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Abstract

We study the linear stability of compressible vortex sheets in two space dimensions. Under a
supersonic condition that precludes violent instabilities, we prove an energy estimate for the linearized
boundary value problem. Since the problem is characteristic, the estimate we prove exhibits a loss
of control on the trace of the solution. Furthermore, the failure of the uniform Kreiss-Lopatinskii
condition yields a loss of derivatives in the energy estimate.

1 Introduction

A velocity discontinuity in an inviscid flow is called a vortex sheet. In three-space dimensions, a vortex
sheet has vorticity concentrated along a surface in the space. In two-space dimensions, the vorticity is
concentrated along a curve in the plane. The present paper deals with compressible vortex sheets, i. e.
vortex sheets in a compressible flow.

If the solution is piecewise constant on the two sides of the interface of discontinuity, one has planar
vortex sheets in the three dimensional case and rectilinear vortex sheets in the two dimensional case,
respectively. The linear stability of planar and rectilinear compressible vortex sheets has been analyzed
a long time ago, see [27, 12]. In three space dimensions, planar vortex sheets are known to be violently
unstable (see e.g. [30]). In the two dimensional case, subsonic vortex sheets are also violently unstable,
while supersonic vortex sheets are neutrally linearly stable, see e.g. [27]. This result formally agrees with
the theory of incompressible vortex sheets. In fact, in the incompressible limit, the speed of sound tends to
infinity, with the result that two-dimensional vortex sheets are always unstable. This kind of instability is
usually referred to as the Kelvin-Helmhotz instability. For the incompressible theory of two-dimensional
vortex sheets, we refer the reader to the books [7, 22]. Moreover, we refer to [14] for the study of the
instability of vortex sheets when heat conduction is taken into account.
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However, the normal modes analysis performed to derive the stability of supersonic vortex sheets is by
far not sufficient to guarantee the existence of nonconstant vortex sheets (that is, contact discontinuities)
solutions to the compressible isentropic Euler equations. In this paper, we first show that supersonic
constant vortex sheets are linearly stable, in the sense that the linearized system (around these particular
piecewise constant solutions) obeys an energy estimate. Then we consider the linearized equations around
a perturbation of a constant vortex sheet, and we show that these linearized equations obey the same
energy estimate. This is a first step towards proving the existence of nonplanar compressible vortex sheets.

Several points need to be highlighted. First of all, the existence of compressible vortex sheets is a
free boundary nonlinear hyperbolic problem. Moreover, the free boundary is characteristic with respect
to both left and right states since we deal with contact discontinuities. This is one of the reasons why
one can not apply Majda’s analysis on shock waves (see [20, 21]), that are noncharacteristic interfaces. In
some previous works devoted to weakly stable shock waves, see [10, 11], the first author has considered
noncharacteristic hyperbolic Initial Boundary Value Problems that did not meet the uniform Kreiss-
Lopatinskii condition. In the case of vortex sheets, the analysis is closely related, with the additional
difficulty that the boundary is characteristic (the present analysis thus relies more on the work of Majda
and Osher [23] rather than on the work of Kreiss [17, 6]). The connection with [10, 11] is that in both
cases, the analogue of the Kreiss-Lopatinskii condition is fulfilled but not in a uniform way. Furthermore,
in the case of vortex sheets as in the case of shock waves, the linearized Rankine-Hugoniot conditions
form an elliptic system for the unknown front. This property is a key point in our work since it allows
to eliminate the unknown front and to consider a standard Boundary Value Problem with a symbolic
boundary condition (this ellipticity property is also crucial in Majda’s analysis on shock waves [20, 21]).

Regarding the energy estimates for the linearized problems, the failure of the uniform Kreiss-Lopatinskii
condition yields a loss of derivatives with respect to the source terms. Furthermore, because the boundary
is characteristic, we expect to lose some control on the trace of the solution at the boundary. As a matter
of fact, we shall see that the only loss of control is on the tangential velocity (which corresponds to the
“characteristic part” of the solution). The good point is that the ellipticity of the boundary conditions
for the unknown front enables us to gain one derivative for it, as in Majda’s work on shock waves [20].
Going slightly more into the details, we shall prove that the only frequencies for which we lose some
control on the solution correspond to bicharacteristic curves. Those curves originate from those points at
the boundary of the space domain where the so-called Lopatinskii determinant vanishes. In the interior of
the space domain, these singularities propagate along two bicharacteristics associated with the incoming
modes.

Let us now describe the content of the paper. In section 2, we present the nonlinear equations de-
scribing the evolution of compressible vortex sheets and introduce some notations. Then, in section 3,
we shall consider the linearized equations around a constant (stationary) vortex sheet. The main result
for the constant coefficient linearized problem is given in Theorems 1 and 2. After several reductions, we
shall detail in section 4 the normal modes analysis of the linearized problem and construct a degenerate
Kreiss’ symmetrizer in order to derive our energy estimate. In section 5, we first present the variable
coefficients linearized problem and introduce Alinhac’s good unknown. Then we paralinearize the equa-
tions, in order to use the symbolic calculus of section 4 to derive the energy estimate. A precise estimate
of the paralinearization errors is given. Eventually, we show how to control the different pieces of the
solution, depending on their microlocalization. The main result for the variable coefficients linearized
problem is given in Theorem 3. In section 6, we make some remarks about possible future achievements.
Appendix A is devoted to the proof of several technical lemmas and appendix B gathers the main results
on paradifferential calculus that are used throughout section 5.
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2 The nonlinear equations

We consider Euler equations of isentropic gas dynamics in the whole plane R2. Denoting by u the velocity
of the fluid and ρ the density, the equations read:{

∂tρ+∇ · (ρu) = 0 ,

∂t(ρu) +∇ · (ρu⊗ u) +∇ p = 0 ,
(1)

where p = p(ρ) is the pressure law. In all this paper, p is assumed to be a strictly increasing function of
ρ, defined on ]0,+∞[. We also assume that p is a C∞ function of ρ. The speed of sound c(ρ) in the fluid
is then defined by the relation

c(ρ) :=
√
p′(ρ) .

Let (ρ,u)(t, x1, x2) be a smooth function on either side of a smooth hypersurface Γ := {x2 = ϕ(t, x1)}.
Then (ρ,u) is a (weak) solution of (1) if and only if (ρ,u) is a classical solution of (1) on both sides of Γ
and the Rankine-Hugoniot conditions hold at each point of Γ:

∂tϕ [ρ]− [ρu · ν] = 0 ,

∂tϕ [ρu]− [(ρu · ν)u]− [p]ν = 0 ,
(2)

where ν := (−∂x1ϕ, 1) is a (space) normal vector to Γ. As usual, [q] = q+ − q− denotes the jump of a
quantity q across the interface Γ (see [29]).

Following Lax [18], we shall say that (ρ,u) is a contact discontinuity if (2) is satisfied in the following
way:

∂tϕ = u+ · ν = u− · ν ,
p+ = p− .

Because p is monotone, the previous equalities read

∂tϕ = u+ · ν = u− · ν ,
ρ+ = ρ− .

(3)

Since the density and the normal velocity are continuous across the interface Γ, the only jump exper-
imented by the solution is on the tangential velocity. (Here, normal and tangential mean normal and
tangential with respect to Γ). For this reason, a contact discontinuity is a vortex sheet and we shall make
no distinction in the terminology we use.

Note that the first two equalities above are nothing but eikonal equations: if x2 = ϕ(t, x1) is the
equation of the interface Γ, then ϕ satisfies

∂tϕ+ λ2(ρ+,u+, ∂x1ϕ) = 0 and ∂tϕ+ λ2(ρ−,u−, ∂x1ϕ) = 0 ,

on {x2 = 0}, where

λ2(ρ,u, ξ) := u ·
(
ξ
−1

)
, ξ ∈ R ,

is the second characteristic field of the system (1). It is linearly degenerate since the corresponding
eigenvector, in the quasilinear form of (1), is given by

r2(ρ,u, ξ) :=

0
1
ξ

 .
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Recall that the space dimension equals 2.
The interface Γ, or equivalently the function ϕ, is part of the unknowns of the problem. We thus deal

with a free boundary problem. As it is common in this kind of situation, we first straighten the unknown
front in order to work in a fixed domain. More precisely, the unknowns (ρ,u), that are smooth on either
side of {x2 = ϕ(t, x1)}, are replaced by the functions

(ρ+
] ,u

+
] )(t, x1, x2) := (ρ,u)(t, x1,Φ(t, x1, x2)) ,

and (ρ−] ,u
−
] )(t, x1, x2) := (ρ,u)(t, x1,Φ(t, x1,−x2)) ,

where Φ is a smooth function satisfying

∂x2Φ(t, x1, x2) ≥ κ > 0 , Φ(t, x1, 0) = ϕ(t, x1) .

With these requirements for Φ, all functions ρ±] ,u
±
] are smooth on the fixed domain {x2 > 0}. For

convenience, we drop the ] index and only keep the + and − exponents. We also define the functions

Φ±(t, x1, x2) := Φ(t, x1,±x2) ,

that are both smooth on the half-space {x2 > 0}.
Let us denote by v and u the two components of the velocity, that is, u = (v, u). Then the existence of

compressible vortex sheets amounts to proving the existence of smooth solutions to the following system:

∂tρ
+ + v+∂x1ρ

+ + (u+ − ∂tΦ+ − v+∂x1Φ+)
∂x2ρ

+

∂x2Φ+
+ ρ+∂x1v

+ + ρ+ ∂x2u
+

∂x2Φ+
− ρ+ ∂x1Φ+

∂x2Φ+
∂x2v

+ = 0 ,

∂tv
+ + v+∂x1v

+ + (u+ − ∂tΦ+ − v+∂x1Φ+)
∂x2v

+

∂x2Φ+
+
p′(ρ+)

ρ+
∂x1ρ

+ − p′(ρ+)

ρ+

∂x1Φ+

∂x2Φ+
∂x2ρ

+ = 0 ,

∂tu
+ + v+∂x1u

+ + (u+ − ∂tΦ+ − v+∂x1Φ+)
∂x2u

+

∂x2Φ+
+
p′(ρ+)

ρ+

∂x2ρ
+

∂x2Φ+
= 0 ,

∂tρ
− + v−∂x1ρ

− + (u− − ∂tΦ− − v−∂x1Φ−)
∂x2ρ

−

∂x2Φ−
+ ρ−∂x1v

− + ρ−
∂x2u

−

∂x2Φ−
− ρ− ∂x1Φ−

∂x2Φ−
∂x2v

− = 0 ,

∂tv
− + v−∂x1v

− + (u− − ∂tΦ− − v−∂x1Φ−)
∂x2v

−

∂x2Φ−
+
p′(ρ−)

ρ−
∂x1ρ

− − p′(ρ−)

ρ−
∂x1Φ−

∂x2Φ−
∂x2ρ

− = 0 ,

∂tu
− + v−∂x1u

− + (u− − ∂tΦ− − v−∂x1Φ−)
∂x2u

−

∂x2Φ−
+
p′(ρ−)

ρ−
∂x2ρ

−

∂x2Φ−
= 0 ,

(4)

in the fixed domain {x2 > 0}, together with the boundary conditions

Φ+
|x2=0

= Φ−|x2=0
= ϕ ,

∂tϕ = −v+
|x2=0

∂x1ϕ+ u+
|x2=0

= −v−|x2=0
∂x1ϕ+ u−|x2=0

,

ρ+
|x2=0

= ρ−|x2=0
.

For convenience, we rewrite the boundary conditions in the following way:

Φ+
|x2=0

= Φ−|x2=0
= ϕ ,

(v+ − v−)|x2=0
∂x1ϕ− (u+ − u−)|x2=0

= 0 ,

∂tϕ+ v+
|x2=0

∂x1ϕ− u+
|x2=0

= 0 ,

(ρ+ − ρ−)|x2=0
= 0 .

(5)
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The functions Φ+ and Φ− should also satisfy

∂x2Φ+(t, x1, x2) ≥ κ , ∂x2Φ−(t, x1, x2) ≤ −κ , (6)

for a suitable constant κ > 0.
In [20, 21], Majda makes the particular choice

Φ±(t, x1, x2) := ±x2 + ϕ(t, x1) .

This choice is appropriate in the study of shock waves because these are noncharacteristic discontinuities.
In the study of contact discontinuities, it seems rather natural to choose the change of variables Φ± such
that the eikonal equations

∂tΦ
+ + λ2(ρ+,u+, ∂x1Φ+) = ∂tΦ

+ + v+ ∂x1Φ+ − u+ = 0 ,

∂tΦ
− + λ2(ρ−,u−, ∂x1Φ−) = ∂tΦ

− + v− ∂x1Φ− − u− = 0 ,

are satisfied in the whole closed half-space {x2 ≥ 0}. This choice, that is inspired from [13], has several
advantages. First, it simplifies much the expression of the nonlinear equations (4). But it also implies
that the so-called boundary matrix has constant rank in the whole space domain {x2 ≥ 0}, and not only
on the boundary {x2 = 0}. This will enable us to develop a Kreiss’ symmetrizers technique, in the spirit
of [23]. We shall go back to this feature later on.

The problem is thus the construction of (local in time) smooth solutions to (4)-(5)-(6), once initial data
have been prescribed. Of course, such initial data will have to fulfill a certain number of compatibility
conditions. The first step in proving such an existence result is the study of the linearized problem around
a particular constant solution, and this is our first main result, see Theorems 1 and 2. The second step is
the study of the linearized problem around a (variable coefficients) perturbation of the constant solution.
The extension to the variable coefficients linearized problem is addressed in the second part of the paper.
Our second main result states that the constant coefficients energy estimate still holds when one considers
a variable coefficients linearized problem, see Theorem 3.

To avoid overloading the paper, we introduce some compact notations for the nonlinear equations (4).
For all U := (ρ, v, u)T , we define

A1(U) :=


v ρ 0

p′(ρ)

ρ
v 0

0 0 v

 , A2(U) :=


u 0 ρ
0 u 0

p′(ρ)

ρ
0 u

 .

Then the nonlinear equations (4) read

∂tU
+ +A1(U+)∂x1U

+ +
1

∂x2Φ+

(
A2(U+)− ∂tΦ+ − ∂x1Φ+A1(U+)

)
∂x2U

+ = 0 ,

∂tU
− +A1(U−)∂x1U

− +
1

∂x2Φ−
(
A2(U−)− ∂tΦ− − ∂x1Φ−A1(U−)

)
∂x2U

− = 0 .

(7)

With an obvious definition for the differential operator L, the system (7) also reads

L(U+,∇Φ+)U+ = 0 , L(U−,∇Φ−)U− = 0 . (8)

When no confusion is possible, we also write this system under the form

L(U,∇Φ)U = 0 ,
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where U stands for the vector (U+, U−) and Φ for (Φ+,Φ−). One should always remember that the
interior equations (7) are entirely decoupled. The coupling between the right and left states is made by
the boundary conditions (5).

There exist many simple solutions of (8)-(5)-(6), that correspond, in the original variables, to recti-
linear vortex sheets:

(ρ,u) =

{
(ρ,ur) if x2 > σt+ nx1,

(ρ,ul) if x2 < σt+ nx1.

Here above, ur,ul are fixed vectors in R2, and ρ > 0, σ and n are fixed real numbers. These quantities
are linked by the Rankine-Hugoniot conditions:

σ = −vrn+ ur = −vln+ ul .

Changing observer if necessary, we may assume without loss of generality

σ = n = ur = ul = 0 and vr + vl = 0 (vr 6= 0) .

In the new variables, this corresponds to the following regular solution of (8)-(5)-(6):

Ur ≡

 ρ
vr
0

 , Ul ≡

ρvl
0

 , Φr,l(t, x1, x2) ≡ ±x2 , (9)

with the relation vr + vl = 0. We only consider the case vr 6= 0, and without loss of generality, we assume
vr > 0. In the next section, we study the linearized equations around the particular solution defined by
(9). Under a certain “supersonic” assumption, we shall show that the linearized equations satisfy an a
priori energy estimate.

3 The constant coefficients linearized system

3.1 The linearized equations

Let us denote by ρ̇±, u̇±,Ψ± some small perturbations of the exact solution given by (9). Up to second
order, the perturbations U̇± = (ρ̇±, v̇±, u̇±)T satisfy

∂tU̇+ +A1(Ur) ∂x1U̇+ +A2(Ur) ∂x2U̇+ = 0 ,

∂tU̇− +A1(Ul) ∂x1U̇− −A2(Ul) ∂x2U̇− = 0 ,
(10)

in the domain {x2 > 0}, together with the linearized Rankine-Hugoniot relations

Ψ+ = Ψ− = ψ ,

(vr − vl) ∂x1ψ − (u̇+ − u̇−) = 0 ,

∂tψ + vr ∂x1ψ − u̇+ = 0 ,

ρ̇+ − ρ̇− = 0 ,

(11)

on the boundary {x2 = 0}. In short, equations (10)-(11) read{
L′ U̇ = 0 , if x2 > 0,

B(U̇ , ψ) = 0 , if x2 = 0,
(12)
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with U̇ := (U̇+, U̇−), and obvious definitions for the operators L′ and B:

L′ U̇ := ∂t

(
U̇+

U̇−

)
+

(
A1(Ur) 0

0 A1(Ul)

)
∂x1

(
U̇+

U̇−

)
+

(
A2(Ur) 0

0 −A2(Ul)

)
∂x2

(
U̇+

U̇−

)
,

B(U̇ , ψ) :=

(vr − vl) ∂x1ψ − (u̇+ − u̇−)
∂tψ + vr ∂x1ψ − u̇+

ρ̇+ − ρ̇−

 .

It is important to note that the interior equations do not involve the perturbation ψ, so L′ is an operator
that only acts on U̇ . This property also holds when one studies the linearized shock wave equations
around a planar shock, see [20, 25].

Proving an energy estimate for the linearized equations amounts to working with source terms, both
in the interior domain and on the boundary. From now on, we thus consider the linear equations{

L′ U̇ = f , if x2 > 0,

B(U̇ , ψ) = g , if x2 = 0,
(13)

and try to estimate U̇ and ψ in terms of f and g (in appropriate functional spaces). In order to simplify the
subsequent calculations, we introduce some new unknown functions, and define the following quantities:

W1 := v̇+ , W2 :=
1

2

(
− ρ̇+

ρ
+
u̇+

c

)
, W3 :=

1

2

(
ρ̇+

ρ
+
u̇+

c

)
,

W4 := v̇− , W5 :=
1

2

(
− ρ̇−
ρ

+
u̇−
c

)
, W6 :=

1

2

(
ρ̇−
ρ

+
u̇−
c

)
.

(14)

We also define the following vectors:

W := (W1,W2,W3,W4,W5,W6)T ,

W c := (W1,W4)T ,

Wnc := (W2,W3,W5,W6)T .

The notations W c and Wnc are introduced in order to separate the “characteristic part” of the vector W
and the “noncharacteristic part” of W . We shall go back to this decomposition later on. It is obvious
that estimating W is equivalent to estimating U̇ .

