyrqq ` ζt,s,rpzrq ´ φt,s,rpyrq

“ zt ´ ζt,spzsq ´ yt ` φt,spysq ` αt,spzsq ´ αt,spζs,rpzrqq

` φt,spzsq ´ φt,spζs,rpzrqq ´ φt,spysq ` φt,spφs,rpyrqq

` αt,s,rpzrq ` φt,s,rpzrq ´ φt,s,rpyrq.
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Set L :“ suppr,s,tqPT3}φt,s,r}Lip. With the 4-points control of φs,t,

Vt,r ď Vt,s ` φ
:
t,sVr,t ` L|zr ´ yr|̟pωr,tq

` pφt,sp|zs ´ ζs,rpzrq| _ |ys ´ φs,rpyrq|q ¨ p|zs ´ ys| _ |ζs,rpzrq ´ φs,rpyrq|q

` |αt,s,rpzrq| ` }αt,s}Lip|zs ´ ζs,rpzrq|.

Since φ:
t,s ď 1 ` δT and }φt,s}Lip ď 1 ` δT ,

Vt,r ď Vt,s ` p1 ` δT qVr,t ` L}z ´ y}8̟pωr,tq

` pφt,spK̟pωs,rqq
`
p1 ` δT q}z ´ y}8 ` ǫ3q ` pǫ1 ` ǫ2Kq̟pωr,tq.

Since pφt,s is ̟-compatible (see Defintion 6), pφt,spK̟pωr,sqq ď ΦpKq̟pωr,tq so that

Vr,t ď Vs,t ` p1 ` δT qVr,t ` B̟pωr,tq (42)

with B :“ pL ` p1 ` δT qΦpKqq}y ´ z}8 ` ǫ1 ` ǫ2K ` ǫ3ΦpKqq. (43)

Owing to (42)-(43), from Lemma 6, for T small enough (depending only on κ and
T ÞÑ δT ), for all pr, tq P T

2,

Vr,t ď BC̟pωr,tq with C :“
2 ` δT

1 ´ pκp1 ` δT q2 ` δT q
.

For any t P r0, T s, since }φt,0}Lip ď 1 ` δT ,

|yt ´ zt| ď |yt ´ zt ´ φt,0py0q ` ζt,0pz0q| ` |φt,0pz0q ´ ζt,0pz0q| ` |φt,0pz0q ´ φt,0py0q|

ď V0,t ` ǫ3 ` p1 ` δT q|y0 ´ z0|.

With the expression of B in (43), for any t P r0, T s, we see that there exists
constants A and A1 that depend only on κ, L, δT , K and ΦpKq such that

|yt ´ zt| ď A}y ´ z}8̟pω0,T q ` A1pǫ1 ` ǫ2 ` ǫ3q̟pω0,T q ` ǫ3 ` p1 ` δT q|y0 ´ z0|.

Choosing T small enough so that A̟pω0,T q ď 1{2 implies that

}y ´ z}8 ď 2A1pǫ1 ` ǫ2 ` ǫ3q̟pω0,T q ` 2ǫ3 ` 2p1 ` δT q|y0 ´ z0|.

This concludes the proof.
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8 Application to Rough differential equation

In this section, we show how our framework allows us to link the different flow based
approaches. The key is to show that Friz-Victoir’s and Bailleul’s almost flows are
different perturbations of the Davie’s almost flow. Friz-Victoir’s approach is lim-
ited to geometric rough paths of regularity 2 ď p ă 3 in finite dimensional spaces
(see however [21] for a recent extension to infinite dimensional space). Bailleul’s
one work even in an infinite dimensional Banach space, while being restricted a
priori to geometric rough paths. For rough paths of regularity 2 ď p ă 3, Davie’s
approach can be used for geometric rough paths as well as non-geometric ones. To
deal with non-geometric rough paths with Friz-Victoir’s and Bailleul’s approaches,
one may use the results of [29] for a regularity p P p2, 3s and [25] for p ě 3. As
shown in [3, 28], using formal logarithhms could be applied in broader structures
than tensor algebras, such as algebras of root trees. This also allows to consider
non-geometric rough paths.

We did not recall notions of rough path theory. The reader can find a clear intro-
duction in [19, 20, 27, 32]. We start by giving some notations.

In this section, the remainder introduced in Section 2.1 is of the type

̟pτq :“ τ p2`γq{p, @τ ą 0,

with γ P p0, 1s and a real number p ą 0 satisfying 2 ` γ ą p.

8.1 Rough path notations

Before showing the link between the different based flow approaches, we set nota-
tions of classical objects of rough path theory.

Given another Banach space pU, |¨|q and a real number p ě 1, let us denote by
Cp´ωpT,Uq the space of 1{p-Hölder paths controlled by ω, which we equip we the
semi-norm

}x}p :“ sup
ps,tqPT2

`
,s‰t

|xs,t|

ω
1{p
s,t

,

this quantity being bounded by definition.

We define also Cp´varprs, ts,Uq the space of bounded p-variation paths from rs, ts
to U which we equip with the p-variation semi-norm on rs, ts denoted by }x}rs,ts,p.

Moreover, if x P Cp´ωpr0, T s,Uq, then x P Cp´varprs, ts,Uq and

}x}rs,ts,p ď }x}pω
1{p
s,t .
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We denote by t¨u the floor function.

For an integer N ě tpu, let Tp,NpUq be the space of 1{p-Hölder rough path con-
trolled by ω of order N . If x P Tp,NpUq we denote by x

pkq the component of x in
Ubk with 0 ď k ď N an integer and Sjpxq :“

řk

j“0
x

pjq. Obviously, x “ SNpxq.
We denote the homogeneous semi-norm

}x}p :“ sup
kďN

sup
rs,tsPT2,s‰t

|x
pkq
s,t |

ω
k{p
s,t

,

which is finite by definition. Moreover we set T
ppUq :“ T

p,tpupUq.

For N ě 0, we denote GNpUq the free nilpotent group (Chapter 7 in [20]).

Let GppUq :“ Cp´ωpr0, T s, GtpupUqq be the set of weak-geometric rough paths of
finite 1{p-Hölder rough path controlled by ω with values in U.

