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The stability of compressible vortex sheets in two space dimensions

We study the linear stability of compressible vortex sheets in two space dimensions. Under a supersonic condition that precludes violent instabilities, we prove an energy estimate for the linearized boundary value problem. Since the problem is characteristic, the estimate we prove exhibits a loss of control on the trace of the solution. Furthermore, the failure of the uniform Kreiss-Lopatinskii condition yields a loss of derivatives in the energy estimate.

Introduction

A velocity discontinuity in an inviscid flow is called a vortex sheet. In three-space dimensions, a vortex sheet has vorticity concentrated along a surface in the space. In two-space dimensions, the vorticity is concentrated along a curve in the plane. The present paper deals with compressible vortex sheets, i. e. vortex sheets in a compressible flow.

If the solution is piecewise constant on the two sides of the interface of discontinuity, one has planar vortex sheets in the three dimensional case and rectilinear vortex sheets in the two dimensional case, respectively. The linear stability of planar and rectilinear compressible vortex sheets has been analyzed a long time ago, see [START_REF] Miles | On the disturbed motion of a plane vortex sheet[END_REF][START_REF] Fejer | On the stability of a plane vortex sheet with respect to three-dimensional disturbances[END_REF]. In three space dimensions, planar vortex sheets are known to be violently unstable (see e.g. [START_REF] Serre | Systems of conservation laws[END_REF]). In the two dimensional case, subsonic vortex sheets are also violently unstable, while supersonic vortex sheets are neutrally linearly stable, see e.g. [START_REF] Miles | On the disturbed motion of a plane vortex sheet[END_REF]. This result formally agrees with the theory of incompressible vortex sheets. In fact, in the incompressible limit, the speed of sound tends to infinity, with the result that two-dimensional vortex sheets are always unstable. This kind of instability is usually referred to as the Kelvin-Helmhotz instability. For the incompressible theory of two-dimensional vortex sheets, we refer the reader to the books [START_REF] Chemin | Fluides parfaits incompressibles[END_REF][START_REF] Majda | Vorticity and incompressible flow[END_REF]. Moreover, we refer to [START_REF] Hateau | Instabilité des feuilles de tourbillon avec conduction de chaleur[END_REF] for the study of the instability of vortex sheets when heat conduction is taken into account. 1 However, the normal modes analysis performed to derive the stability of supersonic vortex sheets is by far not sufficient to guarantee the existence of nonconstant vortex sheets (that is, contact discontinuities) solutions to the compressible isentropic Euler equations. In this paper, we first show that supersonic constant vortex sheets are linearly stable, in the sense that the linearized system (around these particular piecewise constant solutions) obeys an energy estimate. Then we consider the linearized equations around a perturbation of a constant vortex sheet, and we show that these linearized equations obey the same energy estimate. This is a first step towards proving the existence of nonplanar compressible vortex sheets.

Several points need to be highlighted. First of all, the existence of compressible vortex sheets is a free boundary nonlinear hyperbolic problem. Moreover, the free boundary is characteristic with respect to both left and right states since we deal with contact discontinuities. This is one of the reasons why one can not apply Majda's analysis on shock waves (see [START_REF] Majda | The stability of multidimensional shock fronts[END_REF][START_REF] Majda | The existence of multidimensional shock fronts[END_REF]), that are noncharacteristic interfaces. In some previous works devoted to weakly stable shock waves, see [START_REF] Coulombel | Weak stability of nonuniformly stable multidimensional shocks[END_REF][START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF], the first author has considered noncharacteristic hyperbolic Initial Boundary Value Problems that did not meet the uniform Kreiss-Lopatinskii condition. In the case of vortex sheets, the analysis is closely related, with the additional difficulty that the boundary is characteristic (the present analysis thus relies more on the work of Majda and Osher [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF] rather than on the work of Kreiss [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF][START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF]). The connection with [START_REF] Coulombel | Weak stability of nonuniformly stable multidimensional shocks[END_REF][START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF] is that in both cases, the analogue of the Kreiss-Lopatinskii condition is fulfilled but not in a uniform way. Furthermore, in the case of vortex sheets as in the case of shock waves, the linearized Rankine-Hugoniot conditions form an elliptic system for the unknown front. This property is a key point in our work since it allows to eliminate the unknown front and to consider a standard Boundary Value Problem with a symbolic boundary condition (this ellipticity property is also crucial in Majda's analysis on shock waves [START_REF] Majda | The stability of multidimensional shock fronts[END_REF][START_REF] Majda | The existence of multidimensional shock fronts[END_REF]).

Regarding the energy estimates for the linearized problems, the failure of the uniform Kreiss-Lopatinskii condition yields a loss of derivatives with respect to the source terms. Furthermore, because the boundary is characteristic, we expect to lose some control on the trace of the solution at the boundary. As a matter of fact, we shall see that the only loss of control is on the tangential velocity (which corresponds to the "characteristic part" of the solution). The good point is that the ellipticity of the boundary conditions for the unknown front enables us to gain one derivative for it, as in Majda's work on shock waves [START_REF] Majda | The stability of multidimensional shock fronts[END_REF]. Going slightly more into the details, we shall prove that the only frequencies for which we lose some control on the solution correspond to bicharacteristic curves. Those curves originate from those points at the boundary of the space domain where the so-called Lopatinskii determinant vanishes. In the interior of the space domain, these singularities propagate along two bicharacteristics associated with the incoming modes.

Let us now describe the content of the paper. In section 2, we present the nonlinear equations describing the evolution of compressible vortex sheets and introduce some notations. Then, in section 3, we shall consider the linearized equations around a constant (stationary) vortex sheet. The main result for the constant coefficient linearized problem is given in Theorems 1 and 2. After several reductions, we shall detail in section 4 the normal modes analysis of the linearized problem and construct a degenerate Kreiss' symmetrizer in order to derive our energy estimate. In section 5, we first present the variable coefficients linearized problem and introduce Alinhac's good unknown. Then we paralinearize the equations, in order to use the symbolic calculus of section 4 to derive the energy estimate. A precise estimate of the paralinearization errors is given. Eventually, we show how to control the different pieces of the solution, depending on their microlocalization. The main result for the variable coefficients linearized problem is given in Theorem 3. In section 6, we make some remarks about possible future achievements. Appendix A is devoted to the proof of several technical lemmas and appendix B gathers the main results on paradifferential calculus that are used throughout section 5.

The nonlinear equations

We consider Euler equations of isentropic gas dynamics in the whole plane R 2 . Denoting by u the velocity of the fluid and ρ the density, the equations read:

∂ t ρ + ∇ • (ρu) = 0 , ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇ p = 0 , (1) 
where p = p(ρ) is the pressure law. In all this paper, p is assumed to be a strictly increasing function of ρ, defined on ]0, +∞[. We also assume that p is a C ∞ function of ρ. The speed of sound c(ρ) in the fluid is then defined by the relation c(ρ) := p (ρ) .

Let (ρ, u)(t, x 1 , x 2 ) be a smooth function on either side of a smooth hypersurface Γ := {x 2 = ϕ(t, x 1 )}. Then (ρ, u) is a (weak) solution of (1) if and only if (ρ, u) is a classical solution of (1) on both sides of Γ and the Rankine-Hugoniot conditions hold at each point of Γ:

∂ t ϕ [ρ] -[ρu • ν] = 0 , ∂ t ϕ [ρu] -[(ρu • ν)u] -[p]ν = 0 , (2) 
where ν := (-∂ x 1 ϕ, 1) is a (space) normal vector to Γ. As usual, [q] = q + -q -denotes the jump of a quantity q across the interface Γ (see [START_REF] Serre | Systems of conservation laws[END_REF]).

Following Lax [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF], we shall say that (ρ, u) is a contact discontinuity if [START_REF] Artola | Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes[END_REF] is satisfied in the following way:

∂ t ϕ = u + • ν = u -• ν , p + = p -.
Because p is monotone, the previous equalities read

∂ t ϕ = u + • ν = u -• ν , ρ + = ρ -. (3) 
Since the density and the normal velocity are continuous across the interface Γ, the only jump experimented by the solution is on the tangential velocity. (Here, normal and tangential mean normal and tangential with respect to Γ). For this reason, a contact discontinuity is a vortex sheet and we shall make no distinction in the terminology we use. Note that the first two equalities above are nothing but eikonal equations: if x 2 = ϕ(t, x 1 ) is the equation of the interface Γ, then ϕ satisfies

∂ t ϕ + λ 2 (ρ + , u + , ∂ x 1 ϕ) = 0 and ∂ t ϕ + λ 2 (ρ -, u -, ∂ x 1 ϕ) = 0 , on {x 2 = 0}, where λ 2 (ρ, u, ξ) := u • ξ -1 , ξ ∈ R ,
is the second characteristic field of the system [START_REF] Alinhac | Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF]. It is linearly degenerate since the corresponding eigenvector, in the quasilinear form of (1), is given by

r 2 (ρ, u, ξ) :=   0 1 ξ   .
Recall that the space dimension equals 2. The interface Γ, or equivalently the function ϕ, is part of the unknowns of the problem. We thus deal with a free boundary problem. As it is common in this kind of situation, we first straighten the unknown front in order to work in a fixed domain. More precisely, the unknowns (ρ, u), that are smooth on either side of {x 2 = ϕ(t, x 1 )}, are replaced by the functions (ρ + , u + )(t, x 1 , x 2 ) := (ρ, u)(t, x 1 , Φ(t, x 1 , x 2 )) , and (ρ -, u -)(t, x 1 , x 2 ) := (ρ, u)(t, x 1 , Φ(t, x 1 , -x 2 )) , where Φ is a smooth function satisfying

∂ x 2 Φ(t, x 1 , x 2 ) ≥ κ > 0 , Φ(t, x 1 , 0) = ϕ(t, x 1 ) .
With these requirements for Φ, all functions ρ ± , u ± are smooth on the fixed domain {x 2 > 0}. For convenience, we drop the index and only keep the + and -exponents. We also define the functions Φ ± (t, x 1 , x 2 ) := Φ(t, x 1 , ±x 2 ) , that are both smooth on the half-space {x 2 > 0}.

Let us denote by v and u the two components of the velocity, that is, u = (v, u). Then the existence of compressible vortex sheets amounts to proving the existence of smooth solutions to the following system:

∂ t ρ + + v + ∂ x 1 ρ + + (u + -∂ t Φ + -v + ∂ x 1 Φ + ) ∂ x 2 ρ + ∂ x 2 Φ + + ρ + ∂ x 1 v + + ρ + ∂ x 2 u + ∂ x 2 Φ + -ρ + ∂ x 1 Φ + ∂ x 2 Φ + ∂ x 2 v + = 0 , ∂ t v + + v + ∂ x 1 v + + (u + -∂ t Φ + -v + ∂ x 1 Φ + ) ∂ x 2 v + ∂ x 2 Φ + + p (ρ + ) ρ + ∂ x 1 ρ + - p (ρ + ) ρ + ∂ x 1 Φ + ∂ x 2 Φ + ∂ x 2 ρ + = 0 , ∂ t u + + v + ∂ x 1 u + + (u + -∂ t Φ + -v + ∂ x 1 Φ + ) ∂ x 2 u + ∂ x 2 Φ + + p (ρ + ) ρ + ∂ x 2 ρ + ∂ x 2 Φ + = 0 , ∂ t ρ -+ v -∂ x 1 ρ -+ (u --∂ t Φ --v -∂ x 1 Φ -) ∂ x 2 ρ - ∂ x 2 Φ -+ ρ -∂ x 1 v -+ ρ -∂ x 2 u - ∂ x 2 Φ --ρ -∂ x 1 Φ - ∂ x 2 Φ -∂ x 2 v -= 0 , ∂ t v -+ v -∂ x 1 v -+ (u --∂ t Φ --v -∂ x 1 Φ -) ∂ x 2 v - ∂ x 2 Φ -+ p (ρ -) ρ -∂ x 1 ρ -- p (ρ -) ρ - ∂ x 1 Φ - ∂ x 2 Φ -∂ x 2 ρ -= 0 , ∂ t u -+ v -∂ x 1 u -+ (u --∂ t Φ --v -∂ x 1 Φ -) ∂ x 2 u - ∂ x 2 Φ -+ p (ρ -) ρ - ∂ x 2 ρ - ∂ x 2 Φ -= 0 , (4) 
in the fixed domain {x 2 > 0}, together with the boundary conditions

Φ + | x 2 =0 = Φ - | x 2 =0 = ϕ , ∂ t ϕ = -v + | x 2 =0 ∂ x 1 ϕ + u + | x 2 =0 = -v - | x 2 =0 ∂ x 1 ϕ + u - | x 2 =0 , ρ + | x 2 =0 = ρ - | x 2 =0 .
For convenience, we rewrite the boundary conditions in the following way:

Φ + | x 2 =0 = Φ - | x 2 =0 = ϕ , (v + -v -) | x 2 =0 ∂ x 1 ϕ -(u + -u -) | x 2 =0 = 0 , ∂ t ϕ + v + | x 2 =0 ∂ x 1 ϕ -u + | x 2 =0 = 0 , (ρ + -ρ -) | x 2 =0 = 0 . (5) 
The functions Φ + and Φ -should also satisfy

∂ x 2 Φ + (t, x 1 , x 2 ) ≥ κ , ∂ x 2 Φ -(t, x 1 , x 2 ) ≤ -κ , (6) 
for a suitable constant κ > 0.

In [START_REF] Majda | The stability of multidimensional shock fronts[END_REF][START_REF] Majda | The existence of multidimensional shock fronts[END_REF], Majda makes the particular choice

Φ ± (t, x 1 , x 2 ) := ±x 2 + ϕ(t, x 1 ) .
This choice is appropriate in the study of shock waves because these are noncharacteristic discontinuities.

In the study of contact discontinuities, it seems rather natural to choose the change of variables Φ ± such that the eikonal equations

∂ t Φ + + λ 2 (ρ + , u + , ∂ x 1 Φ + ) = ∂ t Φ + + v + ∂ x 1 Φ + -u + = 0 , ∂ t Φ -+ λ 2 (ρ -, u -, ∂ x 1 Φ -) = ∂ t Φ -+ v -∂ x 1 Φ --u -= 0 ,
are satisfied in the whole closed half-space {x 2 ≥ 0}. This choice, that is inspired from [START_REF] Francheteau | Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF], has several advantages. First, it simplifies much the expression of the nonlinear equations [START_REF] Benzoni-Gavage | First order systems of hyperbolic partial differential equations with applications[END_REF]. But it also implies that the so-called boundary matrix has constant rank in the whole space domain {x 2 ≥ 0}, and not only on the boundary {x 2 = 0}. This will enable us to develop a Kreiss' symmetrizers technique, in the spirit of [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF]. We shall go back to this feature later on. The problem is thus the construction of (local in time) smooth solutions to (4)-( 5)-( 6), once initial data have been prescribed. Of course, such initial data will have to fulfill a certain number of compatibility conditions. The first step in proving such an existence result is the study of the linearized problem around a particular constant solution, and this is our first main result, see Theorems 1 and 2. The second step is the study of the linearized problem around a (variable coefficients) perturbation of the constant solution. The extension to the variable coefficients linearized problem is addressed in the second part of the paper. Our second main result states that the constant coefficients energy estimate still holds when one considers a variable coefficients linearized problem, see Theorem 3.

To avoid overloading the paper, we introduce some compact notations for the nonlinear equations (4). For all U := (ρ, v, u) T , we define

A 1 (U ) :=     v ρ 0 p (ρ) ρ v 0 0 0 v     , A 2 (U ) :=     u 0 ρ 0 u 0 p (ρ) ρ 0 u     .
Then the nonlinear equations (4) read

∂ t U + + A 1 (U + )∂ x 1 U + + 1 ∂ x 2 Φ + A 2 (U + ) -∂ t Φ + -∂ x 1 Φ + A 1 (U + ) ∂ x 2 U + = 0 , ∂ t U -+ A 1 (U -)∂ x 1 U -+ 1 ∂ x 2 Φ -A 2 (U -) -∂ t Φ --∂ x 1 Φ -A 1 (U -) ∂ x 2 U -= 0 . (7)
With an obvious definition for the differential operator L, the system (7) also reads

L(U + , ∇Φ + )U + = 0 , L(U -, ∇Φ -)U -= 0 . ( 8 
)
When no confusion is possible, we also write this system under the form

L(U, ∇Φ)U = 0 ,
where U stands for the vector (U + , U -) and Φ for (Φ + , Φ -). One should always remember that the interior equations ( 7) are entirely decoupled. The coupling between the right and left states is made by the boundary conditions [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

There exist many simple solutions of ( 8)-( 5)- [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF], that correspond, in the original variables, to rectilinear vortex sheets:

(ρ, u) = (ρ, u r ) if x 2 > σt + nx 1 , (ρ, u l ) if x 2 < σt + nx 1 .
Here above, u r , u l are fixed vectors in R 2 , and ρ > 0, σ and n are fixed real numbers. These quantities are linked by the Rankine-Hugoniot conditions:

σ = -v r n + u r = -v l n + u l .
Changing observer if necessary, we may assume without loss of generality

σ = n = u r = u l = 0 and v r + v l = 0 (v r = 0) .
In the new variables, this corresponds to the following regular solution of ( 8)-( 5)-( 6):

U r ≡   ρ v r 0   , U l ≡   ρ v l 0   , Φ r,l (t, x 1 , x 2 ) ≡ ±x 2 , (9) 
with the relation v r + v l = 0. We only consider the case v r = 0, and without loss of generality, we assume v r > 0. In the next section, we study the linearized equations around the particular solution defined by [START_REF] Corli | Stability of contact discontinuities under perturbations of bounded variation[END_REF]. Under a certain "supersonic" assumption, we shall show that the linearized equations satisfy an a priori energy estimate.

3 The constant coefficients linearized system

The linearized equations

Let us denote by ρ± , u± , Ψ ± some small perturbations of the exact solution given by [START_REF] Corli | Stability of contact discontinuities under perturbations of bounded variation[END_REF]. Up to second order, the perturbations U± = ( ρ± , v± , u± ) T satisfy

∂ t U+ + A 1 (U r ) ∂ x 1 U+ + A 2 (U r ) ∂ x 2 U+ = 0 , ∂ t U-+ A 1 (U l ) ∂ x 1 U--A 2 (U l ) ∂ x 2 U-= 0 , (10) 
in the domain {x 2 > 0}, together with the linearized Rankine-Hugoniot relations

Ψ + = Ψ -= ψ , (v r -v l ) ∂ x 1 ψ -( u+ -u-) = 0 , ∂ t ψ + v r ∂ x 1 ψ -u+ = 0 , ρ+ -ρ-= 0 , (11) 
on the boundary {x 2 = 0}. In short, equations ( 10)- [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF] read

L U = 0 , if x 2 > 0, B( U , ψ) = 0 , if x 2 = 0, (12) 
with U := ( U+ , U-), and obvious definitions for the operators L and B:

L U := ∂ t U+ U- + A 1 (U r ) 0 0 A 1 (U l ) ∂ x 1 U+ U- + A 2 (U r ) 0 0 -A 2 (U l ) ∂ x 2 U+ U- , B( U , ψ) :=   (v r -v l ) ∂ x 1 ψ -( u+ -u-) ∂ t ψ + v r ∂ x 1 ψ -u+ ρ+ -ρ-   .
It is important to note that the interior equations do not involve the perturbation ψ, so L is an operator that only acts on U . This property also holds when one studies the linearized shock wave equations around a planar shock, see [START_REF] Majda | The stability of multidimensional shock fronts[END_REF][START_REF] Métivier | Stability of multidimensional shocks[END_REF].