Let us define the following 6× 6 symmetric matrices:

A0 :=



1 0 0
0 2c2 0 0
0 0 2c2

1 0 0
0 0 2c2 0

0 0 2c2

 , A1 :=



vr −c2 c2

−c2 2c2vr 0 0
c2 0 2c2vr

vl −c2 c2

0 −c2 2c2vl 0
c2 0 2c2vl

 ,

A2 :=



0 0 0
0 −2c3 0 0
0 0 2c3

0 0 0
0 0 2c3 0

0 0 −2c3

 , (15)
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where 0 stands for the 3× 3 null matrix, as well as the following

b :=

0 vr − vl
1 vr
0 0

 =

0 2vr
1 vr
0 0

 , M :=

−c −c c c
−c −c 0 0
−1 1 1 −1

 . (16)

Then, using (14)-(15)-(16), the linear equations (13) equivalently read{
LW = f , if x2 > 0,

B(Wnc, ψ) = g , if x2 = 0,
(17)

with new f and g, and where we have let

LW := A0 ∂tW + A1 ∂x1W + A2 ∂x2W ,

and B(Wnc, ψ) := MWnc
|x2=0

+ b

(
∂tψ
∂x1ψ

)
.

Note that the kernel of A2 is exactly the set of those W such that Wnc = 0 (and W c is arbitrary).
The boundary {x2 = 0} is thus characteristic with multiplicity 2. As already noted in earlier works, see
e.g. [19, 23], we expect to lose control of the trace of W c, that is, on the trace of the tangential velocities
(v̇+, v̇−). At the opposite, we expect to control the trace of Wnc on {x2 = 0}, that is, we expect to control
the trace of (ρ̇+, ρ̇−, u̇+, u̇−).

3.2 The main result for the constant coefficients case

Before stating our energy estimate for the system (17), we need to introduce some Sobolev weighted
norms. First define the half-space

Ω := {(t, x1, x2) ∈ R3 s.t. x2 > 0} = R2 × R+ .

The boundary ∂Ω is identified to R2.
For all real number s and all γ ≥ 1, define the space

Hs
γ(R2) := {u ∈ D ′(R2) s.t. exp(−γt)u ∈ Hs(R2)} .

It is equipped with the norm
‖u‖Hs

γ(R2) := ‖ exp(−γt)u‖Hs(R2) .

Letting ũ := exp(−γt)u, one has

‖u‖Hs
γ(R2) ' ‖ũ‖s,γ where ‖v‖2s,γ :=

1

(2π)2

∫
R2

(γ2 + |ξ|2)s|v̂(ξ)|2 dξ ,

where v̂ is the Fourier transform of any function v defined on R2.
For all integer k, one can define the space Hk

γ (Ω) in an entirely similar way.
The space L2(R+;Hs

γ(R2)) is equipped with the norm

|||v|||2L2(Hs
γ) :=

∫ +∞

0
‖v(·, x2)‖2Hs

γ(R2) dx2 .

In the sequel, the variable in R2 is (t, x1) while x2 is the variable in R+.
Our first main result is stated as follows:
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Theorem 1. Assume that the particular solution defined by (9) satisfies

vr − vl > 2
√

2 c . (18)

Then there exists a positive constant C such that for all γ ≥ 1 and for all (W,ψ) ∈ H2
γ(Ω)×H2

γ(R2), the
following estimate holds:

γ |||W |||2L2
γ(Ω) + ‖Wnc

|x2=0
‖2L2

γ(R2) + ‖ψ‖2H1
γ(R2) ≤ C

(
1

γ3
|||LW |||2L2(H1

γ) +
1

γ2
‖B(Wnc, ψ)‖2H1

γ(R2)

)
. (19)

Introducing W̃ := exp(−γt)W and ψ̃ := exp(−γt)ψ, we easily find that (17) is equivalent to
L γW̃ := γA0 W̃ + L W̃ = exp(−γt)f , if x2 > 0,

Bγ(W̃nc, ψ̃) := M W̃nc
|x2=0

+ b

(
γψ̃ + ∂tψ̃

∂x1ψ̃

)
= exp(−γt)g , if x2 = 0.

(20)

Consequently, Theorem 1 admits the following equivalent formulation:

Theorem 2. Assume that (18) holds. Then there exists a positive constant C such that for all γ ≥ 1 and

for all (W̃ , ψ̃) ∈ H2(Ω)×H2(R2), the following estimate holds:

γ |||W̃ |||20 + ‖W̃nc
|x2=0
‖20 + ‖ψ̃‖21,γ ≤ C

(
1

γ3
|||L γW̃ |||21,γ +

1

γ2
‖Bγ(W̃nc, ψ̃)‖21,γ

)
. (21)

In (21), we have used the following notations for any u ∈ L2(R+;Hs(R2)):

|||v|||2s,γ :=

∫ +∞

0
‖v(·, x2)‖2s,γ dx2 .

For instance, ||| · |||0,γ is the usual norm on L2(Ω) and does not involve γ, so we shall denote it by ||| · |||0.

The norm ||| · |||1,γ is the weighted norm on L2(R+, H1(R2)).

4 Proof of Theorem 2

4.1 Some preliminary reductions

In this paragraph, we show that it is sufficient to prove Theorem 2 in the particular case L γW̃ ≡ 0. This
first reduction simplifies many subsequent calculations. The argument we use was introduced in [23, page
636].

In order to simplify notations, we drop the tildas. Let W ∈ H2(Ω) and ψ ∈ H2(R2). Then we define:

f := L γW ∈ H1(Ω) , g := Bγ(Wnc, ψ) ∈ H1(R2) .

Consider the following auxiliary problem:{
L γW1 = f , if x2 > 0,

MauxWnc
1 |x2=0

= 0 , if x2 = 0,
(22)
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where Maux is defined by

Maux :=

(
0 1 0 0
0 0 1 0

)
.

In the auxiliary problem (22), the boundary conditions are maximally dissipative (see the formula (15)
defining the matrix A2). Since f ∈ L2(R+;H1(R2)), it follows from [19] that there exists a function
W1 ∈ L2(R+;H1(R2)), such that the trace of Wnc

1 on {x2 = 0} belongs to H1(R2), and that is a solution
to (22). In particular, the function W1 satisfies the following estimates:

γ |||W1|||20 ≤
C

γ
|||f |||20 ,

‖Wnc
1 |x2=0

‖21,γ ≤
C

γ
|||f |||21,γ =

C

γ

∫ +∞

0
‖f(·, x2)‖21,γ dx2 .

(23)

Let us define W2 := W −W1. It satisfies{
L γW2 = 0 , if x2 > 0,

Bγ(Wnc
2 , ψ) = g −MWnc

1 |x2=0
, if x2 = 0.

Consequently, if we manage to prove that Theorem 2 holds true as long as the interior source term is
zero, we shall obtain

γ |||W2|||20 + ‖Wnc
2 |x2=0

‖20 + ‖ψ‖21,γ ≤
C

γ2
‖g −MWnc

1 |x2=0
‖21,γ ≤

C

γ2

(
‖g‖21,γ + ‖Wnc

1 |x2=0
‖21,γ

)
.

Then using (23) to estimate the H1 norm of the trace of Wnc
1 as well as the L2 norm of W1, we shall

derive our main energy estimate (21). Without loss of generality, we thus assume from now on that W
and ψ satisfy

γA0W + A0 ∂tW + A1 ∂x1W + A2 ∂x2W = 0 (24)

in the interior domain Ω, as well as the following boundary conditions

MWnc
|x2=0

+ b

(
γψ + ∂tψ
∂x1ψ

)
= g , x2 = 0 . (25)

With slight abuse of notations, we still denote by g the source term in the boundary conditions, instead
of g −MWnc

1 . This is of pure convenience.
Recall that all matrices Aj are symmetric, and that A0 is positive definite, see (15). Taking the scalar

product of (24) with W and integrating over Ω yields the following inequality:

γ |||W |||20 ≤ C ‖W
nc
|x2=0
‖20 .

Consequently, it is sufficient to derive an estimate of the form

‖Wnc
|x2=0
‖20 + ‖ψ‖21,γ ≤

C

γ2
‖g‖21,γ (26)

in order to obtain (21).
We shall derive (26) by means of a Kreiss’ symmetrizer, whose construction is detailed in the next

paragraphs. Once performed a Fourier transform in (t, x1), the first step consists in “eliminating” the
front ψ in the boundary conditions (25). We emphasize that this operation is possible, even though the
vortex sheet is a characteristic boundary. Then we shall detail the normal modes analysis and construct
a symbolic symmetrizer.
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4.2 Eliminating the front

As mentionned above, we focus on (24)-(25), and perform a Fourier transform in (t, x1). The dual variables
are denoted by (δ, η). We also define τ := γ + iδ. This is the Laplace dual variable (indeed, the previous
manipulations amount to performing a Laplace transform with respect to t). We obtain the following
system of differential equations:

(τA0 + iηA1) Ŵ + A2
dŴ

dx2
= 0 , x2 > 0 ,

b(τ, η)ψ̂ +M Ŵnc(0) = ĝ ,

(27)

where b(τ, η) is simply defined by

b(τ, η) := b

(
τ
iη

)
=

 2ivrη
τ + ivrη

0

 . (28)

Recall that b and M are defined by (16). Observe that b(τ, η) is homogeneous (of degree 1) with respect
to (τ, η). In order to take such homogeneity properties into account, we define the hemisphere

Σ := {(τ, η) ∈ C× R s.t. |τ |2 + v2
rη

2 = 1 and Re τ ≥ 0} .

Recall that τ is the Laplace dual variable of the time variable t, while η is the Fourier dual variable of x1,
so τ/η is a velocity. Our definition of Σ takes this property into account.

We denote by Ξ the set

Ξ := {(γ, δ, η) ∈ [0,+∞[×R2 s.t. (γ, δ, η) 6= (0, 0, 0)} = ]0,+∞[ ·Σ .

It is the set of “frequencies” we shall consider in the sequel. We always identify (γ, δ) ∈ R2 and τ =
γ + iδ ∈ C.

One crucial remark is that the symbol b(τ, η) is elliptic, that is, it does not vanish on the closed
hemisphere Σ. More precisely, we have the following Lemma:

Lemma 1. There exists a C∞ mapping Q defined on Ξ such that Q has values in GL3(C), is homogeneous
of degree 0, and satisfies

∀ (τ, η) ∈ Ξ , Q(τ, η) b(τ, η) =

 0
0

ϑ(τ, η)

 ,

where ϑ is C∞, homogeneous of degree 1, and has the additional property:

min
(τ,η)∈Σ

|ϑ(τ, η)| > 0 .

Proof. We shall define the mapping Q on Σ and then extend Q by homogeneity. If we define

∀ (τ, η) ∈ Σ , Q(τ, η) :=

 0 0 1
τ + ivrη −2ivrη 0
−2ivrη τ − ivrη 0

 ,

then we check that Q has all the required properties. The corresponding ϑ is given by

∀ (τ, η) ∈ Σ , ϑ(τ, η) := |τ + ivrη|2 + 4v2
rη

2 .

Note that the last row of Q(τ, η) is nothing but b(τ, η)∗, when (τ, η) ∈ Σ.
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Let us multiply the boundary conditions in (27) by the matrix Q(τ, η). We obtain: 0
0

ϑ(τ, η)

 ψ̂ +

(
β(τ, η)
`(τ, η)

)
Ŵnc(0) = Q(τ, η) ĝ , (29)

where β has two rows while ` has one row and(
β(τ, η)
`(τ, η)

)
:= Q(τ, η)M .

The exact expression of ` is useless, but we shall use the expression of β:

∀ (τ, η) ∈ Σ , β(τ, η) =

(
−1 1 1 −1

−c(τ + ivlη) −c(τ + ivlη) c(τ + ivrη) c(τ + ivrη)

)
. (30)

Both β and ` are homogeneous of degree 0 and C∞ on Ξ.
The last equation in (29) is

∀ (τ, η) ∈ Σ , ϑ(τ, η)ψ̂ + `(τ, η) Ŵnc(0) = b(τ, η)∗ ĝ ,

since b∗ is the last row of Q. Using the ellipticity property of ϑ (see Lemma 1) together with a uniform
bound for ` and b∗ on Σ, we obtain

∀ (τ, η) ∈ Ξ , (|τ |2 + v2
rη

2)|ψ̂|2 ≤ C
(
|Ŵnc(0)|2 + |ĝ|2

)
.

Let us now integrate this last inequality with respect to (δ, η) ∈ R2. (Recall that δ is the imaginary part
of τ). Using Plancherel’s Theorem, we obtain

‖ψ‖21,γ ≤ C
(
‖Wnc

|x2=0
‖20 + ‖g‖20

)
≤ C

(
‖Wnc

|x2=0
‖20 +

1

γ2
‖g‖21,γ

)
. (31)

In order to derive (26), it is therefore sufficient to derive an estimate of the trace of Wnc. Consequently,
we focus on the reduced problem

(τA0 + iηA1) Ŵ + A2
dŴ

dx2
= 0 , x2 > 0 ,

β(τ, η)Ŵnc(0) = ĥ ,

and try to derive an estimate for Ŵnc(0). One has to remember that the source term ĥ ∈ C2 is easily
estimated by ĝ, see (29).

In the next paragraph, we recall that under the assumption made in Theorems 1 and 2, the above
boundary problem satisfies the Kreiss-Lopatinskii condition but violates the uniform Kreiss-Lopatinskii
condition.
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4.3 The normal modes analysis

Writing W = (W1,W2,W3,W4,W5,W6)T , the two first equations in (27) are:

(τ + ivrη) Ŵ1 − ic2η Ŵ2 + ic2η Ŵ3 = 0 ,

(τ + ivlη) Ŵ4 − ic2η Ŵ5 + ic2η Ŵ6 = 0 .

They do not involve derivation with respect to the normal variable x2. For Re τ > 0, we obtain an
expression for Ŵ1 and Ŵ4 that we plug in the last four equations. This operation yields a system of
ordinary differential equations of the following form:

dŴnc

dx2
= A (τ, η) Ŵnc , if x2 > 0,

β(τ, η)Ŵnc(0) = ĥ , if x2 = 0.

(32)

The matrix A (τ, η) in (32) is given by

A (τ, η) :=


µr −mr 0 0
mr −µr 0 0
0 0 −µl ml

0 0 −ml µl

 , µr,l :=

1

c
(τ + ivr,lη)2 +

c

2
η2

τ + ivr,lη
, mr,l :=

c

2
η2

τ + ivr,lη
. (33)

A well-known result, that is due to Hersh [15] in the noncharacteristic case (see [23] for the extension
to the characteristic case), asserts that the matrix A (τ, η) has no purely imaginary eigenvalue as long as
Re τ > 0. As a consequence, the stable subspace of A (τ, η) has constant dimension when Re τ > 0. This
dimension equals the number of characteristics going out of the discontinuity. In our case, those theoretical
results can be checked directly by computing the eigenvalues and the stable subspace of A (τ, η). The
following Lemma gives an expression of the stable subspace:

Lemma 2. Let τ ∈ C and η ∈ R with Re τ > 0 and (τ, η) ∈ Σ. The eigenvalues of A (τ, η) are the roots
ω of the dispersion relations

ω2 = µ2
r −m2

r =
1

c2
(τ + ivrη)2 + η2 , (34a)

ω2 = µ2
l −m2

l =
1

c2
(τ + ivlη)2 + η2 . (34b)

In particular, (34a) [resp. (34b)] admits a unique root ωr [resp. ωl] of negative real part. The other root
of (34a) [resp. (34b)] is −ωr [resp. −ωl] and has positive real part. The stable subspace E −(τ, η) of
A (τ, η) has dimension 2 and is spanned by the two following vectors:

Er(τ, η) :=

(
c

2
η2,

1

c
(τ + ivrη)2 +

c

2
η2 − (τ + ivrη)ωr, 0, 0

)T
,

El(τ, η) :=

(
0, 0,

1

c
(τ + ivlη)2 +

c

2
η2 − (τ + ivlη)ωl,

c

2
η2

)T
.

(35)

Both ωr and ωl admit a continuous extension to any point (τ, η) such that Re τ = 0 and (τ, η) ∈ Σ.
This allows to extend both vectors Er and El in (35) to the whole hemisphere Σ. Those two vectors are
linearly independent for any value of (τ, η) ∈ Σ.

The symbol A (τ, η) is diagonalizable as long as both ωr and ωl do not vanish, that is, when τ 6=
(±vr ± c)iη. Away from such points, A admits a C∞ basis of eigenvectors.
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The proof follows from straightforward computations, and we shall omit it.
We point out that the stable subspace E −(τ, η) is defined for all (τ, η) ∈ Σ, while the matrix A (τ, η)

has some poles on the boundary of Σ, see (33). The poles are exactly those points (τ, η) ∈ Σ verifying
τ = −ivr,lη = ∓ivrη (recall that we have vr = −vl 6= 0).

Following Majda and Osher [23], we define the Lopatinskii determinant associated with the boundary
conditions β in the following way:

∆(τ, η) := det
[
β(τ, η)

(
Er(τ, η) El(τ, η)

)]
, (36)

with β defined by (30) and (Er, El) defined by (35). We emphasize that the Lopatinskii determinant ∆
is defined on the whole hemisphere Σ and is continuous with respect to (τ, η). The first step in proving
an energy estimate for (32) consists in determining whether ∆ vanishes on Σ. The answer is given in the
following result:

Proposition 1. Assume that (18) holds. Then there exists a positive number V1 such that for any
(τ, η) ∈ Σ, one has ∆(τ, η) = 0 if and only if

τ = 0 or τ = ±iV1η .

Each of these roots is simple. For instance, there exists a neighborhood V of (0, 1/vr) in Σ and a C∞

function h defined on V such that

∀ (τ, η) ∈ V , ∆(τ, η) = τ h(τ, η) and h(0, 1/vr) 6= 0 .

A similar result holds near (0,−1/vr) or near the points (±iV1η, η) ∈ Σ.
The number V1 is given by

V 2
1 := c2 + v2

r − c
√
c2 + 4v2

r .

In particular, one has:
0 < V1 < vr − c .

When τ = 0 or τ = ±iV1η, both eigenmodes ωr and ωl are purely imaginary.

We postpone the proof of Proposition 1 to appendix A. We simply note here that the three critical
speeds −V1, 0, V1 are exactly the speeds of the kink modes exhibited in the work by Artola and Majda
[2]. As a matter of fact, Artola and Majda used a “geometric optics approach”, while we have followed
here a “normal modes analysis approach”. However, the calculations are similar in both cases (in [2], the
number η equals 1).

4.4 Constructing a symmetrizer: the interior points

We now turn to the construction of our degenerate Kreiss’ symmetrizer. The construction is microlocal
and is achieved near any point (τ0, η0) ∈ Σ. The analysis is rather long since one has to distinguish
between five different cases. In the end, we shall consider a partition of unity to patch things together
and derive our energy estimate.

In all the rest of the article, the letter κ denotes a generic positive constant (typically, though not
necessarily, a rather small one).
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We first consider the case (τ0, η0) ∈ Σ with Re τ0 > 0. Then the matrix A (τ, η) is diagonalizable for
all (τ, η) close to (τ0, η0). A smooth (that is, C∞) basis of eigenvectors is given by the following family:

Er(τ, η), El(τ, η),

(
c

2
η2,

1

c
(τ + ivrη)2 +

c

2
η2 + (τ + ivrη)ωr, 0, 0

)T
,

and

(
0, 0,

1

c
(τ + ivlη)2 +

c

2
η2 + (τ + ivlη)ωl,

c

2
η2

)T
.

Both vectors Er and El are defined by (35). Therefore, there exists a C∞ mapping T (τ, η), defined on a
neighborhood V of (τ0, η0) in Σ, with values in GL4(C), and such that

∀ (τ, η) ∈ V , T (τ, η)A (τ, η)T (τ, η)−1 =


ωr 0 0 0
0 ωl 0 0
0 0 −ωr 0
0 0 0 −ωl

 .

