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Abstract

Assuming that a hyperbolic initial boundary value problem satsifies an a priori energy estimate with a loss of one
tangential derivative, we show a well-posedness result in the sense of Hadamard. The coefficients are assumed to
have only finite smoothness in view of applications to nonlinear problems. This shows that the weak Lopatinskii
condition is roughly sufficient to ensure well-posedness in appropriate functional spaces.

Résumé

En supposant qu'un probléme mixte hyperbolique linéaire vérifie une estimation d’énergie a priori avec perte d’une
dérivée tangentielle, on montre que ce probleme est bien posé au sens de Hadamard, pour des données initiales
nulles. Les coefficients sont supposés peu réguliers en vue des applications aux problemes non linéaires. On montre
ainsi que la condition de Lopatinskii faible est génériquement suffisante pour assurer le caractere bien posé des
problemes mixtes hyperboliques.

AMS subject classification: 35L50, 35L40

Keywords: Hyperbolic systems of partial differential equations, boundary conditions, well-posedness, loss of
derivatives, weak Lopatinskii condition.

Mots clés: Systemes hyperboliques d’équations aux dérivées partielles, conditions au bord, problémes bien posés,
perte de dérivées, condition de Lopatinskii faible.

1 Introduction

In this paper, we consider hyperbolic Initial Boundary Value Problems (IBVPs) in several space dimen-
sions. Such problems typically read:

OU + 91 Aj(t,2) 0x,U + D(t,2)U = f(t,x), t€]0,T[, zeRe,
B(t.y) U, _, = 9(t,y) telo,T[, yeR, (1)
Ult:o = Uo(l’) ) T € Ri .



The space variable z lies in the half-space RY := {z = (z1,...,24) € RY/zg > 0}, y = (z1,...,24-1)
denotes a generic point of R!, and ¢t = z is the time variable. The Aj’s and D are square n X n
matrices, while B is a p X n matrix of maximal rank (the integer p is given below). For simplicity, we shall
only deal with noncharacteristic problems, but we point out that the analysis can be reproduced with
only minor changes for uniformly characteristic problems (we shall go back to this in our final remarks).

To prove the well-posedness of (1), there are basically four steps (see e.g. [3] for a complete description).
One first proves a priori energy estimates for smooth solutions. Then one defines a dual problem and shows
the existence of weak solutions (this second step works because the original and the dual problems satisfy
the same a priori estimates). The third step is to show that weak solutions are strong solutions and thus
satisfy the energy estimate. Eventually, one constructs solutions of the IBVP. The first step of this analysis
is linked to the so-called (uniform) Lopatinskii condition (or uniform Kreiss-Lopatinskii condition), see
[11]. Namely, the uniform Lopatinskii condition yields an energy estimate in L?, with no loss of derivative
from the source terms (f, g) to the solution U. The second step relies on Hahn-Banach and Riesz theorems,
see [3]. One obtains weak solutions for which it is not possible to apply the a priori energy estimate. Thus,
in the third step, one introduces a tangential mollifier, regularizes the weak solution, applies the a priori
estimate to the regularized sequence, and passes to the limit. This procedure was already introduced in
[7] and [12]. The fourth step is to take into account the initial datum Up, and it was first achieved in [19].

In all the above mentionned results, it is crucial that the first step yields an energy estimate without
loss of derivatives. (We shall say that such problems are stable problems). Such an estimate holds either
because the boundary conditions are maximally dissipative (or strictly dissipative, which is even better),
either because the uniform Lopatinskii condition is satisfied. However, it is known that this stability
condition is not met by some physically interesting problems. Examples of situations where the uniform
Lopatinskii condition breaks down are provided by elastodynamics (with the well-known Rayleigh waves
[23, 21]), shock waves or contact discontinuities in compressible fluid mechanics, see e.g. [13, 17]. For such
nonstable problems, there is no L? estimate, but in some weakly stable situations, one can prove a priori
energy estimates with a loss of one tangential derivative from the source terms to the solution. Without
entering details, these problems are those for which the so-called Lopatinskii determinant vanishes at
order 1 in the hyperbolic region of the cotangent of the boundary T *ng ~ R% x R?. For noncharacteristic
problems, such energy estimates with loss of one derivative have been derived by the author in [5], and
for uniformly characteristic problems, similar energy estimates have been derived by P. Secchi and the
author in [6]. (Note that for the Rayleigh waves problem, the Lopatinskii determinant vanishes in the
elliptic region of the cotangent of the boundary, and the situation is slightly better, as shown in [21]).

In this paper, we show how to solve the IBVP for such weakly stable problems where losses of derivatives
occur. More precisely, we show how to construct solutions of (1), with Uy = 0, provided that we have an
a priori estimate with a loss of one tangential derivative, both for the initial problem (1) and for a dual
problem. The construction of a weak solution is quite classical, but still, it requires some attention. Then,
we shall regularize our weak solution by using a tangential mollifier. Unlike in the case of stable problems,
where any tangential mollifier is suitable, we shall show here that the choice of the mollifier is crucial in
our context. Our result is that weak solutions are what we shall call semi-strong solutions. In the end,
we shall prove a well-posedness result (in the sense of Hadamard) for the IBVP (1), when Uy = 0. The
case of general initial data is addressed in our final remarks.

The paper is organized as follows. In view of possible applications to nonlinear problems, we have
chosen to work with low regularity coeflicients. Of course, this choice will introduce technical difficulties,
and we have found it appropriate to give in section 2 all the notations and results on paradifferential
calculus that will be used throughout this paper. In section 3, we state precisely our weak stability
assumption, and give our main result. In section 4, we prove that (1) admits weak solutions, and that



these weak solutions are semi-strong solutions. Up to a few technical details, this ensures well-posedness
for zero initial data. In section 5, we give some extensions of our results, and make a few comments.

2 Paradifferential calculus with a parameter

In this section, we collect some definitions and results on paradifferential calculus. We refer to the original
works by Bony and Meyer [1, 16] and also to [15, 18] for the introduction of the parameter. The reader
will find detailed proofs in these references. We first introduce some norms on the usual Sobolev spaces.
For all v > 1, and for all s € R, we equip the space H* (]Rd) with the following norm:

1 ~
Il = gz [ O RO, X7() = (07 + e,

We shall write || - [|o rather than || - ||o., for the (usual) L? norm.
The classification of paradifferential symbols (with a parameter) is the following:

Definition 2.1. A paradifferential symbol of degree m € R and regularity k (k € N) is a function
a(z,&,7) : RYx RY x [1, +oo[— CI%9 such that a is € with respect to & and for all o € N?, there exists
a constant Cy, verifying

v (57 7) ’ ||8ga('¢ 3 ’Y)HW’W’O(Rd) < Ca )\m—\a|,'y(§) :

The set of paradifferential symbols of degree m and reqularity k is denoted by I‘}?(Rd). It is equipped with
the obvious semi-norms. We denote by X" (R?) the subset of paradifferential symbols a € TT(RY) such
that for a suitable € €0, 1[ the partial Fourier transform of a satisfies

V(&7), Supp Fya(- &) C{CERY/ I <e(?+ €)%}

Of course, the symbols in Z’,;”(Rd) are ¢ °° functions with respect to both variables z and £, and for
all a € X7(R?), we have the estimates

V(2,6,7), [0208a(x,&,7)| < CopAm I8l (g).