Proving an energy estimate for the linearized equations amounts to working with source terms, both in the interior domain and on the boundary. From now on, we thus consider the linear equations

L U = f , if x 2 > 0, B( U , ψ) = g , if x 2 = 0, (13) 
and try to estimate U and ψ in terms of f and g (in appropriate functional spaces). In order to simplify the subsequent calculations, we introduce some new unknown functions, and define the following quantities:

W 1 := v+ , W 2 := 1 2 - ρ+ ρ + u+ c , W 3 := 1 2 ρ+ ρ + u+ c , W 4 := v-, W 5 := 1 2 - ρ- ρ + u- c , W 6 := 1 2 ρ- ρ + u- c . (14) 
We also define the following vectors:

W := (W 1 , W 2 , W 3 , W 4 , W 5 , W 6 ) T , W c := (W 1 , W 4 ) T , W nc := (W 2 , W 3 , W 5 , W 6 ) T .
The notations W c and W nc are introduced in order to separate the "characteristic part" of the vector W and the "noncharacteristic part" of W . We shall go back to this decomposition later on. It is obvious that estimating W is equivalent to estimating U . Let us define the following 6 × 6 symmetric matrices:

A 0 :=         1 0 0 0 2c 2 0 0 0 0 2c 2 1 0 0 0 0 2c 2 0 0 0 2c 2         , A 1 :=         v r -c 2 c 2 -c 2 2c 2 v r 0 0 c 2 0 2c 2 v r v l -c 2 c 2 0 -c 2 2c 2 v l 0 c 2 0 2c 2 v l         , A 2 :=         0 0 0 0 -2c 3 0 0 0 0 2c 3 0 0 0 0 0 2c 3 0 0 0 -2c 3         , (15) 
where 0 stands for the 3 × 3 null matrix, as well as the following

b :=   0 v r -v l 1 v r 0 0   =   0 2v r 1 v r 0 0   , M :=   -c -c c c -c -c 0 0 -1 1 1 -1   . (16) 
Then, using ( 14)-( 15)-( 16), the linear equations ( 13) equivalently read

L W = f , if x 2 > 0, B(W nc , ψ) = g , if x 2 = 0, (17) 
with new f and g, and where we have let

L W := A 0 ∂ t W + A 1 ∂ x 1 W + A 2 ∂ x 2 W , and 
B(W nc , ψ) := M W nc | x 2 =0 + b ∂ t ψ ∂ x 1 ψ .
Note that the kernel of A 2 is exactly the set of those W such that W nc = 0 (and W c is arbitrary). The boundary {x 2 = 0} is thus characteristic with multiplicity 2. As already noted in earlier works, see e.g. [START_REF] Lax | Local boundary conditions for dissipative symmetric linear differential operators[END_REF][START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF], we expect to lose control of the trace of W c , that is, on the trace of the tangential velocities ( v+ , v-). At the opposite, we expect to control the trace of W nc on {x 2 = 0}, that is, we expect to control the trace of ( ρ+ , ρ-, u+ , u-).

The main result for the constant coefficients case

Before stating our energy estimate for the system [START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF], we need to introduce some Sobolev weighted norms. First define the half-space

Ω := {(t, x 1 , x 2 ) ∈ R 3 s.t. x 2 > 0} = R 2 × R + . The boundary ∂Ω is identified to R 2 .
For all real number s and all γ ≥ 1, define the space

H s γ (R 2 ) := {u ∈ D (R 2 ) s.t. exp(-γt)u ∈ H s (R 2 )} . It is equipped with the norm u H s γ (R 2 ) := exp(-γt)u H s (R 2 ) . Letting u := exp(-γt)u, one has u H s γ (R 2 ) u s,γ where v 2 s,γ := 1 (2π) 2 R 2 (γ 2 + |ξ| 2 ) s | v(ξ)| 2 dξ ,
where v is the Fourier transform of any function v defined on R 2 .

For all integer k, one can define the space H k γ (Ω) in an entirely similar way. The space

L 2 (R + ; H s γ (R 2 )) is equipped with the norm |||v||| 2 L 2 (H s γ ) := +∞ 0 v(•, x 2 ) 2 H s γ (R 2 ) dx 2 .
In the sequel, the variable in R 2 is (t, x 1 ) while x 2 is the variable in R + . Our first main result is stated as follows:

Theorem 1. Assume that the particular solution defined by (9) satisfies

v r -v l > 2 √ 2 c . (18) 
Then there exists a positive constant C such that for all γ ≥ 1 and for all (W, ψ) ∈ H 2 γ (Ω) × H 2 γ (R 2 ), the following estimate holds:

γ |||W ||| 2 L 2 γ (Ω) + W nc | x 2 =0 2 L 2 γ (R 2 ) + ψ 2 H 1 γ (R 2 ) ≤ C 1 γ 3 |||L W ||| 2 L 2 (H 1 γ ) + 1 γ 2 B(W nc , ψ) 2 H 1 γ (R 2 )
.

Introducing W := exp(-γt)W and ψ := exp(-γt)ψ, we easily find that ( 17) is equivalent to

     L γ W := γA 0 W + L W = exp(-γt)f , if x 2 > 0, B γ ( W nc , ψ) := M W nc | x 2 =0 + b γ ψ + ∂ t ψ ∂ x 1 ψ = exp(-γt)g , if x 2 = 0. ( 20 
)
Consequently, Theorem 1 admits the following equivalent formulation:

Theorem 2. Assume that (18) holds. Then there exists a positive constant C such that for all γ ≥ 1 and for all ( W , ψ) ∈ H 2 (Ω) × H 2 (R 2 ), the following estimate holds:

γ ||| W ||| 2 0 + W nc | x 2 =0 2 0 + ψ 2 1,γ ≤ C 1 γ 3 |||L γ W ||| 2 1,γ + 1 γ 2 B γ ( W nc , ψ) 2 1,γ . (21) 
In [START_REF] Majda | The existence of multidimensional shock fronts[END_REF], we have used the following notations for any u ∈ L 2 (R + ; H s (R 2 )):

|||v||| 2 s,γ := +∞ 0 v(•, x 2 ) 2 s,γ dx 2 .
For instance, ||| • ||| 0,γ is the usual norm on L 2 (Ω) and does not involve γ, so we shall denote it by

||| • ||| 0 . The norm ||| • ||| 1,γ is the weighted norm on L 2 (R + , H 1 (R 2 )).
4 Proof of Theorem 2

Some preliminary reductions

In this paragraph, we show that it is sufficient to prove Theorem 2 in the particular case L γ W ≡ 0. This first reduction simplifies many subsequent calculations. The argument we use was introduced in [23, page 636].

In order to simplify notations, we drop the tildas. Let W ∈ H 2 (Ω) and ψ ∈ H 2 (R 2 ). Then we define:

f := L γ W ∈ H 1 (Ω) , g := B γ (W nc , ψ) ∈ H 1 (R 2 ) .
Consider the following auxiliary problem:

L γ W 1 = f , if x 2 > 0, M aux W nc 1 | x 2 =0 = 0 , if x 2 = 0, (22) 
where M aux is defined by M aux := 0 1 0 0 0 0 1 0 .

In the auxiliary problem [START_REF] Majda | Vorticity and incompressible flow[END_REF], the boundary conditions are maximally dissipative (see the formula [START_REF] Hersh | Mixed problems in several variables[END_REF] defining the matrix A 2 ). Since f ∈ L 2 (R + ; H 1 (R 2 )), it follows from [START_REF] Lax | Local boundary conditions for dissipative symmetric linear differential operators[END_REF] that there exists a function

W 1 ∈ L 2 (R + ; H 1 (R 2 
)), such that the trace of W nc 1 on {x 2 = 0} belongs to H 1 (R 2 ), and that is a solution to [START_REF] Majda | Vorticity and incompressible flow[END_REF]. In particular, the function W 1 satisfies the following estimates:

γ |||W 1 ||| 2 0 ≤ C γ |||f ||| 2 0 , W nc 1 | x 2 =0 2 1,γ ≤ C γ |||f ||| 2 1,γ = C γ +∞ 0 f (•, x 2 ) 2 1,γ dx 2 . ( 23 
)
Let us define W 2 := W -W 1 . It satisfies

L γ W 2 = 0 , if x 2 > 0, B γ (W nc 2 , ψ) = g -M W nc 1 | x 2 =0 , if x 2 = 0.
Consequently, if we manage to prove that Theorem 2 holds true as long as the interior source term is zero, we shall obtain

γ |||W 2 ||| 2 0 + W nc 2 | x 2 =0 2 0 + ψ 2 1,γ ≤ C γ 2 g -M W nc 1 | x 2 =0 2 1,γ ≤ C γ 2 g 2 1,γ + W nc 1 | x 2 =0 2 1,γ .
Then using [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF] to estimate the H 1 norm of the trace of W nc 1 as well as the L 2 norm of W 1 , we shall derive our main energy estimate [START_REF] Majda | The existence of multidimensional shock fronts[END_REF]. Without loss of generality, we thus assume from now on that W and ψ satisfy

γA 0 W + A 0 ∂ t W + A 1 ∂ x 1 W + A 2 ∂ x 2 W = 0 ( 24 
)
in the interior domain Ω, as well as the following boundary conditions

M W nc | x 2 =0 + b γψ + ∂ t ψ ∂ x 1 ψ = g , x 2 = 0 . (25) 
With slight abuse of notations, we still denote by g the source term in the boundary conditions, instead of g -M W nc 1 . This is of pure convenience. Recall that all matrices A j are symmetric, and that A 0 is positive definite, see [START_REF] Hersh | Mixed problems in several variables[END_REF]. Taking the scalar product of [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF] with W and integrating over Ω yields the following inequality:

γ |||W ||| 2 0 ≤ C W nc | x 2 =0 2 0 .
Consequently, it is sufficient to derive an estimate of the form

W nc | x 2 =0 2 0 + ψ 2 1,γ ≤ C γ 2 g 2 1,γ (26) 
in order to obtain [START_REF] Majda | The existence of multidimensional shock fronts[END_REF]. We shall derive [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF] by means of a Kreiss' symmetrizer, whose construction is detailed in the next paragraphs. Once performed a Fourier transform in (t, x 1 ), the first step consists in "eliminating" the front ψ in the boundary conditions [START_REF] Métivier | Stability of multidimensional shocks[END_REF]. We emphasize that this operation is possible, even though the vortex sheet is a characteristic boundary. Then we shall detail the normal modes analysis and construct a symbolic symmetrizer.

Eliminating the front

As mentionned above, we focus on ( 24)- [START_REF] Métivier | Stability of multidimensional shocks[END_REF], and perform a Fourier transform in (t, x 1 ). The dual variables are denoted by (δ, η). We also define τ := γ + iδ. This is the Laplace dual variable (indeed, the previous manipulations amount to performing a Laplace transform with respect to t). We obtain the following system of differential equations:

(τ A 0 + iηA 1 ) W + A 2 d W dx 2 = 0 , x 2 > 0 , b(τ, η) ψ + M W nc (0) = g , (27) 
where b(τ, η) is simply defined by

b(τ, η) := b τ iη =   2iv r η τ + iv r η 0   . ( 28 
)
Recall that b and M are defined by [START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF]. Observe that b(τ, η) is homogeneous (of degree 1) with respect to (τ, η). In order to take such homogeneity properties into account, we define the hemisphere

Σ := {(τ, η) ∈ C × R s.t. |τ | 2 + v 2 r η 2 = 1 and Re τ ≥ 0} .
Recall that τ is the Laplace dual variable of the time variable t, while η is the Fourier dual variable of x 1 , so τ /η is a velocity. Our definition of Σ takes this property into account.

We denote by Ξ the set

Ξ := {(γ, δ, η) ∈ [0, +∞[ ×R 2 s.t. (γ, δ, η) = (0, 0, 0)} = ]0, +∞[ •Σ .
It is the set of "frequencies" we shall consider in the sequel. We always identify (γ, δ) ∈ R 2 and τ = γ + iδ ∈ C. One crucial remark is that the symbol b(τ, η) is elliptic, that is, it does not vanish on the closed hemisphere Σ. More precisely, we have the following Lemma: Lemma 1. There exists a C ∞ mapping Q defined on Ξ such that Q has values in GL 3 (C), is homogeneous of degree 0, and satisfies

∀ (τ, η) ∈ Ξ , Q(τ, η) b(τ, η) =   0 0 ϑ(τ, η)   ,
where ϑ is C ∞ , homogeneous of degree 1, and has the additional property:

min (τ,η)∈Σ |ϑ(τ, η)| > 0 .
Proof. We shall define the mapping Q on Σ and then extend Q by homogeneity. If we define

∀ (τ, η) ∈ Σ , Q(τ, η) :=   0 0 1 τ + iv r η -2iv r η 0 -2iv r η τ -iv r η 0   ,
then we check that Q has all the required properties. The corresponding ϑ is given by

∀ (τ, η) ∈ Σ , ϑ(τ, η) := |τ + iv r η| 2 + 4v 2 r η 2 . Note that the last row of Q(τ, η) is nothing but b(τ, η) * , when (τ, η) ∈ Σ.
Let us multiply the boundary conditions in [START_REF] Miles | On the disturbed motion of a plane vortex sheet[END_REF] by the matrix Q(τ, η). We obtain:

  0 0 ϑ(τ, η)   ψ + β(τ, η) (τ, η) W nc (0) = Q(τ, η) g , (29) 
where β has two rows while has one row and

β(τ, η) (τ, η) := Q(τ, η) M .
The exact expression of is useless, but we shall use the expression of β:

∀ (τ, η) ∈ Σ , β(τ, η) = -1 1 1 -1 -c(τ + iv l η) -c(τ + iv l η) c(τ + iv r η) c(τ + iv r η) . ( 30 
)
Both β and are homogeneous of degree 0 and C ∞ on Ξ. The last equation in [START_REF] Serre | Systems of conservation laws[END_REF] is

∀ (τ, η) ∈ Σ , ϑ(τ, η) ψ + (τ, η) W nc (0) = b(τ, η) * g , since b * is the last row of Q.
Using the ellipticity property of ϑ (see Lemma 1) together with a uniform bound for and b * on Σ, we obtain

∀ (τ, η) ∈ Ξ , (|τ | 2 + v 2 r η 2 )| ψ| 2 ≤ C | W nc (0)| 2 + | g| 2 .
Let us now integrate this last inequality with respect to (δ, η) ∈ R 2 . (Recall that δ is the imaginary part of τ ). Using Plancherel's Theorem, we obtain

ψ 2 1,γ ≤ C W nc | x 2 =0 2 0 + g 2 0 ≤ C W nc | x 2 =0 2 0 + 1 γ 2 g 2 1,γ . (31) 
In order to derive [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF], it is therefore sufficient to derive an estimate of the trace of W nc . Consequently, we focus on the reduced problem

(τ A 0 + iηA 1 ) W + A 2 d W dx 2 = 0 , x 2 > 0 , β(τ, η) W nc (0) = h ,
and try to derive an estimate for W nc (0). One has to remember that the source term h ∈ C 2 is easily estimated by g, see [START_REF] Serre | Systems of conservation laws[END_REF].

In the next paragraph, we recall that under the assumption made in Theorems 1 and 2, the above boundary problem satisfies the Kreiss-Lopatinskii condition but violates the uniform Kreiss-Lopatinskii condition.

The normal modes analysis

Writing W = (W 1 , W 2 , W 3 , W 4 , W 5 , W 6 ) T , the two first equations in [START_REF] Miles | On the disturbed motion of a plane vortex sheet[END_REF] are:

(τ + iv r η) W 1 -ic 2 η W 2 + ic 2 η W 3 = 0 , (τ + iv l η) W 4 -ic 2 η W 5 + ic 2 η W 6 = 0 .
They do not involve derivation with respect to the normal variable x 2 . For Re τ > 0, we obtain an expression for W 1 and W 4 that we plug in the last four equations. This operation yields a system of ordinary differential equations of the following form:

     d W nc dx 2 = A (τ, η) W nc , if x 2 > 0, β(τ, η) W nc (0) = h , if x 2 = 0. ( 32 
)
The matrix A (τ, η) in (32) is given by

A (τ, η) :=     µ r -m r 0 0 m r -µ r 0 0 0 0 -µ l m l 0 0 -m l µ l     , µ r,l := 1 c (τ + iv r,l η) 2 + c 2 η 2 τ + iv r,l η , m r,l := c 2 η 2 τ + iv r,l η . (33) 
A well-known result, that is due to Hersh [START_REF] Hersh | Mixed problems in several variables[END_REF] in the noncharacteristic case (see [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF] for the extension to the characteristic case), asserts that the matrix A (τ, η) has no purely imaginary eigenvalue as long as Re τ > 0. As a consequence, the stable subspace of A (τ, η) has constant dimension when Re τ > 0. This dimension equals the number of characteristics going out of the discontinuity. In our case, those theoretical results can be checked directly by computing the eigenvalues and the stable subspace of A (τ, η). The following Lemma gives an expression of the stable subspace: Lemma 2. Let τ ∈ C and η ∈ R with Re τ > 0 and (τ, η) ∈ Σ. The eigenvalues of A (τ, η) are the roots ω of the dispersion relations

ω 2 = µ 2 r -m 2 r = 1 c 2 (τ + iv r η) 2 + η 2 , (34a) 
ω 2 = µ 2 l -m 2 l = 1 c 2 (τ + iv l η) 2 + η 2 . ( 34b 
)
In particular, (34a) [resp. (34b)] admits a unique root ω r [resp. ω l ] of negative real part. The other root of (34a

) [resp. (34b)] is -ω r [resp.
-ω l ] and has positive real part. The stable subspace E -(τ, η) of A (τ, η) has dimension 2 and is spanned by the two following vectors:

E r (τ, η) := c 2 η 2 , 1 c (τ + iv r η) 2 + c 2 η 2 -(τ + iv r η)ω r , 0, 0 T , E l (τ, η) := 0, 0, 1 c (τ + iv l η) 2 + c 2 η 2 -(τ + iv l η)ω l , c 2 η 2 T . ( 35 
)
Both ω r and ω l admit a continuous extension to any point (τ, η) such that Re τ = 0 and (τ, η) ∈ Σ. This allows to extend both vectors E r and E l in (35) to the whole hemisphere Σ. Those two vectors are linearly independent for any value of (τ, η) ∈ Σ.

The symbol A (τ, η) is diagonalizable as long as both ω r and ω l do not vanish, that is, when τ = (±v r ± c)iη. Away from such points, A admits a C ∞ basis of eigenvectors.

The proof follows from straightforward computations, and we shall omit it. We point out that the stable subspace E -(τ, η) is defined for all (τ, η) ∈ Σ, while the matrix A (τ, η) has some poles on the boundary of Σ, see (33). The poles are exactly those points (τ, η) ∈ Σ verifying τ = -iv r,l η = ∓iv r η (recall that we have v r = -v l = 0). Following Majda and Osher [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF], we define the Lopatinskii determinant associated with the boundary conditions β in the following way:

∆(τ, η) := det β(τ, η) E r (τ, η) E l (τ, η) , (36) 
with β defined by [START_REF] Serre | Systems of conservation laws[END_REF] and (E r , E l ) defined by (35). We emphasize that the Lopatinskii determinant ∆ is defined on the whole hemisphere Σ and is continuous with respect to (τ, η). The first step in proving an energy estimate for (32) consists in determining whether ∆ vanishes on Σ. The answer is given in the following result:

Proposition 1. Assume that (18) holds. Then there exists a positive number V 1 such that for any (τ, η) ∈ Σ, one has ∆(τ, η) = 0 if and only if

τ = 0 or τ = ±iV 1 η .
Each of these roots is simple. For instance, there exists a neighborhood V of (0,

1/v r ) in Σ and a C ∞ function h defined on V such that ∀ (τ, η) ∈ V , ∆(τ, η) = τ h(τ, η) and h(0, 1/v r ) = 0 .
A similar result holds near (0, -1/v r ) or near the points (±iV

1 η, η) ∈ Σ. The number V 1 is given by V 2 1 := c 2 + v 2 r -c c 2 + 4v 2 r .
In particular, one has:

0 < V 1 < v r -c .
When τ = 0 or τ = ±iV 1 η, both eigenmodes ω r and ω l are purely imaginary.