The first two columns of the matrix T (τ, η)−1 are the vectors Er and El. In the neighborhood V , we
define the symmetrizer r in the usual way:

∀ (τ, η) ∈ V , r(τ, η) :=


−1 0 0 0
0 −1 0 0
0 0 K 0
0 0 0 K

 ,

where K ≥ 1 is a positive real number, to be fixed large enough. In what follows, we use the standard
notation

Re M :=
M +M∗

2

for all square matrix M with complex entries (M∗ is the classical adjoint matrix).
The matrix r defined just above is hermitian, and we have

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η)−1) ≥ κ I ≥ κγ I , (37)

for some positive constant κ. This is because ωr and ωl have negative real part when (τ, η) ∈ V , and
γ ≤ 1 when (τ, η) ∈ Σ.

We now simply need to fix K ≥ 1 in order to recover an estimate for the trace of Wnc. We show that
for K sufficiently large, the following inequality holds:

∀ (τ, η) ∈ V , r(τ, η) + C
(
β̃(τ, η)

)∗
β̃(τ, η) ≥ I , (38)

where C is a positive constant and

β̃(τ, η) := β(τ, η)T (τ, η)−1 .

Let Z = (Z−, Z+)T ∈ C4, with Z−, Z+ ∈ C2. We write

β̃(τ, η)Z = β(τ, η)T (τ, η)−1

(
Z−

0

)
+ β̃(τ, η)

(
0
Z+

)
,
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and recall that the first two columns of T (τ, η)−1 are Er and El. Because the Lopatinskii determinant
does not vanish at (τ0, η0), see (36) and Proposition 1, we obtain an estimate of the form

|Z−|2 ≤ C0

(
|Z+|2 + |β̃(τ, η)Z|2

)
,

for a suitable constant C0 that is independent of (τ, η) ∈ V . With C0 satisfying this inequality, the
definition of r yields

〈r(τ, η)Z,Z〉C4 + 2C0 |β̃(τ, η)Z|2 = −|Z−|2 +K|Z+|2 + 2C0 |β̃(τ, η)Z|2

≥ |Z−|2 + (K − 2C0)|Z+|2 .

This gives (38) for K large enough (e.g., K = 2C0 + 1).

4.5 Constructing a symmetrizer: the boundary points (case 1)

We now turn to the construction of the symmetrizer near those points (τ, η) ∈ Σ such that Re τ = 0. We
first prove a general result on the behavior of the eigenmodes ωr,l in the neighborhood of such points:

Lemma 3. Let (τ0, η0) ∈ Σ so that Re τ0 = 0 and τ0 6= (−vr±c)iη0. In particular, ωr depends analytically
on (τ, η) near (τ0, η0). Then the two following cases may occur:

1. The eigenmode ωr has negative real part at (τ0, η0), and, in a suitable neighborhood V of (τ0, η0),
one has

Re ωr ≤ −κ < 0 .

2. The eigenmode ωr is purely imaginary at (τ0, η0). In this case, the derivative ∂γωr calculated at
(τ0, η0) is a nonzero real number. In a suitable neighborhood V of (τ0, η0) in Σ, we have

Re ωr ≤ −κγ .

A completely similar result holds for ωl near all points (τ0, η0) ∈ Σ satisfying Re τ0 = 0 and τ0 6=
(−vl ± c)iη0.

Proof. Because τ0 6= (−vr ± c)iη0, the eigenmode ωr is not zero at (τ0, η0) and it depends analytically on
(τ, η) by the implicit functions Theorem.

The first case in Lemma 3 simply follows from the continuity of ωr with respect to (τ, η). In the second
case, we use (34a) to derive

ωr
∂ωr
∂γ

=
1

c2
(τ + ivrη) .

When τ = τ0 and η = η0, one has ωr ∈ iR\{0} and (τ0 +ivrη0) ∈ iR. This proves that the derivative ∂γωr
is real. We now remark that τ0 6= −ivrη0 for, in such a case, ωr has negative real part. Consequently, the
derivative ∂γωr is not zero. The estimate on Re ωr is obtained by performing a Taylor expansion of ωr
at (τ0, η0).

According to Proposition 1, there are exactly four types of points on the boundary of Σ:

1. Those points (τ0, η0) where A (τ0, η0) is diagonalizable and the Lopatinskii condition is satisfied at
(τ0, η0).
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2. Those points (τ0, η0) where A (τ0, η0) is diagonalizable and the Lopatinskii condition breaks down
at (τ0, η0).

3. Those points (τ0, η0) where A (τ0, η0) is not diagonalizable, that is, τ0 = (±vr ± c)iη0. In this case,
Proposition 1 asserts that the Lopatinskii condition is satisfied at (τ0, η0).

4. Those points (τ0, η0) that are the poles of A , that is, τ0 = ±ivrη0. At those points, the Lopatinskii
condition is satisfied.

As a matter of fact, an immediate consequence of Proposition 1 is that whenever the Lopatinskii
condition fails at (τ0, η0), then (τ0, η0) is not a pole and the symbol A (τ, η) is (smoothly) diagonalizable
in a neighborhood of (τ0, η0). The three first categories of boundary points can thus be treated as in
[6, 10, 17, 28], provided the technical assumptions of [10] near instability points hold. We are going to
show that such technical assumptions hold true. The last category of boundary points (the poles of the
symbol A ) requires special attention.

We now deal with the construction of our symmetrizer in case 1: (τ0, η0) ∈ Σ is such that A (τ0, η0) is
diagonalizable and the Lopatinskii condition is satisfied at (τ0, η0), that is, ∆(τ0, η0) 6= 0.

Because A (τ0, η0) is diagonalizable, we have τ0 6= (±vr ± c)iη0. Hence there exists a neighborhood V
of (τ0, η0) in Σ and a smooth basis of eigenvectors of A defined on V . The smooth basis is the same as
in the case of interior points (see the preceeding paragraph). We thus have

∀ (τ, η) ∈ V , T (τ, η)A (τ, η)T (τ, η)−1 =


ωr 0 0 0
0 ωl 0 0
0 0 −ωr 0
0 0 0 −ωl

 ,

where, once again, the two first columns of T (τ, η)−1 are exactly Er and El. We choose r as in the case
of interior points:

∀ (τ, η) ∈ V , r(τ, η) :=


−1 0 0 0
0 −1 0 0
0 0 K 0
0 0 0 K

 ,

with K ≥ 1 to be fixed large enough. Clearly, r is a hermitian matrix. Using Lemma 3, we can already
conclude that

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η)−1) ≥ κγ I . (39)

Because the Lopatinskii condition is satisfied at (τ0, η0), it is possible to choose K large enough so that
the following estimate holds:

∀ (τ, η) ∈ V , r(τ, η) + C
(
β̃(τ, η)

)∗
β̃(τ, η) ≥ I . (40)

In (40), we have let, as usual,
β̃(τ, η) := β(τ, η)T (τ, η)−1 .

The analysis is the same as what we have done for interior points. The estimates (39)-(40) are similar
(but not exactly identical) to (37)-(38).
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4.6 Constructing a symmetrizer: the boundary points (case 2)

In this paragraph, we consider a point (τ0, η0) ∈ Σ such that the Lopatinskii determinant ∆ vanishes at
(τ0, η0). From Proposition 1, we know that the symbol A is smoothly diagonalizable on a neighborhood
V of (τ0, η0) in Σ. In other words, there exists a smooth mapping T (τ, η) with values in GL4(C), and
such that

∀ (τ, η) ∈ V , T (τ, η)A (τ, η)T (τ, η)−1 =


ωr 0 0 0
0 ωl 0 0
0 0 −ωr 0
0 0 0 −ωl

 .

The first two columns of T (τ, η)−1 are Er and El. In this case, we define our symmetrizer r in the following
(degenerate) way:

∀ (τ, η) ∈ V , r(τ, η) :=


−γ2 0 0 0

0 −γ2 0 0
0 0 K 0
0 0 0 K

 ,

with K ≥ 1 to be fixed large enough. The matrix r(τ, η) is hermitian and we have

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η)−1) ≥ κ γ


γ2 0 0 0
0 γ2 0 0
0 0 1 0
0 0 0 1

 . (41)

It only remains to fix K appropriately in order to recover an estimate on the boundary. The choice
of K relies on the following Lemma:

Lemma 4. Let (τ0, η0) ∈ Σ be a point where the Lopatinskii determinant vanishes. Then there exists
a neighborhood V of (τ0, η0) in Σ and a constant κ0 > 0 such that the following estimate holds for all
(τ, η) ∈ V :

∀Z− ∈ C2 , |β(τ, η)
(
Er(τ, η) El(τ, η)

)
Z−|2 ≥ κ0 γ

2 |Z−|2 .

Before proving Lemma 4, let us first show that it enables us to obtain an estimate between r and the
boundary matrix β. More precisely, we are going to show the following estimate:

∀ (τ, η) ∈ V , r(τ, η) + C
(
β̃(τ, η)

)∗
β̃(τ, η) ≥ γ2 I , (42)

for an appropriate positive constant C. The definition of β̃(τ, η) is the same as in the preceeding cases.
Let Z = (Z−, Z+)T ∈ C4, where Z− and Z+ belong to C2. Once again, we write

β̃(τ, η)Z = β(τ, η)T (τ, η)−1

(
Z−

0

)
+ β̃(τ, η)

(
0
Z+

)
,

and we recall that the first two columns of T (τ, η)−1 are Er and El. Using Lemma 4, we obtain

κ0 γ
2 |Z−|2 ≤ C0

(
|Z+|2 + |β̃(τ, η)Z|2

)
.
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We thus derive

〈r(τ, η)Z,Z〉C4 +
2C0

κ0
|β̃(τ, η)Z|2 = −γ2 |Z−|2 +K|Z+|2 +

2C0

κ0
|β̃(τ, η)Z|2

≥ γ2 |Z−|2 +

(
K − 2C0

κ0

)
|Z+|2 .

Choosing K = 2C0/κ0 + 1 yields

〈r(τ, η)Z,Z〉C4 +
2C0

κ0
|β̃(τ, η)Z|2 ≥ γ2 |Z−|2 + |Z+|2 ≥ γ2 |Z|2 .

Here we have much weakened our estimate for the last two components Z+. However, an inequality like
(42) is simpler to use since it does not distinguish between the different coordinates of the vector Z. One
should remember that the real loss of control is on the modes ωr and ωl, and not on the modes −ωr and
−ωl.

The proof of Lemma 4 is postponed to appendix A. It relies on the fact that the roots of the Lopatinskii
determinant ∆ are simple (see Proposition 1).

4.7 Constructing a symmetrizer: the boundary points (case 3)

In this paragraph, we consider a point (τ0, η0) ∈ Σ such that τ0 = −ivrη0 ± icη0. (The case τ0 =
−ivlη0 ± icη0 is entirely similar and we shall not detail it). Because vl = −vr and vr > c

√
2, we have

τ0 6= −ivlη0 ± icη0, and therefore, the eigenmode ωl depends smoothly on (τ, η) in a neighborhood V of
(τ0, η0). Oppositely, ωr is only continuous with respect to (τ, η) near (τ0, η0), but ω2

r is C∞ near (τ0, η0).
This is because (34a) has a double root when (τ, η) = (τ0, η0).

When (τ, η) is close to (τ0, η0), the following family is a C∞ basis of C4:

(mr,−mr, 0, 0)T , (−i, 0, 0, 0)T ,

El(τ, η) and

(
0, 0,

1

c
(τ + ivlη)2 +

c

2
η2 + (τ + ivlη)ωl,

c

2
η2

)T
.

Recall that mr is defined by (33). Let T (τ, η)−1 be the (regular) matrix whose columns are those four
vectors. We compute

T (τ, η)A (τ, η)T (τ, η)−1 =

ar 0 0
0 ωl 0
0 0 −ωl

 ,

where ar is the 2× 2 matrix defined as follows:

ar(τ, η) :=


−c ω2

r

τ + ivrη
i

2imr c ω
2
r

τ + ivrη

c ω2
r

τ + ivrη

 .

In particular, we have

ar(τ0, η0) =

(
0 i
0 0

)
=: iN .

Moreover, we make the following observations:
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For all (τ, η) close to (τ0, η0) so that τ ∈ iR, ar has purely imaginary coefficients.

The lower left coefficient ϑr of ar satisfies

∂ϑr
∂γ

(τ0, η0) ∈ R \ {0} .

Here we have exhibited a basis in which Ralston’s result [28] applies. Readers who are familiar with
the theory will have recognized the “block structure condition”, that is a consequence here of the strict
hyperbolicity of (1), see [24].

We are looking for a symmetrizer r under the form

r(τ, η) =

s(τ, η) 0 0
0 −1 0
0 0 K

 ,

where K ≥ 1 is a real number, to be fixed large enough, and s is some 2× 2 hermitian matrix, depending
smoothly on (τ, η). More precisely, we are looking for the matrix s under the following form

s(τ, η) =

(
0 e1

e1 e2

)
︸ ︷︷ ︸

E

+

(
f(τ, η) 0

0 0

)
︸ ︷︷ ︸

F (τ,η)

−iγ
(

0 −g
g 0

)
︸ ︷︷ ︸

G

,

where e1, e2 and g are real numbers, and f is a real valued C∞ mapping that vanishes at (τ0, η0), see
[6, 17, 28]. We choose e1 in the following way:

e1 :=

(
∂ϑr
∂γ

(τ0, η0)

)−1

∈ R \ {0} ,

where ϑr is defined just above. This choice may look surprising but it will be justified later on.
Now we observe that our choice of s yields (γ0 = 0):

r(τ0, η0) =


0 e1 0 0
e1 e2 0 0
0 0 −1 0
0 0 0 K

 .

Moreover, the first and third columns of T (τ0, η0)−1 are nothing but Er(τ0, η0) and El(τ0, η0). This is due
to the equality µr = −mr when (τ, η) = (τ0, η0). Because Lopatinskii’s condition is satified at (τ0, η0), we
can choose e2 and K large enough such that the following estimate holds:

r(τ0, η0) + C
(
β̃(τ0, η0)

)∗
β̃(τ0, η0) ≥ I .

As was done before, we have let
β̃(τ, η) := β(τ, η)T (τ, η)−1 .

Up to shrinking V , we have thus derived the following estimate

∀ (τ, η) ∈ V , r(τ, η) + C
(
β̃(τ, η)

)∗
β̃(τ, η) ≥ 1

2
I , (43)
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for a suitable constant C.
Now, we show how to choose the real valued function f and the real number g. We first write

ar(τ, η) = ar(τ0, η0) + (ar(iδ, η)− ar(τ0, η0)) + (ar(τ, η)− ar(iδ, η)) ,

and then use Taylor’s formula. We obtain

ar(τ, η) = iN + (ar(iδ, η)− ar(τ0, η0)) + γ
∂ar
∂γ

(iδ, η) + γ2M(τ, η) ,

for a suitable continuous function M . Because ar has purely imaginary coefficients when τ is purely
imaginary, we have

ar(iδ, η)− ar(τ0, η0) =

(
ib1(iδ, η) 0
ib2(iδ, η) ib3(iδ, η)

)
=: iBr(iδ, η) ,

for some C∞, real valued mappings b1, b2, b3. Those three mappings obviously vanish at (τ0, η0). We
choose

f(τ, η) := e1 (b1(iδ, η)− b3(iδ, η)) + e2 b2(iδ, η) ,

so that f is a C∞ real valued mapping that vanishes at (τ0, η0). Moreover, this choice of f implies that
the matrix

(E + F (τ, η))(N +Br(iδ, η))

is real and symmetric for all (τ, η). Consequently, we obtain

Re (s(τ, η)ar(τ, η)) = γ Re

(
GN + E

∂ar
∂γ

(iδ, η)

)
+ γ L(τ, η) ,

where L is continuous (it is even C∞) and L(τ0, η0) = 0. Our choice for e1 yields

Re

(
GN + E

∂ar
∂γ

(τ0, η0)

)
=

(
0 0
0 g

)
+

(
1 ∗
∗ ∗

)
,

where the ∗ are coefficients that only depend on e1, e2 (that have already been fixed) and (τ0, η0). Choosing
g large enough, and shrinking V if necessary, we end up with

Re (s(τ, η)ar(τ, η)) ≥ 1

4
γ I ,

and we thus obtain

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η)−1) ≥ κ γ I . (44)

4.8 Constructing a symmetrizer: the boundary points (case 4)

We now consider the last case, which is (τ0, η0) ∈ Σ with τ0 = −ivrη0. (We shall not detail the case
τ0 = −ivlη0 that is entirely similar). The symbol A is not defined at (τ0, η0), while the stable subspace
E − of A admits a continuous extension at this point. The family (Er, El) is a C∞ basis of E − near
(τ0, η0), see Lemma 2, and Lopatinskii’s condition is satisfied near (τ0, η0), see Proposition 1.
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The eigenmode ωr has negative real part when (τ, η) is close to (τ0, η0), see (34a). Oppositely, the
eigenmode ωl is purely imaginary when (τ, η) is close to (τ0, η0) and Re τ = 0, see (34b). Furthermore,
both ωr and ωl depend analytically on (τ, η) in a neighborhood V of (τ0, η0).

The matrix A is not smoothly diagonalizable on V . This is because the eigenvector associated with
the eigenvalue −ωr tends to be parallel to the eigenvector associated with the eigenvalue ωr. Consequently,
Majda and Osher’s construction of a symmetrizer in this case involves a singularity in the symmetrizer,
see [23]. We prefer to avoid this singularity in the symmetrizer and construct a smooth (that is, C∞)
symmetrizer in the whole neighborhood V . This is possible if we go back to the original system:

(τA0 + iηA1) Ŵ + A2
dŴ

dx2
= 0 , x2 > 0 , (45a)

β(τ, η)Ŵnc(0) = ĥ , (45b)

The following analysis is inspired from [4]. For (τ, η) in a neighborhood V of (τ0, η0), the following matrix
is regular (that is, invertible):

T (τ, η) :=



1 −icη(τ + ivrη − cωr) 0

0
c

2
η2 0 0

0 (τ + ivrη)(µr − ωr) 1
1 icη(τ + ivlη − cωl) icη(τ + ivlη + cωl)

0 0 (τ + ivlη)(µl − ωl) (τ + ivlη)(µl + ωl)

0
c

2
η2 c

2
η2


. (46)

To avoid overloading the equations, we shall simply denote by 0 the 3× 3 zero matrix. The determinant
of T (τ, η) is given by

det T (τ, η) =
c2

2
η4 (τ + ivlη)ωl ,

and it is easy to check that this quantity does not vanish near (τ0, η0). The matrix T depends smoothly
on (τ, η) in the whole neighborhood V . It has no pole.

