
HAL Id: hal-01839036
https://hal.science/hal-01839036

Submitted on 7 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Task Model-Based Systematic Analysis of Both System
Failures and Human Errors

Célia Martinie, Philippe Palanque, Racim Fahssi, Jean-Paul Blanquart,
Camille Fayollas, Christel Seguin

To cite this version:
Célia Martinie, Philippe Palanque, Racim Fahssi, Jean-Paul Blanquart, Camille Fayollas, et al.. Task
Model-Based Systematic Analysis of Both System Failures and Human Errors. IEEE Transactions on
Human-Machine Systems, 2015, 46 (2), pp.243-254. �10.1109/THMS.2014.2365956�. �hal-01839036�

https://hal.science/hal-01839036
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Task Model-Based Systematic Analysis of Both

System Failures and Human Errors
C. Martinie, P. Palanque, R. Fahssi, J.-P. Blanquart, C. Fayollas, and C. Seguin

Abstract—The overall dependability of an interactive system is
one of its weakest components, which is usually its user interface.
The presented approach integrates techniques from the depend-
able computing field and elements of the user-centered design.
Risk analysis and fault-tolerance techniques are used in combi-
nation with task analysis and modeling to describe and analyze
the impact of system faults on human activities and the impact of
human deviation or errors on system performance and overall mis-
sion performance. A technique for systematic analysis of human
errors, effects, and criticality (HEECA) is proposed. It is inspired
and adapted from the Failure Mode, Effects, and Criticality Anal-
ysis technique. The key points of the approach are: 1) the HEECA
technique combining a systematic analysis of the effects of system
faults and of human errors; and 2) a task modeling notation to
describe and to assess the impact of system faults and human er-
rors on operators’ activities and system performance. These key
points are illustrated on an example extracted from a case study of
the space domain. It demonstrates the feasibility of this approach
as well as its benefits in terms of identifying opportunities for re-
designing the system, redesigning the operations, and for modifying
operators’ training.

Index Terms—Human error (HE), risk analysis, system failure,
task modeling.

I. INTRODUCTION

T
HE overall dependability of an interactive system is the

one of its weakest component, and there are many com-

ponents in such systems ranging from the operator processing

information and physically exploiting the hardware (input and

output devices), interaction techniques, to the interactive appli-

cation and possibly the underlying noninteractive system being

controlled. This paper proposes an approach integrating these

aspects in order to address system and human dependability al-

together. These two aspects of dependability are usually dealt

with separately as the research contributions come from differ-

ent and usually unrelated scientific communities. In the depend-

able computing community, techniques have been proposed to

cope with the impact of system failures and to assess it in a
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precise manner, but operators’ behavior remains outside of the

techniques. In the human reliability and in the human–computer

interaction (HCI) communities, approaches have been proposed

demonstrating the suitability of task modeling techniques to

address system and human dependability analysis. This paper

presents an integrated approach taking into account both sys-

tem failures and human errors (HEs) while designing interactive

systems. This approach aims at leveraging existing techniques

in the fields of dependable computing, human reliability assess-

ment, and HCI. The proposed technique also aims at providing

complete and unambiguous task descriptions, which support

fine-grain analysis of both human and system aspects.

This paper is structured as follows. Section II presents related

work focusing on human-centered approaches to dependability.

Section III provides a brief review of types of system failures

and HEs but also exhibits a new type of source of errors namely

interaction errors. Section IV presents a task model-based

stepwise process to describe and analyze the impact of system

faults and HEs in an integrated manner. A case study from the

space domain follows that section, while last section concludes

this paper.

II. RELATED WORK

Existing approaches demonstrate the suitability of task mod-

eling to address system and human dependability analysis, but

system side and human side are usually addressed separately.

