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Abstract

We estimate the Wasserstein type distance between two continuous

distributions F and G on R such that the set {F = G} is a finite union of

intervals, possibly empty or R. The positive cost function ρ is not neces-

sarily symmetric and the sample may come from any joint distribution H
on R

2 having marginals F and G with light enough tails with respect to ρ.
The rates of weak convergence and the limiting distributions are derived

in a wide class of situations including the classical distances W1 and W2.

The key new assumption in the case F = G involves the behavior of ρ
near 0, which we assume to be regularly varying with index ranging from

1 to 2. Rates are then also regularly varying with powers ranging from

1/2 to 1 also affecting the limiting distribution, in addition to H .
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1 Introduction

1.1 Motivation

This article is the continuation of our previous paper [2]. In [2] we addressed
the problem of estimating the distance between two different distributions with
respect to a large class of Wasserstein costs. The framework was very simple:
two samples of i.i.d. real random variables taking values in R and having distinct
continuous cumulative distribution function (c.d.f.) F and G are available. It
has to be noticed that these samples are not assumed to be independent, for
instance they may be formed from simultaneous experiments. From them we
estimated Wasserstein type distances or costs between F and G by a natural
and easily computed non-parametric plug-in estimator. The almost sure (a.s.)
consistency of our estimator being easily established under minimal assump-
tions we mainly developed a sharp method of proof of the central limit theorem
assuming that the tails of F and G are different enough and compatible with
the cost. Our main contribution was to investigate rather deeply the latter re-
lationship and to prove that the dependency only affects the limiting variance.
However the special case of the distance W1 was not captured, and asymptoti-
cally non-symmetric costs or too close distributions were not allowed.

In the present paper the general framework remains exactly the same, but
we investigate more situations, among which the important case F = G, the
case where F 6= G on R but may have arbitrarily close tails and the case where
the two situations F = G and F 6= G are encountered, but alternate along a
finite number of intervals. We now include the distance W1 and non-symmetric
costs provided they are regularly varying at both sides of 0. New assumptions
arise that again illustrate how delicate tail integrals of transforms of empirical
quantile functions can be for heavy-tailed distributions, but also sharpen the
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understanding of this estimation problem. Moreover, assumptions are kept as
close as possible to necessary conditions.

More precisely, the motivation of our initial work was intimately related to
the development of computer experiments. Many computer codes give as output
not only a real multidimensional variable but the values of a function computed
on so many points that it can be considered as a functional output. The case
we are interested in is when this function is the c.d.f. of a real random variable.
It turns out that Wasserstein distances are now commonly used to analyze such
outputs. In view of defining new features for random c.d.f. such as median or
quantiles, more general Wasserstein costs may be used as contrasts to compute
these features by solving an optimization problem – see [12]. Nevertheless com-
puter codes only provide samples of the underlying distributions and thus the
efficient estimation of such distances between c.d.f. via random samples is a
natural and challenging field of research.

In the framework of univariate probability distributions the distance usually
called p-Wasserstein is simply the Lp distance of simulated random variables
from a common and universal – uniform on [0, 1] – simulator U , namely

W p
p (F,G) =

∫ 1

0

|F−1(u)−G−1(u)|pdu = E|F−1(U)−G−1(U)|p (1)

where F−1 is the generalized inverse of F . We estimate W p
p (F,G) by its empir-

ical counterpart that is W p
p (Fn,Gn) where Fn and Gn are the empirical c.d.f.

of F and G built through i.i.d. samples of F and G. According to [3] Wp could
also be named the p-Kantorovitch distance.

Many authors were interested in the convergence of W p
p (Fn, F ), see e.g.

the survey paper [3] or [10, 8, 9, 1]. Up to our knowledge there are only two
recent works studying the convergence of W 2

2 (Fn,Gn) [11, 13], for independent
samples. The drawback of [11] is that the estimator is not explicit from the data
and the centering in the CLT is the biased EW 2

2 (Fn,Gn) rather than W
2
2 (F,G)

itself, moreover the limiting variance has no closed form expression and seems
not easy to estimate. The drawback of [13] is that only discrete distributions
and the distance W2 are considered. Notice also that in the early work [7] a
trimmed version of the Mallows distance W 2

2 (Fn,Gn) is studied, however under
an implicit assumption on the level of trimming which has to hold in probability.
Our proofs indeed show that a sharp control of the trimmed integrals has to be
made in a weaker sense, and we provide easily checked sufficient conditions.

As in [2] we investigate a larger class of convex costs thanWp and we assume
that the samples are not necessarily independent but actually come from an i.i.d.
sample of a joint two-dimensional distribution H with marginals F and G. We
look for an explicit CLT under tractable conditions relating F and G to the
cost function. The method worked out in [2] is extended to cover the cases
announced above, and especially in the situation F = G to provide a new class
of goodness-of-fit and comparison tests with rates faster than

√
n. The power

of the test associated to a given Wasserstein type cost is also accessible since we
establish the weak convergence at the slower rate

√
n under many alternatives
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F 6= G. Therefore the results and arguments below are a new step toward
appropriate statistical tools for the above motivation.

1.2 Setting

The p-Wasserstein distance between two c.d.f. F and G on R is defined to be

W p
p (F,G) = min

X∼F,Y∼G
E|X − Y |p (2)

whereX ∼ F, Y ∼ Gmeans that X and Y are joint real random variables having
respective c.d.f. F and G. The minimum in (2) is (1). To any non negative
function c(x, y) from R2 to R let associate the Wasserstein type cost

Wc(F,G) = min
X∼F,Y∼G

Ec(X,Y ). (3)

We are interested in triplets (c, F,G) such that Wc(F,G) is finite and can be
estimated by using an explicit CLT. To guaranty that an analogue of (1) exists
we consider cost functions defining a negative measure on R2, hence satisfying

c(x′, y′)− c(x′, y)− c(x, y′) + c(x, y) 6 0, x 6 x′, y 6 y′. (4)

If c satisfies (4) then for any functions a and b, a(x)+b(y)+c(x, y) satisfies (4). In
particular c(x, y) = −xy and (x−y)2 = x2+y2−2xy satisfy (4). More generally
if ρ is a convex real function then c(x, y) = ρ(x−y) satisfies (4). Two important
special cases are the symmetric power functions |x−y|p, p > 1, associated toWp

and the non-symmetric step functions c(x, y) = (x− y)(α− 1x−y<0) associated
to the αth quantile, 0 < α < 1. The following result yields the analogue of (1).

Theorem 1 (Cambanis, Simon, Stout [4]) If c satisfies (4) and U is a ran-
dom variable uniformly distributed on [0, 1], then the minimum in (3) is

Wc(F,G) =

∫ 1

0

c(F−1(u), G−1(u))du = E c(F−1(U), G−1(U)).