Let us define

ξr := (τ + ivrη)(µr − ωr) =
1

c
(τ + ivrη)2 +

c

2
η2 − (τ + ivrη)ωr , (47a)

ξ±l := (τ + ivlη)(µl ± ωl) =
1

c
(τ + ivlη)2 +

c

2
η2 ± (τ + ivlη)ωl . (47b)

The main idea now is that (45a) has a simple expression if we decompose the vector Ŵ in the basis
defined by T . In other words, the matrices

(τA0 + iηA1)T (τ, η) and A2T (τ, η)

have a rather similar structure. Performing some manipulations on the rows of these two matrices, we
shall transform (45a) into an “almost diagonal” system of differential equations.
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After some simplifications, we obtain the following expressions:

(τA0 + iηA1)T =



τ + ivrη 0 ic2η
−ic2η c4η2ωr 0 0
ic2η −2c3ωrξr 2c2(τ + ivrη)

τ + ivlη 0 0
0 −ic2η −2c3ωlξ

−
l 2c3ωlξ

+
l

ic2η c4η2ωl −c4η2ωl

 ,

A2T =



0 0 0
0 −c4η2 0 0
0 2c3ξr 2c3

0 0 0
0 0 2c3ξ−l 2c3ξ+

l

0 −c4η2 −c4η2

 ,

where ξr and ξ±l are defined by (47a)-(47b). These expressions may look somehow complicated, but it is
not so hard to simplify them multiplying on the left by a suitable symmetrizer. Indeed, for all (τ, η) in a
neighborhood V of (τ0, η0), let us define the following matrix:

R1(τ, η) :=



1 0 0
0 1 0 0

2ic4η(τ + ivrη − cωr) 2c3ξr c4η2

1 0 0
0 −2ic4η(τ + ivlη + cωl) c4η2 2c3ξ+

l

−2ic4η(τ + ivlη − cωl) c4η2 2c3ξ−l

 . (48)

First we obtain

R1A2T = diag (0,−c4η2, 2c7η2, 0,−4c7η2(τ + ivlη)ωl, 4c
7η2(τ + ivlη)ωl) ,

where diag (a1, . . . , ap) stands for the diagonal matrix whose diagonal elements are a1, . . . , ap. We also
obtain the following expression:

R1(τA0 + iηA1)T =

τ + ivrη 0 ic2η
−ic2η c4η2ωr 0 0

0 0 2c7η2ωr
τ + ivlη 0 0

0 0 4c7η2ω2
l (τ + ivlη) 0

0 0 4c7η2ω2
l (τ + ivlη)

 .

Recall that ωl, η and (τ + ivlη) do not vanish in the neighborhood V of (τ0, η0), up to shrinking V . The
following matrix is therefore a C∞ mapping of (τ, η) on V :

R2(τ, η) := diag (1, 1,
1

2c7η2
, 1,

1

4c7η2ωl(τ + ivlη)
,

1

4c7η2ωl(τ + ivlη)
) . (49)

We define
S(τ, η) := R2(τ, η)R1(τ, η) ,
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where R1 and R2 are defined by (48)-(49). It is now easy to derive the following equalities for all (τ, η)
in V :

S(τ, η)A2T (τ, η) = diag (0,−c4η2, 1, 0,−1, 1) , (50a)

S(τ, η)(τA0 + iηA1)T (τ, η) =



τ + ivrη 0 ic2η
−ic2η c4η2ωr 0 0

0 0 ωr
τ + ivlη 0 0

0 0 ωl 0
0 0 ωl

 . (50b)

In particular, it is important to observe that both matrices S and T are C∞ on the whole neighborhood
V . Up to shrinking V , we may assume that ωr has negative real part for all (τ, η) ∈ V . This is possible
because ωr = −|η| at (τ0, η0).

Though a little complicated, the preceeding calculations are based on the simple idea that the differ-
ential equations (45a) have an easy expression if we replace the standard coordinates by the coordinates
on the stable subspace. The difficulty comes from the fact that we deal with the differential system
satisfied by Ŵ and not with the system satisfied by Ŵnc. Because the boundary is characteristic, (45a) is
not an ordinary differential equation, and we thus need to diagonalize simultaneously (τA0 + iηA1) and
A2. Even though the matrix S(τA0 + iηA1)T is not diagonal, we shall see that the reduced expressions
(50a)-(50b) are sufficient to derive energy estimates in such a neighborhood V of the pole (τ0, η0).

4.9 Derivation of the energy estimate

We now turn to the derivation of the estimate (26). Recall that we are considering a function W ∈ H1(Ω)
such that

(τA0 + iηA1) Ŵ + A2
dŴ

dx2
= 0 , x2 > 0 ,

β(τ, η)Ŵnc(0) = ĥ ,

where ĥ is obtained from the source term ĝ in (27) after eliminating the unknown front:

∀ (τ, η) ∈ Σ , ĥ =

(
0 0 1

τ + ivrη −2ivrη 0

)
ĝ .

Thanks to (31), it is sufficient to get an estimate of the trace of Wnc on {x2 = 0} in order to derive
(26).

The previous analysis shows that for all (τ0, η0) ∈ Σ, there exists a neighborhood V of (τ0, η0) in Σ
and mappings defined on this neighborhood that satisfy certain properties. Because Σ is a C∞ compact
manifold, there exists a finite covering (V1, . . . ,VI) of Σ by such neighborhoods, and a smooth partition
of unity (χ1, . . . , χI) associated with this covering. Namely, the χi’s are nonnegative, C∞, and satisfy

Supp χi ⊂ Vi and
I∑
i=1

χ2
i ≡ 1 .

There are three different cases.
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• In the first case, Vi is a neighborhood of an interior point or a neighborhood of a boundary point
corresponding to cases 1 and 3 above (boundary points that are not poles and for which the Lopatinskii
condition is satisfied). On such a neighborhood, there exist two C∞ mappings ri and Ti such that

ri is hermitian,

Ti has values in GL4(C),

the following estimates hold for all (τ, η) ∈ Vi:

Re (ri(τ, η)Ti(τ, η)A (τ, η)Ti(τ, η)−1) ≥ κiγ I ,
ri(τ, η) + Ci

(
β(τ, η)Ti(τ, η)−1

)∗
β(τ, η)Ti(τ, η)−1 ≥ I .

(51)

The inequalities (51) are direct consequences of (37)-(38)-(39)-(40)-(43)- (44).
We define

Ui(τ, η, x2) := χi(τ, η)Ti(τ, η) Ŵnc(δ, η, x2) .

Both mappings ri and Ti are not defined on Σ but only on the neighborhood Vi. However, only the values
of these mappings on the support of χi will be involved in the subsequent calculations, so we choose for
convenience to extend these mappings to the whole hemishpere Σ. Then we extend χi, ri, Ti to the whole
set of frequencies Ξ as homogeneous mappings of degree 0 with respect to (τ, η).

Because Vi does not contain any pole of the symbol A , which is defined by (33), one easily shows that
Ui satisfies

dUi
dx2

= Ti(τ, η)A (τ, η)Ti(τ, η)−1Ui , x2 > 0 ,

β(τ, η)Ti(τ, η)−1Ui(0) = χi ĥ .

We take the scalar product of this later ordinary differential equation with riUi and integrate with respect
to x2 on R+. Then we take the real part of the obtained equality and use (51). These operations yield
the classical Kreiss’ estimate:

κiγ

∫ +∞

0
|Ui(τ, η, x2)|2 dx2 +

1

2
|Ui(τ, η, 0)|2 ≤ Ci χi(τ, η)2 |ĥ(τ, η)|2 .

Now we use the definition of Ui and a uniform bound for ‖Ti(τ, η)−1‖ on the support of χi to derive

γ χi(τ, η)2

∫ +∞

0
|Ŵnc(δ, η, x2)|2 dx2 + χi(τ, η)2 |Ŵnc(δ, η, 0)|2 ≤ Ci χi(τ, η)2 |ĥ|2 . (52)

• In the second case, Vi is a neighborhood of a zero of the Lopatinskii determinant. On such a
neighborhood, there exist two C∞ mappings ri and Ti such that

ri is hermitian,

Ti has values in GL4(C),

the following estimates hold for all (τ, η) ∈ Vi:

Re (ri(τ, η)Ti(τ, η)A (τ, η)Ti(τ, η)−1) ≥ κiγ3 I ,

ri(τ, η) + Ci
(
β(τ, η)Ti(τ, η)−1

)∗
β(τ, η)Ti(τ, η)−1 ≥ γ2 I .

(53)
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These inequalities correspond to (41)-(42).
As was done before, we first extend ri and Ti as C∞ mappings on the whole hemisphere Σ. Then

we extend Ti and χi as homogeneous mappings of degree 0 with respect to (τ, η), and we extend ri as a
homogeneous mapping of degree 2 with respect to (τ, η). Thus (53) reads

Re (ri(τ, η)Ti(τ, η)A (τ, η)Ti(τ, η)−1) ≥ κiγ3 I ,

ri(τ, η) + Ci(|τ |2 + v2
rη

2)
(
β(τ, η)Ti(τ, η)−1

)∗
β(τ, η)Ti(τ, η)−1 ≥ γ2 I ,

(54)

for all (τ, η) ∈ R+ · Vi. Once again, we define

Ui(τ, η, x2) := χi(τ, η)Ti(τ, η) Ŵnc(δ, η, x2) .

Because Vi does not contain any pole of A , we still have

dUi
dx2

= Ti(τ, η)A (τ, η)Ti(τ, η)−1Ui , x2 > 0 ,

β(τ, η)Ti(τ, η)−1Ui(0) = χi ĥ .

We perform the same calculations as above (in the first case), but now we use (54) instead of (51). We
obtain

γ χi(τ, η)2

∫ +∞

0
|Ŵnc(δ, η, x2)|2 dx2 + χi(τ, η)2 |Ŵnc(δ, η, 0)|2 ≤ Ci

γ2
χi(τ, η)2 |ĥ|2 (|τ |2 + v2

rη
2) . (55)

• In the third and last case, Vi is a neighborhood of a pole of the symbol A . For instance, Vi is a
neighborhood of a point (−ivrη0, η0) ∈ Σ. In this case, we have shown that there exists C∞ mappings Ti

and Si defined on Vi such that

Ti has values in GL6(C),

both relations (50a)-(50b) hold on Vi.

Recall that ωr has negative real part on Vi.
Here, we extend χi,Ti and Si as homogeneous mappings of degree 0 with respect to (τ, η). Moreover,

we shall make as if Ti and Si were defined on the whole hemisphere Σ (this is of pure convenience since
only the values on the support of χi are involved in what follows). We define

Ui(τ, η, x2) := χi(τ, η) Ti(τ, η)−1 Ŵ (δ, η, x2) ∈ C6 .

The components of the vector Ui are denoted as follows

Ui = (Ui,1, Ui,2, . . . , Ui,6)T ,

and we also define
Unci := (Ui,2, Ui,3, Ui,5, Ui,6)T ∈ C4 .

Using the definition (46) of Ti(τ, η), it is clear that the vector Unci is given by a relation of the form

Unci = Ti(τ, η)−1Ŵnc , with Ti(τ, η) ∈ GL4(C) .
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We also note that the first and third column vectors of the matrix Ti(τ, η) are exactly the vectors Er(τ, η)
and El(τ, η). With these notations and definitions, we get

(τA0 + iηA1) Ti(τ, η)Ui + A2Ti(τ, η)
dUi
dx2

= 0 , x2 > 0 ,

β(τ, η)Ti(τ, η)Unci (0) = χi(τ, η) ĥ .

Multiplying the equation in {x2 > 0} by Si(τ, η) and using (50a)-(50b), we obtain the following system:

(τ + ivrη)Ui,1 + ic2η Ui,3 = 0 , (56a)

−ic2η Ui,1 +
c4η2

|τ |2 + v2
rη

2
ωr Ui,2 −

c4η2

|τ |2 + v2
rη

2

dUi,2
dx2

= 0 , (56b)

ωr Ui,3 +
dUi,3
dx2

= 0 , (56c)

(τ + ivlη)Ui,4 = 0 , (56d)

ωl Ui,5 −
dUi,5
dx2

= 0 , (56e)

ωl Ui,6 +
dUi,6
dx2

= 0 . (56f)

Recall that when (τ, η) belongs to the conical set R+ · Vi, one has

Re ωr ≤ −κ(|τ |2 + v2
rη

2)1/2 and Re ωl ≤ −κγ ,

for a suitable constant κ > 0. Because Ui,3(xd) and Ui,6(xd) belong to L2(R+), for γ > 0, (56c) and (56f)
imply

Ui,3 ≡ 0 and Ui,6 ≡ 0 .

Using (56a) and (56d), we also obtain

Ui,1 ≡ 0 and Ui,4 ≡ 0 .

Eventually, (56b) and (56e) reduce to

ωr Ui,2 −
dUi,2
dx2

= 0 and ωl Ui,5 −
dUi,5
dx2

= 0 .

Because the first and third columns of Ti(τ, η) are nothing but Er and El defined in Lemma 2, the
boundary conditions for Ui,2 and Ui,5 read:

β(τ, η)
(
Er(τ, η) El(τ, η)

) (Ui,2(0)
Ui,5(0)

)
= χi(τ, η) ĥ . (57)

Using the properties of ωr and ωl on the conical set R+ · Vi, we derive

(|τ |2 + v2
rη

2)1/2

∫ +∞

0
|Ui,2(τ, η, x2)|2 dx2 ≤ C |Ui,2(τ, η, 0)|2 ,

γ

∫ +∞

0
|Ui,5(τ, η, x2)|2 dx2 ≤ C |Ui,5(τ, η, 0)|2 .
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Because the uniform Lopatinskii condition is satisfied on Vi, (57) yields the following estimate:∣∣∣∣(Ui,2(τ, η, 0)
Ui,5(τ, η, 0)

)∣∣∣∣2 ≤ C χi(τ, η)2 |ĥ|2 .

Eventually, we obtain

γ

∫ +∞

0
|Unci (τ, η, x2)|2 dx2 + |Unci (τ, η, 0)|2 ≤ C χi(τ, η)2 |ĥ|2 .

We now use the definition of the vector Unci to derive

γ χ2
i

∫ +∞

0
|Ŵnc(δ, η, x2)|2 dx2 + χ2

i |Ŵnc(δ, η, 0)|2 ≤ C χ2
i |ĥ|2 . (58)

• We now add up (52)-(55)-(58), and use that the χi’s form a partition of unity. We obtain

γ

∫ +∞

0
|Ŵnc(δ, η, x2)|2 dx2 + |Ŵnc(δ, η, 0)|2 ≤ C

γ2
|ĥ|2 (|τ |2 + v2

rη
2) .

We have already recalled that ĥ is simply obtained from the source term ĝ in (27) by multiplying by a
uniformly bounded matrix. Thus integrating the previous inequality with respect to (δ, η) ∈ R2 and using
Plancherel’s Theorem yields the desired estimate:

γ |||Wnc|||20 + ‖Wnc
|x2=0
‖20 ≤

C

γ2
‖g‖21,γ .

Combining with (31), we have finished to prove (26).

5 The variable coefficients linearized problem

5.1 The linearized equations and the main result

We introduce the linearized equations around a state given by a perturbation of the constant solution in
(9). More precisely, let us consider the functions

Ur =

 ρ
vr
0

+ U̇r, Ul =

 ρ
−vr

0

+ U̇l, Φr, Φl, (59)

where ρ, vr are fixed positive constants (in this section we introduce the small change of notation vr → vr
for the piecewise constant solution) and where

Ur(t, x1, x2) =

ρr(t, x1, x2)
vr(t, x1, x2)
ur(t, x1, x2)

 , U̇r(t, x1, x2) =

ρ̇r(t, x1, x2)
v̇r(t, x1, x2)
u̇r(t, x1, x2)

 ,

Ul(t, x1, x2) =

ρl(t, x1, x2)
vl(t, x1, x2)
ul(t, x1, x2)

 , U̇l(t, x1, x2) =

ρ̇l(t, x1, x2)
v̇l(t, x1, x2)
u̇l(t, x1, x2)

 .

28



The functions Φr,Φl are a perturbation of the change of variables. The index r (resp. l) denotes the state
on the right (resp. on the left) of the interface (after the change of variables). We assume that

Ur, Ul, ∇Φr, ∇Φl ∈W 2,∞(Ω) ,

‖(Ur, Ul)‖W 2,∞(Ω) + ‖(∇Φr,∇Φl)‖W 2,∞(Ω) ≤ K0 ,
(60)

where K0 is a suitable positive constant, and that the perturbations U̇r, U̇l have compact support. These
quantities are linked by the Rankine-Hugoniot conditions and the continuity condition for the functions
Φr,l that, written in the form of (5), become

Φr(t, x1, 0) = Φl(t, x1, 0) = ϕ(t, x1),

(vr − vl)|x2=0
∂x1ϕ− (ur − ul)|x2=0

= 0 ,

∂tϕ+ vr|x2=0
∂x1ϕ− ur|x2=0

= 0 ,

(ρr − ρl)|x2=0
= 0 .

(61)

The functions Φr and Φl should also satisfy

∂tΦr + vr ∂x1Φr − ur = 0 ,

∂tΦl + vl ∂x1Φl − ul = 0 ,
(62)

together with
∂x2Φr ≥ κ0 , ∂x2Φl ≤ −κ0 , (63)

for a suitable constant κ0 > 0, in the whole closed half-space {x2 ≥ 0}.
Let us consider the families U±s = Ur,l + sU±,Φ

±
s = Φr,l + sΨ±, where s is a small parameter. We

compute the linearized equations

L′(Ur,l,∇Φr,l)(U±,Ψ±) :=
d

ds
L(U±s ,∇Φ±s )U±s |s=0 = f±.

We obtain

∂tU+ +A1(Ur) ∂x1U+ +
1

∂x2Φr
(A2(Ur)− ∂tΦr − ∂x1ΦrA1(Ur)) ∂x2U+

+[dA1(Ur)U+]∂x1Ur −
∂x2Ψ+

(∂x2Φr)2
(A2(Ur)− ∂tΦr − ∂x1ΦrA1(Ur)) ∂x2Ur

+
1

∂x2Φr
[dA2(Ur)U+ − ∂tΨ+ − ∂x1Ψ+A1(Ur)− ∂x1ΦrdA1(Ur)U+] ∂x2Ur = f+

(64)

in the domain {x2 > 0}, and a similar equation with U−,Ψ−, Ul,Φl, f− instead of U+,Ψ+, Ur, Φr, f+.
Recall that, according to the definition in (7), (8), the first row in (64) may be simply denoted by
L(Ur,∇Φr)U+, namely we set:

L(Ur,∇Φr)U+ := ∂tU+ +A1(Ur) ∂x1U+ +
1

∂x2Φr
(A2(Ur)− ∂tΦr − ∂x1ΦrA1(Ur)) ∂x2U+.

The equation (64) and the corresponding one for (U−,Ψ−) may be simplified by the introduction of ”la
bonne inconnue” (the good unknown) as in [1]:

U̇+ := U+ −
Ψ+

∂x2Φr
∂x2Ur , U̇− := U− −

Ψ−
∂x2Φl

∂x2Ul. (65)
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A direct calculation shows that U̇+, U̇− satisfy

L(Ur,∇Φr)U̇+ + C(Ur,∇Ur,∇Φr)U̇+ +
Ψ+

∂x2Φr
∂x2 [L(Ur,∇Φr)Ur] = f+ ,

L(Ul,∇Φl)U̇− + C(Ul,∇Ul,∇Φl)U̇− +
Ψ−
∂x2Φl

∂x2 [L(Ul,∇Φl)Ul] = f− ,

where

C(Ur,∇Ur,∇Φr)U̇+ := [dA1(Ur)U̇+]∂x1Ur +
1

∂x2Φr
[dA2(Ur)U̇+ − ∂x1ΦrdA1(Ur)U̇+] ∂x2Ur ,

and with a similar expression for C(Ul,∇Ul,∇Φl)U̇−. In view of the results in [1, 13], we neglect the zero
order term in Ψ+,Ψ− in the linearized equations and thus consider the linear equations

L′rU̇+ := L(Ur,∇Φr)U̇+ + C(Ur,∇Ur,∇Φr)U̇+ = f+ ,

L′lU̇− := L(Ul,∇Φl)U̇− + C(Ul,∇Ul,∇Φl)U̇− = f− .
(66)

We easily verify, using (60), that the coefficients of the operators L(Ur,∇Φr) and L(Ul,∇Φl) are in
W 2,∞(Ω), that is

A1(Ur) ∈W 2,∞(Ω) ,
1

∂x2Φr
(A2(Ur)− ∂tΦr − ∂x1ΦrA1(Ur)) ∈W 2,∞(Ω) ,

A1(Ul) ∈W 2,∞(Ω) ,
1

∂x2Φl
(A2(Ul)− ∂tΦl − ∂x1ΦlA1(Ul)) ∈W 2,∞(Ω) .