Erroneous behavior described in task models can be used to

evaluate the impact of an HE on the system as proposed in [5]–

[7], [12]. Mutant task specifications have also been proposed

to analyze the ability of the system to remain safe if a user

performs deviated tasks on the system [33]. Task analysis has

already been employed as an error identification technique [2]

but with fewer task types (with respect to the notation used in

this paper) and not for providing support for describing required

information to perform the task. A model-based technique that

uses insertion of HEs into task models in order to evaluate the

usability of the system and to inform design has been proposed

by Paterno and Santoro [27]. CREAM [14], HEART [32], and

THERP [30] are human reliability assessment techniques that

are based on task analysis. They provide support to assess the

probability of occurrence of HEs. Their limitation is that the

analysis does not go further than generic task types. They do

not provide support to assess the possibility of a failure or error

for human system interactions and as a consequence do not pro-

vide support to analyze in detail their potential impact. In the

field of HCI, the THEA technique [28] helps to anticipate inter-

action failures, but it does not provide support for an integrated

analysis of human and system dependability.
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We focus on human performance and on task recovery

whether the deviated task is performed upon system failure

and/or upon HE. We extend the work in [25] that proposes a task

analysis for error identification technique. This technique can be

used to identify potential HEs during routine activities as well

as during failure detection and recovery activities. In [25], infor-

mation, devices, and objects required to perform a task were not

represented in the task models. Thus, it did not provide support

to assess performance at the information level. This made impos-

sible to reason about workload aspect of operator performance.

III. SYSTEM FAILURES AND HUMAN ERRORS

System failures and HEs may both lead to problematic sit-

uations, while a system is in operation. However, as stated in

Section I, they are generally addressed by different scientific

communities and studied in an independent way, even though

both contribute to the dependability level of the system un-

der consideration. This section describes how the dependability

community deals with system failures and how the human factor

community deals with HEs.

A. Dealing With System Faults

In the fields of dependable computing and safety analysis, one

can find fault taxonomies, methods for identifying system faults,

methods to analyze their potential impacts, and techniques to

remove them. Techniques for dealing with system faults have

been proposed, and current state of the art in the field identifies

four different ways to increase a system’s reliability [1], [8].

1) Fault avoidance: preventing the occurrence of faults by

construction (usage of design and development methods

that avoid the integration of faults).

2) Fault removal: reducing the number of faults that can

occur (by verification of properties).

3) Fault forecasting: estimating the number, future incidence,

and likely consequences of faults (usually by statistical

evaluation of the occurrence and consequences of faults).

4) Fault tolerance: avoiding service failure in the presence of

faults via fault detection and fault recovery. Fault detection

corresponds to the identification of the presence of faults,

their type, and possibly their source. Fault recovery aims

at transforming the system state that contains one or more

faults into a state without fault so that the service can still

be delivered.

Fault avoidance and fault removal can be attained by the for-

mal specification of the interactive system behavior provided all

the aspects of interactive systems are accounted for including

device drivers’ behaviors, graphical rendering and events han-

dling and a Petri net based approach dealing with these aspects

can be found here [22]. However, due to this software/hardware

integration faults might occur at runtime regardless the effort

deployed during design phases. To increase the system relia-

bility concerning runtime faults, we have previously proposed

[23] ways to address both fault tolerance and fault mitigation

for safety critical interactive systems. Fault recovery is usually

achieved by adding redundancy or diversity using multiple ver-

sions of the same software or by fault mitigation: reducing the

severity of faults using barriers or healing behaviors [24].

TABLE I
SEVERITY FOR DIFFERENT SEVERITY CATEGORIES AND FAILURE EFFECT

Severity category Severity numbers Failure effect

catastrophic 4 possible death or system loss

critical 3 possible major injury or system

damage

major 2 possible minor injury or mission

effectiveness degradation

negligible 1 requires system maintenance, but

does not pose a hazard to

personnel or mission effectiveness

TABLE II
PROBABILITY LEVELS, LIMITS, AND NUMBERS

Level PN

Probable 4

Occasional 3

Remote 2

Extremely remote 1

In several application domains (such as aeronautics,

aerospace, and automotive industry), these dependable comput-

ing techniques are applied using an approach, which is based on

Failure Modes, Effects, and Critical Analysis (FMECA) [31].