Thus any symbol a € X(R%) belongs to Hérmander’s class ST [10] and defines an operator Op”(a) on
the Schwartz’ class . (R?) by the usual formula

Vue AR, VoeR!, Op(ule) = g [ e €ale ) a6 ds.
T R4

We shall use the following terminology:

Definition 2.2. A family of operators {PY} defined for v > 1 will be said of order < m (m € R) if the
operators P7 are uniformly bounded from HST™(R?) to H*(R?) for all s, independently of ~:

Vi1, Vue BURY), [Pl < Cofullsime

The following Theorem is crucial:



Theorem 2.1. Ifa € Z?(Rd), k € N and m € R, the family {Op?(a)} is of order < m. More precisely,
for all s € R, there exists a positive constant C such that

Vy=1, Yue HRY, [0 (@)ullen < C [ullsim

The constant C only depends on s, m, on the confinement parameter € €10, 1[, and on a finite number N
of semi-norms of a (N only depends on s and m).

The regularization of symbols in the class I‘Z"”(Rd) is achieved by a convolution with admissible cut-off
functions:

Definition 2.3. Let 1 : R? x R x [1, 4-00[ — [0, +-00[ be a € function such that the following estimates
hold for all o, B € N:

V(C,E7), 102089 (¢,€.7)] < Cag A1 (g)

We shall say that 1 is an admissible cut-off function if there exist real numbers 0 < e < €9 < 1 satisfying

VGEN =1 if [l <al?+IER?,
¢(<7€,’7) =0 ’Lf |<| > 52(72 + |§|2)1/2 )

An example of cut-off function is the following: we choose a nonnegative > function xg on R% x R
such that

&2 477 > & + 95 = x0(é1.m) < xo(&2,72)

{XO(é,'y) =1 if ()7 <12,
Xo(6,7) =0 if (2 +1¢)* > 1.

We define a function ¢o(§,7) := x0(§/2,7/2) — x0(&,7). Then the function vy defined by

Y0($,€,7) = Y x0(2°77¢,0) go(277¢,277) (2)

p=0

is an admissible cut-off function (one can take e; = 1/16 and €2 = 1/2).
If v/ is an admissible cut-off function, the inverse Fourier transform K% of (-, £, ) satisfies

V&), 08KV 6N rey < CaX7(6).
These L' bounds for the derivatives (‘3?}( ¥ yield the following result:

Proposition 2.1. Let ¢ be an admissible cut-off function. The mapping
o al(6) = [ K@ - p6 ) al6) dy

is continuous from I'™(R?) to S(RY) for all m (the confinement parameter of o¥ is e9).
If a € T(RY), then a — = TN (RY). In particular, if ¢ and s are two admissible cut-off
functions and a € T (RY), then oi' — ol” € Y RY).



Fixing an admissible cut-off function 1, we define the paradifferential operator T by the formula
157 = O ().

If 1 and 15 are two admissible cut-off functions and a € T'7*(R%), then Proposition 2.1 and Theorem 2.1
show that the family {T;Z)l’7 — T;”’V} is of order < (m —1).
The symbolic calculus is based on the following Theorem:

Theorem 2.2. Let a € I"(RY) and b € T (RY). Then ab € T7™ (RY) and the family
{T;ﬂ»’y ) Tl;d)fy _ T;Z[))”Y}’yzl

is of order < m +m' — 1 for all admissible cut-off function 1.

Let a € T (RY). Then the family
(@) = T

is of order < m — 1 for all admissible cut-off function 1.

Let a € TP(RY) and b € T§ (RY). Then ab € F§”+m/ (R?) and the family

b,y by by sy
{1577 o T, Ty T—zzj agjaazjb}wzl

is of order < m +m' — 2 for all admissible cut-off function 1.

Let a € T(RY). Then the family

5 1/17 Tl}:
(V) —T% — T—inj 0c, 00" b1

s of order < m — 2 for all admissible cut-off function .

An easy consequence of Theorem 2.2 is that, for any symbols a € T'J*(R?) and b € I3 (R?) that
commute, the remainder

Yy Y b, by _ , D,y by
Tf VTb - Tb T;M - Tfi{a,b} = [T;Mva ] - Tfi{a,b}

is of order < m + m’ — 2. Here above, the notation {a, b} stands for the Poisson bracket of a and b:
{a,b} := ) 9¢,a 000 — Op;aOg)b.
J

We now study the case of paraproducts: they are defined by the particular choice of ¥y as cut-off
function, where 1) is defined by (2). We shall write T, 7 instead of T, ;p ©7 for the associated paradifferential
operators. We have the following important result:

Theorem 2.3. Let a € WH®(R), u € L?(R%) and v > 1. Then we have

C
law=Taullo < - llalwrcoma llullo, llade;u =T 0e;ullo < € flallwo e llullo,

law =Tgul1y < Cllallweomay llullo,



for a suitable constant C that is independent of (a,u,"y).
If in addition a € W3 (R?), we have

C
law =T ull1y < > lallw2.c gay o,
la0z;u — T3 0z;ull1y < Cllallnzee ey lullo,
for a suitable constant C' that is independent of (a,u,"y).

We can extend the paradifferential calculus to symbols defined on a half-space in the following way:
let Q denote the half-space R%x]0, +oo[= Riﬂ. The space L%d (H{,) is equipped with the norm

2 oo 2
Jul?,, = /0 (-, za)|12,, dea.

Again, we shall write || - [|o rather than || - [lo,, when s = 0 (that is, for the usual norm in L?(f2)). We
denote by I'7*(£2) the set of symbols a(zo, . . ., z4,&,7) defined on  x R% x [1, +o00] such that the mapping
x4+ a(-, 24, ) is bounded into I'(R?). We define the paradifferential operator 77 by the formula

Vue @), Vag>0, (TTu)(,zq):=T"

a(l“d)u("xd) ’

Using Theorem 2.3 and integrating with respect to x4, we obtain for all symbol a € W1*°(Q) and all
u € L?(Q) the estimates:

C
law = Tullo < = llallwr.o«e) llullo,
lla0z;u = T3 0z;ullo < Cllallwre () llullo,  7=0,....d=1.

When a € W2°(Q), one obtains an estimate with a gain of two tangential derivatives:

c
lou=Tuliy < = llallwzo o) ulo;

Waawju - T(;Yawjumlﬁ <C ||a”W2°°(Q) |||u’”0 ;o J=0,...,d—-1.

3 Statement of the result

Recall that €2 denotes the half-space ng xRy . We first make the following assumption on the coefficients
of (1):

Assumption 1. The A;’s are defined on Q and belong to W>(Q).

There exists 6 > 0 such that for all (t,z) € Q one has

|det Ag(t,z)| > 6.

The matriz B is defined on R and belongs to WQ’OO(Rd). It has maximal rank p, where p equals the
number of positive eigenvalues of Aq (that is, the number of incoming characteristics).



The system is symmetric hyperbolic, that is, there exists a (real) matriz valued mapping S € W2 (1)
verifying

V(t,z) € Q, S(t,x)=S(t,x)", S(t,x)>1, S(tx)A;t,x)=A;t2)"Stz).
We now make our first weak stability assumption on system (1):

Assumption 2. For any D1 € WH(Q), and for any symbol Dy € TY(Q), there exists a constant C (that
depends only on 0, || Ajllw2.ec (), [[D1llwree)s [1Bllwzcemey and on a finite number of seminorms of the
symbol D) and there exists a constant o > 1 such that for all U € €5°() and for all v > ~y one has

1 1
VIR + U, B < C (73 1B+ 25 ng%ﬁ) ,

d
where [ = Ay" | YU + 05U+ Y A0, U+ DU | +T U, g:=BU, _,.
j=1

Before stating our last assumption, we make a couple of remarks. In the derivation of energy estimates,
one usually replaces the linear operator

d
U Ag' | AU + 00U + > A0, U+ DU | +THU
j=1
by its paradifferential version
d—1
v v v v
U= T eyan U+ ZlT g U O U+ T, U+ TR,
]:

and treats the errors as source terms'. These errors have the following form:

¥ <Ad1U - T21U> , or AJ'A;0, U—T U.
a &

z-AglAjU’ or Ay DiU-T),

a' D1
To absorb these errors in an estimate with a loss of one tangential derivative, one needs the regularity
stated in assumptions 1 and 2 for the coefficients (see Theorem 2.3 in the preceeding section).