We postpone the proof of Proposition 1 to appendix A. We simply note here that the three critical speeds -V 1 , 0, V 1 are exactly the speeds of the kink modes exhibited in the work by Artola and Majda [START_REF] Artola | Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes[END_REF]. As a matter of fact, Artola and Majda used a "geometric optics approach", while we have followed here a "normal modes analysis approach". However, the calculations are similar in both cases (in [START_REF] Artola | Nonlinear development of instabilities in supersonic vortex sheets. I. The basic kink modes[END_REF], the number η equals 1).

Constructing a symmetrizer: the interior points

We now turn to the construction of our degenerate Kreiss' symmetrizer. The construction is microlocal and is achieved near any point (τ 0 , η 0 ) ∈ Σ. The analysis is rather long since one has to distinguish between five different cases. In the end, we shall consider a partition of unity to patch things together and derive our energy estimate.

In all the rest of the article, the letter κ denotes a generic positive constant (typically, though not necessarily, a rather small one).

We first consider the case (τ 0 , η 0 ) ∈ Σ with Re τ 0 > 0. Then the matrix A (τ, η) is diagonalizable for all (τ, η) close to (τ 0 , η 0 ). A smooth (that is, C ∞ ) basis of eigenvectors is given by the following family:

E r (τ, η), E l (τ, η), c 2 η 2 , 1 c (τ + iv r η) 2 + c 2 η 2 + (τ + iv r η)ω r , 0, 0 T , and 0, 0, 1 c (τ + iv l η) 2 + c 2 η 2 + (τ + iv l η)ω l , c 2 η 2 T .
Both vectors E r and E l are defined by (35). Therefore, there exists a C ∞ mapping T (τ, η), defined on a neighborhood V of (τ 0 , η 0 ) in Σ, with values in GL 4 (C), and such that

∀ (τ, η) ∈ V , T (τ, η)A (τ, η)T (τ, η) -1 =     ω r 0 0 0 0 ω l 0 0 0 0 -ω r 0 0 0 0 -ω l     .
The first two columns of the matrix T (τ, η) -1 are the vectors E r and E l . In the neighborhood V , we define the symmetrizer r in the usual way:

∀ (τ, η) ∈ V , r(τ, η) :=     -1 0 0 0 0 -1 0 0 0 0 K 0 0 0 0 K     ,
where K ≥ 1 is a positive real number, to be fixed large enough. In what follows, we use the standard notation Re M := M + M * 2 for all square matrix M with complex entries (M * is the classical adjoint matrix).

The matrix r defined just above is hermitian, and we have

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η) -1 ) ≥ κ I ≥ κγ I , (37) 
for some positive constant κ. This is because ω r and ω l have negative real part when (τ, η) ∈ V , and γ ≤ 1 when (τ, η) ∈ Σ. We now simply need to fix K ≥ 1 in order to recover an estimate for the trace of W nc . We show that for K sufficiently large, the following inequality holds:

∀ (τ, η) ∈ V , r(τ, η) + C β(τ, η) * β(τ, η) ≥ I , ( 38 
)
where C is a positive constant and

β(τ, η) := β(τ, η) T (τ, η) -1 . Let Z = (Z -, Z + ) T ∈ C 4 , with Z -, Z + ∈ C 2 . We write β(τ, η) Z = β(τ, η) T (τ, η) -1 Z - 0 + β(τ, η) 0 Z + ,
and recall that the first two columns of T (τ, η) -1 are E r and E l . Because the Lopatinskii determinant does not vanish at (τ 0 , η 0 ), see (36) and Proposition 1, we obtain an estimate of the form

|Z -| 2 ≤ C 0 |Z + | 2 + | β(τ, η)Z| 2 ,
for a suitable constant C 0 that is independent of (τ, η) ∈ V . With C 0 satisfying this inequality, the definition of r yields

r(τ, η)Z, Z C 4 + 2C 0 | β(τ, η)Z| 2 = -|Z -| 2 + K|Z + | 2 + 2C 0 | β(τ, η)Z| 2 ≥ |Z -| 2 + (K -2C 0 )|Z + | 2 .
This gives (38) for K large enough (e.g., K = 2C 0 + 1).

Constructing a symmetrizer: the boundary points (case 1)

We now turn to the construction of the symmetrizer near those points (τ, η) ∈ Σ such that Re τ = 0. We first prove a general result on the behavior of the eigenmodes ω r,l in the neighborhood of such points:

Lemma 3. Let (τ 0 , η 0 ) ∈ Σ so that Re τ 0 = 0 and τ 0 = (-v r ±c)iη 0 . In particular, ω r depends analytically on (τ, η) near (τ 0 , η 0 ). Then the two following cases may occur:

1. The eigenmode ω r has negative real part at (τ 0 , η 0 ), and, in a suitable neighborhood V of (τ 0 , η 0 ), one has Re ω r ≤ -κ < 0 .

2. The eigenmode ω r is purely imaginary at (τ 0 , η 0 ). In this case, the derivative ∂ γ ω r calculated at (τ 0 , η 0 ) is a nonzero real number. In a suitable neighborhood V of (τ 0 , η 0 ) in Σ, we have

Re ω r ≤ -κγ .

A completely similar result holds for ω l near all points (τ 0 , η 0 ) ∈ Σ satisfying Re τ 0 = 0 and τ 0 = (-v l ± c)iη 0 .

Proof. Because τ 0 = (-v r ± c)iη 0 , the eigenmode ω r is not zero at (τ 0 , η 0 ) and it depends analytically on (τ, η) by the implicit functions Theorem. The first case in Lemma 3 simply follows from the continuity of ω r with respect to (τ, η). In the second case, we use (34a) to derive

ω r ∂ω r ∂γ = 1 c 2 (τ + iv r η) .
When τ = τ 0 and η = η 0 , one has ω r ∈ iR \ {0} and (τ 0 + iv r η 0 ) ∈ iR. This proves that the derivative ∂ γ ω r is real. We now remark that τ 0 = -iv r η 0 for, in such a case, ω r has negative real part. Consequently, the derivative ∂ γ ω r is not zero. The estimate on Re ω r is obtained by performing a Taylor expansion of ω r at (τ 0 , η 0 ).

According to Proposition 1, there are exactly four types of points on the boundary of Σ:

1. Those points (τ 0 , η 0 ) where A (τ 0 , η 0 ) is diagonalizable and the Lopatinskii condition is satisfied at (τ 0 , η 0 ).

2. Those points (τ 0 , η 0 ) where A (τ 0 , η 0 ) is diagonalizable and the Lopatinskii condition breaks down at (τ 0 , η 0 ).

3. Those points (τ 0 , η 0 ) where A (τ 0 , η 0 ) is not diagonalizable, that is, τ 0 = (±v r ± c)iη 0 . In this case, Proposition 1 asserts that the Lopatinskii condition is satisfied at (τ 0 , η 0 ).

4. Those points (τ 0 , η 0 ) that are the poles of A , that is, τ 0 = ±iv r η 0 . At those points, the Lopatinskii condition is satisfied.

As a matter of fact, an immediate consequence of Proposition 1 is that whenever the Lopatinskii condition fails at (τ 0 , η 0 ), then (τ 0 , η 0 ) is not a pole and the symbol A (τ, η) is (smoothly) diagonalizable in a neighborhood of (τ 0 , η 0 ). The three first categories of boundary points can thus be treated as in [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF][START_REF] Coulombel | Weak stability of nonuniformly stable multidimensional shocks[END_REF][START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF][START_REF] Ralston | Note on a paper of Kreiss[END_REF], provided the technical assumptions of [START_REF] Coulombel | Weak stability of nonuniformly stable multidimensional shocks[END_REF] near instability points hold. We are going to show that such technical assumptions hold true. The last category of boundary points (the poles of the symbol A ) requires special attention.

We now deal with the construction of our symmetrizer in case 1: (τ 0 , η 0 ) ∈ Σ is such that A (τ 0 , η 0 ) is diagonalizable and the Lopatinskii condition is satisfied at (τ 0 , η 0 ), that is, ∆(τ 0 , η 0 ) = 0.

Because A (τ 0 , η 0 ) is diagonalizable, we have τ 0 = (±v r ± c)iη 0 . Hence there exists a neighborhood V of (τ 0 , η 0 ) in Σ and a smooth basis of eigenvectors of A defined on V . The smooth basis is the same as in the case of interior points (see the preceeding paragraph). We thus have

∀ (τ, η) ∈ V , T (τ, η)A (τ, η)T (τ, η) -1 =     ω r 0 0 0 0 ω l 0 0 0 0 -ω r 0 0 0 0 -ω l     ,
where, once again, the two first columns of T (τ, η) -1 are exactly E r and E l . We choose r as in the case of interior points:

∀ (τ, η) ∈ V , r(τ, η) :=     -1 0 0 0 0 -1 0 0 0 0 K 0 0 0 0 K     ,
with K ≥ 1 to be fixed large enough. Clearly, r is a hermitian matrix. Using Lemma 3, we can already conclude that

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η) -1 ) ≥ κγ I . ( 39 
)
Because the Lopatinskii condition is satisfied at (τ 0 , η 0 ), it is possible to choose K large enough so that the following estimate holds:

∀ (τ, η) ∈ V , r(τ, η) + C β(τ, η) * β(τ, η) ≥ I . (40) 
In (40), we have let, as usual,

β(τ, η) := β(τ, η) T (τ, η) -1 .
The analysis is the same as what we have done for interior points. The estimates (39)-(40) are similar (but not exactly identical) to (37)-(38).

Constructing a symmetrizer: the boundary points (case 2)

In this paragraph, we consider a point (τ 0 , η 0 ) ∈ Σ such that the Lopatinskii determinant ∆ vanishes at (τ 0 , η 0 ). From Proposition 1, we know that the symbol A is smoothly diagonalizable on a neighborhood V of (τ 0 , η 0 ) in Σ. In other words, there exists a smooth mapping T (τ, η) with values in GL 4 (C), and such that

∀ (τ, η) ∈ V , T (τ, η)A (τ, η)T (τ, η) -1 =     ω r 0 0 0 0 ω l 0 0 0 0 -ω r 0 0 0 0 -ω l     .
The first two columns of T (τ, η) -1 are E r and E l . In this case, we define our symmetrizer r in the following (degenerate) way:

∀ (τ, η) ∈ V , r(τ, η) :=     -γ 2 0 0 0 0 -γ 2 0 0 0 0 K 0 0 0 0 K     ,
with K ≥ 1 to be fixed large enough. The matrix r(τ, η) is hermitian and we have

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η) -1 ) ≥ κ γ     γ 2 0 0 0 0 γ 2 0 0 0 0 1 0 0 0 0 1     . (41) 
It only remains to fix K appropriately in order to recover an estimate on the boundary. The choice of K relies on the following Lemma: Lemma 4. Let (τ 0 , η 0 ) ∈ Σ be a point where the Lopatinskii determinant vanishes. Then there exists a neighborhood V of (τ 0 , η 0 ) in Σ and a constant κ 0 > 0 such that the following estimate holds for all (τ, η) ∈ V :

∀ Z -∈ C 2 , |β(τ, η) E r (τ, η) E l (τ, η) Z -| 2 ≥ κ 0 γ 2 |Z -| 2 .
Before proving Lemma 4, let us first show that it enables us to obtain an estimate between r and the boundary matrix β. More precisely, we are going to show the following estimate:

∀ (τ, η) ∈ V , r(τ, η) + C β(τ, η) * β(τ, η) ≥ γ 2 I , (42) 
for an appropriate positive constant C. The definition of β(τ, η) is the same as in the preceeding cases.

Let Z = (Z -, Z + ) T ∈ C 4
, where Z -and Z + belong to C 2 . Once again, we write

β(τ, η) Z = β(τ, η) T (τ, η) -1 Z - 0 + β(τ, η) 0 Z + ,
and we recall that the first two columns of T (τ, η) -1 are E r and E l . Using Lemma 4, we obtain

κ 0 γ 2 |Z -| 2 ≤ C 0 |Z + | 2 + | β(τ, η) Z| 2 .
We thus derive

r(τ, η)Z, Z C 4 + 2C 0 κ 0 | β(τ, η)Z| 2 = -γ 2 |Z -| 2 + K|Z + | 2 + 2C 0 κ 0 | β(τ, η)Z| 2 ≥ γ 2 |Z -| 2 + K - 2C 0 κ 0 |Z + | 2 . Choosing K = 2C 0 /κ 0 + 1 yields r(τ, η)Z, Z C 4 + 2C 0 κ 0 | β(τ, η)Z| 2 ≥ γ 2 |Z -| 2 + |Z + | 2 ≥ γ 2 |Z| 2 .
Here we have much weakened our estimate for the last two components Z + . However, an inequality like (42) is simpler to use since it does not distinguish between the different coordinates of the vector Z. One should remember that the real loss of control is on the modes ω r and ω l , and not on the modes -ω r and -ω l . The proof of Lemma 4 is postponed to appendix A. It relies on the fact that the roots of the Lopatinskii determinant ∆ are simple (see Proposition 1).

Constructing a symmetrizer: the boundary points (case 3)

In this paragraph, we consider a point (τ 0 , η 0 ) ∈ Σ such that τ 0 = -iv r η 0 ± icη 0 . (The case τ 0 = -iv l η 0 ± icη 0 is entirely similar and we shall not detail it). Because v l = -v r and v r > c √ 2, we have τ 0 = -iv l η 0 ± icη 0 , and therefore, the eigenmode ω l depends smoothly on (τ, η) in a neighborhood V of (τ 0 , η 0 ). Oppositely, ω r is only continuous with respect to (τ, η) near (τ 0 , η 0 ), but ω 2 r is C ∞ near (τ 0 , η 0 ). This is because (34a) has a double root when (τ, η) = (τ 0 , η 0 ).

When (τ, η) is close to (τ 0 , η 0 ), the following family is a C ∞ basis of C 4 :

(m r , -m r , 0, 0) T , (-i, 0, 0, 0) T , E l (τ, η) and 0, 0,

1 c (τ + iv l η) 2 + c 2 η 2 + (τ + iv l η)ω l , c 2 η 2 T .
Recall that m r is defined by (33). Let T (τ, η) -1 be the (regular) matrix whose columns are those four vectors. We compute

T (τ, η)A (τ, η)T (τ, η) -1 =   a r 0 0 0 ω l 0 0 0 -ω l   ,
where a r is the 2 × 2 matrix defined as follows:

a r (τ, η) :=       -c ω 2 r τ + iv r η i 2im r c ω 2 r τ + iv r η c ω 2 r τ + iv r η       .
In particular, we have

a r (τ 0 , η 0 ) = 0 i 0 0 =: iN .
Moreover, we make the following observations:

For all (τ, η) close to (τ 0 , η 0 ) so that τ ∈ iR, a r has purely imaginary coefficients.

The lower left coefficient ϑ r of a r satisfies ∂ϑ r ∂γ (τ 0 , η 0 ) ∈ R \ {0} .

Here we have exhibited a basis in which Ralston's result [START_REF] Ralston | Note on a paper of Kreiss[END_REF] applies. Readers who are familiar with the theory will have recognized the "block structure condition", that is a consequence here of the strict hyperbolicity of (1), see [START_REF] Métivier | The block structure condition for symmetric hyperbolic systems[END_REF].

We are looking for a symmetrizer r under the form

r(τ, η) =   s(τ, η) 0 0 0 -1 0 0 0 K   ,
where K ≥ 1 is a real number, to be fixed large enough, and s is some 2 × 2 hermitian matrix, depending smoothly on (τ, η). More precisely, we are looking for the matrix s under the following form

s(τ, η) = 0 e 1 e 1 e 2 E + f (τ, η) 0 0 0 F (τ,η) -iγ 0 -g g 0 G ,
where e 1 , e 2 and g are real numbers, and f is a real valued C ∞ mapping that vanishes at (τ 0 , η 0 ), see [START_REF] Chazarain | Introduction to the theory of linear partial differential equations[END_REF][START_REF] Kreiss | Initial boundary value problems for hyperbolic systems[END_REF][START_REF] Ralston | Note on a paper of Kreiss[END_REF]. We choose e 1 in the following way:

e 1 := ∂ϑ r ∂γ (τ 0 , η 0 ) -1 ∈ R \ {0} ,
where ϑ r is defined just above. This choice may look surprising but it will be justified later on. Now we observe that our choice of s yields (γ 0 = 0):

r(τ 0 , η 0 ) =     0 e 1 0 0 e 1 e 2 0 0 0 0 -1 0 0 0 0 K     .
Moreover, the first and third columns of T (τ 0 , η 0 ) -1 are nothing but E r (τ 0 , η 0 ) and E l (τ 0 , η 0 ). This is due to the equality µ r = -m r when (τ, η) = (τ 0 , η 0 ). Because Lopatinskii's condition is satified at (τ 0 , η 0 ), we can choose e 2 and K large enough such that the following estimate holds:

r(τ 0 , η 0 ) + C β(τ 0 , η 0 ) * β(τ 0 , η 0 ) ≥ I .
As was done before, we have let

β(τ, η) := β(τ, η) T (τ, η) -1 .
Up to shrinking V , we have thus derived the following estimate

∀ (τ, η) ∈ V , r(τ, η) + C β(τ, η) * β(τ, η) ≥ 1 2 I , (43) 20 
for a suitable constant C. Now, we show how to choose the real valued function f and the real number g. We first write

a r (τ, η) = a r (τ 0 , η 0 ) + (a r (iδ, η) -a r (τ 0 , η 0 )) + (a r (τ, η) -a r (iδ, η)) ,
and then use Taylor's formula. We obtain

a r (τ, η) = iN + (a r (iδ, η) -a r (τ 0 , η 0 )) + γ ∂a r ∂γ (iδ, η) + γ 2 M (τ, η) ,
for a suitable continuous function M . Because a r has purely imaginary coefficients when τ is purely imaginary, we have

a r (iδ, η) -a r (τ 0 , η 0 ) = ib 1 (iδ, η) 0 ib 2 (iδ, η) ib 3 (iδ, η) =: iB r (iδ, η) ,
for some C ∞ , real valued mappings b 1 , b 2 , b 3 . Those three mappings obviously vanish at (τ 0 , η 0 ). We choose

f (τ, η) := e 1 (b 1 (iδ, η) -b 3 (iδ, η)) + e 2 b 2 (iδ, η) ,
so that f is a C ∞ real valued mapping that vanishes at (τ 0 , η 0 ). Moreover, this choice of f implies that the matrix

(E + F (τ, η))(N + B r (iδ, η))
is real and symmetric for all (τ, η). Consequently, we obtain

Re (s(τ, η)a r (τ, η)) = γ Re GN + E ∂a r ∂γ (iδ, η) + γ L(τ, η) ,
where L is continuous (it is even C ∞ ) and L(τ 0 , η 0 ) = 0. Our choice for e 1 yields

Re GN + E ∂a r ∂γ (τ 0 , η 0 ) = 0 0 0 g + 1 * * * ,
where the * are coefficients that only depend on e 1 , e 2 (that have already been fixed) and (τ 0 , η 0 ). Choosing g large enough, and shrinking V if necessary, we end up with

Re (s(τ, η)a r (τ, η)) ≥ 1 4 γ I ,
and we thus obtain

∀ (τ, η) ∈ V , Re (r(τ, η)T (τ, η)A (τ, η)T (τ, η) -1 ) ≥ κ γ I . ( 44 
)
4.8 Constructing a symmetrizer: the boundary points (case 4)

We now consider the last case, which is (τ 0 , η 0 ) ∈ Σ with τ 0 = -iv r η 0 . (We shall not detail the case τ 0 = -iv l η 0 that is entirely similar). The symbol A is not defined at (τ 0 , η 0 ), while the stable subspace E -of A admits a continuous extension at this point. The family (E r , E l ) is a C ∞ basis of E -near (τ 0 , η 0 ), see Lemma 2, and Lopatinskii's condition is satisfied near (τ 0 , η 0 ), see Proposition 1.