FMECA is a risk identification technique that focuses on the

system components. It is defined as “a procedure or technique

to analyze each potential failure in a system to determine the re-

sults or effects thereof on the system and classify each potential

failure mode depending to its severity.” FMECA is also used to

define preventive maintenance actions, operational constraints,

and other relevant information and activities necessary to min-

imize the risk of failure [11]. There may be slight differences

in applying the FMECA technique depending on the applica-

tion domain and industrial context. Our work is based on the

aerospace-domain standards [11]. In this context, the FMECA

analysis process consists of the following steps.

1) Definition of product (hardware or function) to analyze.

Complete definition and functional descriptions.

2) Prepare functional and reliability block diagrams, which

illustrate the operation, interrelationships, and interdepen-

dences of the items which constitute the product.

3) Identify all potential failure modes for each item and in-

vestigate their effect on the item under analysis.

4) Evaluate each failure mode in terms of the worst potential

consequences and assign a severity category (categories

and corresponding severity number (SN) are described in

Table I).

5) Assess the probability of occurrence of each identified

failure mode and assign a criticality number (CN) using

CN = SN × PN (where PN is the probability number,

described in Table II). A probability of occurrence belongs

to a probability level which matches a PN.

6) Identify failure detection methods and existing compen-

sating provisions for each failure mode.

7) Identify for all critical items corrective design or other

actions (such as operator actions) required to eliminate

the failure or to mitigate or to control the risk.
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Fig. 1. HEs and faults (from [29]).

8) Document the analysis and summarize the results and the

problems that cannot be solved by the corrective actions.

Record all critical items into a dedicated table which shall

be an input to the overall project critical item list.

Step 3 is related to fault forecasting. Steps 6 and 7 are related

to fault removal, avoidance, and tolerance.

B. Dealing With Human Errors

In human factors ways of identifying, classifying and pre-

venting errors from occurring have been extensively stud-

ied. Several taxonomies of HEs have been proposed such as

[29] and [13]. Fig. 1 provides a summary of these types of

errors.

The classification in Fig. 1 exhibits two main types of faults: 1)

a violation that corresponds to the operator intentionally behav-

ing in an unexpected way; and 2) an error when the unexpected

outcome is not produced intentionally by the operator. When

operating an interactive computing system, operator faults can

be avoided by acting at three different levels:

1) System level: for instance by checking that a value pro-

vided by the operator is within an acceptable range. In

that case, the system monitors the operator’s activity and

aims to prevent the occurrence of faults. Sometimes such

protections lay outside of the system and are then usually

called barriers [13].

2) Interaction level: for instance by preventing the entry of

wrong values by only allowing users to select valid ones

via radio buttons.

3) Operator level: for instance by providing thorough and

adequate training, informing users about the impact and

consequences of decisions.

More refined descriptions of HEs offer more refined ways of

forecasting, preventing, tolerating or even avoiding them. For

instance, a HE reference table is proposed in [4]. It refines skill-

level errors from [29] and identifies means of preventing them

from reoccurring either by redesigning the system or by adding

barriers to it.

C. Integration Issues

Fig. 2 presents the taxonomy of faults that cover both system

faults and human faults. It separates errors that may occur at

development time or at operation time and is adapted from [1].

This taxonomy aims at being exhaustive covering even the no-

tion of malicious behaviors that are illustrated in Fig. 2. How-

ever, this taxonomy classifies faults as if they were unrelated

and occurring in an independent manner, and current methods,

techniques, and tools address them independently and promote

different treatment. This paper proposes to integrate system fault

analysis and HE analysis. It also proposes to use the concept of

criticality levels of HEs as it is used in the field of dependable

computing.

IV. INTEGRATED APPROACH TO ACCOUNT FOR SYSTEM

FAILURES AND HUMAN ERRORS

A. Stepwise Process to Account for System Failures and

Human Error

The process for taking into account both system faults and

HEs at design and development time is illustrated in Fig. 3. The

proposed process is decomposed in seven phases:

1) task analysis and modeling (similar to steps 1 and 2 of the

FMECA analysis process);

2) filtering out tasks and actions depending on the type of

analysis to be performed;

3) effects and criticality analysis for HEs and system fail-

ure modes (similar to steps 3–5 of the FMECA analysis

process);

4) inventory of the couples {activity node, criticality} and

inventory of the additional tasks that would be needed to

recover from system failures and/or HEs (which matches

step 6 of the FMECA analysis process);

5) construction of enriched task models (models integrating

potential system failures and HEs as well as articulatory

tasks to recover from them);

6) construction of enriched task models (models integrating

potential system failures and HEs as well as articulatory

tasks to recover from them);

7) analysis of the impact of the system faults and HEs on

the users’ performance and on the global mission (system

and organization);

8) identification of design alternatives and proposals

for modifying users’ tasks and/or system’s functions

(which matches steps 6 of the FMECA analysis

process).