The crucial point in assumption 2 is that the energy estimate is independent of the lower order
term in the interior equation. More precisely, if the energy estimate holds with Dy = Dy = 0, it is not
clear whether it also holds for arbitrary D and Dsy. This is a major difference with the stable case where
there is no loss of derivative (and therefore, one can treat lower order terms as source terms in energy
estimates). In the framework of weakly stable problems, the lower order terms in the interior equations
can not be neglected and one needs to pay special attention. One way to rephrase assumption 2 is the
following: energy estimates with loss of one tangential derivative hold, independently of the lower order
terms, and independently of their nature (meaning classical, or paradifferential, or a linear combination
of the two).

We now turn to our last assumption, that is the analogue of assumption 2 for a dual problem. First
recall the following definition:

1Recall that we use a tangential symbolic calculus for which z4 is seen as a parameter.



Definition 3.1. A dual problem for (1) is a linear problem that reads:
OV +3Y9 AT 9,V + DV = fy(t,x), te]o,T[, zeRe,
{Mﬁ(t,y) Vyoo = 9:(6,y) t€l0,T[, yeR,
where My is a (n — p) X n matriz of maximal rank such that
V(ty) €RY, By(t.y)" Blty) + My(t,y)" M(t.y) = Aq(t,y.0), (3)
for suitable p x n and (n — p) X n matrices By and M, and such that By, My, M belong to W% (R%).

Our final assumption is that the energy estimate with loss of one tangential derivative is also satisfied
by one dual problem?, when the parameter 7 is changed into —~:

Assumption 3. There exists a dual problem (that is, a matriz My satisfying (3)) such that for any Dy €
Wtee(Q), and for any symbol Dy € T(Q), there exists a constant C (that depends only on 8, || Aj|ly2.c(q),
[ D1llwree (@), |Millwzoomay and on a finite number of seminorms of the symbol D2) and there exists a
constant o > 1 such that for all V € €5°(Q) and for all v > o one has

1 1
VIV + VLol < € (55 1+ 5 Il )

d
where  fy = (A]) AV =00V =D AT 0.V + D1V |+ TRV, go:= MV,
j=1

zg=0 "

In terms of the Lopatinskii condition, assumption 3 means that for one dual problem, the backward
Lopatinskii condition degenerates at order 1 in the hyperbolic region of the cotangent of the boundary. In
practice, one can usually compute explicit dual boundary conditions for which the Lopatinskii determinant
equals that of the original problem (1). Thus the derivation of energy estimates for a dual problem is
usually a direct consequence of energy estimates for the original problem.

In all what follows, we always make assumptions 1, 2 and 3. The result is the following:

Theorem 3.1. Let D € Wh*°(Q), and let T > 0. Then, for all functions f(t,z) and g(t,y) verifying:
f7 atf) 8x1f7 e 78$d_1f € L2(QT) ) QT ::] - OO)T[XRi )
g€ HY(wr), wr:=]—o0,T[xRT,

and such that f and g vanish for t < 0, there exists a unique U € L*(] — oo,T[x]Ri), whose trace on
{xq = 0} belongs to L?(] — oo, T[xR%1), that vanishes for t < 0, and that is a solution to

U + Y0 Aj(t,2) 0,,U + D(t,2)U = f(t,x), t€]—00,T[, zeRY,
Bt,y) U, _, =9t.y), te]—oo,T[, yeRT,

In addition, U € €([0,T); L>(R1)) and the following estimate holds for all t € [0,T) and all real number
Y = Y-

BTy + 7 e U2y + €7V, 30

- . - 1,
< € (317 g+ 51" Vauf sy + 10l + 5l Vol ) -

The constant C and the parameter vy only depend on 0, || Ajllw2.(q), [|Dllwiee): [[Bllw2eomay and
(| My 2,00 (e -
2 Note that, with our definition, the dual problem is not uniquely defined.




4 Proof of the main result

In this section, we first show existence and uniqueness of solutions for the Boundary Value Problem,
with source terms (f,g) in weighted spaces. For v > 1, we define the spaces L%(Q) = exp(yt)L3(),
H.(2) := exp(yt)H' (Q). We also define the spaces

H(Q) = {v € L}(Q) s.t. O, 0p,v,...,0:, ,v € L*(Q)} = L%RL;H%R%)) ,

HE(Q) == exp(1) A (Q) = {v € Z'(Q) s.t. exp(—yt)v € H#(Q)}, (4)
H(Q) := {v € H(Q) s.t. O, 0p,v,...,05,v € FH(Q)}.

The spaces L%(Rd) and H,} (RY) are defined in a similar way. The space Lg(Q) is equipped with the
obvious norm:
[0l[L2 () := llexp(=yt)vllo

and the space J7,(2) is equipped with the norm
[0l @) = oy with © := exp(—t)v.
Similarly, the space H;(Rd) is equipped with the norm
[l ey = [[@][1,  With @ := exp(—yt)w.

Some elementary, though useful, properties of the spaces () and H(2) are collected in appendix A at
the end of this paper. In particular, we show that elements of H() admit a trace in H%2(R%) (though
they do not necesarily belong to H?(Q2), since the definition (4) does not require 82 f € L*(9)).

We consider a zero order coefficient D € W1>(Q), that we fix once and for all, and we wish to prove
a well-posedness result for the following Boundary Value Problem:

{LU = 0U + Y0, Aj(t,2) 8,,U + D(t,2)U = f(t,x), (t,z)€Q, )

B(t,y) U, _, = 9(t.y), (t,y) e RY,
when the source terms f and g belong to JZ,(Q2) and H% (R9), and # is large. In view of assumption 2, we
expect to obtain a unique solution U in L%(Q) whose trace on the boundary {z; = 0} belongs to L% (R9).

In the end, we shall localize this result on a finite time interval.
For later use, we define the norm of the coefficients:

d
N =) [ 4jllwzee () + IDllwre () + 1Bllwe.oo ey + | Ml wzo0 (ra (6)
j=1
where M} is given by assumption 3, and represents the dual boundary conditions.

4.1 Preliminary estimates

We first show that the original problem, as well as the dual problem, satisfy an energy estimate in L2(H 1)
when the source terms are in L? (that is, we can shift the indices of regularity). More precisely, we have
the following result:



Lemma 4.1. Let D1 € Wh*(Q), and let Dy € T9(Q). There exists a constant C (that depends only on
6, |1 4jllw2e0()s 1D1llwreo()s | Bllw2.ooay and on a finite number of seminorms of the symbol D2) and

there exists a constant 1 > 1 such that for all U € €§°(Q) and for all ¥ > 1 one has
2 2 1 2 1
YIUNG + 11U, Mo < € e /2115 + o 91

2
Ly )
d-1

where  f1 = 7+ZE)A_lUJrZTv iy U+ 0,U+T) U, g =T,

7 'D1+Ds =0’

and one also has

VU 1y + 10 21 < (3|||sz|0 21\92110),

d
where f = Ag' | U+ 0pU + Y A;0, U+ DU |, g2:=BU, . (7)
j=1
Proof. The first inequality is easily proved using the estimates given in Theorem 2.3:
I1BU, o — TU|, _olliy < ClIBllwreoway 1U}, S llo

A7 (YU + 05, U) — T vie, jasUlhy =€ 1Az w2 () 1U o

1A 45000 =T oy

-1
Ulliy < CllAG Ajllw2e @) 1U o,
thanks to assumption 1. Consequently, using assumption 2, the triangle inequality and choosing v large
enough, one can absorb the error terms in the left hand side of the inequality.