Let (Xi, Yi)16i6n be an i.i.d. sample of a random vector with joint c.d.f. H on
R2 and marginal c.d.f. F and G on R. Write Fn and Gn the random empirical
c.d.f. built from the two marginal samples. Thus Fn andGn are not independent
in general. Consider a cost function c satisfying (4). Let X(i) (resp. Y(i))

denote the ith order statistic of the sample (Xi)16i6n (resp. (Yi)16i6n), i.e.
X(1) 6 . . . 6 X(n). By Theorem 1,

Wc(Fn,Gn) =
1

n

n
∑

i=1

c(X(i), Y(i)). (5)

is a natural estimator of Wc(F,G). Notice that Wc(F,G) does not depend on
the generally unknown H whereas Wc(Fn,Gn) strongly depends on H through
its distribution. In [2] our main result was a central limit theorem,

√
n (Wc(Fn,Gn)−Wc(F,G)) →weak N

(

0, σ2
)
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when the tails of F and G differ from at least τ > 0 and c(x, y) is asymptoti-
cally ρ(x− y) with ρ non-negative, symmetric, convex. The influence of H only
appeared in the limiting variance σ2 = σ2(c,H) together with c. The main con-
tribution was to work out almost minimal sufficient conditions relating (c, F,G)
explicitly by controlling carefully the underlying joint quantile processes and
their extremes. We now intend to complete the picture by extending this result
to other natural cases, in particular τ = 0 and non symmetric costs ρ. The suffi-
cient conditions relating ρ to the tails of F and G are then explored more deeply
and kept rather close to the minimal requirement that the weak convergence of
Wc(Fn,Gn) occur at an explicit rate and non degenerate limit distribution.

1.3 Overview

Hereafter we consider c(x, y) = ρc(x − y) for a non-negative real convex func-
tion ρc with ρc(0) = 0, and not assumed to be symmetric. In the spirit of
[2] we separate out three sets of assumptions, labeled (FG), (C) and (CFG)
respectively.

First, (FG) concerns the regularity and tails of F and G, and especially
their density-quantile function. Conditions (FG) are satisfied by distributions
having regular tails, among which all classical probability laws.

Second, (C) is about the rate of increase at infinity and the regular variation
at 0 of ρc, without assuming differentiability at 0. Conditions (C) encompass a
large class of Wasserstein costs c and the distance W1 is now allowed, together
with non-symmetric variants of Wasserstein distances Wp, p > 1, with slowly
varying factors. The non-symmetry in particular impacts the case τ = 0 now
included in (FG) and the situation just around the diagonal F = G where the
random sign and amplitude of Fn −Gn can may oscillate.

The conditions (FG) and (C) are thus designed to separately select a class
of probability distributions and admissible costs.

The third set (CFG) aims to mix the requirements on (c, F,G) making
them compatible. We distinguish between (CFGE), (CFGD) and (CFGED)
depending on the situations {F = G} = R or {F 6= G} = R or {F = G} 6= R

and {F 6= G} 6= R, respectively. The joint distribution H of the samples is not
restricted and again only affects the limiting distributions. Under (CFGE) and
(CFGED) the tail constraints on F and G also depend on the regular variation
of ρc at 0, which determines the rate of convergence. This is to maintain the
tails of Fn and Gn sufficiently close with high probability.

When dealing with empirical Wasserstein type integrals, in order to apply
the usual delta method one would need to truncate and then to assume a conver-
gence in probability of the extremal parts. This would be a restriction excluding
many distributions F and G, depending of where the integral is non-adaptively
cut. Moreover, the validity of the convergence of the extremal parts would
bother the practitioner with variants of steps 1, 2, 3 of our proofs. In contrast,
our key assumptions (CFGE) and (CFGD) explicitly relate the tails to the cost
in such a way that truncation levels depending on the underlying distribution
can be defined efficiently in the forthcoming proofs.
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The paper is organized as follows. Assumptions are discussed in Section 2. In
Section 3 we state our main results in the form of CLT forWc(Fn,Gn)−Wc(F,G)
at various rates. We propose some applications and perspectives in Section 4.
All the results are proved in Section 5.

2 Assumptions

2.1 Assumptions (FG)

Consider a sequence (Xn, Yn) ∈ R2 of independent random vectors having the
same c.d.f. H as (X,Y ). The distributionH may have a density or not. However
we assume that the marginal c.d.f.′s F of X and G of Y have support R and
positive densities f = F ′ and g = G′. Let (E,D) be the partition of (0, 1)
defined by

E =
{

u : F−1(u) = G−1(u)
}

, D =
{

u : F−1(u) 6= G−1(u)
}

. (6)

If u shifts infinitely many times between E and D it becomes difficult to control
the stochastic integralWc(Fn,Gn). The case where

∣

∣F−1(u)−G−1(u)
∣

∣ > τ > 0
as u → 1 and u → 0 has been treated in details in [2]. We would like to allow
the diagonal

∣

∣F−1(u)−G−1(u)
∣

∣ 6 τ and thus encompass the case E = (0, 1)
together with some tractable situations where E 6= ∅ and D 6= ∅. Let assume
that there exists a finite integer κ > 2 and 0 = u0 < u1 < ... < uκ = 1 such
that, writing Ak = (uk−1, uk),

(FG0) F−1(uk) = G−1(uk) and Ak ⊂ E or Ak ⊂ D, for k = 1, ..., κ.

This covers three generic cases, namely E = (0, 1), D = (0, 1) and when at least
one interval is included in D while E 6= ∅. The exponential rate of decrease of
the right and left tails of F and G are defined to be, for x ∈ R+,

ψ+
X(x) = − logP(X > x), ψ+

Y (x) = − logP(Y > x),

ψ−
X(x) = − logP(X < −x), ψ−

Y (x) = − logP(Y < −x).

Only ψ+
X and ψ+

Y will be considered in subsequent proofs where arguments given
for the right hand tail u → 1 in the integrals Wc(F,G) and Wc(Fn,Gn) work
similarly for u→ 0. Lastly, define the density quantile functions

hX = f ◦ F−1, hY = g ◦G−1,

and assume that

(FG1) F,G ∈ C2(R), f, g > 0 on R.

(FG2) sup
0<u<1

min(u, 1− u)
∣

∣(log h(u))
′∣
∣ < +∞ for h = hX , hY .

(FG3) sup
0<u<1

min(u, 1− u)

(|Γ−1(u)|+ 1)h(u)
< +∞ for (h,Γ) = (hX , F ) or (hY , G).
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Remark 2 Rewritting (FG2) and (FG3) we get

sup
x∈R

min(F (x), 1 − F (x))

f(x)

(

1

|x|+ 1
+

|f ′(x)|
f(x)

)

< +∞,

sup
x∈R

min(G(x), 1 −G(x))

g(x)

(

1

|x|+ 1
+

|g′(x)|
g(x)

)

< +∞.

In Section 5.2.1 of [2] we provided a simple sufficient condition for (FG1),
(FG2), (FG3) based on the regular variation of ψ±

X and ψ±
Y .

2.2 Notation for regularity

To specify the allowed cost functions c(x, y) the following definitions are re-
quired. As usual for k ∈ N∗ and I ⊂ R let Ck(I) denote the set of functions
that are k times continuously differentiable on I and C0(I) the set of continuous
functions on I. In forthcoming assumptions and proofs we consider functions
defined either on (0, x0) or on (y0,+∞) for some 0 < x0 < y0. We distinguish
the two domains by using a variable x→ 0 and a variable y → +∞. In [2] only
large values y ∈ (y0,+∞) played a role in terms of regular variation, so that
we keep the same setting in (i) below. Unexpectedly, it turns out that the two
domains interfere when |F −G| is arbitrarily small, and we need (ii).