Phase 1 consists of analyzing and describing user’s activities

with the envisioned system similar to user-centered approaches

for designing interactive systems. These activities are recorded

in task models and several versions of the models can be pro-

duced to ensure that they are fulfilling the desired properties

(and that they are compliant with the system’s behavior and

functions).

Phase 2 consists of filtering out the human tasks and actions

as input to the Human Errors, Effects and Criticality Anal-

ysis (HEECA) and in filtering out system tasks as input for

the FMECA. In this paper, the emphasis is on the proposed

HEECA technique as the FMECA technique is already well

described.

Phase 3, the HEECA technique, is described in next section.

Phases 4–7 are described in the section dedicated to support for

design and development.
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Fig. 2. Typology of faults in computing systems adapted from [1].

Fig. 3. Process to account for system failures and HE during the design and development of an interactive critical system.

B. Task Modeling With Human-Centered Assessment and

Modeling to Support Task Engineering for Resilient

Systems (Phase 1)

Task models support gathering and structuring data from the

analysis of users’ activities, and recording, refining, and ana-

lyzing information about users’ activities. Several notations are

available to describe tasks with varying expressiveness levels de-

pending on targeted analysis, one of the most famous being CTT

[21]. Human-Centered Assessment and Modeling to Support

Task Engineering for Resilient Systems (HAMSTERS) is a tool-

supported graphical task modeling notation for representing

human activities in a hierarchical and ordered way. At the higher
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Fig. 4. High-level task types in HAMSTERS.

TABLE III
TEMPORAL ORDERING OPERATORS IN HAMSTERS

Operator type Symbol Description

Enable T1 ≫ T2 T2 is executed after T1

Concurrent T1 |||| T2 T1 and T2 are executed at the same time

Choice T1 [] T2 T1 is executed OR T2 is executed

Disable T1 [> T2 Execution of T2 interrupts the execution of

T1

Suspend-resume T1 | > T2 Execution of T2 interrupts the execution of

T1, T1 execution is resumed after T2

Order Independent T1 |= | T2 T1 is executed then T2 OR T2 is executed

then T1

abstraction level, goals can be decomposed into subgoals, which

can in turn be decomposed into activities. Output of this decom-

position is a graphical tree of nodes. Nodes can be tasks or

temporal operators.

Tasks can be of several types (see Fig. 4) and contain infor-

mation such as a name, information details, and critical level.

Only the high-level task type are presented here, but they are

further refined (for instance the cognitive tasks can be refined in

analysis and decision tasks) [7].

Temporal operators are used to represent temporal relation-

ships between subgoals and between activities (see Table III).

Tasks can also be tagged by temporal properties to indicate

whether or not they are iterative, optional, or both.

HAMSTERS’ notation and tool provide support for task-

system integration at the tool level [3]. They provide support for:

1) automation design. The notation has been extended to

help with the analysis of function allocation between hu-

man and system thanks to the refinement of cognitive tasks

into analysis and decision subtypes of cognitive tasks [17]

according to the Parasuraman et al. model of human in-

formation processing [26], [26];

2) structuring a large number and complex set of tasks intro-

ducing the mechanism of subroutines [20];

3) describing data that are required and manipulated [18] in

order to accomplish tasks.

We propose to refine the following elements of notation: in-

formation, objects, and input/output devices. Fig. 5 recapitulates

the existing notation elements as well as the refined ones. In-

formation (“I:” followed by a text box) may be required for

execution of a system task, but it also may be required by the

user to accomplish a task.

Fig. 5. Representation of objects, information and knowledge with HAM-
STERS notation.

Fig. 6. Example of a task description with consumed and produced objects.