Moreover we have
C(Ur,l,∇Ur,l,∇Φr,l) ∈W 1,∞(Ω) .

It is clear that the linearized equations (66) form a symmetrizable hyperbolic system. For instance, a
Friedrichs symmetrizer for the operator L′r is given by

Sr :=


p′(ρr)

ρr
0 0

0 ρr 0
0 0 ρr

 .

Using (62), we compute

Sr
∂x2Φr

(A2(Ur)− ∂tΦr − ∂x1ΦrA1(Ur)) =
1

∂x2Φr

 0 −p′(ρr)∂x1Φr p′(ρr)
−p′(ρr)∂x1Φr 0 0

p′(ρr) 0 0

 ,

and we thus expect to control the traces of U̇+,1 and (U̇+,3 − ∂x1Φr U̇+,2) on the boundary {x2 = 0}.
These considerations motivate the introduction of the following operator:

PU̇±|x2=0
:=

(
U̇±,1

U̇±,3 − ∂x1ϕ U̇±,2

)
|x2=0

. (67)
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We now turn to the linearized boundary conditions. The linearization of (5) gives

Ψ+|x2=0
= Ψ−|x2=0

= ψ ,

(vr − vl) ∂x1ψ + (v+ − v−) ∂x1ϕ− (u+ − u−) = g1 ,

∂tψ + vr ∂x1ψ + v+ ∂x1ϕ− u+ = g2 ,

ρ+ − ρ− = g3 ,

on the boundary {x2 = 0}. Let us introduce the vector b0 = (0, 1, 0)T and the matrices

b(t, x1) :=

0 (vr − vl)|x2=0

1 vr |x2=0

0 0

 ,

M(t, x1) :=

0 ∂x1ϕ −1 0 −∂x1ϕ 1
0 ∂x1ϕ −1 0 0 0
1 0 0 −1 0 0

 .

Let us also denote U = (U+, U−)T , ∇ψ = (∂tψ, ∂x1ψ)T and g = (g1, g2, g3)T . Then the boundary
conditions equivalently read

Ψ+|x2=0
= Ψ−|x2=0

= ψ ,

b ∇ψ +M U|x2=0
= g .

In terms of the good unknown U̇ defined by (65), the linearized boundary conditions read

Ψ+|x2=0
= Ψ−|x2=0

= ψ ,

B′(U̇ , ψ) := b∇ψ +M

(
∂x2Ur/∂x2Φr

∂x2Ul/∂x2Φl

)
︸ ︷︷ ︸

b̌

ψ +M U̇|x2=0
= g . (68)

We observe that the linearized boundary conditions only involve the traces of PU̇+ and PU̇−, with P
defined by (67). With this notation, we can state our main result (the norms are the weighted norms
defined in section 3):

Theorem 3. Assume that the particular solution defined by (59) satisfies

vr >
√

2 c(ρ) , (69)

and that the perturbations U̇r,l,∇Φr,l have compact support and are small enough in W 2,∞(Ω). Then there
exist some constants C1 and γ1 ≥ 1, that only depend on K0 and κ0 (defined in (60), (63)), such that for
all γ ≥ γ1 and for all (U̇ , ψ) ∈ H2

γ(Ω)×H2
γ(R2) the following estimate holds:

γ |||U̇ |||2L2
γ(Ω) + ‖PU̇|x2=0

‖2L2
γ(R2) + ‖ψ‖2H1

γ(R2)

≤ C1

(
1

γ3
|||L′U̇ |||2L2(H1

γ) +
1

γ2
‖B′(U̇ , ψ)‖2H1

γ(R2)

)
. (70)

The linearized operators L′ and B′ are defined in (66) and (68).

The remaining part of this section is devoted to the proof of Theorem 3.
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5.2 Some preliminary transformation

Let us consider again the linearized equations (66). After multiplication by the Friedrichs’ symmetrizer
defined above and a straightforward integration by parts we easily prove the following Lemma:

Lemma 5. There exist two constants C > 0 and γ0 ≥ 1 such that for all γ ≥ γ0, the following estimate
holds:

γ |||U̇+|||2L2
γ(Ω) ≤

C

γ
|||L′rU̇+|||2L2

γ(Ω) + C ‖PU̇+|x2=0
‖2L2

γ(R2) ,

where the operator P is defined in (67). The estimate for U̇− is the same, namely:

γ |||U̇−|||2L2
γ(Ω) ≤

C

γ
|||L′lU̇−|||

2
L2
γ(Ω) + C ‖PU̇−|x2=0

‖2L2
γ(R2) .

As was done in the constant coefficients case, it remains to show an estimate of the traces PU̇±|x2=0

and the front function ψ in terms of the source terms in the interior domain and on the boundary. In
order to prove such an estimate, it is convenient to transform further the interior equations (66) in order
to deal with a problem with a constant and diagonal boundary matrix (i.e. the matrix coefficient of ∂x2
in the differential operators L′r,l). This is possible because the boundary matrix has constant rank in the

whole closed half-space. Namely, let us consider the coefficients of ∂x2U̇± in (66). The coefficients are
equal to

1

∂x2Φ
(A2(U)− ∂tΦ− ∂x1ΦA1(U)) ,

where we forget for the moment the indeces r, l. Under the assumption (62), this coefficient reduces to
the matrix

A′2(U,∇Φ) =
1

∂x2Φ


0 −ρ∂x1Φ ρ

−p
′(ρ)

ρ
∂x1Φ 0 0

p′(ρ)

ρ
0 0


which has eigenvalues

λ1 = 0, λ2,3 = ±c(ρ)〈∂x1Φ〉
∂x2Φ

.

Here we have introduced the notation 〈∂x1Φ〉 =
√

1 + (∂x1Φ)2. In order to diagonalize the above matrix
we compute the eigenvectors associated to the above eigenvalues. We obtain respectively the vectors

(
0 1 ∂x1Φ

)T
,

(
〈∂x1Φ〉 −c(ρ)

ρ
∂x1Φ

c(ρ)

ρ

)T
,

(
〈∂x1Φ〉 c(ρ)

ρ
∂x1Φ −c(ρ)

ρ

)T
.

Observe that these eigenvectors are not orthonormal (because A′2 is not symmetric). Thus, we may define
the following (non orthogonal) matrix

T (U,∇Φ) :=


0 〈∂x1Φ〉 〈∂x1Φ〉

1 −c(ρ)

ρ
∂x1Φ

c(ρ)

ρ
∂x1Φ

∂x1Φ
c(ρ)

ρ
−c(ρ)

ρ

 ,
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which permits to diagonalize the above matrix A′2(U,∇Φ):

T−1(U,∇Φ)A′2(U,∇Φ)T (U,∇Φ) =

0 0 0
0 λ2 0
0 0 λ3

 .

In order to obtain a constant boundary matrix in the differential operators, we also introduce the matrix

A0(U,∇Φ) :=

1 0 0

0 λ−1
2 0

0 0 λ−1
3

 =


1 0 0

0
∂x2Φ

c(ρ)〈∂x1Φ〉
0

0 0 − ∂x2Φ

c(ρ)〈∂x1Φ〉

 .

It follows that
A0 T

−1A′2 T = I2 := diag (0, 1, 1) .

Let us define the new unknown functions

W+ := T−1(Ur,∇Φr) U̇+ , W− := T−1(Ul,∇Φl) U̇− ,

and set
Tr,l := T (Ur,l,∇Φr,l) , Ar,l

0 := A0(Ur,l,∇Φr,l) .

After multiplication on the left side of the equations in (66) by Ar,l
0 T

−1
r,l , we see that W± solve the

equations

Ar
0 ∂tW

+ + Ar
1 ∂x1W

+ + I2 ∂x2W
+ + Ar

0 CrW+ = F+ ,

Al
0 ∂tW

− + Al
1 ∂x1W

− + I2 ∂x2W
− + Al

0 ClW− = F− ,
(71)

where we have set (with slight abuse of notation)

Ar,l
1 := Ar,l

0 T−1A1 T (Ur,l,∇Φr,l) ,

Cr,l :=
[
T−1∂tT + T−1A1 ∂x1T + T−1A′2 ∂x2T + T−1C T

]
(Ur,l,∇Ur,l,∇Φr,l) ,

F± = Ar,l
0 T−1

r,l f
± .

The above equations (71) are equivalent to the linearized equations (66). Introducing W̃± := e−γtW±,
the equations (71) become equivalent to

L γ
r W̃

+ := γAr
0 W̃

+ + Ar
0 ∂tW̃

+ + Ar
1 ∂x1W̃

+ + I2 ∂x2W̃
+ + Ar

0 Cr W̃+ = e−γt F+ ,

L γ
l W̃

− := γAl
0 W̃

− + Al
0 ∂tW̃

− + Al
1 ∂x1W̃

− + I2 ∂x2W̃
− + Al

0 Cl W̃− = e−γt F− .
(72)

Recall that we have
Ar,l
j ∈W

2,∞(Ω) and Cr,l ∈W 1,∞(Ω) .

Using the vector W = (W+,W−)T as defined above, the boundary conditions (68) become equivalent to

Ψ+|x2=0
= Ψ−|x2=0

= ψ ,

b∇ψ + b̌ψ +M

(
Tr 0
0 Tl

)
W|x2=0

= g .
(73)

33



Introducing W̃± and Ψ̃± := e−γt Ψ±, ψ̃ := e−γt ψ, the equations (73) are also equivalent to

Ψ̃+ = Ψ̃− = ψ̃ ,

Bγ(W̃ , ψ̃) := γb0 ψ̃ + b∇ψ̃ + b̌ ψ̃ +M

(
Tr 0
0 Tl

)
W̃|x2=0

= e−γtg .
(74)

From (60) we have

b ∈W 2,∞(R2) , b̌ ∈W 1,∞(R2) , M ∈W 2,∞(R2) , Tr,l|x2=0
∈W 2,∞(R2) .

The next step is to look for an a priori estimate of the solution to the (weighted) linearized problem (72),
(74). In view of Lemma 5, we are looking for an estimate of PU̇+ and PU̇−. Of course, we shall derive
this estimate using the new function W . The reader should keep in mind the relations

PU̇+|x2=0
=

( 〈∂x1ϕ〉(W+
2 +W+

3 )|x2=0
cr
ρr
〈∂x1ϕ〉2(W+

2 −W
+
3 )|x2=0

)
, PU̇−|x2=0

=

( 〈∂x1ϕ〉(W−2 +W−3 )|x2=0
cl
ρl
〈∂x1ϕ〉2(W−2 −W

−
3 )|x2=0

)
,

from which we easily deduce the estimate

‖PU̇+|x2=0
‖L2

γ(R2) + ‖PU̇−|x2=0
‖L2

γ(R2)

≤ C
(
‖(W+

2 ,W
+
3 )|x2=0

‖L2
γ(R2) + ‖(W−2 ,W

−
3 )|x2=0

‖L2
γ(R2)

)
. (75)

We are thus led to estimating the trace of the vector (W̃+
2 , W̃

+
3 , W̃

−
2 , W̃

−
3 ), when W̃ is a solution to the

(weighted) linearized equations (72), (74). From now on, for the sake of simplicity, we drop the tildas

and write W±,Ψ±, ψ instead of W̃±, Ψ̃±, ψ̃. Observe that Ψ±, ψ are coupled to W± only through the
boundary conditions.

5.3 Paralinearization

We refer to appendix B for the definition of paradifferential symbols and operators, where the reader will
also find the main results on paralinearization and symbolic calculus. We recall that the Fourier dual
variables of (t, x1) are (δ, η), and that we always denote τ = γ + iδ the Laplace dual variable of t. Recall
we have introduced the positive constants K0, κ0 in (60), (63). We now turn to the paralinearization of
the linearized equations.

1) The boundary conditions

Define the following symbols:

b0 :=

0
1
0

 , b1(t, x1) :=

vr − vlvr
0

 (t, x1, 0) , b(t, x1, δ, η, γ) := τ b0 + iη b1(t, x1) .

Because b0 is constant, we have
γ b0 ψ + b0 ∂tψ = T γτb0

ψ .
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The main paralinearization estimate (Theorem 8) yields

‖b1 ∂x1ψ − T
γ
iηb1

ψ‖1,γ ≤ C ‖b1‖W 2,∞(R2) ‖ψ‖0 ≤
C(K0)

γ
‖ψ‖1,γ .

We now easily obtain

‖γ b0 ψ + b0 ∂tψ + b1 ∂x1ψ − T
γ
bψ‖1,γ ≤

C(K0)

γ
‖ψ‖1,γ . (76)

We also have the following inequalities:

‖b̌ψ − T γ
b̌
ψ‖1,γ ≤ C ‖b̌‖W 1,∞(R2) ‖ψ‖0 ≤

C(K0, κ0)

γ
‖ψ‖1,γ ,

‖T γ
b̌
ψ‖1,γ ≤ C ‖b̌‖L∞(R2) ‖ψ‖1,γ ≤ C(K0, κ0) ‖ψ‖1,γ ,

(77)

where b̌ is defined by (68). Eventually, we define the symbol

M(t, x1) := M(t, x1, 0)

(
Tr 0
0 Tl

)
(t, x1, 0) ,

with the matrices M,Tr, Tl defined above. Recall that the state around which the equations are linearized
satisfies

Φr(t, x1, 0) = Φl(t, x1, 0) = ϕ(t, x1) , ρr(t, x1, 0) = ρl(t, x1, 0) .

A direct calculation yields

M =


0 − cr

ρr
〈∂x1ϕ〉2

cr
ρr
〈∂x1ϕ〉2 0

cl
ρl
〈∂x1ϕ〉2 − cl

ρl
〈∂x1ϕ〉2

0 − cr
ρr
〈∂x1ϕ〉2

cr
ρr
〈∂x1ϕ〉2 0 0 0

0 〈∂x1ϕ〉 〈∂x1ϕ〉 0 −〈∂x1ϕ〉 −〈∂x1ϕ〉

 .

Thus the matrix M only acts on the noncharacteristic part Wnc := (W+
2 ,W

+
3 ,W

−
2 ,W

−
3 ) of the vector

W = (W+,W−). Since M ∈W 2,∞(R2), we have

‖MW|x2=0
− T γMW|x2=0

‖1,γ ≤
C

γ
‖M‖W 2,∞(R2) ‖Wnc

|x2=0
‖0 ≤

C(K0)

γ
‖Wnc
|x2=0
‖0 . (78)

Adding (76)-(77)-(78), we obtain the paralinearization estimate for the boundary operator:

‖Bγ(W,ψ)− T γbψ − T
γ
MW|x2=0

‖1,γ ≤ C(K0, κ0)

(
‖ψ‖1,γ +

1

γ
‖Wnc
|x2=0
‖0
)
. (79)

We recall that the boundary operator Bγ is defined by (74). Observe that in the paralinearized version
of Bγ , there is no more zero order term in ψ.

2) The interior equations
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We first estimate the paralinearization error for fixed x2, and then integrate with respect to x2. For
instance, we have

|||γAr
0W

+ − T γγAr
0
W+|||21,γ =

∫ +∞

0
γ2 ‖Ar

0W
+(·, x2)− T γAr

0
W+(·, x2)‖21,γ dx2

≤ C
∫ +∞

0
‖Ar

0(·, x2)‖2W 2,∞(R2) ‖W
+(·, x2)‖20 dx2

≤ C ‖Ar
0‖2W 2,∞(Ω) |||W

+|||20 ≤ C(K0) |||W+|||20 .

In a completely similar way, we obtain the following estimates

|||Ar
0 ∂tW

+ − T γiδAr
0
W+|||1,γ ≤ C(K0) |||W+|||0 ,

|||Ar
1 ∂x1W

+ − T γiηAr
1
W+|||1,γ ≤ C(K0) |||W+|||0 ,

|||Ar
0 CrW+ − T γAr

0CrW
+|||1,γ ≤ C(K0, κ0) |||W+|||0 .

Adding these inequalities, we end up with the paralinearization estimate for the interior equations:

|||L γ
r W

+ − T γτAr
0+iηAr

1+Ar
0CrW

+ − I2 ∂x2W
+|||1,γ ≤ C(K0, κ0) |||W+|||0 , (80)

where the linearized operator L γ
r is defined by (72). The estimate for the equation on W− is identical:

|||L γ
l W

− − T γ
τAl

0+iηAl
1+Al

0ClW
− − I2 ∂x2W

−|||1,γ ≤ C(K0, κ0) |||W−|||0 . (81)

3) Eliminating the front

We proceed as in the constant coefficients case, and show how to eliminate the front ψ in the (par-
alinearized) boundary conditions. If the perturbation is small enough (in the L∞ norm), there exists a
constant c > 0 (depending only on K0) such that

|b(t, x1, δ, η, γ)|2 ≥ c (γ2 + δ2 + η2) .

Applying G̊arding’s inequality (Theorem 6), we obtain

Re 〈T γb∗bψ,ψ〉L2(R2) ≥
c

2
‖ψ‖21,γ ,

for all γ ≥ γ0 (where γ0 only depends on K0). Using the rules of symbolic calculus (Theorem 5), we have

T γb∗b =
(
T γb
)∗
T γb +Rγ ,

where Rγ is of order ≤ 1. Consequently, we have an estimate of the form

‖ψ‖1,γ ≤ C(K0) ‖T γbψ‖0 .

For all γ ≥ γ0, we thus obtain

‖ψ‖1,γ ≤ C(K0)
(
‖T γbψ + T γMW|x2=0

‖0 + ‖Wnc
|x2=0
‖0
)

≤ C(K0)

(
1

γ
‖T γbψ + T γMW|x2=0

‖1,γ + ‖Wnc
|x2=0
‖0
)
. (82)
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From (79) and (82) we deduce for γ ≥ γ0 large enough (depending on K0) the estimate

‖ψ‖1,γ ≤ C(K0)

(
1

γ
‖Bγ(W,ψ)‖1,γ + ‖Wnc

|x2=0
‖0
)
,

which shows that it only remains to prove an estimate of Wnc
|x2=0

in terms of the source terms.
For all (τ, η) in the hemisphere Σ, we define the matrix

Π(t, x1, δ, η, γ) :=

(
0 0 1

τ + iη vr(t, x1, 0) −iη (vr − vl)(t, x1, 0) 0

)
,

and we extend Π as a homogeneous mapping of degree 0 with respect to (τ, η). We have Πb ≡ 0, and
Π ∈ Γ0

2. Applying Theorem 5, we thus obtain:

‖T γΠT
γ
bψ‖1,γ = ‖T γΠT

γ
bψ − T

γ
Πbψ‖1,γ ≤ C(K0) ‖ψ‖1,γ ,

‖T γΠMW|x2=0
− T γΠT

γ
MW|x2=0

‖1,γ ≤ C(K0) ‖Wnc
|x2=0
‖0 .