We now turn to the second estimate. Let U € 65°(Q), and define

—_ 77 Y Y
=T 0 A_1U+ZT 1, UA O U+ T U,
g = T]_?gU|md:O ,
7Y U
W= T jgey-12U = Thman U

It is clear that we have
IWllo =1Ull-1,, and [W}, _illo =10}, _oll-1,

and we are thus led to derive an energy estimate of W in L?. Thanks to assumption 1 and to Theorem
2.2, we compute:

d—1
Y Y Y
T(’Y—i-ifo)A;lW * ZTZ jAglAjW +05,W + TAngIW
Y Y v
= D T i g 2 H}U+2 (6704, U AU
d—1
Y Y Y
=T T izt ae M}WWJFZ Teazta a1V BL IV,

10



where R”, is a family of order < —2, and R”; is a family of order < —1. In a similar way, we also
compute
Tgmzdzo = T)’\yflﬁg + Rzll/I/‘zd:O ’

where, once again, R, is a family of order < —1. Now, we apply the first estimate of Lemma 4.1 with
the symbol

d—1
Dy = i{(y + i) Ay AN = ) {45145, AT € TH(Q)
j=1
We get

1 1
YIWIG + W, - ll6 < € (73 1731+ RL W, + 2 1T\ g+ BT, W, Hi»y) :

Going back to the definition of W, and choosing v large enough, we have already obtained the L2(H 1)
estimate for the paradifferential problem, namely:

1 1
TP + 101 ol 1 < € (25 060G + 5 gl ) -
Y Y
The result now follows from Lemma 4.2 that we give just below. This Lemma enables us to control the
distance (in L?) between f and fo, and the distance between g and g2 (f2 and go are defined by (7)). O
Lemma 4.2. Let v > 1, a € WH(RY) and v € H~Y(R?). Then one has
la~T7)vllo < C llallw e o)1
for a suitable constant C that does not depend on v, a,v.
If, in addition, a € W2>*(R%), one has
. C
l(a = T3) vllo < 5 lallwz.comay 1] 1,75
(@ = T3) Ox;vll0 < Cllallwzoogay 0] -1, -

Proof. We prove Lemma 4.2 for v in the Schwartz’ class .#(R?). The conclusion follows from a den-
sity /continuity argument. Decompose v as

v=uv+ ) Ogvp, with lugllo S vlvll-iy s Hlullo < Joll-1s -
J

This decomposition holds with

2 L.
RO = gm0 B = g

BRENGEN ©)-

We easily get

lav = T3vllo < la— Twsllo + 3 (@ = T) Buyvsllo < Cllallyroo gy [0]-1 -
J

thanks to Theorem 2.3. The second part of Lemma 4.2 is proved in the same way, and we omit the
details. O
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When dealing with symbols defined on a half-space, one simply integrates the estimates of Lemma 4.2.
The result is a gain of one or two tangential derivatives, depending on the regularity of the multiplicator.
Then one can end the proof of Lemma 4.1. The details are left to the reader.

Of course, similar a priori estimates hold true for the dual problem (with v changed into —v), since
the assumptions and the regularity of the coefficients are exactly the same. We therefore have:

Lemma 4.3. Let Dy € WH(Q). There exists a constant C (that depends only on 4, | Al w200 () 5

[ Dgllw1.00 2y and || Myllyw2.00may) and there exists a constant y1 > 1 such that for all V€ €3°(S2) and for
all v > v, one has

1 1
VIR + IV 2, < C (73 113+ 2 Hg“%) ,

d
where  fi=(A})"N AWV =05,V =D AT 0, V+ D,V |, g =MV
j=1

zg=0 "

Recall that My represents the boundary conditions for the dual problem.

With the help of our L?(H~!) estimate, we are going to construct weak solutions of (5).

4.2 Existence of weak solutions

This paragraph is devoted to the proof of the following result:

Proposition 4.1. There exists 72(IN,0) > 1 such that for v > v2, f € JZ/(Q2), and g € H%(]Rd), there
exists U € L2(Q) satisfying U, ,— € H«,_lm(Rd) and U is a solution to (5) (in the sense of distributions).

Proof. We first commute (5) with the weight exp(—vt), and we are led to search a function U € L%(Q)
that is a solution to

{LVU::'yU—i-LU:f(tafC)) (t,x) €, (8)

B(t,y) U, _, = 3(t.y), (t,y) € RY,

with (f,§) 1= exp(—7t)(f,g) € #(Q) x H'(RY). The formal adjoint (L7)* of the operator L7 is defined
by

d d
(LD)V =V =0V =Y A] 0, V+ D" => 0, AT | V.

J=1 J=1

Using relation (3) and formally integrating by parts, (8) reads

YV € %Ooo(ﬁ) ,
(U, (LY V)2 = (F Vi@ + @ BV, _o)r2(re) + <Mﬁ|zd:07 MV, o) L2(rd)

where the scalar products are denoted as follows:

(U1, U2)) 120 ¢=/QU1(X) Uz(x)dx, (U1, Uz)pa(pay == /Rd Ui(t,y) - Us(t,y) dtdy.

12



We define a set of appropriate test functions:
Fo= {V € Eo(Q) st MV, = 0} S EX(Q).

Thanks to assumption 3 (with Dy = 0 and D1 = DT — 379, A]T), we observe that the operator (L7)* is
one-to-one in the vector space F. Consequently, we may define a linear form ¢ with the following formula:

YV eF, (L)V]:=(f V) + @ BV, _o)r2(ra) - (9)

The following estimate is now a consequence of Lemma 4.3:

L) VI <l

[y IVI-17 + ClIgl A IV —oll-14

C i
<O (Vs + Wiy -1) < g 1)V,

provided that v is large enough, say v > ~2(N,d). Now we apply Hahn-Banach theorem and we can
thus extend £ as a (continuous) linear form over the whole space L*(2). Thanks to Riesz’ theorem, we
conclude that there exists a function U € L%*(Q) verifying:

vveFl, (U)V]={U,(L)V) i) -

In particular, it is clear that LU = fin the sense of distributions. Using that Ay is invertible, the trace
of U on the boundary {z4 = 0} is well-defined and belongs to H~/2(R%), see [3, chapter 7]3. Moreover,
the following Green’s formula holds:

VYV €65°(Q), (U, (L)' V)2 = (f. V2 + <Adﬁ|zd:0’ Vuymo) H-1/2(R4), H1/2(RY) -
Combining with the definition of ¢, see (9), we obtain:
VVeF, (g-— Bﬁ\zd:m Bﬂv\xd:O>H*1/2(Rd)7H1/2(Rd) =0.

Using (3), we observe that the matrix
Bﬁ ”72,00 d
(Mu) © ®

is invertible. We can therefore conclude that Bﬁ|zd:0 = ¢g. This completes the proof of Proposition
4.1. O

We have constructed a solution U € L2(Q) of (8), whose trace belongs to H1/2(R%) (so that the
boundary conditions have a clear meaning). We point out that the L?(H ') estimate given by Lemma
4.3 is crucial in order to obtain U € L?(2). If we had only used the L? estimate given by assumption 3,
we would have obtained a solution U € L2(H ).

In view of assumption 2, we expect the function U to admit a trace in L2 and to satisfy an appropriate
energy estimate, namely:

- ~ 1~ 1
VI + 101,13 < € (511 + 25 1E,) -

3The proof in [3] is done with ¥°° bounded coefficients, but it extends to Lipschitzean coefficients by using paradifferential
techniques to estimate commutators, see e.g. [4] and appendix B for such estimates.
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In the next paragraph, we show that this property holds. In particular, there exists a unique solution of
(5) in Lg(Q), and its trace belongs to L,%(]Rd) when v is large. Of course, such an existence-uniqueness
result will hold independently of the zero order term D.