(i) Regularity on (y0,+∞). Let M2((y0,+∞)) be the subset of functions l ∈
C2((y0,+∞)) such that l′′ is monotone on (y0,+∞). Write RV (+∞, γ) the set
of regularly varying functions at +∞ with index γ > 0. If γ = 0 we restrict
ourselves to slowly varying functions L at +∞ such that

L′(y) =
ε(y)L(y)

y
, lim

y→+∞
ε(y) = 0. (7)

This weak restriction is explained at Section 5 of [2]. In order to find distribu-
tions F and G compatible with the cost c we further impose

L′(y) >
l1
y
, l1 > 1, y > y0. (8)

For γ = 0, introduce

RV2(+∞, 0) = {L : L ∈ M2 ((y0,+∞)) such that (7), (8) hold}

and for γ > 0,

RV2(+∞, γ) = {l : l ∈ M2 ((y0,+∞)) , l(y) = yγL(y) such that L′ obeys (7)} .

(ii) Regularity on (0, x0). We consider positive slowly varying functions L at 0,

lim
xց0

L(θx)

L(x)
= 1 for any θ > 0. (9)
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For b > 1 let introduce

RV2(0, b) =
{

ρ : L ∈ C2 ((0, x0)) , ρ(x) = xbL(x) such that L satisfies (9)
}

.

For b = 1 let define

RV2(0, 1) = {ρ : L ∈ C2 ((0, x0)) , ρ(x) = xL(x) such that L satisfies (9), (10)}

where we impose the following finite limit

lim
xց0

L(x) = L(0) ∈ R+. (10)

2.3 Assumptions (C)

We consider smooth Wasserstein costs such that, for some 0 < x0 < y0 < +∞,

(C0) c(z, z′) = ρc(z − z′) > 0, z, z′ ∈ R, c(0, 0) = 0, ρc is convex.

(C1) ρc(z) = ρ−(−z)1z60 + ρ+(z)1z>0, z ∈ R, ρ± ∈ C2((0,+∞)).

(C2) ρ+(x) = xb+L+(x) > 0, 0 < x 6 x0, ρ+ ∈ RV 2(0, b+), b+ > 1,
ρ−(x) = xb−L−(x) > 0, 0 < x 6 x0, ρ− ∈ RV 2(0, b−), b− > 1.

(C3) ρ+(y) = exp(l+(y)), y > y0, l+ ∈ RV 2(+∞, γ+), γ+ > 0,
ρ−(y) = exp(l−(y)), y > y0, l− ∈ RV 2(+∞, γ−), γ− > 0.

Notice that ρ±(0) = 0 and ρ± are positive, continuous, convex and increasing
on R+. Define ρ (x) = max(ρ+(x), ρ−(x)) and b = min(b+, b−). For 0 6 x 6 x0
it holds

ρ(x) = xbL(x), L(x) =







L+(x) if b+ < b−,
L−(x) if b− < b+,

max(L+(x), L−(x)) if b+ = b−.
(11)

Further assume that

(C4) lim
x→0

ρ+(x)

ρ(x)
= π+, lim

x→0

ρ−(x)

ρ(x)
→ π−, π+, π− ∈ [0, 1] .

Example 3 Typical costs satisfying the conditions (C) are the following. For
a = (a−, a+) with a± > 0 and b = (b−, b+) with b± > 1 define

ca,b(z, z
′) = a− (z′ − z)

b− 1z<z′ + a+ (z − z′)
b+ 1z′<z.

This includes the case W1.

2.4 Assumptions (CFG)

The joint influence of l±, L± and b± on the allowed tails F−1 and G−1 is
expressed as follows. Remind the sets E andD from (6). We need three different
assumptions, each corresponding to the generic cases E = (0, 1), D = (0, 1) and
when at least one interval is included in E and one in D.
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Assumption (CFGE). In the case E = (0, 1) it is necessary that b− < 2 and
b+ < 2 to handle most of the classical distributions. For some θ2 > 0 and

(l, ψ) ∈
{

(l+, ψ
+
X), (l−, ψ

+
Y ), (l−, ψ

−
X), (l+, ψ

−
Y )
}

(12)

we have, if 1 < b < 2,

l ◦ ψ−1(y) 6

(

1− b

2

)

y + logL (exp(−y/2))− 2 logψ−1(y)− θ2 log y, y > y0,

(13)
and, if b = 1,

l ◦ ψ−1(y) 6
y

2
− 2 logψ−1(y)− θ2 log y, y > y0. (14)

We shall also allow b− = b+ = 2 for strictly sub-Gaussian distributions, by (20).

Assumption (CFGD). In the case D = (0, 1) let θ−, θ+ > 1 be the parameter
θ of condition (CFG) in [2] for the left and right tails respectively. For any
(l, ψ) from (12) and θ = θ+ if l = l+ or θ = θ− if l = l− we have

(ψ ◦ l−1)′(y) > 2 +
2θ

y
, y > y0. (15)

In other words, (15) is exactly (CFG) in [2]. If

lim inf
u→1

∣

∣F−1(u)−G−1(u)
∣

∣ = 0 or lim inf
u→0

∣

∣F−1(u)−G−1(u)
∣

∣ = 0

we further impose, respectively to (l+, ψ
+
X), (l−, ψ

+
Y ) or (l−, ψ

−
X), (l+, ψ

−
Y ), that

for some θ2 > 0 it holds

l ◦ ψ−1(y) 6
y

2
− 2 logψ−1(y)− θ2 log y, y > y0. (16)

Assumption (CFGED). In the case D 6= ∅ assume (CFGD) and, if moreover
(A1 ∪ Aκ) ∩ E 6= ∅ then assume (CFGE) also.

Remark 4 If γ± > 0 we have θ± > 2 and, if γ± = 0 we have, as in [2],

θ± > 2− lim inf
y→+∞

log(1/ε±(y))

log l±(y)

where ε±(y) corresponds to the function ε(y) of (7) applied to L(y) = l±(y).

Remark 5 As will be seen in the proofs, (CFGE) and (FG3) imply that we
can find 1 6 b < b′ < 2 such that

∫ 1

0

(

√

u(1− u)

hX(u)

)b′

du 6

∫ 1

0

(
∣

∣F−1(u)
∣

∣

√

u(1− u)

)b′

du < +∞ (17)
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which is a little stronger than the necessary condition that the left hand integral
is finite for b′ = b. By using F−1(u) = ψ−1(log(1/(1− u))), (13) also reads

(F−1(u))2ρ
(

F−1(u)
)

6
L
(√

1− u
)

(1− u)1−b/2(log(1/(1− u)))θ2
, u > u0.

In particular, if L(x) = 1 we deduce that (FG) and (CFGE) imply

P (X > y) 6

(

1

y2ρ(y)

)2/(2−b)

, y > y0.

Example 6 For light tails of Weibull type ψ(y) = yw, w > 0, (17) is true and
(CFGE) requires that l(y

1/w) < Cy as y → +∞ and hence a cost of type l(y) =
yγ, y > y0 and l(x) = xb, x < x0, is allowed provided that γ < w and 1 6 b < 2.
For heavy tailed distributions such as Pareto ψ(y) = p log y with index p > 2
the conditions (CFGE), (CFGD) and (CFGED) induce more constraints. For
instance (CFGE) applied with ρc(x) = xb, x < x0, and l(y) = α log y, y > y0,
implies that p > 4/(2 − b) and 1 6 α < p(1 − b/2 − 2/p), hence the minimal
requirement on p is p > 6/(2− b). Choosing ρc(x) = xb on R+ we have α = b
and the last constraint becomes p > 2(b+ 2)/(2− b).