When U “ R
ℓ (ℓ ě 0 an integer). For any multi-indice I :“pi1, . . . , ikq P t1, . . . , ℓuk

we set |I| :“ k and eI :“ ei1 b ¨ ¨ ¨ b eik where te1, . . . , eℓu is the canonical basis of
R

ℓ. If x P TppRℓq. If x P TppRℓq, then x
I denote the coordinates of xpkq in the

basis peIq|I|“k. It follows that Skpxq “
ř

|I|ďk x
IeI . If x P C1´varpT,Rlq then for

any integer N ě 0,

SNpxq “
ÿ

|I|ďN

xIeI ,

where xIs,t :“
ş
sďtkď¨¨¨ďt1ďt

dxiktk . . . dx
i1
t1

.

8.2 Davie’s approach

Let us consider now a p-rough path x P TppUq with 2 ď p ă 3 for a Banach
space U. A Rough Differential Equation (RDE) is a solution y taking its values in
another Banach space V to

yt “ a`

ż t

s

fpyuq dxu, @ps, tq P T
2
`, (44)

provided that f : V Ñ LpU,Vq is regular enough.

Existence of solution to (44) was proved first by T. Lyons using a Picard fixed
point theorem [31]. In [15], A.M. Davie provided an alternative approach based
on Euler-type schemes. Over the approach of T. Lyons, it has the advantage that
the solution is thought of as a path with values in V and not in the tensor space
T2pU ‘ Vq.
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For f P C
1
b pV, LpU,Vqq, we define

φt,spaq “ a` fpaqx
p1q
s,t ` dfpaq ¨ fpaqx

p2q
s,t , (45)

where dfpaq is the differential of f in a. Definition 11 coincides with the one
defined by A. M. Davie in [15] for the notion of solution to (44).

The following lemma is a generalization in an infinite dimensional setting of The-
orems 3.2 and 3.3 in [15] with a bounded function f .

Lemma 7. Let p P r2, 3q and γ ą p ´ 2.
(i) If f P C

1`γ
b pV, LpU,Vqq, then the family φ defined by (45) is an almost flow.

(ii) If f is of class C
2`γ
b pV, LpU,Vqq, then φ is a stable almost flow.

Proof. According to Proposition 5 in [7], φ is an almost flow as soon as f P
C

1`γ
b pV, LpU,Vqq with 2 ` γ ą p.

We now assume that f P C
2`γ
b pV, LpU,Vqq. We show that φ verifies a̟-compatible

4-points control (see Definition 6). For any a, b, c, d P V, ps, tq P T
2, we compute

φt,spaq ´φt,spbq ´φt,spcq `φt,spdq “ a´ b´ c`d` rfpaq ´ fpbq ´ fpcq ` fpdqsx
p1q
s,tlooooooooooooooooooomooooooooooooooooooon

I1
s,t

` r df ¨ fpaq ´ df ¨ fpbq ´ df ¨ fpcq ` df ¨ fpdqsx
p2q
s,tloooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

II1
s,t

. (46)

Then, we apply Lemma 1 to f P C2
b pV, LpU,Vqq and to df ¨f P C

1`γ
b pV, LpUb2,Vqq

to obtain

|I1
s,t| ď }xp1q}pω

1{p
s,t 4} d2f}8p|a´ c| _ |b´ d|q2|a ´ b|

` }xp1q}pω
1{p
0,T } df}8|a ´ b´ c` d|, (47)

and

|II1
s,t| ď }xp2q} p

2

ω
2{p
s,t

«
2} dp df ¨ fq}γ p|a ´ c| _ |b ´ d|qγ |a ´ b|

` } dp df ¨ fq}8|a ´ b´ c` d|

ff
. (48)

Combining (46), (47) and (48) we set for all y P R`, xφt,spyq :“ c1
1

”
ω
1{p
s,t y

2 ` ω
2{p
s,t y

γ
ı

where c1
1 :“ }xp1q}p4} d2f}8 ` }xp2q} p

2

2} dp df ¨ fq}γ and

φt,s
: :“ 1 ` }xp1q}pω

1{p
0,T ` } dp df ¨ fq}8}xp2q} p

2

ω
2{p
0,T .
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It follows that φt,s
: ď 1 ` δT and that φt,s is ̟-compatible. Indeed, for α P R`,

xφt,s

´
αω

p2`γq{p
s,t

¯
ď c1

1pα2 _ αγq
´
ω

p5`2γq{p
s,t ` ω

p2`2γ`γ2q{p
s,t

¯

ď c1
1pα

2 _ αγq
´
ω

p3`γq{p
0,T ` ω

pγ`γ2q{p
0,T

¯
ω

p2`γq{p
s,t ď δT̟pωs,tq.

It remains to show that (13) holds. As φt,s P C
1`γ
b pV,Vq, thus the two semi-norms

}φt,s}Lip and } dφt,s}8 are equivalent. We recall that φt,s,r “ φt,s ˝ φs,r ´ φt,r. For
any a P V and pr, s, tq P T

3
`,

dφt,s,rpaq “p dφs,rpaq df ˝ φs,rpaq ´ dfpaqqx
p1q
s,t ´ dp df ¨ fqpaqpx

p2q
s,t ´ x

p1q
r,s b x

p1q
s,t q

` dφs,rpaq dp df ¨ fq ˝ φs,rpaqx
p2q
s,t

“
`
´ dfpaq ` dφs,rpaq df ˝ φs,rpaq ´ dp df ¨ fqpaqx1

r,s

˘
x

p1q
s,tloooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

I2
r,s,t

´ p dp df ¨ fqpaq ´ dφs,rpaq dp df ¨ fq ˝ φs,rpaqqx2
s,tlooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

II2
r,s,t

. (49)

Each term is estimated separately. For the first one,

|I2
r,s,t| ď| df ˝ φs,rpaq ´ dfpaq ´ d2fpaqpφs,rpaq ´ aq||x

p1q
s,t |

` | dfpaq dfpaqxp2q
r,sx

1
s,t| ` | dp df ¨ fqpaq df ˝ φs,rpaqxp2q

r,sx
p1q
s,t |

` | dfpaqr df ˝ φs,rpaq ´ dfpaqsx1
r,s b x

1
s,t

ď} d2f}γ|φs,rpaq ´ a|1`γ |x
p1q
s,t | ` p} df}28 ` } dp df ¨ fq df}8q|xp2q

r,s ||x
p1q
s,t |

` } df}8} d2f}8|φs,rpaq ´ a||x1
r,s||x

1
s,t|

ďc2
1pω

p2`γq{p
r,t ` 2ω

3{p
r,t q ď c2

1p1 ` 2ω
p1´γq{p
0,T qω

p2`γq{p
r,t , (50)

where c2
1 is a constant which depends on f , x, γ.