The eigenmode ω r has negative real part when (τ, η) is close to (τ 0 , η 0 ), see (34a). Oppositely, the eigenmode ω l is purely imaginary when (τ, η) is close to (τ 0 , η 0 ) and Re τ = 0, see (34b). Furthermore, both ω r and ω l depend analytically on (τ, η) in a neighborhood V of (τ 0 , η 0 ).

The matrix A is not smoothly diagonalizable on V . This is because the eigenvector associated with the eigenvalue -ω r tends to be parallel to the eigenvector associated with the eigenvalue ω r . Consequently, Majda and Osher's construction of a symmetrizer in this case involves a singularity in the symmetrizer, see [START_REF] Majda | Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary[END_REF]. We prefer to avoid this singularity in the symmetrizer and construct a smooth (that is, C ∞ ) symmetrizer in the whole neighborhood V . This is possible if we go back to the original system:

(τ A 0 + iηA 1 ) W + A 2 d W dx 2 = 0 , x 2 > 0 , (45a) 
β(τ, η) W nc (0) = h , (45b) 
The following analysis is inspired from [START_REF] Benzoni-Gavage | First order systems of hyperbolic partial differential equations with applications[END_REF]. For (τ, η) in a neighborhood V of (τ 0 , η 0 ), the following matrix is regular (that is, invertible):

T (τ, η) :=           1 -icη(τ + iv r η -cω r ) 0 0 c 2 η 2 0 0 0 (τ + iv r η)(µ r -ω r ) 1 1 icη(τ + iv l η -cω l ) icη(τ + iv l η + cω l ) 0 0 (τ + iv l η)(µ l -ω l ) (τ + iv l η)(µ l + ω l ) 0 c 2 η 2 c 2 η 2           . ( 46 
)
To avoid overloading the equations, we shall simply denote by 0 the 3 × 3 zero matrix. The determinant of T (τ, η) is given by

det T (τ, η) = c 2 2 η 4 (τ + iv l η) ω l ,
and it is easy to check that this quantity does not vanish near (τ 0 , η 0 ). The matrix T depends smoothly on (τ, η) in the whole neighborhood V . It has no pole. Let us define

ξ r := (τ + iv r η)(µ r -ω r ) = 1 c (τ + iv r η) 2 + c 2 η 2 -(τ + iv r η)ω r , (47a) 
ξ ± l := (τ + iv l η)(µ l ± ω l ) = 1 c (τ + iv l η) 2 + c 2 η 2 ± (τ + iv l η)ω l . (47b) 
The main idea now is that (45a) has a simple expression if we decompose the vector W in the basis defined by T . In other words, the matrices (τ A 0 + iηA 1 )T (τ, η) and A 2 T (τ, η) have a rather similar structure. Performing some manipulations on the rows of these two matrices, we shall transform (45a) into an "almost diagonal" system of differential equations.

After some simplifications, we obtain the following expressions:

(τ A 0 + iηA 1 )T =         τ + iv r η 0 ic 2 η -ic 2 η c 4 η 2 ω r 0 0 ic 2 η -2c 3 ω r ξ r 2c 2 (τ + iv r η) τ + iv l η 0 0 0 -ic 2 η -2c 3 ω l ξ - l 2c 3 ω l ξ + l ic 2 η c 4 η 2 ω l -c 4 η 2 ω l         , A 2 T =         0 0 0 0 -c 4 η 2 0 0 0 2c 3 ξ r 2c 3 0 0 0 0 0 2c 3 ξ - l 2c 3 ξ + l 0 -c 4 η 2 -c 4 η 2        
, where ξ r and ξ ± l are defined by (47a)-(47b). These expressions may look somehow complicated, but it is not so hard to simplify them multiplying on the left by a suitable symmetrizer. Indeed, for all (τ, η) in a neighborhood V of (τ 0 , η 0 ), let us define the following matrix:

R 1 (τ, η) :=         1 0 0 0 1 0 0 2ic 4 η(τ + iv r η -cω r ) 2c 3 ξ r c 4 η 2 1 0 0 0 -2ic 4 η(τ + iv l η + cω l ) c 4 η 2 2c 3 ξ + l -2ic 4 η(τ + iv l η -cω l ) c 4 η 2 2c 3 ξ - l         . ( 48 
)
First we obtain

R 1 A 2 T = diag (0, -c 4 η 2 , 2c 7 η 2 , 0, -4c 7 η 2 (τ + iv l η)ω l , 4c 7 η 2 (τ + iv l η)ω l ) ,
where diag (a 1 , . . . , a p ) stands for the diagonal matrix whose diagonal elements are a 1 , . . . , a p . We also obtain the following expression:

R 1 (τ A 0 + iηA 1 )T =         τ + iv r η 0 ic 2 η -ic 2 η c 4 η 2 ω r 0 0 0 0 2c 7 η 2 ω r τ + iv l η 0 0 0 0 4c 7 η 2 ω 2 l (τ + iv l η) 0 0 0 4c 7 η 2 ω 2 l (τ + iv l η)        
.

Recall that ω l , η and (τ + iv l η) do not vanish in the neighborhood V of (τ 0 , η 0 ), up to shrinking V . The following matrix is therefore a C ∞ mapping of (τ, η) on V :

R 2 (τ, η) := diag (1, 1, 1 2c 7 η 2 , 1, 1 4c 7 η 2 ω l (τ + iv l η) , 1 4c 7 η 2 ω l (τ + iv l η) ) . (49) 
We define S(τ, η)

:= R 2 (τ, η) R 1 (τ, η) ,
where R 1 and R 2 are defined by ( 48)-(49). It is now easy to derive the following equalities for all (τ, η) in V :

S(τ, η)A 2 T (τ, η) = diag (0, -c 4 η 2 , 1, 0, -1, 1) , (50a) 
S(τ, η)(τ A 0 + iηA 1 )T (τ, η) =         τ + iv r η 0 ic 2 η -ic 2 η c 4 η 2 ω r 0 0 0 0 ω r τ + iv l η 0 0 0 0 ω l 0 0 0 ω l         . ( 50b 
)
In particular, it is important to observe that both matrices S and T are C ∞ on the whole neighborhood V . Up to shrinking V , we may assume that ω r has negative real part for all (τ, η) ∈ V . This is possible because ω r = -|η| at (τ 0 , η 0 ). Though a little complicated, the preceeding calculations are based on the simple idea that the differential equations (45a) have an easy expression if we replace the standard coordinates by the coordinates on the stable subspace. The difficulty comes from the fact that we deal with the differential system satisfied by W and not with the system satisfied by W nc . Because the boundary is characteristic, (45a) is not an ordinary differential equation, and we thus need to diagonalize simultaneously (τ A 0 + iηA 1 ) and A 2 . Even though the matrix S(τ A 0 + iηA 1 )T is not diagonal, we shall see that the reduced expressions (50a)-(50b) are sufficient to derive energy estimates in such a neighborhood V of the pole (τ 0 , η 0 ).

Derivation of the energy estimate

We now turn to the derivation of the estimate [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF]. Recall that we are considering a function W ∈ H 1 (Ω) such that

(τ A 0 + iηA 1 ) W + A 2 d W dx 2 = 0 , x 2 > 0 , β(τ, η) W nc (0) = h ,
where h is obtained from the source term g in ( 27) after eliminating the unknown front:

∀ (τ, η) ∈ Σ , h = 0 0 1 τ + iv r η -2iv r η 0 g .
Thanks to (31), it is sufficient to get an estimate of the trace of W nc on {x 2 = 0} in order to derive [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF].

The previous analysis shows that for all (τ 0 , η 0 ) ∈ Σ, there exists a neighborhood V of (τ 0 , η 0 ) in Σ and mappings defined on this neighborhood that satisfy certain properties. Because Σ is a C ∞ compact manifold, there exists a finite covering (V 1 , . . . , V I ) of Σ by such neighborhoods, and a smooth partition of unity (χ 1 , . . . , χ I ) associated with this covering. Namely, the χ i 's are nonnegative, C ∞ , and satisfy Supp χ i ⊂ V i and

I i=1 χ 2 i ≡ 1 .
There are three different cases.

• In the first case, V i is a neighborhood of an interior point or a neighborhood of a boundary point corresponding to cases 1 and 3 above (boundary points that are not poles and for which the Lopatinskii condition is satisfied). On such a neighborhood, there exist two C ∞ mappings r i and T i such that r i is hermitian,

T i has values in GL 4 (C),
the following estimates hold for all (τ, η) ∈ V i :

Re (r i (τ, η)T i (τ, η)A (τ, η)T i (τ, η) -1 ) ≥ κ i γ I , r i (τ, η) + C i β(τ, η)T i (τ, η) -1 * β(τ, η)T i (τ, η) -1 ≥ I . ( 51 
)
The inequalities (51) are direct consequences of (37)-( 38)-( 39)-( 40)-( 43)-(44). We define

U i (τ, η, x 2 ) := χ i (τ, η) T i (τ, η) W nc (δ, η, x 2 ) .
Both mappings r i and T i are not defined on Σ but only on the neighborhood V i . However, only the values of these mappings on the support of χ i will be involved in the subsequent calculations, so we choose for convenience to extend these mappings to the whole hemishpere Σ. Then we extend χ i , r i , T i to the whole set of frequencies Ξ as homogeneous mappings of degree 0 with respect to (τ, η). Because V i does not contain any pole of the symbol A , which is defined by (33), one easily shows that U i satisfies

dU i dx 2 = T i (τ, η)A (τ, η)T i (τ, η) -1 U i , x 2 > 0 , β(τ, η)T i (τ, η) -1 U i (0) = χ i h .
We take the scalar product of this later ordinary differential equation with r i U i and integrate with respect to x 2 on R + . Then we take the real part of the obtained equality and use (51). These operations yield the classical Kreiss' estimate:

κ i γ +∞ 0 |U i (τ, η, x 2 )| 2 dx 2 + 1 2 |U i (τ, η, 0)| 2 ≤ C i χ i (τ, η) 2 | h(τ, η)| 2 .
Now we use the definition of U i and a uniform bound for T i (τ, η) -1 on the support of χ i to derive

γ χ i (τ, η) 2 +∞ 0 | W nc (δ, η, x 2 )| 2 dx 2 + χ i (τ, η) 2 | W nc (δ, η, 0)| 2 ≤ C i χ i (τ, η) 2 | h| 2 . ( 52 
)
• In the second case, V i is a neighborhood of a zero of the Lopatinskii determinant. On such a neighborhood, there exist two C ∞ mappings r i and T i such that r i is hermitian,

T i has values in GL 4 (C),
the following estimates hold for all (τ, η) ∈ V i :

Re (r i (τ, η)T i (τ, η)A (τ, η)T i (τ, η) -1 ) ≥ κ i γ 3 I , r i (τ, η) + C i β(τ, η)T i (τ, η) -1 * β(τ, η)T i (τ, η) -1 ≥ γ 2 I . ( 53 
)
These inequalities correspond to (41)-(42).

As was done before, we first extend r i and T i as C ∞ mappings on the whole hemisphere Σ. Then we extend T i and χ i as homogeneous mappings of degree 0 with respect to (τ, η), and we extend r i as a homogeneous mapping of degree 2 with respect to (τ, η). Thus (53) reads

Re (r i (τ, η)T i (τ, η)A (τ, η)T i (τ, η) -1 ) ≥ κ i γ 3 I , r i (τ, η) + C i (|τ | 2 + v 2 r η 2 ) β(τ, η)T i (τ, η) -1 * β(τ, η)T i (τ, η) -1 ≥ γ 2 I , (54) 
for all (τ, η) ∈ R + • V i . Once again, we define

U i (τ, η, x 2 ) := χ i (τ, η) T i (τ, η) W nc (δ, η, x 2 ) .
Because V i does not contain any pole of A , we still have

dU i dx 2 = T i (τ, η)A (τ, η)T i (τ, η) -1 U i , x 2 > 0 , β(τ, η)T i (τ, η) -1 U i (0) = χ i h .
We perform the same calculations as above (in the first case), but now we use (54) instead of (51). We obtain

γ χ i (τ, η) 2 +∞ 0 | W nc (δ, η, x 2 )| 2 dx 2 + χ i (τ, η) 2 | W nc (δ, η, 0)| 2 ≤ C i γ 2 χ i (τ, η) 2 | h| 2 (|τ | 2 + v 2 r η 2 ) . (55) 
• In the third and last case, V i is a neighborhood of a pole of the symbol A . For instance, V i is a neighborhood of a point (-iv r η 0 , η 0 ) ∈ Σ. In this case, we have shown that there exists C ∞ mappings T i and S i defined on V i such that

T i has values in GL 6 (C), both relations (50a)-(50b) hold on V i .
Recall that ω r has negative real part on V i .

Here, we extend χ i , T i and S i as homogeneous mappings of degree 0 with respect to (τ, η). Moreover, we shall make as if T i and S i were defined on the whole hemisphere Σ (this is of pure convenience since only the values on the support of χ i are involved in what follows). We define

U i (τ, η, x 2 ) := χ i (τ, η) T i (τ, η) -1 W (δ, η, x 2 ) ∈ C 6 .
The components of the vector U i are denoted as follows

U i = (U i,1 , U i,2 , . . . , U i,6 ) T ,
and we also define

U nc i := (U i,2 , U i,3 , U i,5 , U i,6 ) T ∈ C 4 .
Using the definition (46) of T i (τ, η), it is clear that the vector U nc i is given by a relation of the form

U nc i = T i (τ, η) -1 W nc , with T i (τ, η) ∈ GL 4 (C) .
We also note that the first and third column vectors of the matrix T i (τ, η) are exactly the vectors E r (τ, η) and E l (τ, η). With these notations and definitions, we get

(τ A 0 + iηA 1 ) T i (τ, η) U i + A 2 T i (τ, η) dU i dx 2 = 0 , x 2 > 0 , β(τ, η)T i (τ, η)U nc i (0) = χ i (τ, η) h .
Multiplying the equation in {x 2 > 0} by S i (τ, η) and using (50a)-(50b), we obtain the following system:

(τ + iv r η) U i,1 + ic 2 η U i,3 = 0 , (56a) 
-ic 2 η U i,1 + c 4 η 2 |τ | 2 + v 2 r η 2 ω r U i,2 - c 4 η 2 |τ | 2 + v 2 r η 2 dU i,2 dx 2 = 0 , (56b) 
ω r U i,3 + dU i,3 dx 2 = 0 , (56c) 
(τ + iv l η) U i,4 = 0 , (56d) 
ω l U i,5 - dU i,5 dx 2 = 0 , (56e) 
ω l U i,6 + dU i,6 dx 2 = 0 . ( 56f 
)
Recall that when (τ, η) belongs to the conical set

R + • V i , one has Re ω r ≤ -κ(|τ | 2 + v 2 r η 2 ) 1/2
and Re ω l ≤ -κγ , for a suitable constant κ > 0. Because U i,3 (x d ) and U i,6 (x d ) belong to L 2 (R + ), for γ > 0, (56c) and (56f) imply U i,3 ≡ 0 and U i,6 ≡ 0 .

Using (56a) and (56d), we also obtain U i,1 ≡ 0 and U i,4 ≡ 0 .

Eventually, (56b) and (56e) reduce to

ω r U i,2 - dU i,2 dx 2 = 0 and ω l U i,5 - dU i,5 dx 2 = 0 .
Because the first and third columns of T i (τ, η) are nothing but E r and E l defined in Lemma 2, the boundary conditions for U i,2 and U i,5 read:

β(τ, η) E r (τ, η) E l (τ, η) U i,2 (0) U i,5 (0) = χ i (τ, η) h . ( 57 
)
Using the properties of ω r and ω l on the conical set R + • V i , we derive

(|τ | 2 + v 2 r η 2 ) 1/2 +∞ 0 |U i,2 (τ, η, x 2 )| 2 dx 2 ≤ C |U i,2 (τ, η, 0)| 2 , γ +∞ 0 |U i,5 (τ, η, x 2 )| 2 dx 2 ≤ C |U i,5 (τ, η, 0)| 2 .
Because the uniform Lopatinskii condition is satisfied on V i , (57) yields the following estimate:

U i,2 (τ, η, 0) U i,5 (τ, η, 0) 2 ≤ C χ i (τ, η) 2 | h| 2 .
Eventually, we obtain

γ +∞ 0 |U nc i (τ, η, x 2 )| 2 dx 2 + |U nc i (τ, η, 0)| 2 ≤ C χ i (τ, η) 2 | h| 2 .
We now use the definition of the vector U nc i to derive

γ χ 2 i +∞ 0 | W nc (δ, η, x 2 )| 2 dx 2 + χ 2 i | W nc (δ, η, 0)| 2 ≤ C χ 2 i | h| 2 . ( 58 
)
• We now add up ( 52)-( 55)-( 58), and use that the χ i 's form a partition of unity. We obtain

γ +∞ 0 | W nc (δ, η, x 2 )| 2 dx 2 + | W nc (δ, η, 0)| 2 ≤ C γ 2 | h| 2 (|τ | 2 + v 2 r η 2 ) .
We have already recalled that h is simply obtained from the source term g in ( 27) by multiplying by a uniformly bounded matrix. Thus integrating the previous inequality with respect to (δ, η) ∈ R 2 and using Plancherel's Theorem yields the desired estimate:

γ |||W nc ||| 2 0 + W nc | x 2 =0 2 0 ≤ C γ 2 g 2 1,γ .
Combining with (31), we have finished to prove [START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF].