3 Statement of the results

Consider the joint Gaussian process G =
{(

B
X(u),BY (u)

)

: u ∈ (0, 1)
}

with

B
X(u) =

BX(u)

hX(u)
, B

Y (u) =
BY (u)

hY (u)
, (18)

where (BX , BY ) are two standard Brownian bridges with covariance

cov(BX(u), BX(v)) = cov(BY (u), BY (v)) = min(u, v)− uv, u, v ∈ (0, 1) ,

and cross covariance

cov(BX(u), BY (v)) = H(F−1(u), G−1(v)) − uv, u, v ∈ (0, 1) .

The existence of G is proved in [2]. Let B(u) = B
X(u)− B

Y (u), u ∈ (0, 1).

We are now ready to state our main results. Remind (11) and set

vn =
1

ρ (1/
√
n)

=
nb/2

L (1/
√
n)

(19)

hence, in our first statement we have K
√
n 6 vn = o(n) for some K > 0. The

constants π− and π+ come from (C4).

Theorem 7 Assume (FG), (C), E = (0, 1) and (CFGE). Then

vnWc(Fn,Gn) →weak π−

∫ 1

0

1{B(u)<0} |B(u)|b− du+π+
∫ 1

0

1{B(u)>0} |B(u)|b+ du

and the limiting random variable is positive and finite.
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Remark 8 As shown in [6], and since BX is a centered Gaussian process,

P

(∫ 1

0

∣

∣B
X(u)

∣

∣

b
du < +∞

)

= 1 is equivalent to

∫ 1

0

(

√

u(1− u)

hX(u)

)b

du < +∞.

Since the latter bound is guaranteed by (CFGE) and (FG3) which imply (17),
the finiteness of the limiting random variable in Theorem 7 follows.

Our second statement is an extension of the main theorem of [2] which now
allows F and G to have arbitrarily close tails.

Theorem 9 Assume (FG), (C), D = (0, 1) and (CFGD). Then

√
n (Wc(Fn,Gn)−Wc(F,G)) →weak N

(

0, σ2
)

where

σ2 = E

(

(∫ 1

0

ρ′c(F
−1(u)−G−1(u))B(u)du

)2
)

< +∞.

Remark 10 The finiteness and a closed form expression for σ2 = σ2(c,H)
have been proved in [2]. We also refer to the latter paper for explicit examples
in the independent samples case.

Our third result shows that if there exists a point, or equivalently an open
interval by (FG), where F 6= G then the rate is

√
n, whether E 6= ∅ or not.

Theorem 11 Assume (FG), (C), D 6= ∅ and (CFGED). If 1 < b < 2 then

√
n (Wc(Fn,Gn)−Wc(F,G)) →weak N

(

0, σ2
D

)

where

σ2
D = E

(

(∫

D

ρ′c(F
−1(u)−G−1(u))B(u)du

)2
)

< +∞.

If b = 1 then, for L±(0) from (10),

√
n (Wc(Fn,Gn)−Wc(F,G)) →weak

∫

D

ρ′c(F
−1(u)−G−1(u))B(u)du

+ 1{b−=1}L−(0)

∫

E

1{B(u)<0} |B(u)| du

+ 1{b+=1}L+(0)

∫

E

1{B(u)>0} |B(u)| du.

Remark 12 In the second part of Theorem 11 the first term in the limiting
random variable has distribution N

(

0, σ2
D

)

and is correlated in an explicit way
to the other two terms. Theorem 11 also shows that whenever 1 < b < 2 Theorem
9 remains true if F and G are not stochastically ordered but cross each other at
a finite number of points, since this implies σ2

D = σ2.

11



The next corollary concerns the L1-distance W1(Fn,Gn) = ‖Fn − Gn‖L1
.

Remind that ca,1(z, z
′) = a− (z′ − z) 1z<z′ + a+ (z − z′) 1z′<z .

Corollary 13 Assume (FG), (C) and (CFGED). Then

√
n
(

Wca,1
(Fn,Gn)−Wca,1

(F,G)
)

→weak

∫

D

(

a−1{F (u)<G(u)} + a+1{F (u)>G(u)}
)

B(u)du

+

∫

E

(

a−1{B(u)<0} + a+1{B(u)>0}
)

|B(u)| du

and, in particular for a− = a+ = 1,

√
n (W1(Fn,Gn)−W1(F,G)) →weak

∫

D

B(u)du +

∫

E

|B(u)| du.

In the case F = G our last result shows that for light tails one can handle the
limiting case b = 2 – here stated with L(x) = 1 for x < x0 for sake of simplicity.

Theorem 14 Assume that E = R, (FG1), (FG2) and

lim
u→0

u

h(u)
= lim

u→1

1− u

h(u)
= 0,

∫ 1

0

u(1− u)

h2(u)
du < +∞. (20)

Moreover assume (C0) with ρc(x) = x2 for |x| 6 x0. Then

nWc(Fn,Gn) →weak

∫ 1

0

B(u)2du.

Remark 15 Theorem 14 requires no assumption on the cost ρ(y) as y → +∞
since only sub-Gaussian laws are allowed by (20). Therefore the tail part of
nWc(Fn,Gn) behaves the same as for compactly supported distributions. Namely,
empirical extremes of both samples remain simultaneously stuck together very
closely to their common deterministic counterpart F−1 that increases slowly.

Example 16 For light tails of Weibull type it holds, for some w > 0,

h(u) = w(1 − u) (log(1/(1− u)))1−1/w

and (1 − u)/h2(u) = 1/w ((1− u) log(1/(1− u)))
2(1−1/w)

. The first condition
in (20) is then satisfied for w > 1 and the second for w > 2, so that w > 2 is
required. This excludes Gaussian tails, as in Theorem 4.6 in [10].

It is easily seen that straightforward adaptations of the proof of Theorems 7
to 14 leads to analog results for

√
n (Wc(Fn, G)−Wc(F,G)) and vnWc(Fn, F )

by just replacing B(u) = BX(u)− BY (u) with BX(u).

12



4 Applications

4.1 Comparison and goodness-of-fit tests

A straightforward consequence of Theorems 7 and 11 is the construction of a
statistical test of the hypothesis H0 : F = G against H1 : F 6= G, based on
two samples that may arise from correlated experiments. The distributions F
and G are supposed to be C2 on R or R

+ for instance and satisfy (CFGED).
Let us choose the b-Wasserstein distance with 1 < b < 2. By Theorem 7,
under H0 the statistic nb/2Wc(Fn,Gn) converges to a positive finite random
variable while by Theorem 11, under H1 it converges almost surely to +∞ at
the rate nb/2Wc(F,G). Mathematically this test is effectively valid when the set
D = {F−1 6= G−1} is a finite union of non empty intervals, but we think that
its validity could be extended to the more general case where D is of positive
Lebesgue measure in (0, 1). The use of W2, with a rate n is more restrictive
since it needs very light tails. Nevertheless if sub-Gaussian tails can be asserted,
by Theorem 14 the previous test works with b = 2, which actually is a new test.