The second one is more simple,

|II2
r,s,t| ď| dp df ¨ fq ˝ φs,rpaq ´ dp df ¨ fqpaq||x

p2q
s,t | ` | dφs,rpaq ´ 1| dp df ¨ fq ˝ φs,rpaqx2

s,t

ď} dp df ¨ fq}8|φs,rpaq ´ a|γ |x
p2q
s,t | ` } dp df ¨ fq}8| dφs,rpaq ´ 1||x

p2q
s,t |

ďc2
2pω

p2`γq{p
r,t ` ω

3{p
r,t q ď c2

2p1 ` ω
p1´γq{p
0,T qω

p2`γq{p
r,t . (51)

Finally, combining (49), (50) and (51), } dφt,s,r}8 ď pc2
1 ` c2

2qp1 ` ω
p1´γq{p
0,T q̟pωr,tq

with ̟pωr,tq “ ω
p2`γq{p
r,t . This proves (13) and that φ is a stable almost flow.

Combining Lemma 7, Proposition 2, Corollaries 1 and 3 leads to the following
result.
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Corollary 4. If f is of class C
2`γ
b pV, LpU,Vqq, then φπ converges to a unique

Lipschitz flow ψ. Moreover, if χ is an almost flow in a galaxy containing φ, then,
χπ converges to ψ. Besides, there exists a unique manifold of solutions to dy “
φ dtpyq which is Lipschitz.

8.3 Almost flows constructed from sub-Riemannian geodesics, as in

P. Friz and N. Victoir

In [18, 20], P. Friz and N. Victoir proposed an approach based on the use of
geodesics. The following proposition is one of the fundamental result of their
framework.

Now, we assume that U “ R
ℓ.

Proposition 13 (Remark 10.10, [20, p. 216]). Let p ě 1 a real number and an
integer N ě tpu. For any x P Cp´ωpr0, T s, GNpRℓqq and any ps, tq P T

2, there exists
a path xs,t P C1´varpRℓq defined on rs, ts such that

SN pxs,tqs,t “ xs,t and }xs,t}rs,ts,1 ď K}x}pω
1{p
s,t ď K 1}Stpupxq}pω

1{p
s,t .

for some universal constant K (resp. K 1) that depends only on p (p and N). We
say that xs,t is a geodesic path associated to x.

Remark 7. If x P C1´varprs, ts,Rℓq, then }x}rs,ts,1 “
şt
s
| dxr|.

For notational convenience, we prefer now to express differential equations with
respect to vector fields, that is a family of functions

ÝÑ
f :“ p

ÝÑ
f1, . . . ,

ÝÑ
f ℓq that acts

on C1
bpV, LpU,Vqq. Therefore for x P C1´varpR`,R

ℓq, the equation zt “ a `şt
0

ÝÑ
f ipzsq dxs is equivalent to yt “ a `

şt
0
fpzsq dxs with f “

ÝÑ
f i. For a multi-

indice I :“ pi1, . . . , ikq P t1, . . . , ℓuk and ps, tq P T we denote
ÝÑ
fI :“

ÝÑ
f i1 . . .

ÝÑ
f in . By

convention,
ÝÑ
fHi :“ i.

Let us fix n ě 2 in
ÝÑ
f i P C

λ´1
b for λ ě n. Let x be a rough path with values in

TnpUq and V be a vector field such that
ÝÑ
f i P C

n´1
b . Let us define

φ
pnq
t,s rx,

ÝÑ
fspaq :“

nÿ

k“0

ÿ

|I|“k

ÝÑ
fI ipaqxI

s,t, @ps, tq P T
2
`. (52)

The next proposition summarizes various results on RDEs (Theorem 10.26 in [20,
p. 233], Theorem 10.30 in [20, p. 238]). When

ÝÑ
f i P C

1`γ
b but no in C

2`γ
b with

2 ` γ ą p, several solutions to the RDE (44) may exist (See Example 2 in [15]).
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Theorem 3. Assume that U and V are finite dimensional Banach spaces. Choose
λ ą 2 as well as an integer n with 2 ď n ď tλu. Let x be a p-rough paths with
values in TnpVq. Let us assume that

ÝÑ
f i P Cλ´1 for a vector field

ÝÑ
f : V Ñ LpU,Vq.

It holds that
(i) When λ ą p, there exists a flow ψrx,

ÝÑ
fs in the same galaxy as φpnqrx,

ÝÑ
fs,

(ii) When 1`λ ą p, then there exists a unique flow as well as a unique Lipschitz

manifold of solutions to dy “ φ
pnq
dt pyq (φpnq is defined in (52)).

In addition, for any partition π “ ttiu
k
i“0,

|ψt,srx,
ÝÑ
fspaq ´ φpnqπ

t,srx,
ÝÑ
fs| ď C}x}p sup

i“0,...,k´1

ω
n`γ
p

´1

ti,ti`1
, (53)

with γ :“ mintλ ´ n, 1u and a constant C that depends on ω0,T , }x}p and
ÝÑ
f .

From the next lemma, we obtain that if
ÝÑ
fi P Cλ

b with λ ą p, then there exists a

unique flow associated to φpnqrx,
ÝÑ
fs.

Lemma 8. For any n ě 2, φpnqrx,
ÝÑ
fs belongs to the same galaxy as φp2qrx,

ÝÑ
fs,

with the Davie expansion given by (45) with f “
ÝÑ
f i.