5 The variable coefficients linearized problem

The linearized equations and the main result

We introduce the linearized equations around a state given by a perturbation of the constant solution in [START_REF] Corli | Stability of contact discontinuities under perturbations of bounded variation[END_REF]. More precisely, let us consider the functions

U r =   ρ v r 0   + Ur , U l =   ρ -v r 0   + Ul , Φ r , Φ l , (59) 
where ρ, v r are fixed positive constants (in this section we introduce the small change of notation v r → v r for the piecewise constant solution) and where

U r (t, x 1 , x 2 ) =   ρ r (t, x 1 , x 2 ) v r (t, x 1 , x 2 ) u r (t, x 1 , x 2 )   , Ur (t, x 1 , x 2 ) =   ρr (t, x 1 , x 2 ) vr (t, x 1 , x 2 ) ur (t, x 1 , x 2 )   , U l (t, x 1 , x 2 ) =   ρ l (t, x 1 , x 2 ) v l (t, x 1 , x 2 ) u l (t, x 1 , x 2 )   , Ul (t, x 1 , x 2 ) =   ρl (t, x 1 , x 2 ) vl (t, x 1 , x 2 ) ul (t, x 1 , x 2 )   .
The functions Φ r , Φ l are a perturbation of the change of variables. The index r (resp. l) denotes the state on the right (resp. on the left) of the interface (after the change of variables). We assume that

U r , U l , ∇Φ r , ∇Φ l ∈ W 2,∞ (Ω) , (U r , U l ) W 2,∞ (Ω) + (∇Φ r , ∇Φ l ) W 2,∞ (Ω) ≤ K 0 , (60) 
where K 0 is a suitable positive constant, and that the perturbations Ur , Ul have compact support. These quantities are linked by the Rankine-Hugoniot conditions and the continuity condition for the functions Φ r,l that, written in the form of ( 5), become

Φ r (t, x 1 , 0) = Φ l (t, x 1 , 0) = ϕ(t, x 1 ), (v r -v l ) | x 2 =0 ∂ x 1 ϕ -(u r -u l ) | x 2 =0 = 0 , ∂ t ϕ + v r| x 2 =0 ∂ x 1 ϕ -u r| x 2 =0 = 0 , (ρ r -ρ l ) | x 2 =0 = 0 . (61) 
The functions Φ r and Φ l should also satisfy

∂ t Φ r + v r ∂ x 1 Φ r -u r = 0 , ∂ t Φ l + v l ∂ x 1 Φ l -u l = 0 , (62) 
together with

∂ x 2 Φ r ≥ κ 0 , ∂ x 2 Φ l ≤ -κ 0 , (63) 
for a suitable constant κ 0 > 0, in the whole closed half-space {x 2 ≥ 0}. Let us consider the families U ± s = U r,l + sU ± , Φ ± s = Φ r,l + sΨ ± , where s is a small parameter. We compute the linearized equations

L (U r,l , ∇Φ r,l )(U ± , Ψ ± ) := d ds L(U ± s , ∇Φ ± s )U ± s |s=0 = f ± .
We obtain

∂ t U + + A 1 (U r ) ∂ x 1 U + + 1 ∂ x 2 Φ r (A 2 (U r ) -∂ t Φ r -∂ x 1 Φ r A 1 (U r )) ∂ x 2 U + +[dA 1 (U r )U + ]∂ x 1 U r - ∂ x 2 Ψ + (∂ x 2 Φ r ) 2 (A 2 (U r ) -∂ t Φ r -∂ x 1 Φ r A 1 (U r )) ∂ x 2 U r + 1 ∂ x 2 Φ r [dA 2 (U r )U + -∂ t Ψ + -∂ x 1 Ψ + A 1 (U r ) -∂ x 1 Φ r dA 1 (U r )U + ] ∂ x 2 U r = f + (64)
in the domain {x 2 > 0}, and a similar equation with

U -, Ψ -, U l , Φ l , f -instead of U + , Ψ + , U r , Φ r , f + .
Recall that, according to the definition in ( 7), ( 8), the first row in (64) may be simply denoted by L(U r , ∇Φ r )U + , namely we set:

L(U r , ∇Φ r )U + := ∂ t U + + A 1 (U r ) ∂ x 1 U + + 1 ∂ x 2 Φ r (A 2 (U r ) -∂ t Φ r -∂ x 1 Φ r A 1 (U r )) ∂ x 2 U + .
The equation ( 64) and the corresponding one for (U -, Ψ -) may be simplified by the introduction of "la bonne inconnue" (the good unknown) as in [START_REF] Alinhac | Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF]:

U+ := U + - Ψ + ∂ x 2 Φ r ∂ x 2 U r , U-:= U -- Ψ - ∂ x 2 Φ l ∂ x 2 U l . (65) 
A direct calculation shows that U+ , Usatisfy

L(U r , ∇Φ r ) U+ + C(U r , ∇U r , ∇Φ r ) U+ + Ψ + ∂ x 2 Φ r ∂ x 2 [L(U r , ∇Φ r )U r ] = f + , L(U l , ∇Φ l ) U-+ C(U l , ∇U l , ∇Φ l ) U-+ Ψ - ∂ x 2 Φ l ∂ x 2 [L(U l , ∇Φ l )U l ] = f -,
where

C(U r , ∇U r , ∇Φ r ) U+ := [dA 1 (U r ) U+ ]∂ x 1 U r + 1 ∂ x 2 Φ r [dA 2 (U r ) U+ -∂ x 1 Φ r dA 1 (U r ) U+ ] ∂ x 2 U r ,
and with a similar expression for C(U l , ∇U l , ∇Φ l ) U-. In view of the results in [START_REF] Alinhac | Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF][START_REF] Francheteau | Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF], we neglect the zero order term in Ψ + , Ψ -in the linearized equations and thus consider the linear equations

L r U+ := L(U r , ∇Φ r ) U+ + C(U r , ∇U r , ∇Φ r ) U+ = f + , L l U-:= L(U l , ∇Φ l ) U-+ C(U l , ∇U l , ∇Φ l ) U-= f -. (66) 
We easily verify, using (60), that the coefficients of the operators L(U r , ∇Φ r ) and L(U l , ∇Φ l ) are in W 2,∞ (Ω), that is

A 1 (U r ) ∈ W 2,∞ (Ω) , 1 ∂ x 2 Φ r (A 2 (U r ) -∂ t Φ r -∂ x 1 Φ r A 1 (U r )) ∈ W 2,∞ (Ω) , A 1 (U l ) ∈ W 2,∞ (Ω) , 1 ∂ x 2 Φ l (A 2 (U l ) -∂ t Φ l -∂ x 1 Φ l A 1 (U l )) ∈ W 2,∞ (Ω) .
Moreover we have C(U r,l , ∇U r,l , ∇Φ r,l ) ∈ W 1,∞ (Ω) .

It is clear that the linearized equations (66) form a symmetrizable hyperbolic system. For instance, a Friedrichs symmetrizer for the operator L r is given by

S r :=     p (ρ r ) ρ r 0 0 0 ρ r 0 0 0 ρ r     .
Using (62), we compute

S r ∂ x 2 Φ r (A 2 (U r ) -∂ t Φ r -∂ x 1 Φ r A 1 (U r )) = 1 ∂ x 2 Φ r   0 -p (ρ r )∂ x 1 Φ r p (ρ r ) -p (ρ r )∂ x 1 Φ r 0 0 p (ρ r ) 0 0   ,
and we thus expect to control the traces of U+,1 and ( U+,3 -∂ x 1 Φ r U+,2 ) on the boundary {x 2 = 0}. These considerations motivate the introduction of the following operator:

P U±| x 2 =0 := U±,1 U±,3 -∂ x 1 ϕ U±,2 | x 2 =0 . ( 67 
)
We now turn to the linearized boundary conditions. The linearization of (5) gives

Ψ + | x 2 =0 = Ψ -| x 2 =0 = ψ , (v r -v l ) ∂ x 1 ψ + (v + -v -) ∂ x 1 ϕ -(u + -u -) = g 1 , ∂ t ψ + v r ∂ x 1 ψ + v + ∂ x 1 ϕ -u + = g 2 , ρ + -ρ -= g 3 ,
on the boundary {x 2 = 0}. Let us introduce the vector b 0 = (0, 1, 0) T and the matrices b(t, x 1 ) :=

  0 (v r -v l ) |x 2 =0 1 v r|x 2 =0 0 0   , M (t, x 1 ) :=   0 ∂ x 1 ϕ -1 0 -∂ x 1 ϕ 1 0 ∂ x 1 ϕ -1 0 0 0 1 0 0 -1 0 0   .
Let us also denote U = (U + , U -) T , ∇ψ = (∂ t ψ, ∂ x 1 ψ) T and g = (g 1 , g 2 , g 3 ) T . Then the boundary conditions equivalently read

Ψ + | x 2 =0 = Ψ -| x 2 =0 = ψ , b ∇ψ + M U | x 2 =0 = g .
In terms of the good unknown U defined by (65), the linearized boundary conditions read

Ψ + | x 2 =0 = Ψ -| x 2 =0 = ψ , B ( U , ψ) := b ∇ψ + M ∂ x 2 U r /∂ x 2 Φ r ∂ x 2 U l /∂ x 2 Φ l b ψ + M U| x 2 =0 = g . ( 68 
)
We observe that the linearized boundary conditions only involve the traces of P U+ and P U-, with P defined by (67). With this notation, we can state our main result (the norms are the weighted norms defined in section 3):

Theorem 3. Assume that the particular solution defined by (59) satisfies

v r > √ 2 c(ρ) , (69) 
and that the perturbations Ur,l , ∇Φ r,l have compact support and are small enough in W 2,∞ (Ω). Then there exist some constants C 1 and γ 1 ≥ 1, that only depend on K 0 and κ 0 (defined in (60), ( 63)), such that for all γ ≥ γ 1 and for all ( U , ψ) ∈ H 2 γ (Ω) × H 2 γ (R 2 ) the following estimate holds:

γ ||| U ||| 2 L 2 γ (Ω) + P U| x 2 =0 2 L 2 γ (R 2 ) + ψ 2 H 1 γ (R 2 ) ≤ C 1 1 γ 3 |||L U ||| 2 L 2 (H 1 γ ) + 1 γ 2 B ( U , ψ) 2 H 1 γ (R 2 )
.

The linearized operators L and B are defined in (66) and (68).

The remaining part of this section is devoted to the proof of Theorem 3.

Some preliminary transformation

Let us consider again the linearized equations (66). After multiplication by the Friedrichs' symmetrizer defined above and a straightforward integration by parts we easily prove the following Lemma:

Lemma 5. There exist two constants C > 0 and γ 0 ≥ 1 such that for all γ ≥ γ 0 , the following estimate holds:

γ ||| U+ ||| 2 L 2 γ (Ω) ≤ C γ |||L r U+ ||| 2 L 2 γ (Ω) + C P U+| x 2 =0 2 L 2 γ (R 2 ) ,
where the operator P is defined in (67). The estimate for Uis the same, namely:

γ ||| U-||| 2 L 2 γ (Ω) ≤ C γ |||L l U-||| 2 L 2 γ (Ω) + C P U-| x 2 =0 2 L 2 γ (R 2 ) .
As was done in the constant coefficients case, it remains to show an estimate of the traces P U±| x 2 =0 and the front function ψ in terms of the source terms in the interior domain and on the boundary. In order to prove such an estimate, it is convenient to transform further the interior equations (66) in order to deal with a problem with a constant and diagonal boundary matrix (i.e. the matrix coefficient of ∂ x 2 in the differential operators L r,l ). This is possible because the boundary matrix has constant rank in the whole closed half-space. Namely, let us consider the coefficients of ∂ x 2 U± in (66). The coefficients are equal to 1

∂ x 2 Φ (A 2 (U ) -∂ t Φ -∂ x 1 ΦA 1 (U )) ,
where we forget for the moment the indeces r, l. Under the assumption (62), this coefficient reduces to the matrix

A 2 (U, ∇Φ) = 1 ∂ x 2 Φ       0 -ρ∂ x 1 Φ ρ - p (ρ) ρ ∂ x 1 Φ 0 0 p (ρ) ρ 0 0      
which has eigenvalues

λ 1 = 0, λ 2,3 = ± c(ρ) ∂ x 1 Φ ∂ x 2 Φ .
Here we have introduced the notation

∂ x 1 Φ = 1 + (∂ x 1 Φ) 2 .
In order to diagonalize the above matrix we compute the eigenvectors associated to the above eigenvalues. We obtain respectively the vectors

0 1 ∂ x 1 Φ T , ∂ x 1 Φ - c(ρ) ρ ∂ x 1 Φ c(ρ) ρ T , ∂ x 1 Φ c(ρ) ρ ∂ x 1 Φ - c(ρ) ρ T .
Observe that these eigenvectors are not orthonormal (because A 2 is not symmetric). Thus, we may define the following (non orthogonal) matrix

T (U, ∇Φ) :=      0 ∂ x 1 Φ ∂ x 1 Φ 1 - c(ρ) ρ ∂ x 1 Φ c(ρ) ρ ∂ x 1 Φ ∂ x 1 Φ c(ρ) ρ - c(ρ) ρ     
, which permits to diagonalize the above matrix A 2 (U, ∇Φ):

T -1 (U, ∇Φ) A 2 (U, ∇Φ) T (U, ∇Φ) =   0 0 0 0 λ 2 0 0 0 λ 3   .
In order to obtain a constant boundary matrix in the differential operators, we also introduce the matrix

A 0 (U, ∇Φ) :=   1 0 0 0 λ -1 2 0 0 0 λ -1 3   =       1 0 0 0 ∂ x 2 Φ c(ρ) ∂ x 1 Φ 0 0 0 - ∂ x 2 Φ c(ρ) ∂ x 1 Φ       . It follows that A 0 T -1 A 2 T = I 2 := diag (0, 1, 1) .
Let us define the new unknown functions

W + := T -1 (U r , ∇Φ r ) U+ , W -:= T -1 (U l , ∇Φ l ) U-,
and set T r,l := T (U r,l , ∇Φ r,l ) , A r,l 0 := A 0 (U r,l , ∇Φ r,l ) . After multiplication on the left side of the equations in (66) by A r,l 0 T -1 r,l , we see that W ± solve the equations

A r 0 ∂ t W + + A r 1 ∂ x 1 W + + I 2 ∂ x 2 W + + A r 0 C r W + = F + , A l 0 ∂ t W -+ A l 1 ∂ x 1 W -+ I 2 ∂ x 2 W -+ A l 0 C l W -= F -, (71) 
where we have set (with slight abuse of notation)

A r,l 1 := A r,l 0 T -1 A 1 T (U r,l , ∇Φ r,l ) , C r,l := T -1 ∂ t T + T -1 A 1 ∂ x 1 T + T -1 A 2 ∂ x 2 T + T -1 C T (U r,l , ∇U r,l , ∇Φ r,l ) , F ± = A r,l 0 T -1 r,l f ± .
The above equations (71) are equivalent to the linearized equations (66). Introducing W ± := e -γt W ± , the equations (71) become equivalent to

L γ r W + := γA r 0 W + + A r 0 ∂ t W + + A r 1 ∂ x 1 W + + I 2 ∂ x 2 W + + A r 0 C r W + = e -γt F + , L γ l W -:= γA l 0 W -+ A l 0 ∂ t W -+ A l 1 ∂ x 1 W -+ I 2 ∂ x 2 W -+ A l 0 C l W -= e -γt F -. ( 72 
)
Recall that we have A r,l j ∈ W 2,∞ (Ω) and C r,l ∈ W 1,∞ (Ω) . Using the vector W = (W + , W -) T as defined above, the boundary conditions (68) become equivalent to

Ψ + | x 2 =0 = Ψ -| x 2 =0 = ψ , b ∇ψ + b ψ + M T r 0 0 T l W | x 2 =0 = g . ( 73 
)
Introducing W ± and Ψ ± := e -γt Ψ ± , ψ := e -γt ψ, the equations (73) are also equivalent to

Ψ + = Ψ -= ψ , B γ ( W , ψ) := γb 0 ψ + b ∇ ψ + b ψ + M T r 0 0 T l W | x 2 =0 = e -γt g . (74) 
From (60) we have

b ∈ W 2,∞ (R 2 ) , b ∈ W 1,∞ (R 2 ) , M ∈ W 2,∞ (R 2 ) , T r,l | x 2 =0 ∈ W 2,∞ (R 2 ) .
The next step is to look for an a priori estimate of the solution to the (weighted) linearized problem (72), (74). In view of Lemma 5, we are looking for an estimate of P U+ and P U-. Of course, we shall derive this estimate using the new function W . The reader should keep in mind the relations

P U+| x 2 =0 = ∂ x 1 ϕ (W + 2 + W + 3 ) | x 2 =0 c r ρ r ∂ x 1 ϕ 2 (W + 2 -W + 3 ) | x 2 =0 , P U-| x 2 =0 = ∂ x 1 ϕ (W - 2 + W - 3 ) | x 2 =0 c l ρ l ∂ x 1 ϕ 2 (W - 2 -W - 3 ) | x 2 =0
, from which we easily deduce the estimate

P U+| x 2 =0 L 2 γ (R 2 ) + P U-| x 2 =0 L 2 γ (R 2 ) ≤ C (W + 2 , W + 3 ) | x 2 =0 L 2 γ (R 2 ) + (W - 2 , W - 3 ) | x 2 =0 L 2 γ (R 2 ) . ( 75 
)
We are thus led to estimating the trace of the vector ( W + 2 , W + 3 , W - 2 , W - 3 ), when W is a solution to the (weighted) linearized equations (72), (74). From now on, for the sake of simplicity, we drop the tildas and write W ± , Ψ ± , ψ instead of W ± , Ψ ± , ψ. Observe that Ψ ± , ψ are coupled to W ± only through the boundary conditions.

Paralinearization

We refer to appendix B for the definition of paradifferential symbols and operators, where the reader will also find the main results on paralinearization and symbolic calculus. We recall that the Fourier dual variables of (t, x 1 ) are (δ, η), and that we always denote τ = γ + iδ the Laplace dual variable of t. Recall we have introduced the positive constants K 0 , κ 0 in (60), (63). We now turn to the paralinearization of the linearized equations.

1) The boundary conditions

Define the following symbols:

b 0 :=   0 1 0   , b 1 (t, x 1 ) :=   v r -v l v r 0   (t, x 1 , 0) , b(t, x 1 , δ, η, γ) := τ b 0 + iη b 1 (t, x 1 ) . Because b 0 is constant, we have γ b 0 ψ + b 0 ∂ t ψ = T γ τ b 0 ψ .
The main paralinearization estimate (Theorem 8) yields

b 1 ∂ x 1 ψ -T γ iηb 1 ψ 1,γ ≤ C b 1 W 2,∞ (R 2 ) ψ 0 ≤ C(K 0 ) γ ψ 1,γ .
We now easily obtain

γ b 0 ψ + b 0 ∂ t ψ + b 1 ∂ x 1 ψ -T γ b ψ 1,γ ≤ C(K 0 ) γ ψ 1,γ . ( 76 
)
We also have the following inequalities:

b ψ -T γ b ψ 1,γ ≤ C b W 1,∞ (R 2 ) ψ 0 ≤ C(K 0 , κ 0 ) γ ψ 1,γ , T γ b ψ 1,γ ≤ C b L ∞ (R 2 ) ψ 1,γ ≤ C(K 0 , κ 0 ) ψ 1,γ , ( 77 
)
where b is defined by (68). Eventually, we define the symbol

M(t, x 1 ) := M (t, x 1 , 0) T r 0 0 T l (t, x 1 , 0) ,
with the matrices M , T r , T l defined above. Recall that the state around which the equations are linearized satisfies Φ r (t,

x 1 , 0) = Φ l (t, x 1 , 0) = ϕ(t, x 1 ) , ρ r (t, x 1 , 0) = ρ l (t, x 1 , 0) . A direct calculation yields M =     0 - c r ρ r ∂ x 1 ϕ 2 c r ρ r ∂ x 1 ϕ 2 0 c l ρ l ∂ x 1 ϕ 2 - c l ρ l ∂ x 1 ϕ 2 0 - c r ρ r ∂ x 1 ϕ 2 c r ρ r ∂ x 1 ϕ 2 0 0 0 0 ∂ x 1 ϕ ∂ x 1 ϕ 0 -∂ x 1 ϕ -∂ x 1 ϕ     .
Thus the matrix M only acts on the noncharacteristic part

W nc := (W + 2 , W + 3 , W - 2 , W - 3 ) of the vector W = (W + , W -). Since M ∈ W 2,∞ (R 2 ), we have M W | x 2 =0 -T γ M W | x 2 =0 1,γ ≤ C γ M W 2,∞ (R 2 ) W nc | x 2 =0 0 ≤ C(K 0 ) γ W nc | x 2 =0 0 . ( 78 
)
Adding ( 76)-( 77)-( 78), we obtain the paralinearization estimate for the boundary operator:

B γ (W, ψ) -T γ b ψ -T γ M W | x 2 =0 1,γ ≤ C(K 0 , κ 0 ) ψ 1,γ + 1 γ W nc | x 2 =0 0 . ( 79 
)
We recall that the boundary operator B γ is defined by (74). Observe that in the paralinearized version of B γ , there is no more zero order term in ψ.