In each case the rather minimal (CFG) type conditions have to be checked.
They are almost necessary in the proofs to overcome the difficulty of controlling
how close the empirical tails of Fn and Gn must be under H0, and how far
|Fn − Gn| can deviate from |F −G| in tails under H1. Interestingly the choice
of ρ(x) may be with a locally polynomial shape as x→ 0 and a different shape
as x → +∞ possibly linear, polynomial or exponential. This flexibility allows
to test the tail or the mid-quantiles with more or less accuracy.

In the same vein, concerning the distribution functions, Corollary 1 yields

√
n

(

∫ +∞

−∞
|Fn(t)−Gn(t)| dt−

∫

F−1(D)

|F (t)−G(t)| dt
)

→weak

∫

D

B(u)du +

∫

E

|B(u)| du

which seems not to have been already obtained. This provides weak limits for
the power of the test under alternatives to H0 : F = G of the kind H1 : F = G1

where G−1
1 only differs from G−1 on an interval D, for instance with a slightly

different right hand tail only. The test statistic
√
n
∫ +∞
−∞ |Fn(t)−Gn(t)| dt has

an almost sure first order rate of escape
√
n
∫

G−1

1
(D)

|G1(t)−G(t)| dt.
As a by-product of the results of Section 3 one can similarly build goodness-

of-fit tests H0 : F = F0 against H1 : F 6= F0 by using one sample under F or by
using an additional sample distributed as F0. Notice that the test associated to
b = 2 was a consequence of [10].

4.2 An application

We conclude with a notion of quantile for a random variable taking values in the
set of continuous c.d.f.’s. One important feature of this article is the first part
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of Corollary 13 which is strongly related to the preprint [12]. Let 0 < α < 1. In
[12] the α−quantile Fα of a random continuous c.d.f. F is defined to be

Fα = Argmin
θ∈F

E Wcα(F, θ),

where c(x, y) = (x − y)(α − 1x−y<0) is the classical contrast for the α-quantile
of a real random variable and F is the set of continuous c.d.f. As previously
mentioned, in practice a realization F(ω) of F is known through a n-sample of
the distribution F(ω). Hence we may assume that a N -sample F1

n,. . . ,F
N
n is

available, where each Fi
n is a n-empirical c.d.f. of Fi and F1,. . . ,FN are i.i.d.

according to F. Define

FN,n,α = Argmin
θ∈Fn

1

N

N
∑

i=1

Wcα(F
i
n, θ),

where Fn is the set of c.d.f. with at most n different values. Then one could
use Corollary 13 to prove that FN,n,α is a consistent estimator of Fα when N

and n tend to +∞, with rate of convergence
√
Nn.

5 Proofs

In the forthcoming proofs the high order quantiles are shown to have a secondary
order impact compared to the mid-order quantiles that impose the rate as well
as the limiting law under our sufficient conditions ensuring that the tails are
not too heavy. For sake of simplicity we only work on the right hand tail, with
quantiles of order u ∈ (u, 1) for an arbitrary small u > 0. The counterpart for
the left hand tail is immediate by using the same arguments.

To help the reader the variable of frequently used deterministic functions
defined on R+ like ρ±, ρ

−1
± , l±, l

−1
± or L± is denoted x when considered as

x → 0 and y when considered as y → +∞. In the subsequent proofs the
constant K > 0 may change at each appearance.

In steps numbered 0 we remind active hypotheses while introducing local
notation. The non standard steps 1, 2 and 3 of the four proofs – including the
one in [2] – are designed to address the non trivial problem of controlling the
high order and extreme order quantiles under an explicit and almost minimal
assumption on tails, namely (CFGE), (CFGD) or (CFGED). The secondary
order terms in these conditions could be balanced slightly more sharply but at
the price of adding technicalities to connect steps 1 and 2. Finally we point
out that the convergence at steps 3 is weaker than in probability, due to the
coupling approach.

5.1 The case F = G

We prove Theorem 7.
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Step 0. In this section F = G and hence E = R. For short, the key functions
common to X,Y are denoted F−1, ψ, H and h. Let assume (FG), (C) and
(CFGE) with 1 6 b± < 2 in (C2). Hence ρ(x) = max(ρ+(x), ρ−(x)) > ρc(x)
and ρ±(x) are positive convex increasing functions defined on R∗

+ with ρ±(0) =
0. For 0 6 x 6 x0 we have ρ± (x) = xb±L±(x) and, whenever b± = 1 it is
also assumed through (10) that limx→0 L±(x) = L±(0) < +∞. Recall that
b = min(b+, b−) and, for 0 6 x 6 x0, ρ (x) = max(ρ+(x), ρ−(x)) = xbL(x)
where L(x) is defined at (11) and is slowly varying as x→ 0. We then have

vn =
1

ρ (1/
√
n)
, lim

n→+∞

√
n

vn
= 1{b=1}L(0).

Since L ∈ RV (0, 0) we have, by the Karamata representation theorem,

L(x) = exp

(

η(x) +

∫ 1/x

B

s(y)

y
dy

)

, 0 < x 6 x0, (21)

with B > 0, η(x) and s(y) are bounded measurable functions such that

lim
x→0

η(x) = η∞ ∈ R, lim
y→+∞

s(y) = 0.

We can then define

η0 = sup
0<x6x0

|η(x)| ∈ R+, c0 = e2η0 > 1. (22)

For y large it holds ρ± (y) = exp(l±(y)) where the functions l±(y) are not asked
to be in RV (+∞, γ±) in this proof, but (7) does matter. However in practice if
(C3) would not hold then (CFGE) would be more difficult to translate in terms
of admissible F . Hence, for some y0 > x0,

ρ (y) = exp(l(y)), l(y) = max(l+(y), l−(y)), y > y0.

Since ρ± and ρ are convex, by (7) there exists d± > 1, d = min(d−, d+) and
d0,±, d0 such that

l±(y) > d± log y + d0,±, l(y) > d log y + d0, y > x0. (23)

By (CFGE), the joint influence of l, L and b on the allowed tails F−1 is expressed
at (13) if b > 1 and (14) if b = 1.

We decompose the integral Wc(Fn,Gn) as follows, with the remainder term
implicitly treated in a similar way with left hand tails. We will specify later two
sequence in and jn of positive integers such that n > jn > in → +∞. The proof
consists in four steps, each dealing with one of the four terms in

WE
c (Fn,Gn) = IIn

+IJn
+IKn

+IL, IA =

∫

A

ρc
(

F
−1
n (u)−G

−1
n (u)

)

du, (24)

where In = (1− in/n, 1], Jn = (1− jn/n, 1− in/n], Kn = (u, 1− jn/n], L =
[u, u] and 0 < u < 1/2 < u < 1. In order to accurately choose in and jn one has
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to take into account two difficulties. First, the rate 1/vn is faster than 1/
√
n so

that In∪Jn should be sufficiently small. Second, the empirical extreme quantile
difference F−1

n (u) − G−1
n (u) may be either very large or very small as u → 1,

thus the cost function ρc(F
−1
n (u) − G−1

n (u)) is evaluated at 0 on some random
subsets of In ∪ Jn and at +∞ on some others. The later problem is the most
difficult to address.