Proof. Let us write for n ě 2,

R
pnq
s,t rx,

ÝÑ
fs :“ φ

pnq
s,t rx,

ÝÑ
fs ´ φ

p2q
s,t rx,

ÝÑ
fs “

nÿ

k“3

ÿ

|I|ďk

ÝÑ
fI ipaqxI

s,t, @ps, tq P T
2
`.

Clearly, Rpnqrx,
ÝÑ
fs is a perturbation with ̟pτq “ τ 3{p. Moreover, as

ÝÑ
f i P C

λ´1
b ,

ÝÑ
fI i P C

λ´k
b for any word I with |I| “ k so that when λ ´ n ě 1, Rpnqrx,

ÝÑ
fs is a

Lipschitz perturbation (Definition 5).

This is however not sufficient to obtain the rate in (53).

For a path x P C1´var, we denote for a P V by ψ¨,srx,
ÝÑ
fspaq the unique solution to

ψt,srx,
ÝÑ
fspaq “ a`

ż t

s

ÝÑ
f ipψr,srx,

ÝÑ
fspaqq dxr, t ě s. (54)

The family ψrx,
ÝÑ
fs satisfies the flow property.

We set for any ps, tq P T
2
`,

φ
pnq
t,s rx,

ÝÑ
fspaq :“ φ

pnq
t,s rSnpxq,

ÝÑ
fspaq,

ǫ
pnq
t,s rx,

ÝÑ
fspaq “

ÿ

|I|“n

ż

sďtk´1ď¨¨¨ďt1ďt

´
ÝÑ
fI ipψtk ,srx,

ÝÑ
fspaqq ´

ÝÑ
fI ipaq

¯
dxItk ,
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where dxItk “ dx
ik
tk
. . . dxi1t1 . Using iteratively the Newton formula on (54),

ψt,srx,
ÝÑ
fspaq “ φ

pnq
t,s rx,

ÝÑ
fspaq ` ǫ

pnq
t,s rx,

ÝÑ
fspaq.

We denote by }f}γ the γ-Hölder semi-norm of a function f . For γ “ 1, this is the

Lipschitz semi-norm. Thus, γ :“ mintλ ´ n, 1u is the Hölder indice of
ÝÑ
fI i with

|I| “ n.

From Proposition 10.3 in [20, p. 213], for a constant C that depends on λ and on

}
ÝÑ
f}˚ :“ max

|I|ďn
}
ÝÑ
fI i}8 ` max

|I|ďn´1
}
ÝÑ
fI i}Lip ` max

|I|“n
}
ÝÑ
fI i}γ,

it holds that
|ǫ

pnq
t,s rx,

ÝÑ
fspaq| ď C}x}n`γ

rs,ts,1. (55)

Lemma 9. Let x be a path of finite 1-variation with }x}rs,ts,1 ď Aωs,t for any
ps, tq P T

2
`. Let xs,t be the geodesic path given by Proposition 13. Assume that

there exists a constant K such that }xs,t}rs,ts,1 ď Kω
1{p
s,t . Then there exists a time

T ą 0 small enough and a constant D that depend only on ω, K and }
ÝÑ
fi}‹ such

that

}ψt,srx
s,t,

ÝÑ
fs ´ ψt,srx,

ÝÑ
fs}8 ď Dω

n`γ

p

s,t , @ps, tq P T
2
`.

In particular, the choice of T and D does not depend on A.

Proof. Let us assume that }x}rs,ts,1 ď Aωs,t and }xs,t}rs,ts,1 ď Kω
1{p
s,t .

Let xr,s,t be the concatenation of xr,s and xs,t. Then

ψt,rrx,
ÝÑ
fspaq ´ ψt,rrx

r,t,
ÝÑ
fspaq “ ψt,srx,

ÝÑ
fspψs,rrx,

ÝÑ
fspaqq ´ ψt,rrx

r,s,t,
ÝÑ
fspaqloooooooooooooooooooooooooomoooooooooooooooooooooooooon

Ir,s,t

`ψt,rrx
r,s,t,

ÝÑ
fspaq ´ ψt,rrx

r,t,
ÝÑ
fspaqlooooooooooooooooooooomooooooooooooooooooooon

IIr,s,t

.

Since xr,s,t is the concatenation between two paths,

ψt,rrx
r,s,t,

ÝÑ
fspaq “ ψt,srx

s,t,
ÝÑ
fspψs,rrx

r,s,
ÝÑ
fspaqq.

Thus,

|Ir,s,t| ď |ψt,srx,
ÝÑ
fspψs,rrx,

ÝÑ
fspaqq ´ ψt,srx

s,t,
ÝÑ
fspψs,rrx,

ÝÑ
fspaqq|

` |ψt,srx
s,t,

ÝÑ
fspψs,rrx,

ÝÑ
fspaqq ´ ψt,srx

s,t,
ÝÑ
fspψs,rrx

r,s,
ÝÑ
fspaqq|.
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Writing Ur,t :“ }ψt,rrx,
ÝÑ
fs ´ ψt,rrx

r,t,
ÝÑ
fs}8, it holds that

|Is,r,t| ď Ut,s ` }ψt,srx
s,t,

ÝÑ
fs}LipUr,s.

From (54), we derive that for t ě s,

}ψt,srx
s,t,

ÝÑ
fs}Lip ď 1 ` }

ÝÑ
f i}Lip

ż t

s

}ψr,srx
s,t,

ÝÑ
fs}Lip| dxs,tr |

ď 1 ` }
ÝÑ
f i}Lip

ż t

s

}ψr,srx
s,t,

ÝÑ
fs}Lip| 9xs,tr | dr, (56)

where the derivative 9xs,t is almost everywhere defined because xs,t P C1´varpRℓq.

Then, using the Grönwall’s inequality with (56) and Proposition 13, there is con-
stant C that depends only on K (defined in Proposition 13), }x}p and }

ÝÑ
f i}Lip such

that
}ψt,srx

s,t,
ÝÑ
fs}Lip ď exppCω

1{p
0,T q.

Besides,

Snpxr,s,tqr,t “ Snpxr,sqr,s b Snpxs,tqs,t “ xr,s b xs,t “ xr,t “ Snpxr,tqr,t.