2) The interior equations

We first estimate the paralinearization error for fixed x 2 , and then integrate with respect to x 2 . For instance, we have

|||γ A r 0 W + -T γ γA r 0 W + ||| 2 1,γ = +∞ 0 γ 2 A r 0 W + (•, x 2 ) -T γ A r 0 W + (•, x 2 ) 2 1,γ dx 2 ≤ C +∞ 0 A r 0 (•, x 2 ) 2 W 2,∞ (R 2 ) W + (•, x 2 ) 2 0 dx 2 ≤ C A r 0 2 W 2,∞ (Ω) |||W + ||| 2 0 ≤ C(K 0 ) |||W + ||| 2 0 .
In a completely similar way, we obtain the following estimates

|||A r 0 ∂ t W + -T γ iδA r 0 W + ||| 1,γ ≤ C(K 0 ) |||W + ||| 0 , |||A r 1 ∂ x 1 W + -T γ iηA r 1 W + ||| 1,γ ≤ C(K 0 ) |||W + ||| 0 , |||A r 0 C r W + -T γ A r 0 C r W + ||| 1,γ ≤ C(K 0 , κ 0 ) |||W + ||| 0 .
Adding these inequalities, we end up with the paralinearization estimate for the interior equations:

|||L γ r W + -T γ τ A r 0 +iηA r 1 +A r 0 C r W + -I 2 ∂ x 2 W + ||| 1,γ ≤ C(K 0 , κ 0 ) |||W + ||| 0 , (80) 
where the linearized operator L γ r is defined by (72). The estimate for the equation on W -is identical:

|||L γ l W --T γ τ A l 0 +iηA l 1 +A l 0 C l W --I 2 ∂ x 2 W -||| 1,γ ≤ C(K 0 , κ 0 ) |||W -||| 0 .
(81)

3) Eliminating the front

We proceed as in the constant coefficients case, and show how to eliminate the front ψ in the (paralinearized) boundary conditions. If the perturbation is small enough (in the L ∞ norm), there exists a constant c > 0 (depending only on K 0 ) such that

|b(t, x 1 , δ, η, γ)| 2 ≥ c (γ 2 + δ 2 + η 2 ) .
Applying Gårding's inequality (Theorem 6), we obtain

Re T γ b * b ψ, ψ L 2 (R 2 ) ≥ c 2 ψ 2 1,γ ,
for all γ ≥ γ 0 (where γ 0 only depends on K 0 ). Using the rules of symbolic calculus (Theorem 5), we have

T γ b * b = T γ b * T γ b + R γ ,
where R γ is of order ≤ 1. Consequently, we have an estimate of the form

ψ 1,γ ≤ C(K 0 ) T γ b ψ 0 .
For all γ ≥ γ 0 , we thus obtain

ψ 1,γ ≤ C(K 0 ) T γ b ψ + T γ M W | x 2 =0 0 + W nc | x 2 =0 0 ≤ C(K 0 ) 1 γ T γ b ψ + T γ M W | x 2 =0 1,γ + W nc | x 2 =0 0 . (82) 
From ( 79) and (82) we deduce for γ ≥ γ 0 large enough (depending on K 0 ) the estimate

ψ 1,γ ≤ C(K 0 ) 1 γ B γ (W, ψ) 1,γ + W nc | x 2 =0 0
, which shows that it only remains to prove an estimate of W nc | x 2 =0 in terms of the source terms. For all (τ, η) in the hemisphere Σ, we define the matrix

Π(t, x 1 , δ, η, γ) := 0 0 1 τ + iη v r (t, x 1 , 0) -iη (v r -v l )(t, x 1 , 0) 0 ,
and we extend Π as a homogeneous mapping of degree 0 with respect to (τ, η). We have Πb ≡ 0, and Π ∈ Γ 0 2 . Applying Theorem 5, we thus obtain:

T γ Π T γ b ψ 1,γ = T γ Π T γ b ψ -T γ Πb ψ 1,γ ≤ C(K 0 ) ψ 1,γ , T γ ΠM W | x 2 =0 -T γ Π T γ M W | x 2 =0 1,γ ≤ C(K 0 ) W nc | x 2 =0 0 .
Using the decomposition

T γ ΠM W | x 2 =0 = (T γ ΠM -T γ Π T γ M )W | x 2 =0 + T γ Π (T γ M W | x 2 =0 + T γ b ψ) -T γ Π T γ b ψ ,
we get the following estimate

T γ ΠM W | x 2 =0 1,γ ≤ C(K 0 ) W nc | x 2 =0 0 + T γ b ψ + T γ M W | x 2 =0 1,γ + ψ 1,γ . (83) 
As was done in the constant coefficients case, we define the symbol β of the reduced boundary conditions:

∀ (t, x 1 , δ, η, γ) ∈ R 4 × R + , β(t, x 1 , δ, η, γ) := Π(t, x 1 , δ, η, γ) M(t, x 1 )
.

We now focus on the paralinearized system with reduced boundary conditions:

       T γ τ A r 0 +iηA r 1 +A r 0 C r W + + I 2 ∂ x 2 W + = F + , x 2 > 0 , T γ τ A l 0 +iηA l 1 +A l 0 C l W -+ I 2 ∂ x 2 W -= F -, x 2 > 0 , T γ β W | x 2 =0 = G , x 2 = 0 , (84) 
Our aim is to prove an energy estimate for the paralinearized equations (84). Once this is done we shall obtain an energy estimate for the linearized equations. More precisely, we have the following Proposition: Proposition 2. Assume that there exists a constant C 0 , depending only on K 0 and κ 0 , such that the solution W to (84) satisfies

W nc | x 2 =0 2 0 ≤ C 0 1 γ 3 ||| F ||| 2 1,γ + 1 γ 2 G 2 1,γ , (85) 
for all γ ≥ γ 0 (where γ 0 only depends on K 0 and κ 0 ). Then the thesis of Theorem 3 holds.

Proof. The proof is straightforward. We first write

T γ τ A r 0 +iηA r 1 +A r 0 C r W + + I 2 ∂ x 2 W + = L γ r W + + error , T γ τ A l 0 +iηA l 1 +A l 0 C l W -+ I 2 ∂ x 2 W -= L γ l W -+ error ,
and estimate the error terms with the help of (80)-(81). We use (85) to derive

W nc | x 2 =0 2 0 ≤ C 0 1 γ 3 |||L γ W ||| 2 1,γ + 1 γ 3 |||W ||| 2 0 + 1 γ 2 T γ β W | x 2 =0 2 1,γ 
, where, as usual, L γ W = (L γ r W + , L γ l W -). Using (82) and (83), and choosing γ large enough, we obtain the following inequality:

W nc | x 2 =0 2 0 + ψ 2 1,γ ≤ C 0 1 γ 3 |||L γ W ||| 2 1,γ + 1 γ 3 |||W ||| 2 0 + 1 γ 2 T γ b ψ + T γ M W | x 2 =0 2 1,γ 
.

Eventually, we use (79) to derive (up to choosing γ large enough):

W nc | x 2 =0 2 0 + ψ 2 1,γ ≤ C 0 1 γ 3 |||L γ W ||| 2 1,γ + 1 γ 3 |||W ||| 2 0 + 1 γ 2 B γ (W, ψ) 2 1,γ 
.

Then one uses the definitions

e -γt U+ = T r W + , e -γt U-= T l W -, e -γt A r 0 T -1 r L r U+ = L γ r W + , e -γt A l 0 T -1 l L l U-= L γ l W -,
as well as (75) and Lemma 5 to derive (70). The reader will easily check that the constants C 0 , C 0 etc. involved in the energy estimates only depend on K 0 and κ 0 .

Thanks to Proposition 2, we only need to prove estimate (85) for the paralinearized system (84). This will be done in the next paragraphs.

Recall that the boundary matrix β in (84) only acts on W nc = (W + 2 , W + 3 , W - 2 , W - 3 ) and not on the full vector W . Namely, the first and fourth columns of β vanish. Consequently, we feel free to write the boundary conditions under the form T γ β W nc | x 2 =0 = G, that is, we consider β as a matrix with only four columns and two rows.

Microlocalization

To derive the desired energy estimate for (84), we follow the general strategy of the constant coefficients case. Namely, we first consider the two equations that do not involve any x 2 derivative:

T γ τ +ivrη W + 1 + T γ iηc 2 r /ρr ∂x 1 Φr W + 2 + T γ iηc 2 r /ρr ∂x 1 Φr W + 3 + order 0 terms = F + 1 , T γ τ +iv l η W - 1 + T γ iηc 2 l /ρ l ∂x 1 Φ l W - 2 + T γ iηc 2 l /ρ l ∂x 1 Φ l W - 3 + order 0 terms = F - 1 .
Formally, the idea is to invert the operators T γ τ +iv r,l η and to substitute the corresponding value of W ± 1 into the four remaining equations. We shall thus get a system of the form

∂ x 2 W nc = T γ A W nc + T γ E W nc + source term, x 2 > 0 , T γ β W nc | x 2 =0 = source term, x 2 = 0 ,
where A is of degree 1 and E is of degree 0. (Both matrices A and E are block diagonal since the equations for W + and W -are decoupled). An important issue is to show that this operation can be achieved. Namely, the zero order terms in the two scalar equations above involve W + 1 and W - 1 . When inverting the operators T γ τ +iv r,l η , one needs to take the zero order terms into account, in order to avoid introducing W ± 1 in the final equation for W nc . We shall show that such an inversion is possible. But in this paragraph, we focus on the first order term and explicit the symbol A. Consider the following 2 × 2 matrix:

A r := A r 1 -A r 3 A r 3 A r 2 , (86) 
with

A r 1 := - c r η 2 ∂ x 2 Φ r 2(τ + iv r η) ∂ x 1 Φ r 3 - (τ + iv r η) ∂ x 2 Φ r c r ∂ x 1 Φ r + ∂ x 2 Φ r ∂ x 1 Φ r iη ∂ x 1 Φ r 2 , A r 2 := c r η 2 ∂ x 2 Φ r 2(τ + iv r η) ∂ x 1 Φ r 3 + (τ + iv r η) ∂ x 2 Φ r c r ∂ x 1 Φ r + ∂ x 2 Φ r ∂ x 1 Φ r iη ∂ x 1 Φ r 2 , A r 3 := c r η 2 ∂ x 2 Φ r 2(τ + iv r η) ∂ x 1 Φ r 3 . (87)
The definition of A l is completely similar, changing the r index by l. The symbol A mentionned above is nothing but the block diagonal matrix

A := A r 0 0 A l . (88) 
The set of poles of A is denoted by Υ p , that is,

Υ p := (t, x 1 , x 2 , τ, η) ∈ Ω × Ξ s.t. τ = -iη v r,l (t, x 1 , x 2 ) .
As was done in the constant coefficients case, we denote by E -(t, x 1 , x 2 , τ, η) the stable subspace of A(t, x 1 , x 2 , τ, η). This stable subspace is well defined when Re τ > 0, and admits a continuous extension up to any (τ, η) such that τ ∈ iR and (τ, η) = (0, 0). At each point (t, x 1 , 0) of the boundary ∂Ω, the subspace

{Z ∈ E -(t, x 1 , 0, τ, η) s.t. β(t, x 1 , τ, η) Z = 0}
is nontrivial (that is, not reduced to {0}) if and only if

τ = -iη v r (t, x 1 , 0) + v l (t, x 1 , 0) 2 or τ = iη V 1 (t, x 1 ) or τ = iη V 2 (t, x 1 ) , for suitable functions V 1,2 ∈ W 2,∞ (R 2 )
. This is just because when one freezes the coefficients on the boundary and computes the associated Lopatinskii determinant, the calculations yield the same result as in section 4. Recall that the state (U r,l , ∇Φ r,l ) around which the equations are linearized satisfy the Rankine-Hugoniot conditions, see (61). As in [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF], we define the critical set of space-frequency variables in the following way:

Υ 0 c := (t, x 1 , τ, η) ∈ ∂Ω × Ξ s.t. τ ∈ -iη (v r + v l )(t, x 1 , 0) 2 , iηV 1 (t, x 1 ), iηV 2 (t, x 1 )
. This is exactly the set of space variables on the boundary ∂Ω and frequencies so that the Lopatinskii determinant vanishes. Moreover, if the perturbation ( Ur,l , ∇Φ r,l ) is sufficiently small (in the L ∞ norm), we have

∀ (t, x 1 ) ∈ ∂Ω , -v l (t, x 1 , 0) > V 1 (t, x 1 ) > - (v r + v l )(t, x 1 , 0) 2 > V 2 (t, x 1 ) > -v r (t, x 1 , 0) .
Therefore, the critical set Υ 0 c does not intersect the set of poles on the boundary of the space domain:

Υ 0 c ∩ (Υ p ∩ {x 2 = 0}) = ∅ .
Another important feature of the critical set Υ 0 c is that it admits a neighborhood in which the symbol A is diagonalizable. To be more precise, there exists a neighborhood V 0 c of Υ 0 c in R 2 × Ξ and a mapping Q 0 on V 0 c (with values in the set of 4 × 4 invertible matrices and homogeneous of degree 0 with respect to (τ, η)) such that

∀ z = (t, x 1 , τ, η) ∈ V 0 c , Q 0 (z)A(z)Q 0 (z) -1 = diag (ω - r (z), ω + r (z), ω - l (z), ω + l (z)) , (89) 
where ω - r (resp. ω + r ) is the eigenvalue with negative (resp. positive) real part of A r when γ > 0. (The definition of ω ± l is similar). Note that the matrix Q 0 has the same block diagonal structure as A, see (88). The symbol Q 0 belongs to the class Γ 0 2 (see appendix B for the precise definition). Since Υ 0 c does not intersect Υ p ∩ {x 2 = 0}, we may assume that the neighborhood V 0 c does not intersect Υ p ∩ {x 2 = 0} either.

The key point in the derivation of an energy estimate is to understand how the singularities at the boundary (that is, the set Υ 0 c ) propagate in the interior domain. Following [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF], we shall show that the singularities propagate along the two bicharacteristic curves associated with the (real) symbols Im ω - r,l , provided that these curves do not reach the poles of A or the points where A stops being diagonalizable. These ideas motivate the following result: Proposition 3. Assume that the perturbation ( Ur,l , ∇Φ r,l ) is small in W 2,∞ (Ω) and has compact support. Then one can choose the neighborhood V 0 c such that there exists an open set V c ⊂ Ω × Ξ satisfying the following properties:

V c ∩ {x 2 = 0} = V 0 c and V c ∩ Υ p = ∅.
The symbol A defined by (86)-( 87)-( 88) is diagonalizable on the set V c . In other words, (89) holds on all V c , and not only on the trace V 0 c .

For all z = (t,

x 1 , x 2 , τ, η) ∈ V c , one has ω - r (z) = ω + r (z) and ω - l (z) = ω + l (z) .
The solutions of the hamiltonian system of ODEs

dt dx 2 = ∂h ∂δ (t, x 1 , x 2 , τ, η) , dx 1 dx 2 = ∂h ∂η (t, x 1 , x 2 , τ, η) , dδ dx 2 = - ∂h ∂t (t, x 1 , x 2 , τ, η) , dη dx 2 = - ∂h ∂x 1 (t, x 1 , x 2 , τ, η) , (t, x 1 , δ, η, γ) | x 2 =0 ∈ V 0 c ( 90 
)
are defined for all x 2 ≥ 0 and remain in V c , both for h = Im ω - r and h = Im ω - l . These solutions are referred to as bicharacteristic curves.

Following [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF], we now construct a (real) weight that vanishes on the bicharacteristic curves, and that satisfies a linear transport equation. For all z = (t,

x 1 , τ, η) ∈ R 2 × Σ, define σ(z) := δ + η (v r + v l )(t, x 1 , 0) 2 (δ -ηV 1 (t, x 1 ))(δ -ηV 2 (t, x 1 )) , (91) 
and extend σ to the whole set R 2 × Ξ as a homogeneous mapping of degree 1 with respect to (τ, η). The velocities V 1,2 are those defined above, and correspond to the critical speeds for which the Lopatinskii determinant vanishes. The symbol σ thus belongs to the class Γ 1 2 . It is straightforward to check that

Υ 0 c = {z = (t, x 1 , τ, η) ∈ R 2 × Ξ s.t. γ + iσ(z) = 0} .
Using Proposition 3, it is possible to construct solutions σ r,l of the linear transport equations As a matter of fact, both σ r and σ l are well-defined in the neighborhood of the bicharacteristic curves starting from the critical set Υ 0 c . This is because σ r,l are constant along the bicharacteristic curves defined by (90), provided these curves are globally defined! Shrinking V 0 c and V c , if necessary, we may assume that σ r and σ l are defined in the whole open set V c . The key point is that σ r vanishes on the bicharacteristic curve originating from Υ 0 c and associated with the symbol Im ω - r . (A similar result holds for σ l ). Far from these bicharacteristic curves, both |σ r | and |σ l | are bounded from below.

∂ x 2 σ r + {σ r , Im ω - r } = 0 , ∂ x 2 σ l + {σ l , Im ω - l } = 0 , σ r| x 2 =0 = σ l| x 2 =0 = σ , (92) 
Up to now, the symbols Q 0 , σ r , σ l are only defined microlocally, that is, locally in the frequency space. To circumvent this difficulty, we now introduce cut-off functions. We fix, once and for all, two nonnegative cut-off functions (with values in [0, 1]) χ c and χ p such that χ c and χ p are smooth, that is, C ∞ and homogeneous of degree 0 with respect to (τ, η). They thus belong to the class Γ 0 k for any integer k. The support of χ c is contained in the open set V c , and χ c ≡ 1 in a neighborhood of the bicharacteristic curves originating from Υ 0 c . The support of χ p does not intersect the support of χ c , that is, χ c χ p ≡ 0. Moreover, χ p ≡ 1 in a neighborhood of the poles Υ p .

Eventually, we define χ u := 1 -χ c -χ p and observe that χ u is supported far from the bicharacteristic curves and far from the poles. As a consequence, the support of χ u on the boundary ∂Ω only consists of points for which the uniform Lopatinskii condition holds. We shall therefore be able to use standard Kreiss' symmetrizers (as constructed in section 4) to derive an energy estimate for T γ χu W . The end of this section is devoted to the proof of the a priori energy estimate (85). We thus fix W = (W + , W -) ∈ H 2 (Ω) and define the source terms

F + := T γ τ A r 0 +iηA r 1 +A r 0 C r W + + I 2 ∂ x 2 W + ∈ H 1 (Ω) , (93a) 
F -:= T γ τ A l 0 +iηA l 1 +A l 0 C l W -+ I 2 ∂ x 2 W -∈ H 1 (Ω) , (93b) 
G := T γ β W nc | x 2 =0 ∈ H 3/2 (R 2 ) . (93c) 
We first show how to estimate the trace of T γ χc W nc ; then we show how to estimate the trace of T γ χu W nc , using Kreiss' symmetrizers. Eventually, we show how to estimate the trace of T γ χp W nc . In the two first cases, the first step in the analysis consists in deriving an equation that only involves W nc , that is in eliminating W ± 1 in the paradifferential equations (84). Once we have derived this noncharacteristic equation, we apply the strategy of [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF]. At the very end of the proof, we show how to absorb the microlocalization errors.