The notation element “Physical Object” (“Phy O:” followed

by a text box) supports describing whether a user or a system

task requires a particular physical object to be accomplished.

The notation element “Object” (“O:” followed by a text box)

is dedicated to the description of a software data object that

is required by the system in order to accomplish a task. The

notation element “Software Application” (“Sw A:” followed

by a text box) provides support for the description of a soft-

ware application that is required in order to accomplish a task.

Furthermore, it is possible to describe how these notation ele-

ments are consumed and/or produced by a task. As illustrated

in Fig. 6, an arrow incoming to a task means that the infor-

mation or physical object (or object or software application or

knowledge) is consumed, whereas an arrow outgoing from a

task to an information or object means that it is produced by the

task.

A precise description of users’ activities (encompassing pro-

cedural and declarative aspects of these activities) is required to

be able to systematically:

1) enumerate and record potential deviations and errors when

the user is performing an action;

2) enumerate and record potential problems in the temporal

ordering of actions;

3) enumerate and record potential problems in data and ob-

jects flow between operators and system (both in terms of

inputs and outputs);

4) connect these potential deviations and errors to existing

error taxonomies and thus identify already defined ways

to handle them.

HAMSTERS notation is a key element of the proposed ap-

proach as it provides support to all of the above-mentioned

points.

C. Support for Analysis: Human Errors, Effects, and

Criticality Analysis (Phases 2 and 3)

We propose a technique inspired and adapted from FMECA

to analyze in a systematic way the effects and criticality of HEs.

The HEECA analysis process consists of several steps.
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Fig. 7. HAMSTERS task model of PICARD satellite platform management (high-level tasks).

1) Definition of roles, task nodes, and action nodes to ana-

lyze. Complete descriptions have been performed during

the task modeling phase. Their interrelationships are also

described in the task models.

2) Identify all potential errors (using HE reference classifi-

cations) and deviations (using the HAZOP method [15])

for each item and investigate their effect on the item under

analysis.

3) Prepare scenarios that illustrate potential errors and devi-

ations and their consequences.

4) Evaluate each potential error or deviation in terms of the

worst potential consequences (on the corresponding goal

and on the mission) and assign a severity category (cate-

gories and corresponding SN are in Table I).

5) Assess the probability of occurrence of each identified

potential error or deviation and assign a CN (which

corresponds to the probability quantification steps of ex-

isting methods).

This process is integrated into the whole approach presented

in this paper, i.e., precisely analyzing the impact of potential

errors and deviations, as well as reporting them and proposing

modifications corresponds to phases 4–7 (see Fig. 3).

D. Modeling Articulatory Activities (Phases 4 and 5)

Phase 4 aims at producing a list of couples (task, criticality)

that will highlight which tasks have to be carefully examined to

avoid critical issues. Depending on the criticality threshold that

has been set for the mission, a subset of tasks extracted from the

list of couples (task, criticality) can be selected.

These subsets of selected tasks integrate human activities that

may be subject to errors or deviations (output of the HEECA), as

well as system failures that may happen (output of the FMECA).

For each entry of each subset, the sequence of additional actions

required to recover is defined. These sequences of additional

actions are then used to build enriched task models for each

selected couple (task, criticality). Each of these models embeds

a potential error or deviation of a task or system failure impacting

a task. For each of these tasks, the task model is extended with

the actions that have to be performed to recover from the error,

the deviation, or the system failure.

E. Analyze Impact of Articulatory Activities (Phase 6)

This phase consists in quantifying the impact of errors and

deviations or system failures on the user’s goal, on the system

Fig. 8. Task model of the “Switch ON SADA2” task.

and on the mission. Thanks to the produced task models, it is

possible to estimate:

1) the number of actions for each type (cognitive, motor, per-

ceptive actions, as well as interactive actions and system

actions) that will have to be performed to recover from

the error or deviation;

2) the number and nature of information (procedural, declar-

ative) that will have to be handled compared to the case

where the error or deviation may not happen;

3) the potentially nonreversible aspect of the error or devia-

tion (when recovery is impossible).