Before showing this result, we first state an analogue of Proposition 4.1 when the source terms are in
L%. As a matter of fact, we want to solve the BVP for source terms with tangential derivatives in L?,,
but in the analysis, we shall see that we also need to solve BVPs with source terms that are only in L,Qy.

Proposition 4.2. There exists v2(N,0) > 1 such that for v > ~9, f € Lgf(Q), and g € L%(]Rd), there
exists U € L2(]R+;H,Y_1(Rd)) satisfying U, _, € H;g/z(Rd) and U is a solution to (5) (in the sense of
distributions).

Proof. Most of the proof is similar to the proof of Proposition 4.1. Keeping the same notations for the
linear form ¢, and for the vector space F, and using assumption 2, we easily obtain the existence of
U € L?>(R*; H~Y(R%)) such that

VYV eF, (L)V]=(U, (L") V)2m-1),2m1) -

In particular, one has LU = f in the sense of distributions. The problem is now to give a meaning to
the boundary conditions. This is solved by a trace lemma, which we state in appendix C at the end of
this paper. Using this result, we can conclude that the trace of U on {x4 = 0} is well-defined and belongs
to H=3/2(R%). Moreover, the following Green’s formula holds:

YV EEEQ), (U, (L) VY a2y = (F. V)2 + (Adﬁ\zd:m VI, o) H-3/2(Rd), H3/2(R4) -

Using a continuity /density argument, the equality holds for all functions V' € H?(Q) such that MV =0
on the boundary. As was done in the proof of Proposition 4.1, we obtain:

(9= BU|, _o» BiV], _o) r-3/2ma), 32wy = 0
provided that V € H?(2) and M;V = 0 on the boundary. Because By and Mj belong to W2°°(R?), for

all function p € H3/?(R?), there exists V € H?(Q) such that p = BV, o and MyV, = 0. We can
therefore conclude that g = Bﬁ|zd:0. O

4.3 “Weak=semi-strong”

The result is the following;:

Theorem 4.1. Let (f,§) € #(Q) x HY(R?), and let U € L2(R) be a solution to (8) 4, for v sufficiently
large. Then there exist a sequence (UY) in H(Q), a bounded sequence (d¥) in the set of symbols T9(£2),
and a bounded sequence (b) in the set of symbols TTY(R®), that satisfy the following properties:

U — U in L*(Q), U _ —T, _

| in H=12(R9),
xrg=

0
LUY + AJTUY —s [ in (),

BU!  +TuUl  —§in H'(RY).

14
g

“Recall that the trace of U is automatically in H~'/2(R%) and the boundary conditions make sense.
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In particular, lNI‘zd:O belongs to L*(RY) and the following energy estimate holds:

1
. ||g||%,y) . (10)

~ ~ 1~
VIR + 101,13 < © (5170

Recall that the space H(SY) is defined by (4)°.

There is a similar result for solutions of (5) with source terms in L2. One simply needs to shift the
indices (the regularized sequence belongs to H%(Q) and so on). The a priori estimate in L2(H,Y_ 1) is the
inequality (7) in Lemma 4.1. We omit the proof in this case, and focus on Theorem 4.1.

As detailed in the introduction, we are going to introduce a tangential mollifier in order to regularize

U. For all € €]0,1], we define the following symbol ¥:

1

V() eRE X [1,400[, D(€,7) = —
(5 ’7) [ OO[ 8(5 7) ’72+6‘f|2

as well as the corresponding Fourier multiplier:
0l =Ty = (v —eAgy) 7t

With slight abuse of notations, we let ©F act on functions defined over R¢ and on functions defined over

the half-space 2 (where we use symbolic calculus with respect to the tangential coordinates (¢,y), and

the Fourier transform has to be understood as a partial Fourier transform). This mollifier is exactly the

one used in [8] (after introducing the parameter ). As we shall see later on, it has some particularly nice

commutation properties with the operator L7 (these properties are expressed by relation (2.11) in [8]).
Elementary properties of the mollifier ©7 are listed below:

Lemma 4.4. Let v > 1, €]0,1] and s € R. Then for all v € L>(R*; H*(R)), one has:

1 1 1
I©2vls, < 2 Iolls7 s 1©20lst1,7 < " Iollssy s N92vllst2y < — llvllsy -

Ifv € L*(RY; H5t2(RY)), one has
€
1870 — v/~*[ls,y < i lolls+a,y -

In particular, one has |©2v — v/4?||s,, — 0 when e — 0, for all v € L>(RT; H*(R%)).

The proof of Theorem 4.1 is based on several estimates of commutators. Before starting the proof, we
state a lemma (whose first part is due to Friedrichs):

Lemma 4.5 (Friedrichs). Let a € W>°(Q). There exists a constant C' that depends only on ||ally1.0 (o)
such that, for all v > 1, for all e €]0,1], and for all v € L*(f2), one has

lla, ©21vll1y < Cllwllo-

Furthermore, one has ||[a, ©2]v|l1,, — 0 when ¢ — 0, for all v € L*().
Let a € W3°(Q) and j € {0,...,d — 1}. There exists a constant C that depends only on [allp2.0 ()
such that, for all v > 1, for all e €]0,1], and for all v € L*(f2), one has

ladz; —T50x;, ©2] vy < Clvflo-

Furthermore, one has ||[a0y, — T4 0, 02 v|l1,y — 0 when € — 0, for all v € L*(9).

Recall also that the trace on {z4 = 0} of any element v € H(Q) is well-defined and belongs to H*/?(R%). In particular,
it belongs to H* (Rd) and the third point of the Theorem makes sense, see Theorem A.1 in appendix A.
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We postpone the proof of Lemma 4.5 to appendix B (the first part is well-known), and we now give
the proof of Theorem 4.1.

Proof. Define N
U® = 01U € L*(R} ; H*(R{,)).

xTq?
A direct computation yields
d—

AU = 62(A7' ) + v (47", 6210 + (47D, 01T + Y (A7 A4;0,,,02] T
=0

—_

.

where L7 is defined by (8), and where we use the convention Ay = Id. Thanks to Lemma 4.4 and to
Lemma 4.5, we already have

= _ ~ _ ~ 1~
@g(Adlf)+y[Ad1,@g]U+[Adlp,@g]U:?Adlfwa, Irelli, — 0.

This is because A;' € W2°(Q), D € WH*(Q), and A;lfe L*(R*; H'(R%)). Using the decomposition

01U + [17 Neulig

—1 rr —1
[Ad Ajamjv @z] U= [Ad A]azj -1 1A;1A]~§j

iA7 AE
and using Lemma 4.5 (recall that A;'A; € W%(Q)), we obtain

d—1
1 - ~
—Lrvyrre — -1 Y v
Ad L'yUc = 2 Ad f+7‘5+j§—0[TiAd1Aj£j,®€]U, (11)

where ||rc|l1 4 tends to 0. The remaining commutators are zero order terms in U, uniformly with respect
to €. Therefore, one cannot neglect them and treat these commutators as source terms. What saves the
day is that these commutators can be decomposed in the following way":

Y NI =77 [J¢
[Tz‘AElAjEj’ O = Ty, U e,

where dj . is a symbol in T'{() that is uniformly bounded with respect to . Indeed, we use Theorem 2.2
to compute

Y NIT — 77 r7 YT — T r7 YT — T TTE YTT
[T"AEIAJ'&" O = T{AEIAJ'&'A%}U tRU =Ty, 3 U+ RU =Ty U+ RU, (12)

where the symbol d; . is given by
d—1

2e &k —1 0
dje = kzo ’Y2+7]€|§|2 Oy, (Ad Aj) e (), (13)

and where R? is of order < —1, uniformly with respect to e:

IRV iy < ClIVIe, YV eL*(Q), Veelo,1].