It follows that φpnqrxr,s,t,
ÝÑ
fs “ φpnqrxr,t,

ÝÑ
fs. Thus,

|IIr,s,t| “ |ǫ
pnq
t,r rxr,s,t,

ÝÑ
fspaq ´ ǫ

pnq
t,r rxr,t,

ÝÑ
fspaq|

ď }ǫ
pnq
t,r rxr,s,t,

ÝÑ
fs}8 ` }ǫ

pnq
t,r rxr,t,

ÝÑ
fs}8 ď C 1ω

n`γ
p

s,t ,

where C 1 ě 0 is a new constant and using (55) and Proposition 13 for the last
estimate.

Thus,

Ur,t ď Us,t ` exppCω
1{p
0,T qUr,s ` C 1ω

n`γ

p

s,t .

On the other hand, when ωs,t ď 1,

Us,t “ }ψt,srx,
ÝÑ
fs ´ ψt,srx

s,t,
ÝÑ
fs}8

ď }ψt,srx,
ÝÑ
fs ´ φ

pnq
t,s rx,

ÝÑ
fs}8 ` }ψt,srx

s,t,
ÝÑ
fs ´ φ

pnq
t,s rxs,t,

ÝÑ
fs}8

ď C2 maxtAn`γω
n`γ
s,t , K

n`γ

p ω
n`γ

p

s,t u

ď Bω
n`γ
p

s,t with B :“ C2 maxtAn`γ , K
n`γ

p u.

From Lemma 6, there exists a constant D that does not depend on B (hence on

A) such that Us,t ď Dω
n`γ

p

s,t .
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Lemma 10. Let x P C
1´var be as in Lemma 10. Then

}ǫ
pnq
t,s rx,

ÝÑ
fs}8 “ }ψt,srx,

ÝÑ
fs ´ φ

pnq
t,s rx,

ÝÑ
fs}8 ď Eω

n`γ

p

s,t ,

where E depends only on ω, T , and K.

Proof. Since φ
pnq
t,s rx,

ÝÑ
fs “ φ

pnq
t,s rxs,t,

ÝÑ
fs,

ǫ
pnq
t,s rx,

ÝÑ
fs :“ ψt,srx,

ÝÑ
fs ´ φ

pnq
t,s rx,

ÝÑ
fs “ ψt,srx,

ÝÑ
fs ´ ψ

pnq
t,s rx,

ÝÑ
fs ` ǫ

pnq
t,s rx,

ÝÑ
fs.

The results is then an immediate consequence of (55) and Lemma 9.

Proof of Theorem 3. We recall that we assume that U and V are finite dimensional
Banach spaces. For any pa, bq P V, any ps, tq P T

2
`,

|φ
pnq
t,s rx,

ÝÑ
fspaq ´ φ

pnq
t,s rx,

ÝÑ
fspbq|

ď
n´1ÿ

k“0

ÿ

|I|“k

}
ÝÑ
fI i}Lip|xIs,t| ¨ |a´ b| `

ÿ

|I|“n

}
ÝÑ
fI i}γ ¨ |xIs,t||a´ b|γ

ď
n´1ÿ

k“0

}
ÝÑ
fki}Lip}x}krs,ts,1 ¨ |a´ b| ` }

ÝÑ
fni}γ}x}nrs,ts,1|a´ b|γ .

It then follows from Proposition 7 that φpnqrx,
ÝÑ
fs is an almost flow with

›››φpnq
t,s rx,

ÝÑ
fspφpnq

s,r rx,
ÝÑ
fspaqq ´ φ

pnq
t,r rx,

ÝÑ
fspaq

›››
8

ď Lω
n`γ

p

s,t , @pr, s, tq P T
3
`,

for a constant L that depends only on }x}rs,ts,1 and of }
ÝÑ
f}˚.

Let pxmqmPN be a sequence of bounded variation paths such that Snpxmq ÝÝÝÑ
mÑ8

x

uniformly on r0, T s and such that supmPN}Snpxmq}p ď c}x}p for a uniform constant
c in m. Such a sequence exists according to Remark 10.32 in [20]. It consists in
concatenating the geodesic approximations given by Proposition 13. From this,
|Snpxmqs,t| ď Kω

1{p
s,t with K “ c}x}p.

Clearly, φ
pnq
t,s rxm,

ÝÑ
fspaq converges to φ

pnq
t,s rx,

ÝÑ
fs for any ps, tq P T

2
` and any a P V.

The result follows from Corollary 2 and Lemma 10.

8.4 Bailleul’s approach

The approach from I. Bailleul is the most general one. As it relies on using sub-
Riemaniann geodesics, Friz-Victoir’s approach is limited to finite dimension, al-
though it has recently been extedend for some parts on infinite dimensional set-
ting [21]. The approach from A.M. Davie cannot be extended to manifolds because
it involves second-order derivatives. The use of log-signature allows one to work
on the tangent space, hence Bailleul’s approach can be used on Banach manifolds.
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8.4.1 Classical control of ODE solutions

For a P V, the solution to the ordinary differential equation

ytpaq “ a `

ż t

0

ÝÑ
f ipyspaqq ds

is a path from r0, T s to V such that

φpytpaqq “ φpaq `

ż t

0

ÝÑ
fφpyspaqq ds (57)

for any φ P C
1pV,Vq. Assuming enough regularity on both φ and

ÝÑ
f , we iterate (57)

so that

φpytpaqq “ φpaq ` t
ÝÑ
fφpaq ` ¨ ¨ ¨ `

tk

k!

ÝÑ
f

k
φpaq ` Rp

ÝÑ
f

k
φ, a; tq

with
ÝÑ
f

0
φ “ φ,

ÝÑ
f

k`1
φ “

ÝÑ
fp

ÝÑ
f

k
φq, k “ 0, 1, . . . and

Rkpψ, a; tq “

ż t

0

ż t1

0

¨ ¨ ¨

ż tk´1

0

`
ψpytkpaqq ´ ψpaq

˘
dtk ¨ ¨ ¨ dt1.

for a function ψ : V Ñ V.