F. Identify Cost Benefits for Redesign and Propose

Modifications for User Tasks and/or System’s

Functions (Phase 7)

From the assessment of impact of errors and deviations and

system failures on the users’ tasks, system, and mission, it is then

possible to identify ways of redesigning them and the feasibility

of redesigning them with respect to resources constraints (such

as users, time, and finances).

Dependable computing techniques (as the ones presented

above) may be applied to the system, and we also propose to

adapt those techniques for “removing” HEs.

In addition to and inspired from actions (dependable com-

puting techniques) that can be taken after a FMECA, several

actions may be taken in order to “remove” HEs.

1) HE avoidance: preventing the occurrence of HEs by

construction (usage of design and development meth-

ods that avoid the possibility of a human making an

error).

2) HE removal: reducing the number of errors that can hap-

pen (by verification of properties).

3) HE forecasting: estimating the number, future incidence

and likely consequences of errors (usually by statisti-
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Fig. 9. Task model of “Start selection” task.

cal evaluation of the occurrence and consequences of

errors).

4) HE tolerance: avoiding task failure in the presence of HEs

via HE detection and/or adding barriers and/or mecha-

nisms for HE recovery.

V. PICARD SATELLITE CASE STUDY

The PICARD satellite dedicated to solar observation was

launched by CNES in June 2010. We use a subset of it for our

case study.

A. PICARD Satellite Ground Segment

Satellites and spacecraft are monitored and controlled via

ground segment applications in control centres with which

satellite operators implement operational procedures. A proce-

dure contains instructions such as sending telecommands (TC),

checking telemetry (TM), waiting, providing required values for

parameters (definition of operational procedures may be found

in the ECSS-E-70-32A [10] standard).

Among the various ground segment applications used to man-

age the satellite platform, we focus on the ones that are used by

controllers to ensure that the platform is functional. The platform

has to be functional so that the mission (for which the satellite

has been designed and developed) can be completed. The con-

trollers of the PICARD satellite take turn in the command and

control room (there is only one on duty at a time). Controllers

have several applications (with their corresponding displays) for

the monitoring activities and dedicated applications to manage

the procedures and the telecommands plans.

B. Controller’s Tasks Analysis and Modeling

Controllers are in charge of two main activities: observing pe-

riodically (i.e., monitoring) the vital parameters of the satellite

and performing maintenance operations when a failure occurs.

Depending on the satellite between thousands and tens of thou-

sands parameters have to be monitored. The more frequent and

relevant monitoring activities include observing: satellite mode,

telemetry (measures coming from the satellite), sun array drivers

statuses, error parameters for the platform, error parameters for

the mission, power voltage (energy for the satellite), ground

station communication status, and on-board computer main pa-

rameters. Fig. 7 presents the HAMSTERS task model of the

high-level tasks for the management of PICARD satellite plat-

form. It describes the main abstract tasks that controllers have

to execute.

The whole set of refined models which includes low-level

routine activities (such as in Fig. 9 that describes at a fine grain

level the actions the controller has to perform) is not presented

in this paper. To illustrate the proposed approach, we present

here the particular task of executing an operational procedure.

The operational procedure we use deals with setting up the

redundant sun array driver assembly (SADA), which is named

SADA2.

Fig. 8 presents the main tasks that have to be led to execute

this procedure. First, the controller has to start the procedure,

then to monitor its execution, and in the end to terminate the

procedure. Each task leaf in this model is a subroutine and has

a corresponding refined task model.

The “Start procedure” subroutine is refined in Fig. 9. Fine

grain modeling of users’ actions with an interactive system is

bound to the interactive system interface. The task models are

highly dependent on the way the information is presented and

reachable in the user interface. In this case study, the software

application used by controllers is a procedure manager (see

Fig. 11). The controller can select a procedure from the list (top

left widget in Fig. 11), and then, she/he can start the procedure

by pressing the “Start Procedure” button.

The procedure (“Search for procedure” iterative task). Once

the controller has decided to select the procedure, the search

task will be disabled (operator “[>“) and the next task will be

to:

1) Select the procedure (“Mouse selection [select proce-

dure]” task, of subroutine type, in Fig. 9)

2) Start the procedure (“Mouse selection [start procedure]

task, of subroutine type, in Fig. 9)
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Fig. 10. Task model of “Mouse procedure” task.