Derivation of energy estimates: the bad frequencies

We define W + c := T γ χc W + , and compute the equation satisfied by W + c . Starting from (93a), we obtain

I 2 ∂ x 2 W + c = I 2 T γ ∂x 2 χc W + + T γ χc F + -T γ χc (T γ τ A r 0 +iηA r 1 +A r 0 C r W + ) .
Then we apply the rules of symbolic calculus (Theorem 5) to get

T γ τ A r 0 +iηA r 1 W + c + T γ A r 0 C r W + c + T γ r W + + I 2 ∂ x 2 W + c = T γ χc F + + R -1 W + , (94) 
where R -1 is an operator of order ≤ -1, and r is a symbol in the class Γ 0 1 that vanishes in a neighborhood of the bicharacteristic curves. Namely, r is defined by the following formula:

r := 1 i {χ c , τ A r 0 + iηA r 1 } -∂ x 2 χ c I 2 ,
and is thus a linear combination of derivatives of χ c . Therefore, r is supported far from the bicharacterstic curves originating from the critical set.

To avoid overloading the paper with unuseful notations, we shall denote by α m a generic symbol in the class Γ m 1 , that may vary from line to line, or within the same line, and whose exact expression is not useful. Moreover, we denote by r any symbol in Γ 0 1 that vanishes in a neighborhood of the bicharacteristic curves. The notation R m is also used to denote a generic operator of order ≤ m. At last, we denote the components of the vectors W + c , W + in the following way:

W + c := (w + 1 , w + 2 , w + 3 ) T , W + := (W + 1 , W + 2 , W + 3 ) T .

Some tedious computations lead to

A r 1 =         v r c 2 r ρ r ∂ x 1 Φ r c 2 r ρ r ∂ x 1 Φ r ρ r ∂ x 2 Φ r 2c r ∂ x 1 Φ r 2 ∂ x 2 Φ r c r ∂ x 1 Φ r v r - c r ∂ x 1 Φ r ∂ x 1 Φ r 0 -ρ r ∂ x 2 Φ r 2c r ∂ x 1 Φ r 2 0 -∂ x 2 Φ r c r ∂ x 1 Φ r v r + c r ∂ x 1 Φ r ∂ x 1 Φ r        
, and we also have

A r 0 = diag 1, ∂ x 2 Φ r c r ∂ x 1 Φ r , -∂ x 2 Φ r c r ∂ x 1 Φ r .
The first scalar equation in (94) thus reads

T γ τ +iηvr w + 1 + T γ iηc 2 r /ρr ∂x 1 Φr (w + 2 + w + 3 ) + 3 i=1 T γ α 0 w + i + T γ r W + = T γ χc F + 1 + R -1 W + .
Since the support of χ c is included in the open set V c (and does not intersect the poles Υ p ), we can choose two smooth cut-off functions χ 1 and χ 2 such that χ 1 ≡ 1 on the support of χ c , and χ 2 ≡ 1 on the support of χ 1 .

χ 2 (and therefore χ 1 ) is supported in V c .

χ 1 and χ 2 are C ∞ and homogeneous of degree 0 with respect to (τ, η).

It is clear that the properties of the cut-off function χ 2 imply χ 2 /(τ + iηv r ) ∈ Γ -1 2 . We apply the operator T γ χ 2 /(τ +iηvr) to the previous equality and, after repeated applications of Theorem 5, we obtain:

T γ χ 2 w + 1 + T γ χ 2 iηc 2 r /(τ +iηvr)ρr ∂x 1 Φr (w + 2 + w + 3 ) + 3 i=1 T γ α -1 w + i + T γ rχ 2 /(τ +iηvr) W + = T γ χ 2 /(τ +iηvr) T γ χc F + 1 + R -2 W + .
Now, we note that

T γ χ 2 w + 1 = T γ χ 2 T γ χc W + 1 = T γ χc W + 1 + R -2 W + 1 = w + 1 + R -2 W + 1 ,
and we are led to the following relation:

w + 1 = -T γ χ 2 iηc 2
r /(τ +iηvr)ρr ∂x 1 Φr (w + 2 + w + 3 ) +

3 i=1 T γ α -1 w + i + T γ χ 2 r/(τ +iηvr) W + + T γ χ 2 /(τ +iηvr) T γ χc F + 1 + R -2 W + . ( 95 
)
It is important to note that there is a term in w + 1 (of degree -1) in the right-hand side of (95). In the second equation of (94), w + 1 appears both in a term of order 1, say T γ θ 1 w + 1 with θ 1 ∈ Γ 1 2 , and in a term of order 0, say T γ θ 0 w + 1 with θ 0 ∈ Γ 0 1 . We first use the expression (95) of w + 1 in the term T γ θ 1 w + 1 . The second equation of (94) thus reads

T γ θ 1 2 w + 2 + T γ θ 1 3 w + 3 + 3 i=1 T γ α 0 w + i + T γ r W + + ∂ x 2 w + 2 = R 0 T γ χc F + 1 + T γ χc F + 2 + R -1 W + ,
where θ 1 2,3 ∈ Γ 1 2 . We use once more the expression (95) in the term T γ α 0 w + 1 just above (recall that α 0 ∈ Γ 0 1 so we can apply the rules of symbolic calculus). Collecting the different terms, we are led to an equation that can be written under the following form:

T γ θ 1 2 w + 2 + T γ θ 1 3 w + 3 + 3 i=2 T γ α 0 w + i + T γ r W + + ∂ x 2 w + 2 = R 0 T γ χc F + 1 + T γ χc F + 2 + R -1 W + .
In this equation, all the first and zero order terms in w + 1 have been eliminated. Performing similar computations to eliminate w + 1 in the last equation of (94), we obtain a system of two equations that reads

∂ x 2 w + 2 w + 3 = T γ A r χ 2 w + 2 w + 3 + T γ E r w + 2 w + 3 + T γ r W + + R 0 F + + R -1 W + , (96) 
where E r ∈ Γ 0 1 , A r χ 2 ∈ Γ 1 2 and A r χ 2 ≡ A r in the region {χ 2 ≡ 1}. Recall that the (singular) symbol A r is defined by ( 86)-(87). Moreover, the symbol r in (96) belongs to Γ 0 1 and is identically zero in the region {χ c ≡ 1}, and R 0 (resp. R -1 ) is an operator of order ≤ 0 (resp. ≤ -1).

We are now reduced to the noncharacteristic case, for which we follow the analysis of [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF]. Indeed, since the symbol A r χ 2 equals A r in the region {χ 2 ≡ 1}, we can diagonalize A r χ 2 in this region, and its eigenvalues are exactly ω ± r . More precisely, in the region {χ 2 ≡ 1}, we have the following relation:

Q r 0 A r χ 2 = ω - r 0 0 ω + r D r 1 Q r 0 .
Recall that on the set V c , and therefore also in the region {χ 2 ≡ 1}, we have ω - r = ω + r thanks to Proposition 3. The following Lemma can thus be proved as in [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF] (to avoid overloaded equations, we denote x 0 := t, ξ 0 := δ, and ξ 1 := η the variables used in the tangential symbolic calculus): Lemma 6. There exist a symbol Q r -1 ∈ Γ -1 1 and a diagonal symbol D r 0 ∈ Γ 0 1 , that are defined in the region {χ 2 ≡ 1}, such that

(Q r 0 + Q r -1 )(A r χ 2 + E r ) + ∂ x 2 Q r 0 + 1 i 1 j=0 (∂ ξ j Q r 0 ∂ x j A r χ 2 -∂ ξ j D r 1 ∂ x j Q r 0 ) -(D r 1 + D r 0 )(Q r 0 + Q r -1 )
is a symbol of degree -1 and regularity 1 (at least in the region {χ 2 ≡ 1}).

In terms of symbolic calculus, Lemma 6 means nothing but

(Q r 0 + Q r -1 ) (∂ x 2 -A r χ 2 -E r ) = (∂ x 2 -D r 1 -D r 0 ) (Q r 0 + Q r -1 ) .
In other words, the change of basis (Q r 0 + Q r -1 ) diagonalizes both the first order term A r χ 2 and the zero order term E r . We thus wish to prove an estimate for

Z + := T γ χ 1 (Q r 0 +Q r -1 ) w + 2 w + 3 ,
since this new vector will satisfy a paradifferential equation with diagonal symbols. Observe the role of the cut-off function χ 1 , whose support is contained in the region {χ 2 ≡ 1}, and that also satisfies χ 1 ≡ 1 on the support of χ c . (We recall that the vector (w + 2 , w + 3 ) is microlocalized on the support of χ c ). Starting from (96) and using Lemma 6, as well as Theorem 5, we compute the equation satisfied by the vector Z + :

∂ x 2 Z + = T γ D r 1 Z + + T γ D r 0 Z + + T γ r W + + R 0 F + + R -1 W + , (97) 
where D r 1 (resp. D r 0 ) is an extension to the whole set Ω × Ξ of D r 1 (resp. D r 0 ). These extensions can be chosen such that

D r 1 = ω - r 0 0 ω + r = γe - r + ih - r 0 0 γe + r + ih + r , D r 0 = d - r 0 0 d + r , with e - r , e + r ∈ Γ 0 2 , h - r , h + r ∈ Γ 1 2
, and d - r , d + r ∈ Γ 0 1 . Moreover, the symbols e - r , e + r , h - r , h + r are real valued and there exists a constant c > 0 such that e - r ≤ -c < 0 , e + r ≥ c > 0 .

The second equation in (97) reads

∂ x 2 Z + 2 = T γ ω + r Z + 2 + T γ d + r Z + 2 + T γ r W + + R 0 F + + R -1 W + .
For this scalar equation, we choose Λ 2,γ := Op(γ 2 + ξ 2 0 + ξ 2 1 ) as a symmetrizer, that is, we multiply the equation by Λ 2,γ Z + 2 and integrate over Ω. Some elementary manipulations, whose details can be found in [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF], yield the L 2 (H 1 ) estimate of Z + 2 :

γ |||Z + 2 ||| 2 1,γ + Z + 2 (0) 2 1,γ ≤ C γ |||F + ||| 2 1,γ + |||W + ||| 2 0 + |||T γ r W + ||| 2 1,γ . (98) 
The first equation in (97) reads

∂ x 2 Z + 1 = T γ ω - r Z + 1 + T γ d - r Z + 1 + T γ r W + + R 0 F + + R -1 W + . (99) 
We first choose the identity as a symmetrizer, and derive the following L 2 estimate:

γ 3 |||Z + 1 ||| 2 0 ≤ C γ 2 Z + 1 (0) 2 0 + C γ |||F + ||| 2 1,γ + |||W + ||| 2 0 + |||T γ r W + ||| 2 1,γ . (100) 
Recall that in the preceeding paragraph, we have constructed a symbol σ r that satisfies the transport equation:

∂ x 2 σ r + {σ r , h - r } = 0 , x 2 > 0 , σ r| x 2 =0 = σ ,
where h - r is the imaginary part of the eigenvalue ω - r . This symbol σ r is well-defined in the open set V c , thanks to Proposition 3. Since we have extended the eigenvalue ω - r (and thus h - r ) to the whole set Ω × Ξ, we can also extend σ r to Ω × Ξ. Of course, we do not change the value of σ r on V c , since the solution σ r to the transport equation is constant on the bicharacteristic curves (90). With slight abuse of notations, we still denote σ r the extension of σ r to the whole set Ω × Ξ. This extension belongs to the class Γ 1 2 and ∂ x 2 σ r ∈ Γ 1 1 . We now choose S := (T γ σr ) * T γ σr as a symmetrizer for (99). (We reproduce below the calculations of [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF] since this is really the key point in the analysis). Standard integration by parts yields first of all:

-T γ σ Z + 1 (0) 2 0 = Re +∞ 0 (∂ x 2 S)Z + 1 , Z + 1 dx 2 + 2 Re +∞ 0 ST γ ω - r Z + 1 , Z + 1 dx 2 + 2 Re +∞ 0 ST γ d - r Z + 1 , Z + 1 dx 2 + 2 Re +∞ 0 ST γ r W + , Z + 1 dx 2 + 2 Re +∞ 0 SR 0 F + , Z + 1 dx 2 + 2 Re +∞ 0 SR -1 W + , Z + 1 dx 2 , (101) 
where the notation a, b stands for the tangential scalar product in L 2 :

a, b := R 2 a(t, x 1 ) b(t, x 1 ) dt dx 1 .
The three last integrals on the right hand-side of (101) are easily estimated using Cauchy-Schwarz and Young's inequalities (ε is a positive number to be fixed later on):

2 Re +∞ 0 T γ σr T γ r W + , T γ σr Z + 1 dx 2 ≤ C εγ |||T γ r W + ||| 2 1,γ + εγ |||T γ σr Z + 1 ||| 2 0 , 2 Re +∞ 0 T γ σr R 0 F + , T γ σr Z + 1 dx 2 ≤ C εγ |||F + ||| 2 1,γ + εγ |||T γ σr Z + 1 ||| 2 0 , 2 Re +∞ 0 T γ σr R -1 W + , T γ σr Z + 1 dx 2 ≤ C εγ |||W + ||| 2 0 + εγ |||T γ σr Z + 1 ||| 2 0 .
The rules of symbolic calculus give

T γ σr T γ d - r = T γ d - r T γ σr + R 0 , which yields the upper bound 2 Re +∞ 0 ST γ d - r Z + 1 , Z + 1 dx 2 ≤ C |||T γ σr Z + 1 ||| 2 0 + C |||Z + 1 ||| 0 |||T γ σr Z + 1 ||| 0 ≤ (C + εγ) |||T γ σr Z + 1 ||| 2 0 + C εγ |||Z + 1 ||| 2 0 ≤ (C + εγ) |||T γ σr Z + 1 ||| 2 0 + C εγ |||W + ||| 2 0 .
Using the definition of S, we obtain

∂ x 2 S = (T γ ∂x 2 σr ) * T γ σr + (T γ σr ) * T γ ∂x 2 σr .
From the basic estimates above, we already get the relation

-2 Re +∞ 0 T γ ∂x 2 σr Z + 1 + T γ σr T γ ω - r Z + 1 , T γ σr Z + 1 dx 2 ≤ T γ σ Z + 1 (0) 2 0 + (C + 4εγ) |||T γ σr Z + 1 ||| 2 0 + C εγ |||F + ||| 2 1,γ + |||T γ r W + ||| 2 1,γ + |||W + ||| 2 0 . (102) 
Now, we decompose ω - r as ω - r = γe - r + ih - r , where e - r , h - r take real values, e - r ∈ Γ 0 2 , and h - r ∈ Γ 1 2 . Because the symbol σ r satisfies the transport equation

∂ x 2 σ r + {σ r , h - r } = 0 , equation (102) yields -2γ Re +∞ 0 T γ e - r T γ σr Z + 1 , T γ σr Z + 1 dx 2 -2γ Re +∞ 0 T γ -i{σr,e - r } Z + 1 , T γ σr Z + 1 dx 2 -2γ Re +∞ 0 R -1 Z + 1 , T γ σr Z + 1 dx 2 -2 Re +∞ 0 T γ ih - r T γ σr Z + 1 , T γ σr Z + 1 dx 2 -2 Re +∞ 0 R 0 Z + 1 , T γ σr Z + 1 dx 2 ≤ right-hand side of (102).
The first term in the left-hand side is bounded from below thanks to Gårding's inequality (Theorem 6).

All the other terms are put on the right-hand side and estimated using Cauchy-Schwarz and Young's inequalities. In the end, we choose an appropriate ε and obtain

γ |||T γ σr Z + 1 ||| 2 0 ≤ C T γ σ Z + 1 (0) 2 0 + C γ |||Z + 1 ||| 2 0 + C γ |||F + ||| 2 1,γ + |||T γ r W + ||| 2 1,γ + |||W + ||| 2 0 .
We use (100) to estimate the term γ |||Z + 1 ||| 2 0 in the right-hand side. Eventually, we derive

γ |||T γ σr Z + 1 ||| 2 0 ≤ C T γ σ Z + 1 (0) 2 0 + Z + 1 (0) 2 0 + C γ |||F + ||| 2 1,γ + |||T γ r W + ||| 2 1,γ + |||W + ||| 2 0 . (103) 
Recall that σ r is homogeneous of degree 1 with respect to the frequencies (τ, η), so (103) has to be understood as a L 2 (H 1 ) estimate of Z + 1 far from the bicharacteristic curve (which is exactly the set where σ r vanishes).

A similar analysis enables us to derive an energy estimate for the vector

Z -:= T γ χ 1 (Q l 0 +Q l -1 ) T γ χc W - 2 W - 3 , where Q l 0 diagonalizes the symbol A l χ 2 : Q l 0 A l χ 2 = ω - l 0 0 ω + l Q l 0 ,
and Q l -1 is defined as in Lemma 6, mutatis mutandis. The final estimates are

γ |||Z - 2 ||| 2 1,γ + Z - 2 (0) 2 1,γ ≤ C γ |||F -||| 2 1,γ + |||W -||| 2 0 + |||T γ r W -||| 2 1,γ , γ 3 |||Z - 1 ||| 2 0 + γ |||T γ σ l Z - 1 ||| 2 0 ≤ C γ 2 Z - 1 (0) 2 0 + T γ σ Z - 1 (0) 2 0 + C γ |||F -||| 2 1,γ + |||W -||| 2 0 + |||T γ r W -||| 2 1,γ . (104) 
The remaining part of the job is to estimate the traces of the incoming modes (Z + 1 and Z - 1 ) in terms of the outgoing modes (Z + 2 and Z - 2 ) and G, knowing that we have the relation

T γ β W + 2 W + 3 W - 2 W - 3 T | x 2 =0 = G .
This is nothing but the definition of G, see (93c). Observe that the first column vector of Q r 0 and the first column vector of Q l 0 span the stable subspace E -(t, x 1 , x 2 , τ, η) (at least when the space-frequency variables belong to the set V c ). These column vectors are denoted by E r and E l . Following the proof of Lemma 4 (see appendix A), one can show that there exist some 2 × 2 invertible matrices P 1 and P 2 such that

P 1 β E r E l P 2 = γ + iσ 0 0 1 .
Therefore, repeating the arguments of [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF], one can show the following estimate for the boundary terms:

γ 2 Z - 1 (0) 2 0 + Z + 1 (0) 2 0 + T γ σ Z - 1 (0) 2 0 + T γ σ Z + 1 (0) 2 0 ≤ C G 2 1,γ + Z - 2 (0) 2 1,γ + Z + 2 (0) 2 1,γ + W nc | x 2 =0 2 0 . (105) 
Recall that the main ingredient of the proof is the microlocalized Gårding's inequality (Theorem 7), and the fact that σ is real valued. Collecting (98), (100), ( 103), (104), and (105), we end up with the final estimate near the critical set:

γ |||Z - 2 ||| 2 1,γ + |||Z + 2 ||| 2 1,γ + |||T γ σ l Z - 1 ||| 2 0 + |||T γ σr Z + 1 ||| 2 0 + γ 2 |||Z - 1 ||| 2 0 + γ 2 |||Z + 1 ||| 2 0 + Z - 2 (0) 2 1,γ + Z + 2 (0) 2 1,γ + T γ σ Z - 1 (0) 2 0 + T γ σ Z + 1 (0) 2 0 + γ 2 Z - 1 (0) 2 0 + γ 2 Z + 1 (0) 2 0 ≤ C γ |||F ||| 2 1,γ + |||W ||| 2 0 + |||T γ r W ||| 2 1,γ + G 2 1,γ + W nc | x 2 =0 2 0 . (106) 
Recall, for later use, that the vectors Z ± are defined by the formulas

Z + := T γ χ 1 (Q r 0 +Q r -1 ) T γ χc W + 2 W + 3 , Z -:= T γ χ 1 (Q l 0 +Q l -1 ) T γ χc W - 2 W - 3 ,
and the matrices Q r,l 0 are invertible on a neighborhood of the support of χ 1 . We also recall the relation

χ 1 χ c ≡ χ c .
Recall also that the components T γ χc W ± 1 are given in terms of T γ χc W ± 2,3 by the relation (95). In particular, this relation yields an L 2 estimate for T γ χc W ± 1 , and an L 2 (H 1 ) estimate far from the bicharacteristic curves. Namely, we can add the norms

γ 3 |||T γ χc W + 1 ||| 2 0 + γ 3 |||T γ χc W - 1 ||| 2 0 + γ |||T γ σr T γ χc W + 1 ||| 2 0 + γ |||T γ σ l T γ χc W - 1 ||| 2 0
in the left-hand side of (106). We thus control the L 2 norm of the vector T γ χc W , and not only the noncharacteristic part of the vector. We also control the L 2 (H 1 ) norm far from the bicharacteristic curves that originate from the critical set.