Lemma 11. If
ÝÑ
fi is uniformly Lipschitz, then for any a P V and any t ě 0.

|ytpaq ´ a| ď t|
ÝÑ
f ipaq| expp}

ÝÑ
f i}Liptq. (58)

Moreover, if
ÝÑ
f i satisfies a 4-points control, then for any a, b P V and any t ě 0,

∆tpa, bq :“ |yspaq ´ a´ yspbq ` b|

ď t
xÝÑ
fipαtpa, bqq exp

ˆ
p
xÝÑ
f ipαtpa, bqq ` p

ÝÑ
f iq

:
qt

˙
|a ´ b| (59)

with

αtpa, bq :“ sup
sPr0,ts

|yspaq ´ a| _ |yspbq ´ b| ď t
`
p|

ÝÑ
fipaq| _ |

ÝÑ
fipbq|q expp}

ÝÑ
f i}Liptq

˘
. (60)

In particular, if
ÝÑ
fi satisfies a 4-points control and is bounded, then a ÞÑ ypaq is

Lipschitz from V to pCpr0, T s,Vq, }¨}8q.
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Proof. Let us write v :“
ÝÑ
f i P C

1pV,Vq. Since

ytpaq ´ a “

ż t

0

pvpyspaqq ´ vpaqq ds ` tvpaq, for any t ě 0, (61)

an immediate application of the Gronwall lemma gives (58).

Since v satisfies a 4-points control, for a, b P V, with ∆spa, bq:“|yspaq´a´yspbq`b|,

|vpyspaqq ´ vpaq ´ vpyspbqq ` vpbq|

ď pvp|yspaq ´ a| _ |yspbq ´ b|q|yspaq ´ yspbq| _ |a ´ b| ` v:∆spa, bq. (62)

Besides,
|yspaq ´ yspbq| ď |a ´ b| ` ∆spa, bq.

Injecting (62) into (61) shows that

∆tpa, bq ď αtpa, bqtpvpαtpa, bqq|a ´ b| ` ppvpαtpa, bqq ` v:q

ż t

0

∆spa, bq ds

with αtpa, bq given by (60). Again, the Gronwall lemma yields (59).

8.4.2 Bailleul’s approach by truncated logarithmic series

Here U “ R
ℓ for a dimension ℓ ě 1.

Let
ÝÑ
f :“ p

ÝÑ
f1, . . . ,

ÝÑ
f ℓq be a family of vector fields which acts on C1pV,Vq and

x P GppRℓqq be a weak-geometric p-rough path with 2 ď p ă 3. By definition of
the weak geometric rough paths, xi,j ` x

j,i “ x
i
x
j for any i, j P t1, . . . , ℓu. We

denote by r
ÝÑ
f i,

ÝÑ
f js :“

ÝÑ
f i

ÝÑ
f j ´

ÝÑ
f j

ÝÑ
f i, the Lie bracket of vector fields

ÝÑ
f i and

ÝÑ
f j. The

Lie bracket is itself a vector field.

Assuming that
ÝÑ
f is smooth, we define for any ps, tq P T

2, α P T and a P V, the
solution pα, aq ÞÑ ys,tpα, aq of the ODE,

ys,tpα, aq “ a`

ż α

0

ÝÑ
f iipys,tpβ, aqqxi

s,t dβ `
1

2

ż α

0

r
ÝÑ
f i,

ÝÑ
f jsipys,tpβ, aqqxi,j

s,t dβ, (63)

where we omit the summation over all indice i, j P t1, . . . , ℓu. We write

χt,spaq :“ ys,tp1, aq “ φs,t ` ǫt,s, (64)
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where, by iterating (63),

φt,spaq :“ a `
ÝÑ
f iipaqxi

s,t `
1

2

ÝÑ
f i

ÝÑ
f jipaqxi

s,tx
j
s,t `

1

2
r
ÝÑ
f i,

ÝÑ
f jsipaqxi,j

s,t,

ǫt,spaq :“

ż 1

0

ż β

0

ÝÑ
f i

ÝÑ
fjpipys,tpγ, aqq ´ ipaqsxi

s,tx
j
s,t dγ dβ

`
1

2

ż 1

0

ż β

0

r
ÝÑ
f i,

ÝÑ
fjsripys,tpγ, aqq ´ ipaqsxi,j

s,t dγ dβ

`
1

2

ż 1

0

ż β

0

ÝÑ
f ir

ÝÑ
f j ,

ÝÑ
fksipys,tpγ, aqqxi

s,tx
j,k
s,t dγ dβ.

With the weak geometric property of x : x
i,j
s,t ` x

j,i
s,t “ xis,tx

j
s,t, we simplify the

expression of φ such that

φt,spaq “ a`
ÝÑ
f iipaqxi

s,t `
1

2

ÝÑ
f i

ÝÑ
fj ipaq

`
x
i,j
s,t ` x

j,i
s,t

˘
`

1

2
r
ÝÑ
f i,

ÝÑ
f jsipaqxi,j

s,t

“ a`
ÝÑ
f iipaqxi

s,t `
ÝÑ
f i

ÝÑ
f jipaqxi,j

s,t.

So φ corresponds to the Davie’s almost flow defined in (45).

Proposition 14. Assume that
ÝÑ
f i P C

2`γ
b with 2` γ ą p. Then, χ defined by (64)

is an almost flow which generates a Lipschitz manifold of solutions. Moreover χπ

converges to the Davie’s flow ψ of the Corollary 4.

Proof. We proved in Lemma 7 that φ is a stable almost flow. We shall show that ǫt,s
is a perturbation in the sense of Definition 9 and then we use Proposition 5 to
conclude that χ is an almost flow which is in the galaxy of φ. We use Corollary 4
and Remark 6 to conclude the proof.