3) At last, the system will start executing the procedure (sys-

tem task in Fig. 9). This task model also describes which

information is required to reach the goal of starting a pro-

cedure.

4) The information about procedure reference. This infor-

mation is required to be able to search for it in the list

and to analyze that the targeted procedure has been found

in the list (Box “I: (user) procedure reference with in-

coming and outgoing arrows to “Search for procedure”

user task, “Perceive procedure to select” perceptive task

and “Analyze that procedure is found” cognitive analysis

task).

5) The information about the item (of the list) to be selected.

Once the controller has decided to select the procedure,

she/he produces new information which is the informa-

tion about the item to be selected (Box “I: (user) item to

be selected” with incoming arrow from the “Decide to

select procedure” cognitive decision task and with an out-

going arrow to the “Mouse selection [select procedure]”

subroutine task).

Fig. 10 presents the “Mouse selection” task model. It de-

scribes the fine grain actions that have to be performed

for selecting a graphical object with a mouse device and

pointer. It also describes the required information to reach this

goal.

C. Human Errors, Effects, and Criticality Analysis for the

Task of Procedure Selection, Triggering, and Monitoring

Filtering out human actions from task models enables picking

out the tasks and actions for which deviations and/or HEs may

happen. The HEECA technique is then applied on these identi-

fied tasks and actions in order to systematically go through the

potential issues and find out their criticality.

Fig. 11. Screenshot of the procedure manager software application.

Fig. 12 contains an extract from the HEECA table for the con-

troller’s task of driving the execution of a procedure. For the rest

of the example, we focus on the potential error related in line 3

of this table (surrounded with a bold rectangle). In this line, a

critical issue is pointed out and would be caused by a perceptual

confusion error when selecting the procedure to be launched.

This error is related to the declarative information about the

item to be selected that the controller has in mind (as shown in

Fig. 13). She/he may analyze that the good item in the list has

been selected whereas it is not. As described by the scenario,

procedures can have names that differ only by a few characters,

which may cause perceptual confusion errors [29].

D. Identification of Couples {Task, Criticality} for the Task

“Mouse Selection: [Select Procedure]”

In this example, the task “Mouse selection: select proce-

dure” may have several criticality levels depending on the iden-

tified scenarios and may reach the highest criticality levels.

An erroneous or deviated behavior during the mouse selec-

tion task may lead to delay in the mission and be tagged as

critical.

For example, some procedures contain commands that put

the satellite in a nonoperational mode. If this kind of proce-
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Fig. 12. Extract from the HEECA table.

Fig. 13. Focus on the action node where an error may occur.

dure is selected unintentionally, the mission will not be able

to be carried out anymore (at least for a certain period of

time). The impact of this selection error can then be tagged as

catastrophic.

E. Inventory of the Additional Activities in Case of the

Perceptual Confusion Error Made While Analyzing

the Selection

New versions of task models are built to describe the addi-

tional activities to be performed when an error or a deviation

occurs. New versions can be built for each type of error. New

version can also be built from FMECA tables to list all addi-

tional activities that would have to be performed to recover from

a system failure [16].

In this example, we present the additional activities to recover

from a perceptual confusion error during the “Mouse selection”

task. Fig. 14 describes the additional activities in such a case.

The controller will watch at the procedure execution (“Watch

procedure execution” human task) and then analyze that the

wrong procedure has been started (“Analyze wrong procedure

has been started” cognitive analysis task). She/he may then de-

cide to stop the procedure (“Decide to stop procedure” cognitive

decision task) and stop it (“Stop procedure” interactive task).

The next tasks (that are abstract and not described at a fine grain

level in Fig. 14) are then to monitor the state of the SADAs

and to determine if it is possible to start over the procedure and

when. These two last abstract tasks have also been refined in

user actions. They detail the heavy process of gathering expert’s

advice on the current satellite state and of preparing a plan (that

may embed the execution of additional procedures) to determine

how to recover the desired state.