Step 1. Let Kn be a positive sequence such that Kn → +∞ and define

in =
n

vnKnρ(ψ−1(log n+Kn))
. (25)

Notice that (FG1) and (23) imply that ρ(ψ−1(logn + Kn)) → +∞ and in =
o
(

n1−b/2L(1/
√
n)/Kn

)

as n → +∞, so that in/
√
n → 0 even when b = 1,

thanks to (10). The following lemma moreover ensures that in/ log logn→ +∞.
Observe also that ψ−1(log n+Kn) = F−1(1 − 1/neKn) is an extreme quantile
just beyond the expected order F−1(1 − 1/n) for X(n) and Y(n), which is the
key to Lemma 17. Let [y] denote the integer part of y. Consider the random
variable

IIn
6

∫

In

ρ
(

F
−1
n (u)−G

−1
n (u)

)

du =
1

n

n
∑

i=n−[in]

ρ
(

X(i) − Y(i)
)

.

Lemma 17 Assume (FG1), (C) and (CFGE). There exists Kn such that we
have

Kn → +∞, lim
n→+∞

Kn

log logn
= 0, lim inf

n→+∞
log in

log logn
> θ2 > 0

and
lim

n→+∞
vnIIn

= 0 in probability.

Proof. (i) Let Kn → +∞, Kn/ log log n → 0 be as slow as needed later. By
(FG1) we have F−1

(

1− 1/neKn
)

→ +∞ as n → +∞, yet arbitrarily slowly.
Thus, by (13) and (25) we have, for any θ′′ > 1 − b/2, any θ′ < θ2 and all n
large,

in =
n1−b/2L(1/

√
n)

Knρ(ψ−1(log n+Kn))

>
1

Kn

L(1/
√
n)

L
(

1/
√
neKn

) exp

(

−
(

1− b

2

)

Kn + 2 logψ−1(logn+Kn) + θ2 log(log n+Kn)

)

>
L(1/

√
n)

L
(

1/
√
neKn

)

1

eθ′′Kn

(

F−1

(

1− 1

neKn

))2

(logn+Kn)
θ2

>
L(1/

√
n)

L
(

1/
√
neKn

) (logn)θ
′

.
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Applying (21) and Kn → +∞ we get

L
(

1/
√
neKn

)

L(1/
√
n)

= exp

(

η

(

1√
neKn

)

− η

(

1√
n

)

+

∫

√
neKn

√
n

s(y)

y
dy

)

.

Since eKn < logn we can furthermore choose Kn such that

Kn <
1

sn
, sn = sup√

n6y6
√
n log n

s(y),

where sn → 0 as n→ +∞. The slower is L the faster is 1/sn hence the resulting
requirement is sometimes only the initial Kn/ log logn→ 0. We readily obtain,
by (22),

lim sup
n→+∞

L
(

1/
√
neKn

)

L(1/
√
n)

6 lim sup
n→+∞

exp

(

2η0 + sn
Kn

2

)

< +∞.

The claimed deterministic lim inf is proved by letting θ′ → θ2. Notice that
(CFGE) was crucially required.

(ii) Concerning the stochastic integral IIn
the choice of in in (25) is minimal to

guaranty the rate vn and (CFGE) is not required. Recall that F has support
R. Fix ε > 0 and consider the events

An = {vnIIn
> 4ε} , Bn =

{

X(n−[in]) > 0 ∩ Y(n−[in]) > 0
}

.

We have P (An) 6 P (An ∩Bn) + P (Bc
n) and P (Bc

n) → 0 as n → +∞. On Bn

it holds

vnIIn
6
vn
n

n
∑

i=n−[in]

(

ρ+
(

X(i)

)

+ ρ−
(

Y(i)
))

6
vn
n
(in+1)

(

ρ+
(

X(n)

)

+ ρ−
(

Y(n)
))

hence P (An ∩Bn) 6 P (Cn,X) + P (Cn,Y ) where

Cn,X =

{

ρ+
(

X(n)

)

> ε
n

vnin

}

, Cn,Y =

{

ρ−
(

Y(n)
)

> ε
n

vnin

}

.

In order to evaluate P (Cn,X) = 1 − (1− P (ρ+(X) > εn/vnin))
n
we combine

ρ−1
+ (x) = l−1

+ (log x), l−1 6 l−1
+ and ψX = ψ with (25) to obtain, for n large

enough to have Kn > 1/ε,

P
(

ρ+(X) > εKnρ(ψ
−1(logn+Kn))

)

6 exp
(

−ψ ◦ l−1
(

log ε+ logKn + l(ψ−1(logn+Kn))
))

6
1

neKn
.

Therefore P (Cn,X) 6 1− exp (− exp(−Kn)) ∼ exp(−Kn) → 0 as n→ +∞, and
similarily P (Cn,Y ) → 0. This implies that vnIIn

→ 0 in probability. �
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Step 2. Write βn(u) = βX
n (u)− βY

n (u) with

βX
n (u) =

√
n(F−1

n (u)− F−1(u)), βY
n (u) =

√
n(G−1

n (u)− F−1(u)), (26)

so that IA =
∫

A
ρc (βn(u)/

√
n) du in (24). Let ∆n = Jn∪Kn∪L = [u, 1− in/n].

The next lemma shows that in the integral I∆n
the cost function ρ is evaluated

near 0 provided that n is large.

Lemma 18 Assume (FG) and (CFGE). For any 0 < ξ < 1/2− b/4 it holds

lim
n→+∞

(log n)ξ sup
u∈∆n

|βn(u)|√
n

= 0 a.s.

Proof. (i) Assuming (FG1), (FG2) and since in/ log logn → +∞ by Lemma
17 we can apply the classical hungarian results to |βn(u)| 6

∣

∣βX
n (u)

∣

∣ +
∣

∣βY
n (u)

∣

∣

exactly as for Lemma 23 in [2] to get

lim sup
n→+∞

sup
u∈∆n

h(u) |βn(u)|
√

(1− u) log logn
6 8 a.s. (27)

Next observe that (FG3) implies, for some 0 < M < +∞ and u ∈ ∆n,

1

M

√
1− u

h(u)

√

log logn

n
6
F−1(u)√
1− u

√

log logn

n

6 εn =
F−1(1− in/n)√

in

√

log logn. (28)

(ii) Remind that e−Kn < 1 < in for all n large, and F−1 (1− in/n) → +∞ as
n→ +∞ with no obvious control on the rate. By (25) and the consequence (13)
of (CFGE) we have already seen in the proof of Lemma 17 that if θ′′ < 1− b/2
and θ′′ < θ′ < θ2 then it holds, for all n large enough,

in >
1

eθ′′Kn

(

F−1

(

1− 1

neKn

))2

(logn+Kn)
θ2

>

(

F−1

(

1− 1

n

))2

(logn)θ
′

>

(

F−1

(

1− in
n

))2

(log logn)(logn)θ
′′

hence for any 0 < ξ < θ′′/2 it holds limn→+∞(logn)ξεn = 0. The conclusion
follows, by (27) and (28). �

Let jn = nβ with 1/2 < β < 1, so that in <
√
n < jn for all n large. Remind

εn from (28). Let introduce

εn(u) = 9

√
1− u

h(u)

√

log logn

n
6 9εn, u ∈ Jn. (29)
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Lemma 19 Assume (FG), (C) and (CFGE). Then we have

lim
n→+∞

vnIJn
= 0 a.s.