It is straightforward that ǫt,t “ 0. We start by computing an a priori estimate of
pα, aq ÞÑ ys,tpα, aq, for any ps, tq P T

2, a P V and α P r0, 1s,

|ys,tpα, aq ´ a| ď α}
ÝÑ
f ii}8}xi}pω

1{p
s,t `

α

2
}r

ÝÑ
f i,

ÝÑ
f jsi}8}xi,j} p

2

ω
2{p
s,t

ď
´

}
ÝÑ
f ii}8 ` }r

ÝÑ
f i,

ÝÑ
f jsi}8ω

1{p
0,T

¯
}x}pω

1{p
s,t (65)

ď C8}x}pω
1{p
s,t , (66)

where C8 :“ }
ÝÑ
f ii}8 ` }r

ÝÑ
f i,

ÝÑ
f jsi}8ω

1{p
0,T . With (66), we control the remainder ǫt,s,

}ǫt,s}8 ď
”
}xi}p}x

j}p}
ÝÑ
f i

ÝÑ
f j i}Lip ` }xi,j}2p}r

ÝÑ
f i,

ÝÑ
f jsi}Lip

ı
C8}x}pω

3{p
s,t

` }
ÝÑ
f ir

ÝÑ
f j ,

ÝÑ
fksi}8}xi}p}xj,k}2pω

3{p
s,t ,
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which proves (26).

To show the last estimate (27), we compute for any ps, tq P T
2
` and any a, b P V,

ǫt,spbq ´ ǫt,spaq “

ż 1

0

ż β

0

ÝÑ
f i

ÝÑ
f jpipys,tpγ, bqq ´ ipbq ´ ipys,tpγ, aqq ` ipaqsxi

s,tx
j
s,t dγ dβloooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

I

`
1

2

ż 1

0

ż β

0

r
ÝÑ
f i,

ÝÑ
fjsripys,tpγ, bqq ´ ipbq ´ ipys,tpγ, aqq ` ipaqsxi,j

s,t dγ dβloooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon
II

`
1

2

ż 1

0

ż β

0

ÝÑ
f ir

ÝÑ
fj ,

ÝÑ
fksripyt,spγ, bqq ´ ipyt,spγ, aqqsxi

s,tx
j,k
s,t dγ dβloooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

III

.

We assume that
ÝÑ
f i P C

2`γ
b , so

ÝÑ
f i

ÝÑ
f ji P C

1`γ
b . It follows from Lemma 1 that

ÝÑ
f i

ÝÑ
f j

satisfies a 4-points control such that
zÝÑ
f i

ÝÑ
f jipxq “ C|x|γ where C a positive constant

with depends on the γ-Hölder norm of the derivative of
ÝÑ
f i

ÝÑ
fj . It follows that,

|I| ď C sup
γPr0,1s,aPV

|ys,tpγ, aq ´ a|γ

«
sup

γPr0,1s

|ys,tpγ, bq ´ ys,tpγ, aq| ` |b´ a|

ff
}xp1q}2pω

2{p
s,t

` }
ÝÑ
f i

ÝÑ
f j}Lip sup

γPr0,1s

|ys,tpγ, bq ´ b´ ys,tpγ, aq ` a|}xp1q}2pω
2{p
s,t ,

which yields combining with (59), (60) and (66) to

|I| ď CC
γ
8,T }x}γpω

γ{p
s,t p1 ` CT q|b´ a|}xp1q}2pω

2{p
s,t ` }

ÝÑ
f i

ÝÑ
f j}LipCT |b´ a|}xp1q}2pω

2{p
s,t ,

where CT is a constant which is computed in (59). Finally, |I| ď δT |b ´ a| where
δT is a constant depending on the norms of

ÝÑ
f, x which decreases to 0 when

T Ñ 0. Similarly, we obtain the same estimate for II. To estimate III, we note
that

ÝÑ
f ir

ÝÑ
f j ,

ÝÑ
fksi P C

γ
b . Then with (59) it follows that |III| ď C2

Tω
2{p
s,t |b ´ a|γ ,

where C2
T is another constant which has the same dependencies as C 1

T . Thus

|ǫpbq ´ ǫpaq| ď δ|b´ a| ` C2
Tω

2{p
s,t |b´ a|γ . This concludes the proof.

Remark 8. This result can be extended to the case U is a Banach case. It is an
advantage compared to the Friz-Victoir’s approach of Subsection 8.3.

Acknowledgement. The authors wish to thank Laure Coutin for her careful read-
ing and interesting discussions regarding the content of this article. We also thank
the referees for their suggestions and comments which improved the manuscript.
The first author thanks the Center for Mathematical Modeling, Conicyt fund AFB
170001.

39



References

[1] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and
applications. Second. Vol. 75. Applied Mathematical Sciences. Springer-Verlag,
New York, 1988. doi: 10.1007/978-1-4612-1029-0.

[2] I. Bailleul. “Flows driven by rough paths”. In: Rev. Mat. Iberoamericana 31.3
(2015), pp. 901–934. doi: 10.4171/RMI/858.

[3] I. Bailleul. On the definition of a solution to a rough differential equation.
arxiv:1803.06479. Mar. 2018.

[4] I. Bailleul and S. Riedel. “Rough flows”. In: J. Math. Soc. Japan 71.3 (2019),
pp. 915–978. doi: doi:10.2969/jmsj/80108010.

[5] I. Bailleul. “Flows driven by Banach space-valued rough paths”. In: Séminaire
de Probabilités XLVI. Vol. 2123. Lecture Notes in Math. Springer, Cham,
2014, pp. 195–205. doi: 10.1007/978-3-319-11970-0_7.

[6] A. Brault and A. Lejay. “The non-linear sewing lemma III: Stability and
generic properties”. In: Forum Math. 32.5 (2020), pp. 1177–1197. doi: 10.1515/forum-2019-0309

[7] A. Brault, A. Lejay, et al. “The non-linear sewing lemma I: weak formulation”.
In: Electronic Journal of Probability 24 (2019).

[8] J. E. Cardona and L. Kapitanski. “Measurable process selection theorem
and non-autonomous inclusions”. In: Beyond Traditional Probabilistic Data
Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications.
Springer, 2020, pp. 413–428.

[9] J. E. Cardona, L. Kapitanski, et al. “Semiflow selection and Markov selec-
tion theorems”. In: Topological Methods in Nonlinear Analysis 56.1 (2020),
pp. 197–227.

[10] T. Cass and M. P. Weidner. Tree algebras over topological vector spaces in
rough path theory. arxiv:1604.07352. Apr. 2016.