F. Assessment of the Impact of Failures or Human Errors on

Human Performance and Identification of Options to Redesign

Ground Segment Applications and/or Controller’s Tasks

From the task models enriched with additional activities

that may have to be performed to recover from the perceptual

confusion error (line 3 in HEECA table in Fig. 12), it is possible

9



Fig. 14. Task model of “Monitor procedure execution” modified with additional activities required to recover from errors.

TABLE IV
NUMBER OF ACTIONS PER TYPE IN ORDER TO EXECUTE AND TERMINATE THE

PROCEDURE TO SWITCH ON SADA2

Cognitive

analysis

Cognitive

decision

task

Motor task Interactive

input

Interactive

output

Perceptive

task

Without

human error

7 3 4 4 9 9

With human

error

16 5 10 12 25 25

to estimate the impact of this error on the controller’s perfor-

mance for the task of switching on the SADA2.

Table IV highlights that the perceptual confusion error done,

while analyzing the item to be selected for the “Mouse selection:

[select procedure]” task may have an impact on the controller’s

performance. Most of the actions she/he has to perform are at

least doubled.

Following HE avoidance techniques proposed above, the fol-

lowing solutions could be proposed to avoid this type of error.

1) HE avoidance: Change procedure selection mean.

2) HE removal: Train the controller.

3) HE forecasting: Identify that operator is tired and /or car-

rying several threads of activities.

4) HE tolerance:

a) Redundancy: Ask confirmation from several

operators;

b) Diversity: Use confirmation from different types/

trained users;

c) Segregation: Have operations not co-located.

5) HE detection: Detect that the operator input is/was not

appropriate;

6) HE mitigation: Trigger protection mechanisms in the

system;

7) HE recovery: Provide procedures to recover from the error.

These design alternatives can then be chosen to be imple-

mented in the system and/or to be used to modify the con-

trollers’ tasks. Another loop of the proposed process can then

be performed to ensure that consequences of the potential HEs

and system faults are under control.

VI. CONCLUSION

The presented approach integrates techniques from depend-

able computing and user-centered design in order to improve

the reliability of interactive systems. Risk analysis and fault-

tolerance techniques are used in combination with task analysis

and modeling to describe and analyze the impact of system

faults on human activities and the impact of human deviation

or errors on system performance and more generally on mis-

sion performance. A technique for systematic analysis of HEs,

effects, and criticality is proposed (HEECA). It is inspired and

adapted from the FMECA technique.

By making explicit the operators’ tasks, the information, and

the objects that have to be handled while performing these tasks,

this approach enables assessing the recovery cost from a system

failure (i.e., to set the system in an acceptable state) but also from

an HE. This recovery cost is expressed in terms of corrective

actions that have to be performed in order set the system back

to an error-free state.

This paper has presented the main phases of the process and

described the HEECA method. However, a set of other benefits

becomes reachable using such task models enhanced with HE

descriptions, such as, for instance:

1) Some of the information explicitly represented in the task

model might correspond to information that has to be

stored in the operator’s working memory (e.g., a flight-

level clearance received by a pilot from an air traffic con-

troller). The modeling approach would make explicit how

much time (quantitative) but also how many actions have

to be performed while keeping in mind such information.

2) The tasks and the related information might be located on

specific devices. This is not the case for a space ground

segment where the user interface used for monitoring

is colocated with the one for triggering telecommands,

but the possibility to represent that information in HAM-

STERS enables assessing low-level complexity of tasks

such as device localization or moving attention and activ-

ity between devices.

The outcome of the proposed process can also provide support

for the traceability of requirements for training scenarios. It

makes it possible to ensure that all critical tasks have been taken

into account in the training program and that the operators have

been trained for being able to recover from both user errors and

system failures [19].

The presented analysis is performed informally and manu-

ally, but HAMSTERS models can be edited and simulated using

the eponym tool. Performance analysis functionalities are cur-

rently being integrated exploiting contributions previously made

for synergistic system-task execution [2] and training program

assessment [9]. The proposed approach can be seen as a

support for sharing information about risk analysis across
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several domains. For example, it can be used as a bridge

between safety experts that use HAZOP methods [15] and

human factors experts using HE classifications and analysis

methods.
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