Proof. (i) By Lemma 18, for all n large enough and any u ∈ Jn it holds

1

n
6 sup

u∈Jn

√

1− u

n
6 εn(u) 6

1

(logn)ξ
.

Consider L defined in (11). Using (21) and (22) we get

Ln = sup
u∈Jn

L(εn(u))

L(1/
√
n)

6 exp

(

2η0 +

∫ n

(logn)ξ

|s(y)|
y

dy

)

(30)

hence

lim
n→+∞

logLn

logn
6 lim

n→+∞
1

logn

(

2η0 + logn sup
(logn)ξ6y6n

|s(y)|
)

= 0. (31)

(ii) Remind that ρ± are increasing. By Lemma 18 and (C2) we almost surely
have, for all n large,

IJn
6

∫

Jn∩{βn>0}
ρ+(εn(u))du +

∫

Jn∩{βn<0}
ρ−(εn(u))du

where, by (27), (28) and (29), supu∈Jn
εn(u) 6 9εn → 0. Hence, recalling (11)

we are reduced to study the bounding deterministic integral

IJn
6

∫

Jn

ρ(εn(u))du =

∫

Jn

(εn(u))
b
L(εn(u))du.

By (11), Ln from (30) and (FG3) we further have

vnIJn
6 Ln(log logn)

b/2

∫

Jn

(

F−1(u)√
1− u

)b

du. (32)

We next show that Ln(log logn)
b/2 is a secondary order factor compared to the

integral in (32), whatever the choice of 1/2 < β < 1 defining jn in Jn.

(iii) The fact that l(y) > log y as y → +∞ combined to (CFGE) shows that
for all u large enough, we have

F−1(u) = ψ−1

(

log
1

1− u

)

6 exp

(

l ◦ ψ−1

(

log
1

1− u

))

6 exp

((

1− b

2

)

log
1

1− u
+ logL(

√
1− u)− 2 logF−1(u)− θ2 log log

1

1− u

)

.
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Therefore we get

F−1(u)3 6

(

1

1− u

)1−b/2
L(

√
1− u)

(log(1/(1− u)))θ2

and

∫

Jn

(

F−1(u)√
1− u

)b

du 6

∫

Jn

(

1

1− u

)(1−b/2)b/3+b/2
L(

√
1− u)b/3

(log(1/(1− u)))θ2b/3
du

6

∫

Jn

(

1

1− u

)b(5−b)/6
L(

√
1− u)b/3

(log(1/(1− u)))θ2b/3
du. (33)

Since 1 6 b < 2 we can find γ such that 0 < b(5 − b)/6 < γ < 1. The second
factor in the integral (33) is slowly varying in 1 − u as u → 1 thus the whole
integral is ultimately bounded from above by

(1− γ)

∫

Jn

(

1

1− u

)γ

du =
[

−(1− u)1−γ
]1−in/n

1−jn/n
6

1

n(1−γ)(1−β)
. (34)

We deduce from (31), (32), (33) and (34) the convergence

lim
n→+∞

vnIJn
6 lim

n→+∞
Ln(log logn)

b/2

n(1−γ)(1−β)
= 0 a.s.

at a power rate. �

Step 3. Compared to Jn the interval Kn is so large that vnIKn
can no more

converge to zero. Instead it is made small with high probability by choosing
u and β properly, at Lemma 21. Moreover, in order to evaluate the integral
of ρc(βn(u)/

√
n) over Kn accurately enough it is no more sufficient to bound

the process, therefore we approximate it at Lemma 20 by a Gaussian process
which helps revealing the underlying deterministic integral to compute. Lastly
the fact that βn(u) itself may be very small or very large along Kn makes a bit
tedious the uniform control of the slowly varying part L(x) of ρ(x).

Define ∆′
n = (jn/n, 1− jn/n). We first recall the strong approximation of

the joint quantile processes

Qn(u) =
(

βX
n (u), βY

n (u)
)

, u ∈ ∆′
n,

by the joint Gaussian processes

Gn(u) =
(

B
X
n (u),BY

n (u)
)

, B
X
n (u) =

BX
n (u)

hX(u)
, B

Y
n (u) =

BY
n (u)

hY (u)
, u ∈ ∆′

n,

where BX
n (u) = Hn(HX(u)), BY

n (u) = Hn(H
Y (u)) and Hn is a PX,Y -Brownian

bridge indexed by the halfplanes

HX(u) =
{

(x, y) : x 6 F−1(u)
}

, HY (u) =
{

(x, y) : y 6 F−1(u)
}

.
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Therefore BX
n and BY

n are two standard Brownian bridges with cross covariance
given for u, v ∈ (0, 1) by

cov(BX
n (u), BY

n (v)) = P
X,Y (HX(u) ∩HY (v)) − P

X,Y (HX(u))PX,Y (HY (v))

= P
(

X 6 F−1(u), Y 6 F−1(v)
)

− uv

= H(F−1(u), F−1(v)) − uv.

Notice that H(F−1(u), F−1(v)) is the copula function of (X,Y ). From now and
for the remainder of the proof we work on the probability space of the following
Lemma 20. The weak convergence finally established on this space at steps 4
and 5 remains valid on any probability space.

Lemma 20 Assume (FG). Then we can build on the same probability space
versions of (Xn, Yn)n>1 and (Hn)n>1 such that Qn(u) = Gn(u) + Zn(u) for all

n > 1 and u ∈ ∆′
n where Zn(u) = (ZX

n (u)/hX(u), ZY
n (u)/hY (u)) satisfies, for

some υ ∈ (0, 1/22),

lim
n→+∞

nυ sup
u∈∆′

n

∣

∣ZX
n (u)

∣

∣ = lim
n→+∞

nυ sup
u∈∆′

n

∣

∣ZY
n (u)

∣

∣ = 0 a.s.

Proof. This follows from Theorem 28 in [2] with F = G. �

The joint strong approximation of Lemma 20 applied with F = G and hX =
hY = h combined to (CFGE) provides a stochastic control of the deviations
of vnIKn

that is weaker than in probability but sufficient for the targeted weak
convergence. Since it concerns the probability distribution of IKn

the following
lemma remains true on any probability space.

Lemma 21 Assume (FG), (C) and (CFGE). There exists β ∈ (1/2, 1) such
that for any choice of λ > 0 and ε > 0 one can find u ∈ (1/2, 1) and n0 > 0
such that, for all n > n0,

P (vnIKn
> λ) < ε.

Proof. Fix λ > 0 and ε > 0 then consider, with βn as in (26) the event

Cλ
n =

{

vn

∫

Kn

ρc

(

βn(u)√
n

)

du > λ

}

.

(i) For 0 < τ < min(1, λ/2) define the random sets

K<τ
n = {u ∈ Kn : |βn(u)| < τ} , K>τ

n = Kn\K<τ
n .

Recalling that the cost ρ± is convex, positive and such that ρ±(0) = 0 we have
ρ±(τx) 6 τρ±(x) for all x > 0. It follows that

vnIK<τ
n

6 vn

∫

K<τ
n ∩{βn<0}

τρ+

(

1√
n

)

du+ vn

∫

K<τ
n ∩{βn>0}

τρ−

(

1√
n

)

du

6
max(ρ− (1/

√
n) , ρ+ (1/

√
n))

ρ (1/
√
n)

τ

∫

K<τ
n

du 6 τ.
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As a consequence,

P
(

Cλ
n

)

= P
(

vn(IK<τ
n

+ IK>τ
n

) > λ
)

6 P
(

vnIK>τ
n

> λ− τ
)

6 P

(

vnIK>τ
n

>
λ

2

)

.