[11] I. Chevyrev and A. Kormilitzin. A Primer on the Signature Method in Ma-
chine Learning. arxiv:1603.03788. Mar. 2016.

[12] A. J. Chorin, M. F. McCracken, T. J. R. Hughes, and J. E. Marsden. “Prod-
uct formulas and numerical algorithms”. In: Comm. Pure Appl. Math. 31.2
(1978), pp. 205–256.

[13] L. Coutin and A. Lejay. “Perturbed linear rough differential equations”. In:
Ann. Math. Blaise Pascal 21.1 (2014), pp. 103–150. url: http://ambp.cedram.org/item?id=A

[14] L. Coutin and Z. Qian. “Stochastic analysis, rough path analysis and frac-
tional Brownian motions”. In: Probability theory and related fields 122.1 (2002),
pp. 108–140.

40

https://doi.org/10.1007/978-1-4612-1029-0
https://doi.org/10.4171/RMI/858
https://doi.org/doi:10.2969/jmsj/80108010
https://doi.org/10.1007/978-3-319-11970-0_7
https://doi.org/10.1515/forum-2019-0309
http://ambp.cedram.org/item?id=AMBP_2014__21_1_103_0


[15] A. M. Davie. “Differential equations driven by rough paths: an approach via
discrete approximation”. In: Appl. Math. Res. Express. AMRX 2 (2007), Art.
ID abm009, 40.

[16] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution
equations. Vol. 194. Graduate Texts in Mathematics. With contributions by
S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C.
Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. Springer-Verlag, New
York, 2000.

[17] D. Feyel, A. de La Pradelle, and G. Mokobodzki. “A non-commutative sewing
lemma”. In: Electron. Commun. Probab. 13 (2008), pp. 24–34. doi: 10.1214/ECP.v13-1345.

[18] P. Friz and N. Victoir. “Euler estimates for rough differential equations”. In: J.
Differential Equations 244.2 (2008), pp. 388–412. doi: 10.1016/j.jde.2007.10.008.

[19] P. K. Friz and M. Hairer. A course on rough paths. Universitext. With an in-
troduction to regularity structures. Springer, Cham, 2014. doi: 10.1007/978-3-319-08332-2.

[20] P. K. Friz and N. B. Victoir. Multidimensional stochastic processes as rough
paths. Vol. 120. Cambridge Studies in Advanced Mathematics. Theory and
applications. Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9780511845079.

[21] E. Grong, T. Nilssen, and A. Schmeding. Geometric rough paths on infinite
dimensional spaces. arxiv:2006.06362. 2020.

[22] M. Gubinelli. “Controlling rough paths”. In: Journal of Functional Analysis
216.1 (2004), pp. 86–140.

[23] M. Gubinelli, P. Imkeller, and N. Perkowski. “Paracontrolled distributions
and singular PDEs”. In: Forum of Mathematics, Pi. Vol. 3. Cambridge Uni-
versity Press. 2015.

[24] M. Hairer. “A theory of regularity structures”. In: Inventiones mathematicae
198.2 (2014), pp. 269–504.

[25] M. Hairer and D. Kelly. “Geometric versus non-geometric rough paths”.
In: Ann. Inst. Henri Poincaré Probab. Stat. 51.1 (2015), pp. 207–251. doi:
10.1214/13-AIHP564.

[26] H. Hudzik and L. Maligranda. “Some remarks on s-convex functions”. In:
Aequationes Math. 48.1 (1994), pp. 100–111. doi: 10.1007/BF01837981.

[27] A. Lejay. “An introduction to rough paths”. In: Séminaire de Probabilités
XXXVII. Vol. 1832. Lecture Notes in Math. Springer, Berlin, 2003, pp. 1–59.
doi: 10.1007/978-3-540-40004-2_1.

[28] A. Lejay. Constructing General Rough Differential Equations through Flow
Approximations. 2006.10309. 2020.

41

https://doi.org/10.1214/ECP.v13-1345
https://doi.org/10.1016/j.jde.2007.10.008
https://doi.org/10.1007/978-3-319-08332-2
https://doi.org/10.1017/CBO9780511845079
https://doi.org/10.1214/13-AIHP564
https://doi.org/10.1007/BF01837981
https://doi.org/10.1007/978-3-540-40004-2_1


[29] A. Lejay and N. Victoir. “On pp, qq-rough paths”. In: J. Differential Equations
225.1 (2006), pp. 103–133. doi: 10.1016/j.jde.2006.01.018.

[30] T. Lyons. Rough paths, Signatures and the modelling of functions on streams.
arxiv:1405.4537. May 2014.

[31] T. J. Lyons. “Differential equations driven by rough signals”. In: Rev. Mat.
Iberoamericana 14.2 (1998), pp. 215–310. doi: 10.4171/RMI/240.

[32] T. J. Lyons, M. Caruana, and T. Lévy. Differential equations driven by rough
paths. Lectures from the 34th Summer School on Probability Theory held
in Saint-Flour, July 6–24, 2004, vol. 1908. Lecture Notes in Mathematics.
Springer, Berlin, 2007.

[33] J. Unterberger. “A rough path over multidimensional fractional Brownian
motion with arbitrary Hurst index by Fourier normal ordering”. In: Stochastic
Processes and their Applications 120.8 (2010), pp. 1444–1472.

42

https://doi.org/10.1016/j.jde.2006.01.018
https://doi.org/10.4171/RMI/240

	Introduction
	Notations
	Controls and remainders
	Function spaces

	Almost flow and Uniform Lipschitz condition
	Stable almost flows
	The 4-points control
	Definition of a stable almost flow
	Non linear sewing lemma for stable almost flow

	Perturbations
	Additive perturbations
	Spatial perturbations

	Inversion of the flow
	Generalized solution to rough differential equations
	Existence of a flow from a family of solutions
	Uniqueness and continuity of a solution in the sense of Davie

	Application to Rough differential equation
	Rough path notations
	Davie's approach
	Almost flows constructed from sub-Riemannian geodesics, as in P. Friz and N. Victoir
	Bailleul's approach
	Classical control of ODE solutions
	Bailleul's approach by truncated logarithmic series