Using the decomposition

T γΠMW|x2=0
= (T γΠM − T

γ
ΠT

γ
M)W|x2=0

+ T γΠ(T γMW|x2=0
+ T γbψ)− T γΠT

γ
bψ ,

we get the following estimate

‖T γΠMW|x2=0
‖1,γ ≤ C(K0)

(
‖Wnc

|x2=0
‖0 + ‖T γbψ + T γMW|x2=0

‖1,γ + ‖ψ‖1,γ
)
. (83)

As was done in the constant coefficients case, we define the symbol β of the reduced boundary
conditions:

∀ (t, x1, δ, η, γ) ∈ R4 × R+ , β(t, x1, δ, η, γ) := Π(t, x1, δ, η, γ) M(t, x1) .

We now focus on the paralinearized system with reduced boundary conditions:
T γτAr

0+iηAr
1+Ar

0CrW+ + I2 ∂x2W
+ = F̃+ , x2 > 0 ,

T γ
τAl

0+iηAl
1+Al

0ClW
− + I2 ∂x2W

− = F̃− , x2 > 0 ,

T γβW|x2=0
= G̃ , x2 = 0 ,

(84)

Our aim is to prove an energy estimate for the paralinearized equations (84). Once this is done we shall
obtain an energy estimate for the linearized equations. More precisely, we have the following Proposition:

Proposition 2. Assume that there exists a constant C0, depending only on K0 and κ0, such that the
solution W to (84) satisfies

‖Wnc
|x2=0
‖20 ≤ C0

(
1

γ3
|||F̃ |||21,γ +

1

γ2
‖G̃‖21,γ

)
, (85)

for all γ ≥ γ0 (where γ0 only depends on K0 and κ0). Then the thesis of Theorem 3 holds.

Proof. The proof is straightforward. We first write

T γτAr
0+iηAr

1+Ar
0CrW

+ + I2 ∂x2W
+ = L γ

r W
+ + error ,

T γ
τAl

0+iηAl
1+Al

0ClW
− + I2 ∂x2W

− = L γ
l W

− + error ,

37



and estimate the error terms with the help of (80)-(81). We use (85) to derive

‖Wnc
|x2=0
‖20 ≤ C ′0

(
1

γ3
|||L γW |||21,γ +

1

γ3
|||W |||20 +

1

γ2
‖T γβW|x2=0

‖21,γ
)
,

where, as usual, L γW = (L γ
r W+,L γ

l W
−). Using (82) and (83), and choosing γ large enough, we obtain

the following inequality:

‖Wnc
|x2=0
‖20 + ‖ψ‖21,γ ≤ C ′′0

(
1

γ3
|||L γW |||21,γ +

1

γ3
|||W |||20 +

1

γ2
‖T γbψ + T γMW|x2=0

‖21,γ
)
.

Eventually, we use (79) to derive (up to choosing γ large enough):

‖Wnc
|x2=0
‖20 + ‖ψ‖21,γ ≤ C ′′′0

(
1

γ3
|||L γW |||21,γ +

1

γ3
|||W |||20 +

1

γ2
‖Bγ(W,ψ)‖21,γ

)
.

Then one uses the definitions

e−γt U̇+ = TrW
+ , e−γt U̇− = TlW

− ,

e−γt Ar
0T
−1
r L′rU̇+ = L γ

r W
+ , e−γt Al

0T
−1
l L′lU̇− = L γ

l W
− ,

as well as (75) and Lemma 5 to derive (70). The reader will easily check that the constants C ′0, C
′′
0 etc.

involved in the energy estimates only depend on K0 and κ0.

Thanks to Proposition 2, we only need to prove estimate (85) for the paralinearized system (84). This
will be done in the next paragraphs.

Recall that the boundary matrix β in (84) only acts on Wnc = (W+
2 ,W

+
3 ,W

−
2 ,W

−
3 ) and not on the

full vector W . Namely, the first and fourth columns of β vanish. Consequently, we feel free to write the
boundary conditions under the form T γβW

nc
|x2=0

= G̃, that is, we consider β as a matrix with only four

columns and two rows.

5.4 Microlocalization

To derive the desired energy estimate for (84), we follow the general strategy of the constant coefficients
case. Namely, we first consider the two equations that do not involve any x2 derivative:

T γτ+ivrη
W+

1 + T γ
iηc2r/ρr〈∂x1Φr〉W

+
2 + T γ

iηc2r/ρr〈∂x1Φr〉W
+
3 + order 0 terms = F+

1 ,

T γτ+ivlη
W−1 + T γ

iηc2l /ρl〈∂x1Φl〉
W−2 + T γ

iηc2l /ρl〈∂x1Φl〉
W−3 + order 0 terms = F−1 .

Formally, the idea is to invert the operators T γτ+ivr,lη
and to substitute the corresponding value of W±1

into the four remaining equations. We shall thus get a system of the form{
∂x2W

nc = T γAW
nc + T γEW

nc + source term, x2 > 0 ,

T γβW
nc
|x2=0

= source term, x2 = 0 ,

where A is of degree 1 and E is of degree 0. (Both matrices A and E are block diagonal since the
equations for W+ and W− are decoupled). An important issue is to show that this operation can be
achieved. Namely, the zero order terms in the two scalar equations above involve W+

1 and W−1 . When
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inverting the operators T γτ+ivr,lη
, one needs to take the zero order terms into account, in order to avoid

introducing W±1 in the final equation for Wnc. We shall show that such an inversion is possible. But in
this paragraph, we focus on the first order term and explicit the symbol A. Consider the following 2× 2
matrix:

Ar :=

(
Ar1 −Ar3
Ar3 Ar2

)
, (86)

with

Ar1 := − cr η
2 ∂x2Φr

2(τ + ivrη)〈∂x1Φr〉3
− (τ + ivrη) ∂x2Φr

cr〈∂x1Φr〉
+
∂x2Φr ∂x1Φr iη

〈∂x1Φr〉2
,

Ar2 :=
cr η

2 ∂x2Φr

2(τ + ivrη)〈∂x1Φr〉3
+

(τ + ivrη) ∂x2Φr

cr〈∂x1Φr〉
+
∂x2Φr ∂x1Φr iη

〈∂x1Φr〉2
,

Ar3 :=
cr η

2 ∂x2Φr

2(τ + ivrη)〈∂x1Φr〉3
.

(87)

The definition of Al is completely similar, changing the r index by l. The symbol A mentionned above is
nothing but the block diagonal matrix

A :=

(
Ar 0
0 Al

)
. (88)

The set of poles of A is denoted by Υp, that is,

Υp :=
{

(t, x1, x2, τ, η) ∈ Ω× Ξ s.t. τ = −iη vr,l(t, x1, x2)
}
.

As was done in the constant coefficients case, we denote by E −(t, x1, x2, τ, η) the stable subspace of
A(t, x1, x2, τ, η). This stable subspace is well defined when Re τ > 0, and admits a continuous extension
up to any (τ, η) such that τ ∈ iR and (τ, η) 6= (0, 0).

At each point (t, x1, 0) of the boundary ∂Ω, the subspace

{Z ∈ E −(t, x1, 0, τ, η) s.t. β(t, x1, τ, η)Z = 0}

is nontrivial (that is, not reduced to {0}) if and only if

τ = −iη vr(t, x1, 0) + vl(t, x1, 0)

2
or τ = iη V1(t, x1) or τ = iη V2(t, x1) ,

for suitable functions V1,2 ∈ W 2,∞(R2). This is just because when one freezes the coefficients on the
boundary and computes the associated Lopatinskii determinant, the calculations yield the same result
as in section 4. Recall that the state (Ur,l,∇Φr,l) around which the equations are linearized satisfy the
Rankine-Hugoniot conditions, see (61). As in [11], we define the critical set of space-frequency variables
in the following way:

Υ0
c :=

{
(t, x1, τ, η) ∈ ∂Ω× Ξ s.t. τ ∈

{
−iη (vr + vl)(t, x1, 0)

2
, iηV1(t, x1), iηV2(t, x1)

}}
.

This is exactly the set of space variables on the boundary ∂Ω and frequencies so that the Lopatinskii
determinant vanishes. Moreover, if the perturbation (U̇r,l,∇Φr,l) is sufficiently small (in the L∞ norm),
we have

∀ (t, x1) ∈ ∂Ω , −vl(t, x1, 0) > V1(t, x1) > −(vr + vl)(t, x1, 0)

2
> V2(t, x1) > −vr(t, x1, 0) .
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Therefore, the critical set Υ0
c does not intersect the set of poles on the boundary of the space domain:

Υ0
c ∩ (Υp ∩ {x2 = 0}) = ∅ .

Another important feature of the critical set Υ0
c is that it admits a neighborhood in which the symbol A

is diagonalizable. To be more precise, there exists a neighborhood V 0
c of Υ0

c in R2×Ξ and a mapping Q0

on V 0
c (with values in the set of 4 × 4 invertible matrices and homogeneous of degree 0 with respect to

(τ, η)) such that

∀ z = (t, x1, τ, η) ∈ V 0
c , Q0(z)A(z)Q0(z)−1 = diag (ω−r (z), ω+

r (z), ω−l (z), ω+
l (z)) , (89)

where ω−r (resp. ω+
r ) is the eigenvalue with negative (resp. positive) real part of Ar when γ > 0. (The

definition of ω±l is similar). Note that the matrix Q0 has the same block diagonal structure as A, see (88).
The symbol Q0 belongs to the class Γ0

2 (see appendix B for the precise definition).
Since Υ0

c does not intersect Υp ∩ {x2 = 0}, we may assume that the neighborhood V 0
c does not

intersect Υp ∩ {x2 = 0} either.
The key point in the derivation of an energy estimate is to understand how the singularities at the

boundary (that is, the set Υ0
c) propagate in the interior domain. Following [11], we shall show that the

singularities propagate along the two bicharacteristic curves associated with the (real) symbols Im ω−r,l,
provided that these curves do not reach the poles of A or the points where A stops being diagonalizable.
These ideas motivate the following result:

Proposition 3. Assume that the perturbation (U̇r,l,∇Φr,l) is small in W 2,∞(Ω) and has compact support.
Then one can choose the neighborhood V 0

c such that there exists an open set Vc ⊂ Ω × Ξ satisfying the
following properties:

Vc ∩ {x2 = 0} = V 0
c and Vc ∩Υp = ∅.

The symbol A defined by (86)-(87)-(88) is diagonalizable on the set Vc. In other words, (89) holds on all
Vc, and not only on the trace V 0

c .

For all z = (t, x1, x2, τ, η) ∈ Vc, one has

ω−r (z) 6= ω+
r (z) and ω−l (z) 6= ω+

l (z) .

The solutions of the hamiltonian system of ODEs

dt

dx2
=
∂h

∂δ
(t, x1, x2, τ, η) ,

dx1

dx2
=
∂h

∂η
(t, x1, x2, τ, η) ,

dδ

dx2
= −∂h

∂t
(t, x1, x2, τ, η) ,

dη

dx2
= − ∂h

∂x1
(t, x1, x2, τ, η) ,

(t, x1, δ, η, γ)|x2=0
∈ V 0

c

(90)

are defined for all x2 ≥ 0 and remain in Vc, both for h = Im ω−r and h = Im ω−l . These solutions
are referred to as bicharacteristic curves.
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Following [11], we now construct a (real) weight that vanishes on the bicharacteristic curves, and that
satisfies a linear transport equation. For all z = (t, x1, τ, η) ∈ R2 × Σ, define

σ(z) :=

(
δ + η

(vr + vl)(t, x1, 0)

2

)
(δ − ηV1(t, x1))(δ − ηV2(t, x1)) , (91)

and extend σ to the whole set R2 × Ξ as a homogeneous mapping of degree 1 with respect to (τ, η). The
velocities V1,2 are those defined above, and correspond to the critical speeds for which the Lopatinskii
determinant vanishes. The symbol σ thus belongs to the class Γ1

2. It is straightforward to check that

Υ0
c = {z = (t, x1, τ, η) ∈ R2 × Ξ s.t. γ + iσ(z) = 0} .

Using Proposition 3, it is possible to construct solutions σr,l of the linear transport equations

∂x2σr + {σr, Im ω−r } = 0 ,

∂x2σl + {σl, Im ω−l } = 0 ,

σr |x2=0
= σl|x2=0

= σ ,

(92)

where {a, b} stands for the Poisson bracket:

{a, b} :=
∂a

∂δ

∂b

∂t
+
∂a

∂η

∂b

∂x1
− ∂a

∂t

∂b

∂δ
− ∂a

∂x1

∂b

∂η
.

As a matter of fact, both σr and σl are well-defined in the neighborhood of the bicharacteristic curves
starting from the critical set Υ0

c. This is because σr,l are constant along the bicharacteristic curves defined
by (90), provided these curves are globally defined! Shrinking V 0

c and Vc, if necessary, we may assume that
σr and σl are defined in the whole open set Vc. The key point is that σr vanishes on the bicharacteristic
curve originating from Υ0

c and associated with the symbol Im ω−r . (A similar result holds for σl). Far
from these bicharacteristic curves, both |σr| and |σl| are bounded from below.

Up to now, the symbols Q0, σr, σl are only defined microlocally, that is, locally in the frequency space.
To circumvent this difficulty, we now introduce cut-off functions. We fix, once and for all, two nonnegative
cut-off functions (with values in [0, 1]) χc and χp such that

χc and χp are smooth, that is, C∞ and homogeneous of degree 0 with respect to (τ, η). They thus
belong to the class Γ0

k for any integer k.

The support of χc is contained in the open set Vc, and χc ≡ 1 in a neighborhood of the bicharacteristic
curves originating from Υ0

c.

The support of χp does not intersect the support of χc, that is, χcχp ≡ 0. Moreover, χp ≡ 1 in a
neighborhood of the poles Υp.

Eventually, we define χu := 1−χc−χp and observe that χu is supported far from the bicharacteristic
curves and far from the poles. As a consequence, the support of χu on the boundary ∂Ω only consists
of points for which the uniform Lopatinskii condition holds. We shall therefore be able to use standard
Kreiss’ symmetrizers (as constructed in section 4) to derive an energy estimate for T γχuW .

The end of this section is devoted to the proof of the a priori energy estimate (85). We thus fix
W = (W+,W−) ∈ H2(Ω) and define the source terms

F+ := T γτAr
0+iηAr

1+Ar
0CrW

+ + I2 ∂x2W
+ ∈ H1(Ω) , (93a)

F− := T γ
τAl

0+iηAl
1+Al

0ClW
− + I2 ∂x2W

− ∈ H1(Ω) , (93b)

G := T γβW
nc
|x2=0

∈ H3/2(R2) . (93c)
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We first show how to estimate the trace of T γχcW
nc; then we show how to estimate the trace of T γχuW

nc,
using Kreiss’ symmetrizers. Eventually, we show how to estimate the trace of T γχpW

nc. In the two
first cases, the first step in the analysis consists in deriving an equation that only involves Wnc, that is
in eliminating W±1 in the paradifferential equations (84). Once we have derived this noncharacteristic
equation, we apply the strategy of [11]. At the very end of the proof, we show how to absorb the
microlocalization errors.

5.5 Derivation of energy estimates: the bad frequencies

We define
W+

c := T γχc
W+ ,

and compute the equation satisfied by W+
c . Starting from (93a), we obtain

I2 ∂x2W
+
c = I2 T

γ
∂x2χc

W+ + T γχc
F+ − T γχc

(T γτAr
0+iηAr

1+Ar
0CrW

+) .

Then we apply the rules of symbolic calculus (Theorem 5) to get

T γτAr
0+iηAr

1
W+

c + T γAr
0CrW

+
c + T γrW

+ + I2 ∂x2W
+
c = T γχc

F+ +R−1W
+ , (94)

where R−1 is an operator of order ≤ −1, and r is a symbol in the class Γ0
1 that vanishes in a neighborhood

of the bicharacteristic curves. Namely, r is defined by the following formula:

r :=
1

i
{χc, τA

r
0 + iηAr

1} − ∂x2χc I2 ,

and is thus a linear combination of derivatives of χc. Therefore, r is supported far from the bicharacterstic
curves originating from the critical set.

To avoid overloading the paper with unuseful notations, we shall denote by αm a generic symbol in
the class Γm1 , that may vary from line to line, or within the same line, and whose exact expression is not
useful. Moreover, we denote by r any symbol in Γ0

1 that vanishes in a neighborhood of the bicharacteristic
curves. The notation Rm is also used to denote a generic operator of order ≤ m. At last, we denote the
components of the vectors W+

c ,W
+ in the following way:

W+
c := (w+

1 , w
+
2 , w

+
3 )T , W+ := (W+

1 ,W
+
2 ,W

+
3 )T .

Some tedious computations lead to

Ar
1 =


vr

c2
r

ρr〈∂x1Φr〉
c2
r

ρr〈∂x1Φr〉
ρr ∂x2Φr

2cr〈∂x1Φr〉2
∂x2Φr

cr〈∂x1Φr〉

(
vr −

cr ∂x1Φr

〈∂x1Φr〉

)
0

−ρr ∂x2Φr

2cr〈∂x1Φr〉2
0

−∂x2Φr

cr〈∂x1Φr〉

(
vr +

cr ∂x1Φr

〈∂x1Φr〉

)

 ,

and we also have

Ar
0 = diag

(
1,

∂x2Φr

cr〈∂x1Φr〉
,
−∂x2Φr

cr〈∂x1Φr〉

)
.
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The first scalar equation in (94) thus reads

T γτ+iηvr
w+

1 + T γ
iηc2r/ρr〈∂x1Φr〉(w

+
2 + w+

3 ) +
3∑
i=1

T γ
α0w

+
i + T γrW

+ = T γχc
F+

1 +R−1W
+ .

Since the support of χc is included in the open set Vc (and does not intersect the poles Υp), we can choose
two smooth cut-off functions χ1 and χ2 such that

χ1 ≡ 1 on the support of χc, and χ2 ≡ 1 on the support of χ1.

χ2 (and therefore χ1) is supported in Vc.

χ1 and χ2 are C∞ and homogeneous of degree 0 with respect to (τ, η).

It is clear that the properties of the cut-off function χ2 imply χ2/(τ + iηvr) ∈ Γ−1
2 . We apply the

operator T γχ2/(τ+iηvr)
to the previous equality and, after repeated applications of Theorem 5, we obtain:

T γχ2
w+

1 + T γ
χ2iηc2r/(τ+iηvr)ρr〈∂x1Φr〉(w

+
2 + w+

3 ) +

3∑
i=1

T γ
α−1w

+
i + T γrχ2/(τ+iηvr)

W+

= T γχ2/(τ+iηvr)
T γχc

F+
1 +R−2W

+ .

Now, we note that

T γχ2
w+

1 = T γχ2
T γχc

W+
1 = T γχc

W+
1 +R−2W

+
1 = w+

1 +R−2W
+
1 ,

and we are led to the following relation:

w+
1 = −T γ

χ2iηc2r/(τ+iηvr)ρr〈∂x1Φr〉(w
+
2 + w+

3 ) +
3∑
i=1

T γ
α−1w

+
i + T γχ2r/(τ+iηvr)

W+

+ T γχ2/(τ+iηvr)
T γχc

F+
1 +R−2W

+ . (95)

It is important to note that there is a term in w+
1 (of degree −1) in the right-hand side of (95).