SIf 9. had compact support in £, such a decomposition would not hold. The choice of the mollifier 9. is therefore crucial.
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The symbols d;. defined by (13) are uniformly bounded in I'Y(£2) with respect to e.
We observe that 9. = y~2 + €0, with . bounded in I‘%(Q) We also observe that dj. = e ., with
;- bounded in I'?(92). Consequently, the remainder R7 in (12) satisfies

i [[RYW i, =0, YW € 65°(9).

Thanks to the uniform bound on RZ, we may conclude that [|R2U ll1,4 tends to zero as e tends to zero.
Using (12) in equation (11), and defining

d—1
d° = - Zdjﬁ € F(l)(Q) )
§=0

we obtain 1
A\ DU + TUS = = A Hre, ey =0, (14)

and the symbols d° are bounded in I'{(€2). Note that (14) also reads

d—1
1 ~
0z U = —A7" | YU + 05, U° + > A;0,,U° + DU® | — LU + = A f e (),
j=0

and we thus have U® € H(Q2), with H(Q2) defined by (4).
For the boundary conditions, one proceeds in an entirely similar way, and gets

1 _
BUIExd:o + TbZUIExd:o = ~2 g+re, |relliy —0, (15)

with symbols b° bounded in T'7 ' (R%).
Using (14) and (15), the first part of the Theorem is proved, provided that we define (with slight
abuse of notations):

U :=~*U% e H(Q), d":=d, b :=b", ¢,:=27".
Now we show that [7|md20 € L?(R%) and that (10) holds. First note that the operators

Vi AJ'LV + TV and V— BV

=0

are continuous from the space H(Q2) into #(£2) and from H(Q) into H*(R?) (use Theorem A.1 in appendix
A for the boundary operator). Since €5°(f2) is dense in H({2) (see Proposition A.1 in appendix A), it is
clear that the a priori energy estimate given by assumption 2 still holds when U € H(2) (and not only
when U € 65°(Q)).

Thanks to assumption 2, and to the boundedness of d” in T'{(£2), we know that there exists a constant

C = C(N,d) and a positive number ~3(N, §) such that for all » € N, and for all v > ~3, one has
14 14 1 — 14 14 1 14
VT + IUE, B <C (,yg 145 070" + TR0 + 5 ||BU”_O||%,7) .

Decomposing
— Y Y
BU\I;d:O - (BU\I;d:o + Ty U|l;d:0) — Ty Ull;dzo )
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and using (14)-(15), we get (for v large enough):

v v 1 17 ; 1 ~ b
IO+ 1071 < © (55 14 T+ 4 5 1+ 2R, ) (16)

where
] b
Iy iy — 0, lrplliy — 0.

The sequence (U"; d:o) is thus bounded in LQ(Rd), and therefore, up to extracting a subsequence, it
converges weakly in L2(R?) toward some function u>® € L?(R%). Since the whole sequence (U(; d:o)
converges toward U oy 11 H ~1/2(R9), this implies ﬁ\zd:o € L?(R%). Moreover, we know that the sequence
(U") converges strongly toward U in L2(), and (16) yields

~ ~ . 1 1T 1 -
VTR + I, oI} < C limint (,yg 43" 7+ + 5 15+ rgn%ﬁ) ,

1~y 1
<0 (I, + 3 1R, -
This completes the proof. 0

We summarize Proposition 4.1 and Theorem 4.1 by the following well-posedness result for the Bound-
ary Value Problem (5):

Theorem 4.2. Let D € W1(Q). There exists v3(N, ) such that for v > v, f € H,(Q) and g €
H%(]Rd), there exists a unique solution U € Lg(ﬂ) to the following system:

LU = 0,U + Y25y Aj(t,2) 0,,U + D(t,2)U = f(t,2), (t,2) €9,
Bt,y) U, _, =9(t.y), (t,y) € RY,

This solution satisfies U\zd:o € L%(Rd) and the following estimate holds:

1 1
TIO a4 10 o < € (5 1VBrcoy + 2z ol ) -

In addition, there exists a sequence (U") in H,}(Q) that satisfies the following properties:

v : 2 v : 2 (md
U"—U in L3(Q), U\zd:o — U|zd:0 in  LI(RY),
LUY — f in L2(Q), BU! ,—g in Li(R).

The last part of the Theorem is proved in [18], using Friedrichs’ lemma (lemma 4.5). We make the
following important comments: even though the source terms f and g have tangential derivatives in Lgf,
there is no hope to prove, for instance, that LU" converges toward f in JZ,(2), see Theorem 4.1. (It
is only a quantity LU” + T, U" that converges toward f in %, (2)). Eventually, the convergence of
the traces in L,ZY can be obtained because we already know (thanks to Theorem 4.1) that the trace of U
belongs to L%(Rd).

When the source terms are only in Lg, there is an analogous result:
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Theorem 4.3. Let D € WH*°(Q). There exists v3(N, ) such that fory > 3, f € L%(Q) and g € L%(Rd),
there exists a unique solution U € LQ(RL : H;l(ng)) of the following system:

OU + 91 Aj(t,2) 0, U + D(t,2)U = f(t,x), (t,z)€Q,
Bt,y)U), _, =9(t.y), (t,y) € RY,

This solution satisfies U\zd:o € H;l(]Rd) and the following estimate holds:

1
PN ey + 2 Wyl < € (5 1B + ol )

One should also keep in mind that the dual problem admits similar well-posedness results.

4.4 'Well-posedness with zero initial data. End of the proof

Now, we show that Theorem 4.2 and Theorem 4.3 yield a well-posedness result for the Initial Boundary
Value Problem with zero initial data. We first prove that the classical support lemma extends to weakly
stable problems:

Lemma 4.6. There exists 74(N,0) such that, if v > v4, (f,g9) € H,(Q2) x Hvl(]Rd) vanish for t < Ty, then
the solution U € L?Y(Q) of (5) vanishes for t < Ty. Moreover, if v > 4, f € L?Y(Q), and g € L%(Rd),
then the solution U € L*(R™; H;l(Rd)) of (5) also vanishes for t < Tj.

Proof. We give the proof when the source terms are in JZ,(2) x H % (R%), but the proof is similar when the
source terms are in Lgy. There is no loss of generality in assuming 7y = 0. (Otherwise, use a translation
t —t —Tp). We fix a function y € €>°(R) such that x does not vanish and

1, ifr<0,
x(t) = .
exp(—t), ifxz>1.

The function (¢,y,74) € Q + X'(t)/x(t) belongs to W1°°(Q). Consequently, for all  large enough, the
only solution in L%(Q) to the linear problem

X, .
LV X<t)v_0, (t,z) € Q, )
Bt,y)V, , =0, (ty) R,

zq=0

is the trivial solution V' = 0, thanks to Theorem 4.2 (we use the essential fact that Theorem 4.2 holds for
any zero order term in W1h%°(Q)).
Consider some data (f,g) € J2,(Q) x H;(Rd) that vanish for ¢ < 0. Then we have (f, g) € #4,;(2) x

Hi 4 (R?) for all integer j. Thanks to Theorem 4.2, we know that there exists a unique U; € L% +i ()
satisfying

LUj:f(tam)> (t,l‘)EQ,

Bt,y)Uj, ,=9(ty), (ty) R

The function x(U;+1 — U;) belongs to L% +;(8) and one checks that it is a solution to (17). Therefore it
equals zero, and Uj;1 = U; = --- = Up. Furthermore, we know that

1 1
?16111\1) — Iflle, ;@ < +oo  and suII\]) — ||9||H;+].(Rd) < +oo,

Y+ jeN Y +J
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because f and g vanish for ¢ < 0. Thus Theorem 4.2 yields
sup ”Uj”LEH_].(Q) = sup HUOHLgH(Q) < +00.
J J

This implies that Uy vanishes for ¢ < 0. O

We introduce a few notations: for T > 0, let Qp := QN {t < T} =] — 00, T[xR%, and let wy =
] — 0o, T[xR¥1. The spaces L%(QT), L%(wT), and JZ,(Qr) are defined similarly as L%(Q) etc. The
definition of the norms in L2 (Qr) and L2(wr) is clear. As regards the norm in % (Qr), it is defined by

d—1

113, 00) = ’VQHfH%g(QT) +> HaxijQLg(QT) :
i=0

The norm of H}/(wT) is defined in a similar way. We are now able to end the proof of Theorem 3.1.