Derivation of energy estimates: the good frequencies

To estimate the trace of T γ χu W nc , one first computes the equation satisfied (in Ω) by the vector T γ χu W ; then one eliminates the components that belong to the kernel of I 2 , and obtains an equation involving only T γ χu W nc . The equation is similar to (96). For this reduced equation, one can construct Kreiss' type symmetrizers, because the uniform Lopatinskii condition is satisfied in a neighborhood of the support of χ u . The construction of the symmetrizer is achieved as in the constant coefficients case (see section 4). Once again, we refer to [START_REF] Coulombel | Weakly stable multidimensional shocks[END_REF] for a detailed derivation of energy estimates, and we only give the result here. The estimate obtained by this method reads:

γ |||T γ χu W ||| 2 1,γ + T γ χu W nc (0) 2 1,γ ≤ C G 2 1,γ + W nc (0) 2 0 + C γ |||F ||| 2 1,γ + |||W ||| 2 0 + |||T γ r W ||| 2 1,γ . (107) 
As in (106), the symbol r vanishes in a neighborhood of the bicharacteristic curves (the symbol r in (107) is a linear combination of the derivatives of χ u , and the cut-off function χ u is identically zero near the bicharacteristic curves).

Derivation of energy estimates: the poles

To derive an estimate for T γ χp W ± , one starts from (93a)-(93b) and computes an equation similar to (94). Then one changes basis, as was done in the constant coefficients case. In the end, one derives a maximal L 2 (H 1 ) estimate because the uniform Lopatinskii condition is satisfied near the poles. The energy estimate is thus similar to the one corresponding to the good frequencies: 

γ |||T γ χp W ||| 2 1,γ + T γ χp W nc (0)
In view of (109), the only thing to show is how to absorb the term |||T γ r W ||| 1,γ . Recall that the symbol r is identically zero in the regions where χ c , χ u or χ p are equal to 1. We may thus decompose r as a linear combination of the form

r = α u χ u + α p χ p + α c         σ r 0 0 0 σ r 0 0 0 0 λ 1,γ σ l 0 0 0 0 σ l 0 0 0 λ 1,γ             1 0 0 χ 1 Q r 0 1 0 0 χ 1 Q l 0     χ c .
The matrices α c,u,p have a block diagonal structure. We are thus able to absorb the term |||T γ r W ||| 1,γ , thanks to the left-hand sides of (106)-( 107)-(108). We thus obtain (85), since the left-hand sides of (106)-( 107 Thanks to Proposition 2, the estimate (70) for the variable coefficients linearized operators also holds. This completes the proof of Theorem 3.

Concluding remarks

In this paper, we have proved a linear stability result for a wide class of rectilinear compressible vortex sheets. To summarize, once we are given a suitable perturbation of a rectilinear supersonic vortex sheet, the linearized coefficients around this perturbation satisfies an a priori estimate with loss of one derivative (in the tangential variables). We have also proved that the paralinearized version of the linearized equations satisfies the same a priori estimate. The constants appearing in the energy estimates are uniform with respect to the W 2,∞ norm of the coefficients.

A Proof of intermediate results

A.1 The proof of Proposition 1

Using ( 30) and ( 35), we obtain β E r E l = (τ + iv r η)(c -1 (τ + iv r η) -ω r ) (τ + iv l η)(c -1 (τ + iv l η) -ω l ) -cω r (τ + iv l η)(cω r -(τ + iv r η)) cω l (τ + iv r η)(cω l -(τ + iv l η)) for all (τ, η) ∈ Σ. This gives the following expression for the Lopatinskii determinant: ∆(τ, η) = -c 2 (τ + iv r η -cω r )(τ + iv l η -cω l )(ω r ω l -η 2 )(ω r + ω l ) .

Recall that ω r and ω l have negative real part when τ has positive real part, and satisfy the dispersion relations (34a)-(34b). Because v r = -v l , we have the identity ω r (τ, η) = ω l (τ, -η) .

With the above expression for ∆, it is easy to check that ∆(τ, η) = ∆(τ, -η). We shall thus only consider nonnegative values of η in all this section: η ≥ 0.

One first checks that both expressions (τ + iv r η -cω r ) and (τ + iv l η -cω l )

do not vanish for any (τ, η) ∈ Σ, because of (34a)-(34b).

Clearly, the sum ω r + ω l can not vanish when τ has positive real part, since both numbers have negative real part. When τ is purely imaginary, one extends ω r,l by continuity. If τ = iδ ∈ iR satisfies (δ + v r η) 2 ≤ c 2 η 2 , one has ω r = -η 2 -1 c 2 (δ + v r η) 2 ∈ R .

If (δ + v r η) 2 > c 2 η 2 , we use Cauchy-Riemann relations to derive ω r = -i sgn(δ + v r η)

1 c 2 (δ + v r η) 2 -η 2 ∈ iR .
The calculations are almost the same as those done in [START_REF] Benzoni-Gavage | Stability of multi-dimensional phase transitions in a van der Waals fluid[END_REF]. For ω l , one just changes v r into v l = -v r and derives similar formulas. Then using the dispersion relations (34a)-(34b), we easily check that ω r + ω l vanishes if and only if τ = 0 (and therefore η = 0). For η > 0, this gives the following values for the eigenmodes:

ω r = -iη v 2 r c 2 -1 = -ω l ∈ iR .
Recall that v r > c √ 2. It now remains to determine whether the expression (ω r ω l -η 2 ) may vanish. If η = 0, one has ω r = ω l = -τ /c, and, therefore, ω r ω l = 0. We thus assume η = 0 (that is, η > 0) and introduce the reduced expressions V := τ iη , Ω r,l := ω r,l iη .

The factorization result for ∆ is proved near the root τ = 0. As regards the situation near those roots of the form (±iV 1 η, η) ∈ Σ, it is entirely similar and we shall not detail the proof. (The proof is similar because Ω r and Ω l are still holomorphic with respect to V in a neighborhood of V 1 and -V 1 ). The result is that the Lopatinskii determinant ∆ admits a factorization that reads ∆(τ, η) = (τ -iV 1 η)h(τ, η) or ∆(τ, η) = (τ + iV 1 η)h(τ, η) ,

where h is C ∞ and does not vanish near the roots of ∆. This completes the proof.

A.2 The proof of Lemma 4

In the proof of Proposition 1, we have seen that the matrix β (E r E l ) has the following expression:

β E r E l = (τ + iv r η)(c -1 (τ + iv r η) -ω r ) (τ + iv l η)(c -1 (τ + iv l η) -ω l ) -cω r (τ + iv l η)(cω r -(τ + iv r η)) cω l (τ + iv r η)(cω l -(τ + iv l η)) for all (τ, η) ∈ Σ. We have also seen that the quantity (τ + iv r η -cω r ) does not vanish for (τ, η) ∈ Σ. Let us now consider a neighborhood V of a point (τ 0 , η 0 ) ∈ Σ such that τ 0 = 0. Up to shrinking V , the quantity (τ + iv r η) does not vanish in V . As a consequence, the upper left corner coefficient of β (E r E l ) does not vanish in V . We write

β E r E l = ζ 1 ζ 2 ζ 3 ζ 4 .
Then, relation (36) can be rewritten as

∆ = ζ 1 ζ 4 -ζ 2 ζ 3 ,
and ζ 1 does not vanish in V . The identity

1/ζ 1 0 -ζ 3 /ζ 1 1 β E r E l 1 -ζ 2 0 ζ 1 = 1 0 0 ∆
is a straightforward verification. In particular, this identity yields the estimate

|β E r E l Z -| 2 ≥ κ min(1, |∆| 2 ) |Z -| 2 ,
for all Z -∈ C 2 . Using Proposition 1, the Lopatinskii determinant ∆ can be factorized near (τ 0 , η 0 ): ∆(τ, η) = τ h(τ, η) , h(τ 0 , η 0 ) = 0 .

Since γ is the real part of τ , we obtain |∆(τ, η)| ≥ κ γ , for a suitable constant κ > 0 (still up to shrinking the neighborhood V ). This last inequality yields

|β E r E l Z -| 2 ≥ κ γ 2 |Z -| 2 ,
for all Z -∈ C 2 and all (τ, η) ∈ V . Lemma 4 is thus proved when (τ 0 , η 0 ) satisfies τ 0 = 0. The other points where ∆ vanishes are those points (τ 0 , η 0 ) such that τ 0 = ±iV 1 η 0 . Near those points, the upper left corner coefficient of β (E r E l ) still does not vanish. We can again conclude that in an appropriate neighborhood V of (τ 0 , η 0 ) (with, for instance, τ 0 = iV 1 η 0 ), one has An example of cut-off function is the following: let χ be a nonnegative C ∞ function on R 2 × R such that

|β E r E l Z -| 2 ≥ κ min(1, |∆| 2 ) |Z -| 2 .
γ 2 1 + |ξ 1 | 2 ≥ γ 2 2 + |ξ 2 | 2 =⇒ χ(ξ 1 , γ 1 ) ≤ χ(ξ 2 , γ 2 ) , χ(ξ, γ) = 1 if γ 2 + |ξ| 2 1/2 ≤ 1/2, χ(ξ, γ) = 0 if γ 2 + |ξ| 2 1/2 ≥ 1.
We define a function ϕ(ξ, γ) := χ(ξ/2, γ/2) -χ(ξ, γ). Then the function ψ 0 defined by We can extend the paradifferential calculus to symbols defined on a half-space in the following way: we still denote by Γ m k the set of symbols a(x 0 , x 1 , x 2 , ξ, γ) defined on Ω × (R d × [0, +∞[ \{0}) such that the mapping x 2 → a(•, x 2 , •) is bounded into Γ m k . We define the paradifferential operator T γ a by the formula ∀ u ∈ C ∞ c (Ω) , ∀ x 2 ≥ 0 , (T γ a u)(•, x 2 ) := T γ a(x 2 ) u(•, x 2 ) .

Using Theorem 8 and integrating with respect to x 2 , we obtain for all symbol a ∈ W 1,∞ (Ω) and all u ∈ L 2 (Ω) the estimates:

|||a u -T γ a u||| 0 ≤ C γ a W 1,∞ (Ω) |||u||| 0 , |||a ∂ x j u -T γ a ∂ x j u||| 0 ≤ C a W 1,∞ ( 
Ω) |||u||| 0 , j = 0, 1 .

| x 2 =0 2 0

 2 )-(108) are bounded from below byc γ 3 |||W ||| 2 0 + γ 2 W nc , c > 0 .

Definition 3 .

 3 Let ψ : R 2 × R 2 × [1, +∞[ → [0, +∞[ be a C ∞ function such that the following estimates hold for all α, β ∈ N 2 : ∀ (ζ, ξ, γ), |∂ α ζ ∂ β ξ ψ (ζ, ξ, γ)| ≤ C α,β λ -|α|-|β|,γ (ξ). We shall say that ψ is an admissible cut-off function if there exist real numbers0 < ε 1 < ε 2 < 1 satisfying ψ(ζ, ξ, γ) = 1 if |ζ| ≤ ε 1 (γ 2 + |ξ| 2 ) 1/2 , ψ(ζ, ξ, γ) = 0 if |ζ| ≥ ε 2 (γ 2 + |ξ| 2 ) 1/2 .

Proposition 4 . 2 K 1 0. 0 .If ψ 1 Theorem 5 .

 421015 ψ 0 (ζ, ξ, γ) := p≥0 χ(2 2-p ζ, 0) ϕ(2 -p ξ, 2 -p γ)is an admissible cut-off function (one can take ε 1 = 1/16 and ε 2 = 1/2).If ψ is an admissible cut-off function, the inverse Fourier transform K ψ of ψ(•, ξ, γ) satisfies∀ (ξ, γ) , ∂ α ξ K ψ (•, ξ, γ) L 1 (R 2 ) ≤ C α λ -|α|,γ (ξ) .These L 1 bounds fer the derivatives ∂ α ξ K ψ enable us to establish the following Proposition: Let ψ be an admissible cut-off function. The mappinga -→ σ ψ a (x, ξ, γ) := R ψ (x -y, ξ, γ) a(y, ξ, γ) dy is continuous from Γ m k to Σ m k for all m. If a ∈ Γ m 1 , then a -σ ψ a ∈ Γ m-In particular, if ψ 1 and ψ 2 are two admissible cut-off functions anda ∈ Γ m 1 , then σ ψ 1 a -σ ψ 2 a ∈ Σ m-1Fixing an admissible cut-off function ψ, we define the paradifferential operator T ψ,and ψ 2 are two admissible cut-off functions and a ∈ Γ m 1 , then Proposition 4 and Theorem 4 show that the family {T ψ 1 ,γ a -T ψ 2 ,γ a } is of order ≤ (m -1). The symbolic calculus is based on the following Theorem: Let a ∈ Γ m 1 and b ∈ Γ m 1 . Then ab ∈ Γ m+m 1 and the family {T ψ,γ a • T ψ,γ b -T ψ,γ ab } γ≥1 is of order ≤ m + m -1 for all admissible cut-off function ψ.

  where {a, b} stands for the Poisson bracket:

	{a, b} :=	∂a ∂δ	∂b ∂t	+	∂a ∂η	∂b ∂x 1	-	∂a ∂t	∂b ∂δ	-	∂a ∂x 1	∂b ∂η	.

  We now patch together the microlocalized energy estimates, and show that the estimate (85) holds. We first note that, adding (106), (107), (108), we are able to control the norms γ 3 |||W ||| 2 0 and γ 2 W nc

	2 1,γ ≤ C G 2 1,γ + W nc (0) 2 0		
	+	C γ	|||F ||| 2 1,γ + |||W ||| 2 0 + |||T γ r W ||| 2 1,γ . (108)
	5.8 Proof of Theorem 3		
	Namely, we first obtain (up to choosing γ large enough):			| x 2 =0	2 0 .
	Left-hand side of (106)-(107)-(108) ≤ C G 2 1,γ +	C γ	|||F ||| 2 1,γ + |||T γ r W ||| 2 1,γ .
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To prove the local in time existence of nonconstant vortex sheets, the next step will be to build an iteration scheme that takes into account this loss of regularity. In view of [START_REF] Alinhac | Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF][START_REF] Francheteau | Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF], there is a strong hope that a Nash-Moser type iteration scheme might answer the problem. However, special attention should be paid, at each step, to the relations (61), (62), and (63), that are crucial in the proof of Theorem 3. The verification of the local existence of (supersonic) vortex sheets is postponed to a future work.

The one-dimensional stability of contact discontinuities has received a general treatment in [START_REF] Corli | Asymptotic analysis of contact discontinuities[END_REF] and [START_REF] Corli | Stability of contact discontinuities under perturbations of bounded variation[END_REF]. Unfortunately, the isentropic Euler equations do not admit contact discontinuities in one space dimension. However, it would be interesting to determine whether the present analysis extends to some contact discontinuities for the general Euler equations, and see the connections with the one-dimensional analysis.

Assume that Ω r Ω l = -1. Using (34) and (Ω r Ω l ) 2 = 1, we obtain the following polynomial equation for V :

. This is a polynomial equation of degree 2 for the unknown V 2 , whose roots are real and distinct. If [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF] holds, both roots are positive. Let us denote these roots by V 2 1 and V 2 2 , where 0 < V 1 < V 2 . One has

We first show that the root V 2 does not yield any instability.

The Lopatinskii determinant ∆ does not vanish when V = V 2 . A similar argument shows that ∆ does not vanish either for

This completes the first part of the proof of Proposition 1. What remains to show is that the roots of the Lopatinskii determinant are simple. We first show that near τ = 0 and η = 1/v r (this is the only point of Σ such that τ = 0 and η > 0), we have

for an appropriate C ∞ function h. Since η = 0 near τ = 0, we have

where the notations are those introduced earlier. Near V = 0, both functions Ω r and Ω l are analytic with respect to V and satisfy

We thus obtain

Using a classical factorization property of holomorphic functions, we obtain

where H is holomorphic near 0 and H(0) = 0. This yields

Now we use the factorization

to conclude. This completes the proof of Lemma 4.

B Paradifferential calculus with a parameter

In this appendix, we collect the main results of the paradifferential calculus of Bony and Meyer [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF][START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF] that we use in this paper, see [START_REF] Métivier | Stability of multidimensional shocks[END_REF] for the introduction of the parameter. We refer to these papers for the proofs of the results stated below. We first recall the classification of paradifferential symbols:

such that a is C ∞ with respect to ξ and for all α ∈ N 2 , there exists a constant

The set of paradifferential symbols of degree m and regularity k is denoted by Γ m k . We denote by Σ m k the subset of paradifferential symbols a ∈ Γ m k such that for a suitable ε ∈ ]0, 1[ one has

Of course, the symbols in Σ m k are C ∞ functions with respect to both variables x and ξ, and for all a ∈ Σ m k , we have the estimates

Thus any symbol a ∈ Σ m k belongs to Hörmander's class S m 1,1 [START_REF] Hörmander | Lectures on nonlinear hyperbolic differential equations[END_REF] and defines an operator Op γ (a) on the Schwartz' class S by the usual formula

We shall use the following terminology: Definition 2. A family of operators {P γ } defined for γ ≥ 1 will be said of order ≤ m (m ∈ R) if the operators P γ are uniformly bounded from H s+m to H s :

The following Theorem is crucial for the sequel of the analysis:

The regularization of symbols in the class Γ m k is achieved by a convolution with admissible cut-off functions:

Then for all admissible cut-off function ψ, the family

and the family

is of order ≤ m + m -2 for all admissible cut-off function ψ.

Let a ∈ Γ m 2 . Then the family {(T ψ,γ a ) * -T ψ,γ a * -T ψ,γ -i j ∂ ξ j ∂x j a * } γ≥1 is of order ≤ m -2 for all admissible cut-off function ψ.

The next Theorem is the parameter version of Gårding's inequality: Theorem 6. Let a ∈ Γ 2m 1 and let ψ be and admissible cut-off function. Assume that there exists a constant c > 0 such that ∀ (x, ξ, γ), Re a(x, ξ, γ) ≥ c λ 2m,γ (ξ) I .

Then there exists γ 0 ≥ 1 such that

We also have a microlocalized version of Gårding's inequality:

Theorem 7. Let a ∈ Γ 2m 1 , χ ∈ Γ 0 1 and ψ be and admissible cut-off function. Assume that there exists χ ∈ Γ 0 1 and a constant c > 0 such that χ ≥ 0, χ χ = χ and ∀ (x, ξ, γ), χ 2 (x, ξ, γ) Re a(x, ξ, γ) ≥ c χ 2 (x, ξ, γ) λ 2m,γ (ξ) I .

Then there exists γ 0 ≥ 1 and C > 0 such that

We now study the case of paraproducts: they are defined by the particular choice of ψ 0 as cut-off function. We shall write T γ a instead of T ψ 0 ,γ a for the paradifferential operators obtained after convolution by the function ψ 0 . We have the following important result:

u 0 , for a suitable constant C that is independent of (a, u, γ).

If a ∈ W 2,∞ (R 2 ), we have

u 0 , for a suitable constant C that is independent of (a, u, γ).