In the second equation of (94), w+
1 appears both in a term of order 1, say T γ

θ1
w+

1 with θ1 ∈ Γ1
2, and

in a term of order 0, say T γ
θ0
w+

1 with θ0 ∈ Γ0
1. We first use the expression (95) of w+

1 in the term T γ
θ1
w+

1 .
The second equation of (94) thus reads

T γ
θ12
w+

2 + T γ
θ13
w+

3 +
3∑
i=1

T γ
α0w

+
i + T γrW

+ + ∂x2w
+
2 = R0T

γ
χc
F+

1 + T γχc
F+

2 +R−1W
+ ,

where θ1
2,3 ∈ Γ1

2. We use once more the expression (95) in the term T γ
α0w

+
1 just above (recall that α0 ∈ Γ0

1

so we can apply the rules of symbolic calculus). Collecting the different terms, we are led to an equation
that can be written under the following form:

T γ
θ12
w+

2 + T γ
θ13
w+

3 +
3∑
i=2

T γ
α0w

+
i + T γrW

+ + ∂x2w
+
2 = R0T

γ
χc
F+

1 + T γχc
F+

2 +R−1W
+ .
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In this equation, all the first and zero order terms in w+
1 have been eliminated. Performing similar

computations to eliminate w+
1 in the last equation of (94), we obtain a system of two equations that reads

∂x2

(
w+

2

w+
3

)
= T γArχ2

(
w+

2

w+
3

)
+ T γEr

(
w+

2

w+
3

)
+ T γrW

+ +R0F
+ +R−1W

+ , (96)

where Er ∈ Γ0
1, Arχ2

∈ Γ1
2 and Arχ2

≡ Ar in the region {χ2 ≡ 1}. Recall that the (singular) symbol Ar is
defined by (86)-(87). Moreover, the symbol r in (96) belongs to Γ0

1 and is identically zero in the region
{χc ≡ 1}, and R0 (resp. R−1) is an operator of order ≤ 0 (resp. ≤ −1).

We are now reduced to the noncharacteristic case, for which we follow the analysis of [11]. Indeed,
since the symbol Arχ2

equals Ar in the region {χ2 ≡ 1}, we can diagonalize Arχ2
in this region, and its

eigenvalues are exactly ω±r . More precisely, in the region {χ2 ≡ 1}, we have the following relation:

Qr0 Arχ2
=

(
ω−r 0
0 ω+

r

)
︸ ︷︷ ︸

Dr1

Qr0 .

Recall that on the set Vc, and therefore also in the region {χ2 ≡ 1}, we have ω−r 6= ω+
r thanks to

Proposition 3. The following Lemma can thus be proved as in [11] (to avoid overloaded equations, we
denote x0 := t, ξ0 := δ, and ξ1 := η the variables used in the tangential symbolic calculus):

Lemma 6. There exist a symbol Qr−1 ∈ Γ−1
1 and a diagonal symbol Dr0 ∈ Γ0

1, that are defined in the region
{χ2 ≡ 1}, such that

(Qr0 +Qr−1)(Arχ2
+ Er) + ∂x2Q

r
0

+
1

i

1∑
j=0

(∂ξjQ
r
0 ∂xjA

r
χ2
− ∂ξjD

r
1 ∂xjQ

r
0)− (Dr1 + Dr0)(Qr0 +Qr−1)

is a symbol of degree −1 and regularity 1 (at least in the region {χ2 ≡ 1}).

In terms of symbolic calculus, Lemma 6 means nothing but

(Qr0 +Qr−1) ] (∂x2 − Arχ2
− Er) = (∂x2 − Dr1 − Dr0) ] (Qr0 +Qr−1) .

In other words, the change of basis (Qr0 + Qr−1) diagonalizes both the first order term Arχ2
and the zero

order term Er. We thus wish to prove an estimate for

Z+ := T γχ1(Qr0+Qr−1)

(
w+

2

w+
3

)
,

since this new vector will satisfy a paradifferential equation with diagonal symbols. Observe the role of
the cut-off function χ1, whose support is contained in the region {χ2 ≡ 1}, and that also satisfies χ1 ≡ 1
on the support of χc. (We recall that the vector (w+

2 , w
+
3 ) is microlocalized on the support of χc).

Starting from (96) and using Lemma 6, as well as Theorem 5, we compute the equation satisfied by
the vector Z+:

∂x2Z
+ = T γ

D̃r1
Z+ + T γ

D̃r0
Z+ + T γrW

+ +R0F
+ +R−1W

+ , (97)
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where D̃r1 (resp. D̃r0) is an extension to the whole set Ω × Ξ of Dr1 (resp. Dr0). These extensions can be
chosen such that

D̃r1 =

(
ω−r 0
0 ω+

r

)
=

(
γe−r + ih−r 0

0 γe+
r + ih+

r

)
, D̃r0 =

(
d−r 0
0 d+

r

)
,

with e−r , e
+
r ∈ Γ0

2, h−r , h
+
r ∈ Γ1

2, and d−r , d
+
r ∈ Γ0

1. Moreover, the symbols e−r , e
+
r , h

−
r , h

+
r are real valued

and there exists a constant c > 0 such that

e−r ≤ −c < 0 , e+
r ≥ c > 0 .

The second equation in (97) reads

∂x2Z
+
2 = T γ

ω+
r
Z+

2 + T γ
d+r
Z+

2 + T γrW
+ +R0F

+ +R−1W
+ .

For this scalar equation, we choose Λ2,γ := Op(γ2 + ξ2
0 + ξ2

1) as a symmetrizer, that is, we multiply the
equation by Λ2,γZ+

2 and integrate over Ω. Some elementary manipulations, whose details can be found
in [11], yield the L2(H1) estimate of Z+

2 :

γ |||Z+
2 |||

2
1,γ + ‖Z+

2 (0)‖21,γ ≤
C

γ

(
|||F+|||21,γ + |||W+|||20 + |||T γrW+|||21,γ

)
. (98)

The first equation in (97) reads

∂x2Z
+
1 = T γ

ω−r
Z+

1 + T γ
d−r
Z+

1 + T γrW
+ +R0F

+ +R−1W
+ . (99)

We first choose the identity as a symmetrizer, and derive the following L2 estimate:

γ3 |||Z+
1 |||

2
0 ≤ C γ

2 ‖Z+
1 (0)‖20 +

C

γ

(
|||F+|||21,γ + |||W+|||20 + |||T γrW+|||21,γ

)
. (100)

Recall that in the preceeding paragraph, we have constructed a symbol σr that satisfies the transport
equation: {

∂x2σr + {σr, h−r } = 0 , x2 > 0 ,

σr |x2=0
= σ ,

where h−r is the imaginary part of the eigenvalue ω−r . This symbol σr is well-defined in the open set Vc,
thanks to Proposition 3. Since we have extended the eigenvalue ω−r (and thus h−r ) to the whole set Ω×Ξ,
we can also extend σr to Ω× Ξ. Of course, we do not change the value of σr on Vc, since the solution σr
to the transport equation is constant on the bicharacteristic curves (90). With slight abuse of notations,
we still denote σr the extension of σr to the whole set Ω× Ξ. This extension belongs to the class Γ1

2 and
∂x2σr ∈ Γ1

1.
We now choose S := (T γσr)

∗T γσr as a symmetrizer for (99). (We reproduce below the calculations of
[11] since this is really the key point in the analysis). Standard integration by parts yields first of all:

−‖T γσZ+
1 (0)‖20 = Re

∫ +∞

0
〈(∂x2S)Z+

1 , Z
+
1 〉 dx2 + 2 Re

∫ +∞

0
〈ST γ

ω−r
Z+

1 , Z
+
1 〉 dx2

+ 2 Re

∫ +∞

0
〈ST γ

d−r
Z+

1 , Z
+
1 〉 dx2 + 2 Re

∫ +∞

0
〈ST γrW+, Z+

1 〉 dx2

+ 2 Re

∫ +∞

0
〈SR0F

+, Z+
1 〉 dx2 + 2 Re

∫ +∞

0
〈SR−1W

+, Z+
1 〉 dx2 ,

(101)
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where the notation 〈a, b〉 stands for the tangential scalar product in L2:

〈a, b〉 :=

∫
R2

a(t, x1) b(t, x1) dt dx1 .

The three last integrals on the right hand-side of (101) are easily estimated using Cauchy-Schwarz and
Young’s inequalities (ε is a positive number to be fixed later on):

2 Re

∫ +∞

0
〈T γσrT

γ
rW

+, T γσrZ
+
1 〉 dx2 ≤

C

εγ
|||T γrW+|||21,γ + εγ |||T γσrZ

+
1 |||

2
0 ,

2 Re

∫ +∞

0
〈T γσrR0F

+, T γσrZ
+
1 〉 dx2 ≤

C

εγ
|||F+|||21,γ + εγ |||T γσrZ

+
1 |||

2
0 ,

2 Re

∫ +∞

0
〈T γσrR−1W

+, T γσrZ
+
1 〉 dx2 ≤

C

εγ
|||W+|||20 + εγ |||T γσrZ

+
1 |||

2
0 .

The rules of symbolic calculus give
T γσrT

γ

d−r
= T γ

d−r
T γσr +R0 ,

which yields the upper bound

2 Re

∫ +∞

0
〈ST γ

d−r
Z+

1 , Z
+
1 〉 dx2 ≤ C |||T γσrZ

+
1 |||

2
0 + C |||Z+

1 |||0 |||T
γ
σrZ

+
1 |||0

≤ (C + εγ) |||T γσrZ
+
1 |||

2
0 +

C

εγ
|||Z+

1 |||
2
0 ≤ (C + εγ) |||T γσrZ

+
1 |||

2
0 +

C

εγ
|||W+|||20 .

Using the definition of S, we obtain

∂x2S = (T γ∂x2σr
)∗ T γσr + (T γσr)

∗ T γ∂x2σr
.

From the basic estimates above, we already get the relation

− 2 Re

∫ +∞

0
〈T γ∂x2σrZ

+
1 + T γσrT

γ

ω−r
Z+

1 , T
γ
σrZ

+
1 〉 dx2 ≤ ‖T γσZ+

1 (0)‖20

+ (C + 4εγ) |||T γσrZ
+
1 |||

2
0 +

C

εγ

(
|||F+|||21,γ + |||T γrW+|||21,γ + |||W+|||20

)
. (102)

Now, we decompose ω−r as ω−r = γe−r + ih−r , where e−r , h
−
r take real values, e−r ∈ Γ0

2, and h−r ∈ Γ1
2. Because

the symbol σr satisfies the transport equation

∂x2σr + {σr, h−r } = 0 ,

equation (102) yields

− 2γ Re

∫ +∞

0
〈T γ
e−r
T γσrZ

+
1 , T

γ
σrZ

+
1 〉 dx2 − 2γ Re

∫ +∞

0
〈T γ−i{σr,e−r }Z

+
1 , T

γ
σrZ

+
1 〉 dx2

− 2γ Re

∫ +∞

0
〈R−1Z

+
1 , T

γ
σrZ

+
1 〉 dx2 − 2 Re

∫ +∞

0
〈T γ
ih−r

T γσrZ
+
1 , T

γ
σrZ

+
1 〉 dx2

− 2 Re

∫ +∞

0
〈R0Z

+
1 , T

γ
σrZ

+
1 〉 dx2 ≤ right-hand side of (102).
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The first term in the left-hand side is bounded from below thanks to G̊arding’s inequality (Theorem 6).
All the other terms are put on the right-hand side and estimated using Cauchy-Schwarz and Young’s
inequalities. In the end, we choose an appropriate ε and obtain

γ |||T γσrZ
+
1 |||

2
0 ≤ C ‖T

γ
σZ

+
1 (0)‖20 + C γ |||Z+

1 |||
2
0 +

C

γ

(
|||F+|||21,γ + |||T γrW+|||21,γ + |||W+|||20

)
.

We use (100) to estimate the term γ |||Z+
1 |||

2
0 in the right-hand side. Eventually, we derive

γ |||T γσrZ
+
1 |||

2
0 ≤ C

(
‖T γσZ+

1 (0)‖20 + ‖Z+
1 (0)‖20

)
+
C

γ

(
|||F+|||21,γ + |||T γrW+|||21,γ + |||W+|||20

)
. (103)

Recall that σr is homogeneous of degree 1 with respect to the frequencies (τ, η), so (103) has to be
understood as a L2(H1) estimate of Z+

1 far from the bicharacteristic curve (which is exactly the set where
σr vanishes).

A similar analysis enables us to derive an energy estimate for the vector

Z− := T γ
χ1(Ql0+Ql−1)

T γχc

(
W−2
W−3

)
,

where Ql0 diagonalizes the symbol Alχ2
:

Ql0 Alχ2
=

(
ω−l 0
0 ω+

l

)
Ql0 ,

and Ql−1 is defined as in Lemma 6, mutatis mutandis. The final estimates are

γ |||Z−2 |||
2
1,γ + ‖Z−2 (0)‖21,γ ≤

C

γ

(
|||F−|||21,γ + |||W−|||20 + |||T γrW−|||

2
1,γ

)
,

γ3 |||Z−1 |||
2
0 + γ |||T γσlZ

−
1 |||

2
0 ≤ C

(
γ2 ‖Z−1 (0)‖20 + ‖T γσZ−1 (0)‖20

)
+
C

γ

(
|||F−|||21,γ + |||W−|||20 + |||T γrW−|||

2
1,γ

)
.

(104)

The remaining part of the job is to estimate the traces of the incoming modes (Z+
1 and Z−1 ) in terms

of the outgoing modes (Z+
2 and Z−2 ) and G, knowing that we have the relation

T γβ
(
W+

2 W+
3 W−2 W−3

)T
|x2=0

= G .

This is nothing but the definition of G, see (93c). Observe that the first column vector of Qr0 and the
first column vector of Ql0 span the stable subspace E −(t, x1, x2, τ, η) (at least when the space-frequency
variables belong to the set Vc). These column vectors are denoted by Er and El. Following the proof of
Lemma 4 (see appendix A), one can show that there exist some 2× 2 invertible matrices P1 and P2 such
that

P1 β
(
Er El

)
P2 =

(
γ + iσ 0

0 1

)
.
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Therefore, repeating the arguments of [11], one can show the following estimate for the boundary terms:

γ2
(
‖Z−1 (0)‖20 + ‖Z+

1 (0)‖20
)

+ ‖T γσZ−1 (0)‖20 + ‖T γσZ+
1 (0)‖20

≤ C
(
‖G‖21,γ + ‖Z−2 (0)‖21,γ + ‖Z+

2 (0)‖21,γ + ‖Wnc
|x2=0
‖20
)
. (105)

Recall that the main ingredient of the proof is the microlocalized G̊arding’s inequality (Theorem 7), and
the fact that σ is real valued.

Collecting (98), (100), (103), (104), and (105), we end up with the final estimate near the critical set:

γ
(
|||Z−2 |||

2
1,γ + |||Z+

2 |||
2
1,γ + |||T γσlZ

−
1 |||

2
0 + |||T γσrZ

+
1 |||

2
0 + γ2 |||Z−1 |||

2
0 + γ2 |||Z+

1 |||
2
0

)
+
(
‖Z−2 (0)‖21,γ + ‖Z+

2 (0)‖21,γ + ‖T γσZ−1 (0)‖20 + ‖T γσZ+
1 (0)‖20 + γ2 ‖Z−1 (0)‖20 + γ2 ‖Z+

1 (0)‖20
)

≤ C

γ

(
|||F |||21,γ + |||W |||20 + |||T γrW |||

2
1,γ

)
+ ‖G‖21,γ + ‖Wnc

|x2=0
‖20 . (106)

Recall, for later use, that the vectors Z± are defined by the formulas

Z+ := T γχ1(Qr0+Qr−1)T
γ
χc

(
W+

2

W+
3

)
, Z− := T γ

χ1(Ql0+Ql−1)
T γχc

(
W−2
W−3

)
,

and the matrices Qr,l0 are invertible on a neighborhood of the support of χ1. We also recall the relation
χ1χc ≡ χc.

Recall also that the components T γχcW
±
1 are given in terms of T γχcW

±
2,3 by the relation (95). In partic-

ular, this relation yields an L2 estimate for T γχcW
±
1 , and an L2(H1) estimate far from the bicharacteristic

curves. Namely, we can add the norms

γ3 |||T γχc
W+

1 |||
2
0 + γ3 |||T γχc

W−1 |||
2
0 + γ |||T γσrT

γ
χc
W+

1 |||
2
0 + γ |||T γσlT

γ
χc
W−1 |||

2
0

in the left-hand side of (106). We thus control the L2 norm of the vector T γχcW , and not only the
noncharacteristic part of the vector. We also control the L2(H1) norm far from the bicharacteristic
curves that originate from the critical set.

5.6 Derivation of energy estimates: the good frequencies

To estimate the trace of T γχuW
nc, one first computes the equation satisfied (in Ω) by the vector T γχuW ;

then one eliminates the components that belong to the kernel of I2, and obtains an equation involving
only T γχuW

nc. The equation is similar to (96). For this reduced equation, one can construct Kreiss’ type
symmetrizers, because the uniform Lopatinskii condition is satisfied in a neighborhood of the support of
χu. The construction of the symmetrizer is achieved as in the constant coefficients case (see section 4).
Once again, we refer to [11] for a detailed derivation of energy estimates, and we only give the result here.
The estimate obtained by this method reads:

γ |||T γχu
W |||21,γ + ‖T γχu

Wnc(0)‖21,γ ≤ C
(
‖G‖21,γ + ‖Wnc(0)‖20

)
+
C

γ

(
|||F |||21,γ + |||W |||20 + |||T γrW |||

2
1,γ

)
. (107)

As in (106), the symbol r vanishes in a neighborhood of the bicharacteristic curves (the symbol r in (107)
is a linear combination of the derivatives of χu, and the cut-off function χu is identically zero near the
bicharacteristic curves).

48



5.7 Derivation of energy estimates: the poles

To derive an estimate for T γχpW
±, one starts from (93a)-(93b) and computes an equation similar to (94).

Then one changes basis, as was done in the constant coefficients case. In the end, one derives a maximal
L2(H1) estimate because the uniform Lopatinskii condition is satisfied near the poles. The energy estimate
is thus similar to the one corresponding to the good frequencies:

γ |||T γχp
W |||21,γ + ‖T γχp

Wnc(0)‖21,γ ≤ C
(
‖G‖21,γ + ‖Wnc(0)‖20

)
+
C

γ

(
|||F |||21,γ + |||W |||20 + |||T γrW |||

2
1,γ

)
. (108)

5.8 Proof of Theorem 3

We now patch together the microlocalized energy estimates, and show that the estimate (85) holds. We
first note that, adding (106), (107), (108), we are able to control the norms γ3|||W |||20 and γ2‖Wnc

|x2=0
‖20.

Namely, we first obtain (up to choosing γ large enough):

Left-hand side of (106)-(107)-(108) ≤ C ‖G‖21,γ +
C

γ

(
|||F |||21,γ + |||T γrW |||

2
1,γ

)
. (109)

In view of (109), the only thing to show is how to absorb the term |||T γrW |||1,γ . Recall that the symbol r
is identically zero in the regions where χc, χu or χp are equal to 1. We may thus decompose r as a linear
combination of the form

r = αuχu + αpχp + αc



σr 0 0
0 σr 0 0
0 0 λ1,γ

σl 0 0
0 0 σl 0

0 0 λ1,γ




1 0
0 χ1Q

r
0

1 0
0 χ1Q

l
0

χc .