Proof. We consider source terms f € 5 (Qr), and g € H*(wr), that vanish in the past. We note that f
and g belong to 72, (1) and to H;(wT) for all v > 1.

We extend f and g as functions f, € s#(Q) and g, € H'(RY). Because f, and g, vanish for ¢ < 0, it
is also straightforward that f, € JZ,(Q) and g, € H}/(Rd) for all v > 1. Consequently, for v large enough,
there exists a unique U, € L%(Q) such that

LUb:fb(tax)a (t7$) €Q,
BUy)}, o = 9(t,y), (ty) € R,

and U, satisfies the corresponding energy estimate, see Theorem 4.2. Furthermore, U, vanishes in the
past, thanks to Lemma 4.6. We also have

YNz @)+ 1O 1amolZzor) <Y WOz ) + ITH)L, oo I3 )
1 5 1 9 / 1 2 1 2
<C <73Hfb||%;(ﬂ) + ,72|gb”H}/(Rd)> <C <,y3||f||3fw(QT) * ?HgHH%(“’T) '

The restriction U of U, to Qr belongs to L?(€27) because U, vanishes in the past and U, € L%(QT) when
7 is large. We have thus constructed a solution in L?(Qr) to the localized problem:

{LU = f(t,z), (t,x) € Qr,

B(t,y) U\zdzo =g(t,y), (t,y) € wr. (18)

We now show uniqueness of such a solution. Let U € L?*(Qr) have a trace in L?(wr), vanish in the
past, and satisfy

LU =0, (t,a:)EQT,
BU|zd:O =0, (t,y) €wr.
Let ¢ > 0, and consider a function xy € €°°(R) such that x(t) =1if ¢t <T —2¢, and x(t) =0ift > T —e.

Define U, := xU. Then U, € L*(Q) and U, vanishes in the past, so U, € L%(Q) for all v > 1. Moreover,
we compute:

LU, =X U, (t,z)e€,
BU =0, (t,y)ecR?.

Xlzd:O
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Observe that x'U € L?/(Q) for all ¥ > 1, and x'U vanishes for t < T — 2¢. We can thus apply Lemma 4.6
(with source terms in L3)7, and conclude that U, vanishes for ¢t < T — 2e. Consequently, U vanishes for
t < T, that is, U = 0.

To end the proof of Theorem 3.1, we show the continuity with respect to the time variable. We consider
source terms f € J#(Qr) and g € H'(wr) that vanish in the past, and we continue these functions as
f, € () and g, € H'(R?). We already know that the unique solution U € L?(Qr) of (18) that vanishes
in the past, is the restriction to Q7 of the solution U, € LE/(Q) to the global problem

LUb:fbv (t,x)EQ,
BUb|zd:0 =0, (ta y) € Rda

Moreover, the trace of U, on {zq = 0} belongs to L*(R?), and vanishes in the past. To prove Theorem
3.1, it is sufficient to show the continuity of U, with respect to the time variable. Thanks to Theorem 4.2,
we know that there exists a sequence (U") in H% (Q) verifying

U’ —U, in L2(Q), Ul Uy, L2(RY),
LUY — LU, = f, in L(Q), BU!  —g, in L2(RY).

Using the Friedrichs symmetrizer S (see assumption 1), the classical energy estimate for symmetric hy-
perbolic systems in a half-space reads (see e.g. [12]):

— v 1 1 v v
U ()| 72y + 7 107 720y < C <7||LU 12200 + U |zd_o|r%g(wt)) ,
and we also have
e U () = U (Ol Fagay + VIV = U 20,
1 v v/ v v
< 0 (00" = 20" B0y + 100 = 07l -

Passing to the limit, we obtain the continuity of U, with respect to the time variable. The previous
estimates for the trace of U on w; yields the estimate stated in Theorem 3.1. O

5 Some remarks

5.1 The IBVP with general initial data

Using Theorem 3.1, one would like to show well-posedness of the IBVP (1) with general initial data.
Assume first that the coefficients A;’s and D, as well as the Friedrichs’ symmetrizer S, are ¢, bounded,
and with bounded derivatives. (In this case, one may use standard pseudodifferential calculus instead of
paradifferential calculus). Extend those coefficients to the whole space R+, so that the system remains
symmetric hyperbolic. Then for all f € L'(]0, T[; H?(R%)), and for all Uy € H?(R?), one can construct a
solution UM € €°([0, T); H*(RY)) N €*([0, T]; H'(R?)) to the Cauchy problem

HUD + Y0 A1) 0, U + D(t,a)UW = f(t,a), tel0,T[, zeRe,
g — Uo(z), zeRY.

[t=0

It is crucial here to have a well-posedness result for source terms in L%.
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For the IBVP (1), one seeks the solution under the form U = UM + U®) | with U?) solution to

KU + YL Ay(t,2) 0, U + Dt a)U =0, t€]0,T[, weRl,

B(t,y)U?  =g-BU) . telo, 7], yeR-L,
U|E2:)0:07 xERd.

Consequently, if the source term g belongs to H'(]0, T[xR?~1!), and if the initial data Uy € H?(R%) satisfy
the compatibility condition

9= = B(0,)(U0)), .y »

then one can solve the IBVP (1) with a source term f € L'(]0, T[; H*(R%)), thanks to Theorem 3.1.

However, this strategy hardly applies when the 4;’s are in W*°°(Q) and D is only in W1>°(€2). The
problem is to solve the Cauchy problem with initial data, for instance in H?(R?), and to obtain a solution
on 0, T[xR%, such that its trace on |0, T[xR%~! x {xy = 0} belongs to H'(]0, T[xR4~1). This does not
seem possible with a zero order coefficient in W, We therefore prefer not to pursue this issue, which is
a little beyond the scope of this paper. However, for °° bounded coefficients, and with data that satisfy
the above mentioned compatibility condition, the techniques of [19] should yield a well-posedness result
for the IBVP (1). The result of [20] even suggests that, under this compatibility condition, the IBVP is
well-posed with initial data in H1(R%).

When dealing with nonlinear problems, one usually solves the nonlinear equations by a sequence of
linearized problems with zero initial data and source terms that vanish in the past, see e.g. [13, 15, 18].
This is another reason why we do not pursue the study of general initial data.

5.2 Uniformly characteristic IBVP

In applications, it often happens that the boundary is characteristic, that is, the determinant of the
matrix Ay vanishes on the boundary. In many of these cases (at least in many physically relevant
problems), the rank of A, is constant only on the boundary, and the boundary conditions are maximally
dissipative. In such situations, the corresponding IBVP has been studied in great details by many authors,
even at the level of quasilinear equations, see e.g. [9, 22] and the references cited therein. When the
boundary conditions satisfy the uniform Lopatinskii condition, and when the rank of Ay is constant in a
neighborhood of the boundary, the linear IBVP was studied in [14].

When losses of tangential derivatives occur, and when the boundary is uniformly characteristic (this
happens for instance in the study of contact discontinuities, see [6]), one can reproduce the analysis
developed above. More precisely, assume that there exist two invertible matrices Q12(t,z) € W20 (Q),
such that

VD) €0, Qi) Ault ) Qulr) = (70 )
q
where I}, is the identity matrix in R¥, and ng, ¢ are fixed integers. Then the problem

oU + z;’:l Aj(t,x) 0y, U + D(t,2)U = f(t,x), (t,z) € Qr,
B(tv y) U|xd:o = g(t7 y) ) (t7 y) € wr,

with source terms f € #(Q7) and g € H'(wr) that vanish in the past, satisfies a well-posedness
result that is entirely analogous to Theorem 3.1, provided that the analogues of assumptions 2 and 3 for
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characteristic problems are satisfied. The only difference is that we can control only the noncharacteristic
part of the trace of the solution U on the boundary.

With the help of our analysis, the verification of the well-posedness of the linearized equations for the
vortex sheets problem (as studied in [6]) is thus essentially reduced to the calculation of the Lopatinskii
determinant for a suitable dual problem.

Acknowledgments I thank Patrick Gérard for bringing the reference [8] to my attention. I also thank
Guy Métivier for enlightening numerous technical details. Research of the author was supported by the
EU financed network HYKE, HPRN-CT-2002-00282.

A Some properties of anisotropic Sobolev spaces

In R4 a generic point is denoted by z = (zq,...,24). We use the notation z = (', z4) with 2/ € R?
and z4 € R. We also use the notation {2 = R‘f‘l = {x ¢ R¥*! s.t. 25 > 0}. We define the following spaces
)= {f € L*(R™Y) s.t. Opof, ..., 00, ,f € LART)},
H(R) .= {f € R s.t. Ouofy- .., Ou,f € A (RITH},
)= {f € L*(Q) s.t. Ouofs--.,0u, f € L* ()},
)i =A{f e Q) st. Opof,...,0,f € H(Q)}.

The spaces 7 (R%*1) and H(R*!) are equipped with the following norms®:

1 ~
11y = g [, 0+ EPIF@Rde.

1 —~
I gorsy = g [, L+ IEDA+IERNFOR de,

where we have decomposed ¢ = (¢/,¢;) € R? x R. The spaces J#(2) and H(Q) are equipped with the
NOTrms:

115y = 11220y + 1820 F 2 () + - - + 1024y FllT2(0 »
115 = 1130 + 1020 f I3y + - + 1024 F 130 () -

The following density result is standard, and is proved by a truncation/regularization argument (see
2] for details):

Proposition A.1. The space 65°(R¥1Y) is dense in both 7 (R4TY) and H(RIH!).
The space 65°(Q) is dense in both () and H(S).

The following result is also very classical:

Proposition A.2. There exist two continuous linear mappings
E: Q) — #R™Y  and  E: H(Q) — H(R)

such that for all uw € () (resp. v € H(RY)), Eu=u (resp. Eu = u) almost everywhere in ).

8Here we take v = 1 for the sake of simplicity, but it is clear that introducing the parameter v in the definition of the
norms does not change the results stated below.
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Observe that for the extension operator F, it is sufficient to consider a continuation by 0 outside of 2
(this is because there is no “normal” derivative 0y, in the definition of J#(Q2)).
We end this short appendix with the following result:

Theorem A.1. The mapping T : u € 65°(Q) — u(a’,0) € €°(RY) can be continued in a unique way as
a continuous linear mapping T : H(Q) — H3/2(RY).

Proof. With the help of Proposition A.1 and Proposition A.2, it is sufficient to show that the mapping

I €°RYY — 65°(RY),

u— u(2',0),

satisfies the estimate
ITull s /2ray < C'llullmga+ty

for a suitable constant C'. The following formula is classical:

Fue) = 5 [ (€' 60) dea.

Using Cauchy-Schwarz’ inequality, we thus obtain

~ d 1/2 R 1/2
) <0 ([ ranra) ([orepmoras)

1/2
< o (LarlePmerds)

This bound immediately yields the estimate

/ (1+ €)Y T de’' < © / 1+ 1) / (1+ [€P)A(E) 2 deg de’ = C Jullggaarn
Rd R4 R

The result follows. O

B Estimates for commutators

In this appendix, we give the proof of Lemma 4.5. First, let a € W1*°(Q). Decompose the commutator
as
[a,0]v=[a—T],0]v+[T),0]]|v.

Using Theorem 2.3 and Lemma 4.4, we have
Illa = T2, 621 vl 5y < ll(a = 1) 02014 + 102 (a = T7)vll1 4

1 C
< Cllallwree@ 192vllo + 5 (@ = Td)vlliy < Z5llvlo-
The symbols ¥, are bounded in T'9(2), hence the commutators [T}/, 2] are a bounded family of order
< —1, that is,
173, &1 vfli, < Cllvllo
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for a constant C that does not depend on €. The uniform bound in Lemma 4.5 is thus proved. When
v € 65° (), it is clear that

a(©lv) —O(av) and 0, (a(©lv) — O] (av))

tend toward zero in L2(€2). This yields the convergence toward zero for all functions v € L?(Q), using the
density of €5°(2) in L(Q).
Consider now a € W2>°(Q). Then we have

”’(aaﬂfj - Tgaﬂcj>@gv

1y < Cllallw2e ) 1©2v]lo < j; lallwzeo @) Ilvllo,
and similarly, we have
1©2(ade; = T3 0x)vll1,y < WCQ lallw2.e ) llvllo -
The uniform bound is proved. When v € 65°(2), one shows that
(a0, — T, 0:;,0]v  and Oy, [a0y; — T 0y, v
tend toward zero in L?(Q). The density of 65°(2) in L?(2) ends the proof.

C A trace lemma in H1(Q)

Recall the notation .
Lu = 8w0u+ZAj8xju—|—Du,
j=1

where A; € W2%°(Q) and D € WH°(Q). Let & denote the vector space {u € H~1(Q) s.t. Lu € H*(Q)}.
It is equipped with the norm

/2
lulle i= (aldr-s oy + 1Ll ) -
The result is the following:

Lemma C.1. The space €5°(Q) is dense in &, and the mapping T : u € €5°(Q) — u(z',0) € €5°(RY)
can be uniquely continued as a continuous linear mapping I' : & — H_?’/Q(]Rd). Moreover, the following
Green’s formula holds for all u € & and all v € G§°(Q):

(u, L*0) g-1(0) m1(0) = (Lu, V) g-1(0)m1(Q) + (AdU, ,_o: V), o) H-3/2(Rd), H3/2(RA) -

Proof. The Green’s formula is clear when u is in %§°(Q2), and it is therefore directly obtained by a
continuity/density argument, provided that the first statement of the Lemma holds.

Let u € 65°(2), and let % denote the continuation of u by 0 for x4 < 0. Then we have
ATVL(0) = A7 Lu+ Tu® 6, .
We thus have

ITu ® 8zg=oll pr—2(masry < |1 AG L(@) || p-2qrasry + | A" Lull -2 gy
< C | -1 (ra+1y + C | A Lul| -1 (0) < Cllulle -

25



We also know that there exists a constant ¢ > 0 such that

[T ® 5$d:0||H*2(Rd+1) =cC ||Fu||H—3/2(Rd) J

see e.g. [3, chapter 2]. Consequently, it is now sufficient to prove the density of 6§°(Q2) in E and the
Lemma will follow. The proof is done, as usual, by truncation and regularization. We refer to [3, chapter
7] for the details. The only difference with [3] is that, here, we use the property

I[L; o] vl g1 (masry — 0,

for all v € H~H(R% 1) (o° denotes a mollifier with all the usual properties). O
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