The matrices αc,u,p have a block diagonal structure. We are thus able to absorb the term |||T γrW |||1,γ ,
thanks to the left-hand sides of (106)-(107)-(108). We thus obtain (85), since the left-hand sides of
(106)-(107)-(108) are bounded from below by

c
(
γ3 |||W |||20 + γ2 ‖Wnc

|x2=0
‖20
)
, c > 0 .

Thanks to Proposition 2, the estimate (70) for the variable coefficients linearized operators also holds.
This completes the proof of Theorem 3.

6 Concluding remarks

In this paper, we have proved a linear stability result for a wide class of rectilinear compressible vortex
sheets. To summarize, once we are given a suitable perturbation of a rectilinear supersonic vortex sheet,
the linearized coefficients around this perturbation satisfies an a priori estimate with loss of one derivative
(in the tangential variables). We have also proved that the paralinearized version of the linearized equa-
tions satisfies the same a priori estimate. The constants appearing in the energy estimates are uniform
with respect to the W 2,∞ norm of the coefficients.
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To prove the local in time existence of nonconstant vortex sheets, the next step will be to build an
iteration scheme that takes into account this loss of regularity. In view of [1, 13], there is a strong hope
that a Nash-Moser type iteration scheme might answer the problem. However, special attention should
be paid, at each step, to the relations (61), (62), and (63), that are crucial in the proof of Theorem 3.
The verification of the local existence of (supersonic) vortex sheets is postponed to a future work.

The one-dimensional stability of contact discontinuities has received a general treatment in [8] and
[9]. Unfortunately, the isentropic Euler equations do not admit contact discontinuities in one space
dimension. However, it would be interesting to determine whether the present analysis extends to some
contact discontinuities for the general Euler equations, and see the connections with the one-dimensional
analysis.
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A Proof of intermediate results

A.1 The proof of Proposition 1

Using (30) and (35), we obtain

β
(
Er El

)
=

(
(τ + ivrη)(c−1(τ + ivrη)− ωr) (τ + ivlη)(c−1(τ + ivlη)− ωl)
−cωr(τ + ivlη)(cωr − (τ + ivrη)) cωl(τ + ivrη)(cωl − (τ + ivlη))

)
for all (τ, η) ∈ Σ. This gives the following expression for the Lopatinskii determinant:

∆(τ, η) = −c2(τ + ivrη − cωr)(τ + ivlη − cωl)(ωrωl − η2)(ωr + ωl) .

Recall that ωr and ωl have negative real part when τ has positive real part, and satisfy the dispersion
relations (34a)-(34b). Because vr = −vl, we have the identity

ωr(τ, η) = ωl(τ,−η) .

With the above expression for ∆, it is easy to check that ∆(τ, η) = ∆(τ,−η). We shall thus only consider
nonnegative values of η in all this section: η ≥ 0.

One first checks that both expressions

(τ + ivrη − cωr) and (τ + ivlη − cωl)

do not vanish for any (τ, η) ∈ Σ, because of (34a)-(34b).
Clearly, the sum ωr + ωl can not vanish when τ has positive real part, since both numbers have

negative real part. When τ is purely imaginary, one extends ωr,l by continuity. If τ = iδ ∈ iR satisfies
(δ + vrη)2 ≤ c2η2, one has

ωr = −
√
η2 − 1

c2
(δ + vrη)2 ∈ R .

If (δ + vrη)2 > c2η2, we use Cauchy-Riemann relations to derive

ωr = −i sgn(δ + vrη)

√
1

c2
(δ + vrη)2 − η2 ∈ iR .

The calculations are almost the same as those done in [3]. For ωl, one just changes vr into vl = −vr and
derives similar formulas. Then using the dispersion relations (34a)-(34b), we easily check that ωr + ωl
vanishes if and only if τ = 0 (and therefore η 6= 0). For η > 0, this gives the following values for the
eigenmodes:

ωr = −iη
√
v2
r

c2
− 1 = −ωl ∈ iR .

Recall that vr > c
√

2.
It now remains to determine whether the expression (ωrωl − η2) may vanish. If η = 0, one has

ωr = ωl = −τ/c, and, therefore, ωrωl 6= 0. We thus assume η 6= 0 (that is, η > 0) and introduce the
reduced expressions

V :=
τ

iη
, Ωr,l :=

ωr,l
iη

.
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Assume that ΩrΩl = −1. Using (34) and (ΩrΩl)
2 = 1, we obtain the following polynomial equation for

V :
V 4 − 2(c2 + v2

r )V
2 + v2

r (v
2
r − 2c2) = 0 .

This is a polynomial equation of degree 2 for the unknown V 2, whose roots are real and distinct. If (18)
holds, both roots are positive. Let us denote these roots by V 2

1 and V 2
2 , where 0 < V1 < V2. One has

V 2
1 = c2 + v2

r − c
√
c2 + 4v2

r ,

V 2
2 = c2 + v2

r + c
√
c2 + 4v2

r .

We first show that the root V2 does not yield any instability. If V = V2, one has V ± vr ≥ c. Because
η > 0, we obtain

Ωr = −
√

1

c2
(V2 + vr)2 − 1 and Ωl = −

√
1

c2
(V2 − vr)2 − 1 ,

so ΩrΩl 6= −1. The Lopatinskii determinant ∆ does not vanish when V = V2. A similar argument shows
that ∆ does not vanish either for V = −V2.

Now we show that V = V1 is a root of the Lopatinskii determinant. One first checks that V1 + vr > c,
and V1 − vr < −c. Hence, for η > 0 and τ = iV1η, we find

Ωr = −
√

1

c2
(V1 + vr)2 − 1 and Ωl =

√
1

c2
(V1 − vr)2 − 1 .

These relations yield ΩrΩl < 0 and (ΩrΩl)
2 = 1, that is, we have ΩrΩl = −1. For V = V1, the Lopatinskii

determinant vanishes. The same argument holds for V = −V1.
This completes the first part of the proof of Proposition 1. What remains to show is that the roots

of the Lopatinskii determinant are simple. We first show that near τ = 0 and η = 1/vr (this is the only
point of Σ such that τ = 0 and η > 0), we have

ωr + ωl = τ h(τ, η) ,

for an appropriate C∞ function h. Since η 6= 0 near τ = 0, we have

ωr + ωl = iη(Ωr + Ωl) ,

where the notations are those introduced earlier. Near V = 0, both functions Ωr and Ωl are analytic with
respect to V and satisfy

Ω2
r =

1

c2
(V + vr)

2 − 1 , Ω2
l =

1

c2
(V − vr)2 − 1 .

We thus obtain (
dΩr

dV
+
dΩl

dV

)
|V=0 =

2vr
cΩr(0)

6= 0 .

Using a classical factorization property of holomorphic functions, we obtain

Ωr + Ωl = V H(V ) ,

where H is holomorphic near 0 and H(0) 6= 0. This yields

ωr + ωl = τ H

(
τ

iη

)
.
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The factorization result for ∆ is proved near the root τ = 0.
As regards the situation near those roots of the form (±iV1η, η) ∈ Σ, it is entirely similar and we shall

not detail the proof. (The proof is similar because Ωr and Ωl are still holomorphic with respect to V in
a neighborhood of V1 and −V1). The result is that the Lopatinskii determinant ∆ admits a factorization
that reads

∆(τ, η) = (τ − iV1η)h(τ, η) or ∆(τ, η) = (τ + iV1η)h(τ, η) ,

where h is C∞ and does not vanish near the roots of ∆. This completes the proof.

A.2 The proof of Lemma 4

In the proof of Proposition 1, we have seen that the matrix β (Er El) has the following expression:

β
(
Er El

)
=

(
(τ + ivrη)(c−1(τ + ivrη)− ωr) (τ + ivlη)(c−1(τ + ivlη)− ωl)
−cωr(τ + ivlη)(cωr − (τ + ivrη)) cωl(τ + ivrη)(cωl − (τ + ivlη))

)
for all (τ, η) ∈ Σ. We have also seen that the quantity (τ + ivrη − cωr) does not vanish for (τ, η) ∈ Σ.
Let us now consider a neighborhood V of a point (τ0, η0) ∈ Σ such that τ0 = 0. Up to shrinking V , the
quantity (τ + ivrη) does not vanish in V . As a consequence, the upper left corner coefficient of β (Er El)
does not vanish in V . We write

β
(
Er El

)
=

(
ζ1 ζ2

ζ3 ζ4

)
.

Then, relation (36) can be rewritten as
∆ = ζ1ζ4 − ζ2ζ3 ,

and ζ1 does not vanish in V . The identity(
1/ζ1 0
−ζ3/ζ1 1

)
β
(
Er El

) (1 −ζ2

0 ζ1

)
=

(
1 0
0 ∆

)
is a straightforward verification. In particular, this identity yields the estimate

|β
(
Er El

)
Z−|2 ≥ κ min(1, |∆|2) |Z−|2 ,

for all Z− ∈ C2. Using Proposition 1, the Lopatinskii determinant ∆ can be factorized near (τ0, η0):

∆(τ, η) = τ h(τ, η) , h(τ0, η0) 6= 0 .

Since γ is the real part of τ , we obtain
|∆(τ, η)| ≥ κ γ ,

for a suitable constant κ > 0 (still up to shrinking the neighborhood V ). This last inequality yields

|β
(
Er El

)
Z−|2 ≥ κ γ2 |Z−|2 ,

for all Z− ∈ C2 and all (τ, η) ∈ V .
Lemma 4 is thus proved when (τ0, η0) satisfies τ0 = 0. The other points where ∆ vanishes are those

points (τ0, η0) such that τ0 = ±iV1η0. Near those points, the upper left corner coefficient of β (Er El)
still does not vanish. We can again conclude that in an appropriate neighborhood V of (τ0, η0) (with, for
instance, τ0 = iV1η0), one has

|β
(
Er El

)
Z−|2 ≥ κ min(1, |∆|2) |Z−|2 .
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Now we use the factorization

∆(τ, η) = (τ − iV1η)h(τ, η) , h(τ0, η0) 6= 0 ,

to conclude. This completes the proof of Lemma 4.

B Paradifferential calculus with a parameter

In this appendix, we collect the main results of the paradifferential calculus of Bony and Meyer [5, 26]
that we use in this paper, see [25] for the introduction of the parameter. We refer to these papers for the
proofs of the results stated below. We first recall the classification of paradifferential symbols:

Definition 1. A paradifferential symbol of degree m ∈ R and regularity k (k ∈ N) is a function a(x, ξ, γ) :
R2×R2× [0,+∞[→ CN×N such that a is C∞ with respect to ξ and for all α ∈ N2, there exists a constant
Cα verifying

∀ (ξ, γ) , ‖∂αξ a(·, ξ, γ)‖Wk,∞(R2) ≤ Cα λm−|α|,γ(ξ) = Cα (γ2 + |ξ|2)(m−|α|)/2 .

The set of paradifferential symbols of degree m and regularity k is denoted by Γmk . We denote by Σm
k the

subset of paradifferential symbols a ∈ Γmk such that for a suitable ε ∈ ]0, 1[ one has

∀ (ξ, γ) , Supp Fx a(·, ξ, γ) ⊂ {ζ ∈ R2/|ζ| ≤ ε (γ2 + |ξ|2)1/2} .

Of course, the symbols in Σm
k are C∞ functions with respect to both variables x and ξ, and for all

a ∈ Σm
k , we have the estimates

∀ (x, ξ, γ) , |∂βx∂αξ a (x, ξ, γ)| ≤ Cα,β λm−|α|+|β|,γ(ξ) .

Thus any symbol a ∈ Σm
k belongs to Hörmander’s class Sm1,1 [16] and defines an operator Opγ(a) on the

Schwartz’ class S by the usual formula

∀u ∈ S , Opγ(a)u(x) :=
1

(2π)2

∫
R2

eix·ξ a(x, ξ, γ) û(ξ) dξ .

We shall use the following terminology:

Definition 2. A family of operators {P γ} defined for γ ≥ 1 will be said of order ≤ m (m ∈ R) if the
operators P γ are uniformly bounded from Hs+m to Hs:

∀ γ ≥ 1 , ∀u ∈ Hs+m , ‖P γu‖s,γ ≤ C(s,m) ‖u‖s+m,γ .

The following Theorem is crucial for the sequel of the analysis:

Theorem 4. If a ∈ Σm
k , the family {Opγ(a)} is of order ≤ m.

The regularization of symbols in the class Γmk is achieved by a convolution with admissible cut-off
functions:
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Definition 3. Let ψ : R2 × R2 × [1,+∞[→ [0,+∞[ be a C∞ function such that the following estimates
hold for all α, β ∈ N2:

∀ (ζ, ξ, γ), |∂αζ ∂
β
ξ ψ (ζ, ξ, γ)| ≤ Cα,β λ−|α|−|β|,γ(ξ) .

We shall say that ψ is an admissible cut-off function if there exist real numbers 0 < ε1 < ε2 < 1 satisfying

ψ(ζ, ξ, γ) = 1 if |ζ| ≤ ε1(γ2 + |ξ|2)1/2 ,

ψ(ζ, ξ, γ) = 0 if |ζ| ≥ ε2(γ2 + |ξ|2)1/2 .

An example of cut-off function is the following: let χ be a nonnegative C∞ function on R2 × R such
that

γ2
1 + |ξ1|2 ≥ γ2

2 + |ξ2|2 =⇒ χ(ξ1, γ1) ≤ χ(ξ2, γ2) ,{
χ(ξ, γ) = 1 if

(
γ2 + |ξ|2

)1/2 ≤ 1/2,

χ(ξ, γ) = 0 if
(
γ2 + |ξ|2

)1/2 ≥ 1.

We define a function ϕ(ξ, γ) := χ(ξ/2, γ/2)− χ(ξ, γ). Then the function ψ0 defined by

ψ0(ζ, ξ, γ) :=
∑
p≥0

χ(22−pζ, 0)ϕ(2−pξ, 2−pγ)

is an admissible cut-off function (one can take ε1 = 1/16 and ε2 = 1/2).
If ψ is an admissible cut-off function, the inverse Fourier transform Kψ of ψ(·, ξ, γ) satisfies

∀ (ξ, γ) , ‖∂αξ Kψ(·, ξ, γ)‖L1(R2) ≤ Cα λ−|α|,γ(ξ) .

These L1 bounds fer the derivatives ∂αξ K
ψ enable us to establish the following Proposition:

Proposition 4. Let ψ be an admissible cut-off function. The mapping

a 7−→ σψa (x, ξ, γ) :=

∫
R2

Kψ(x− y, ξ, γ) a(y, ξ, γ) dy

is continuous from Γmk to Σm
k for all m.

If a ∈ Γm1 , then a− σψa ∈ Γm−1
0 . In particular, if ψ1 and ψ2 are two admissible cut-off functions and

a ∈ Γm1 , then σψ1
a − σψ2

a ∈ Σm−1
0 .

Fixing an admissible cut-off function ψ, we define the paradifferential operator Tψ,γa by the formula

Tψ,γa := Opγ(σψa ) .

If ψ1 and ψ2 are two admissible cut-off functions and a ∈ Γm1 , then Proposition 4 and Theorem 4 show

that the family {Tψ1,γ
a − Tψ2,γ

a } is of order ≤ (m− 1).
The symbolic calculus is based on the following Theorem:

Theorem 5. Let a ∈ Γm1 and b ∈ Γm
′

1 . Then ab ∈ Γm+m′

1 and the family

{Tψ,γa ◦ Tψ,γb − Tψ,γab }γ≥1

is of order ≤ m+m′ − 1 for all admissible cut-off function ψ.
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Let a ∈ Γm1 . Then for all admissible cut-off function ψ, the family

{(Tψ,γa )∗ − Tψ,γa∗ }γ≥1

is of order ≤ m− 1.

Let a ∈ Γm2 and b ∈ Γm
′

2 . Then ab ∈ Γm+m′

2 and the family

{Tψ,γa ◦ Tψ,γb − Tψ,γab − T
ψ,γ
−i

∑
j ∂ξja∂xj b

}γ≥1

is of order ≤ m+m′ − 2 for all admissible cut-off function ψ.

Let a ∈ Γm2 . Then the family

{(Tψ,γa )∗ − Tψ,γa∗ − T
ψ,γ
−i

∑
j ∂ξj ∂xja

∗}γ≥1

is of order ≤ m− 2 for all admissible cut-off function ψ.

The next Theorem is the parameter version of G̊arding’s inequality:

Theorem 6. Let a ∈ Γ2m
1 and let ψ be and admissible cut-off function. Assume that there exists a

constant c > 0 such that
∀ (x, ξ, γ), Re a(x, ξ, γ) ≥ c λ2m,γ(ξ) I .

Then there exists γ0 ≥ 1 such that

∀ γ ≥ γ0 , ∀u ∈ Hm , Re 〈Tψ,γa u, u〉H−m,Hm ≥ c

2
‖u‖2m,γ .

We also have a microlocalized version of G̊arding’s inequality:

Theorem 7. Let a ∈ Γ2m
1 , χ ∈ Γ0

1 and ψ be and admissible cut-off function. Assume that there exists
χ̃ ∈ Γ0

1 and a constant c > 0 such that χ̃ ≥ 0, χ̃ χ = χ and

∀ (x, ξ, γ), χ̃2(x, ξ, γ) Re a(x, ξ, γ) ≥ c χ̃2(x, ξ, γ)λ2m,γ(ξ) I .

Then there exists γ0 ≥ 1 and C > 0 such that

∀ γ ≥ γ0 ,∀u ∈ Hm , Re 〈Tψ,γa Tψ,γχ u, Tψ,γχ u〉H−m,Hm ≥ c

2
‖Tψ,γχ u‖2m,γ − C ‖u‖2m−1,γ .

We now study the case of paraproducts: they are defined by the particular choice of ψ0 as cut-off
function. We shall write T γa instead of Tψ0,γ

a for the paradifferential operators obtained after convolution
by the function ψ0. We have the following important result:

Theorem 8. Let a ∈W 1,∞(R2), u ∈ L2(R2) and γ ≥ 1. Then we have

‖a u− T γa u‖0 ≤
C

γ
‖a‖W 1,∞(R2) ‖u‖0 ,

‖a ∂xju− T γa ∂xju‖0 ≤ C ‖a‖W 1,∞(R2) ‖u‖0 ,

for a suitable constant C that is independent of (a, u, γ).
If a ∈W 2,∞(R2), we have

‖a u− T γa u‖1,γ ≤
C

γ
‖a‖W 2,∞(R2) ‖u‖0 ,

‖a ∂xju− T γa ∂xju‖1,γ ≤ C ‖a‖W 2,∞(R2) ‖u‖0 ,

for a suitable constant C that is independent of (a, u, γ).
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We can extend the paradifferential calculus to symbols defined on a half-space in the following way:
we still denote by Γmk the set of symbols a(x0, x1, x2, ξ, γ) defined on Ω×(Rd× [0,+∞[ \{0}) such that the
mapping x2 7→ a(·, x2, ·) is bounded into Γmk . We define the paradifferential operator T γa by the formula

∀u ∈ C∞c (Ω) , ∀x2 ≥ 0 , (T γa u)(·, x2) := T γa(x2)u(·, x2) .

Using Theorem 8 and integrating with respect to x2, we obtain for all symbol a ∈ W 1,∞(Ω) and all
u ∈ L2(Ω) the estimates:

|||a u− T γa u|||0 ≤
C

γ
‖a‖W 1,∞(Ω) |||u|||0 ,

|||a ∂xju− T γa ∂xju|||0 ≤ C ‖a‖W 1,∞(Ω) |||u|||0 , j = 0, 1 .

57



References
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