(ii) For all n > n0 and n0 = n0(ε, ξ) large enough we have (log n)ξ <
√
n

together with, by Lemma 18 and since K>τ
n ⊂ Kn ⊂ ∆n,

P (Dn) > 1− ε

2
, Dn =

{

sup
u∈K>τ

n

|βn(u)|√
n

6
1

(logn)ξ

}

.

Assume now that n > n0. On the event Dn, for any u ∈ K>τ
n we have

τ√
n
6 min

(

1√
n
,
|βn(u)|√

n

)

6
1

(log n)ξ

which by (11), (21) and (22) yields

L (|βn(u)| /
√
n)

L (1/
√
n)

6 exp

(

2η0 +

∫

√
n/τ

min(
√
n,

√
n/|βn(u)|)

|s(y)|
y

dy

)

6 c0 exp

(

sn

∫

√
n/τ

min(
√
n,

√
n/|βn(u)|)

1

y
dy

)

= c0 exp (sn (max (0, log(|βn(u)|))− log τ))

6 c0

∣

∣

∣

∣

βn(u)

τ

∣

∣

∣

∣

qn(u)

where the sequence sn and the stochastic process qn(u) are defined by

sn = sup
(logn)ξ6y6

√
n/τ

|s(y)| , qn(u) = sn1{|βn(u)|>1}. (35)

Since s(y) → 0 as y → +∞ we have

lim
n→+∞

sup
u∈K>τ

n

qn(u) 6 lim
n→+∞

sn = 0 (36)

and this uniform convergence of qn is certain, not almost sure. In other words,
the uncertainty in the following inequality only comes from P (Dn). We have
shown that for all n large, on the event Dn, it holds

vnIK>τ
n

6 vn

∫

K>τ
n

ρ

( |βn(u)|√
n

)

du 6
c0
τsn

∫

K>τ
n

|βn(u)|b+qn(u)
du (37)

where τsn → 1 as n→ +∞. We are ready to bound P
(

Dn ∩
{

vnIK>τ
n

> λ/2
})

.

(iii) On the probability space of Lemma 20 we have

|βn(u)| 6
∣

∣BX
n (u)

∣

∣

h(u)
+

∣

∣BY
n (u)

∣

∣

h(u)
+

∣

∣ZX
n (u)

∣

∣

h(u)
+

∣

∣ZY
n (u)

∣

∣

h(u)
.
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If α > 1 then (x + y)α 6 2α−1(xα + yα) for all x, y > 0. Combining this fact
with b + qn(u) > b > 1 and (36) thus implies that, for K > 1 fixed and all n
large enough,

1

K4b−1

∫

K>τ
n

|βn(u)|b+qn(u) du 6 RX
n +RY

n + SX
n + SY

n

where

RX
n =

∫

K>τ
n

∣

∣

∣

∣

BX
n (u)

h(u)

∣

∣

∣

∣

b+qn(u)

du, SX
n =

∫

K>τ
n

∣

∣

∣

∣

ZX
n (u)

h(u)

∣

∣

∣

∣

b+qn(u)

du.

It remains to prove that for an appropriate choice of u and β we have

lim sup
n→+∞

P

(

Dn ∩
{

RX
n >

λτsn

8c0

})

<
ε

8
,

lim sup
n→+∞

P

(

Dn ∩
{

SX
n >

λτsn

8c0

})

<
ε

8
,

which ensures by (37) that P
(

Dn ∩
{

vnIK>τ
n

> λ/2
})

6 ε/2. For short, it is
assumed below that 1/9 < τsn/8.

(iv) The following integral Tn is crucial with respect to the integrability of the
processes BX

n and ZX
n . Let b′ > b be so close to b that 0 < b′(5− b′)/6 < γ < 1.

Consider the random function qn(u) from (35). For all n large enough we have
b 6 b+ qn(u) < b′ hence (33) and (34) entail

Tn =

∫

Kn

∣

∣

∣

∣

√
1− u

h(u)

∣

∣

∣

∣

b+qn(u)

du 6

∫

Kn

∣

∣

∣

∣

F−1(u)√
1− u

∣

∣

∣

∣

b+qn(u)

du 6

∫

Kn

∣

∣

∣

∣

F−1(u)√
1− u

∣

∣

∣

∣

b′

du

6

[

− (1− u)1−γ

1− γ

]1−jn/n

u

6
(1− u)1−γ

1− γ
.

(v) On the one hand we have, by Fubini-Tonelli and recalling that BX
n is a

standard Brownian bridge and the sequence sn is defined at (36),

E
(

RX
n

)

6 Tn sup
u∈Kn

E





∣

∣

∣

∣

∣

BX
n (u)

√

u(1− u)

∣

∣

∣

∣

∣

b+qn(u)




6 Tn sup
06s6sn

E

(

|N (0, 1)|b+s
)

= TnE
(

|N (0, 1)|b+sn
)

.

Assuming n so large that sn < 2 − b we get E
(

RX
n

)

/Tn < E(|N (0, 1)|2) = 1
then choosing u such that (1 − u)1−γ < 8(1− γ)λ/9c0ε yields

P

(

RX
n >

λ

9c0

)

<
9c0
λ
Tn <

ε

8
. (38)
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On the other hand we have K>τ
n ⊂ Kn ⊂ ∆′

n and

SX
n 6 sup

u∈K>τ
n

∣

∣

∣

∣

ZX
n (u)√
1− u

∣

∣

∣

∣

b+qn(u)

Tn.

By Lemma 20 it almost surely holds, for b′ > b and all n large,

sup
u∈K>τ

n

∣

∣

∣

∣

ZX
n (u)√
1− u

∣

∣

∣

∣

6 sup
u∈Kn

1

nυ
√
1− u

=
1

nυ

√

n

jn
6 n(1−β)/2−υ

which vanishes provided 1− 2υ < β < 1. Therefore, for this choice of β,

lim
n→+∞

SX
n = 0 a.s., lim

n→+∞
P

(

SX
n >

λ

9c0

)

= 0. (39)

(vi) Putting together the conclusions of (i)-(v), and especially (37), (38) and
(39), implies

P
(

Cλ
n

)

6 1− P (Dn) + P

(

Dn ∩
{

vnIK>τ
n

>
λ

2

})

<
ε

2
+ 4

ε

8
= ε.

Finally notice that the same β works whatever the choice of λ, ε. �

Step 4. Now L = [u, u] is fixed. By Lemmas 18 and 20 there almost surely exists
n0(ω) such that, for all n > n0(ω), εn(u) from (29), Bn(u) = BX

n (u) − BY
n (u)

and Zn(u) = ZX
n (u)− ZY

n (u),

∣

∣

∣

∣

βn(u)√
n

∣

∣

∣

∣

6 εn(u) 6 x0, βn(u) =
Bn(u) + Zn(u)

h(u)
, u ∈ L.

As a consequence, the cost ρc is evaluated at 0 all along this step. Let α > 0
and consider IL = IL1,n

+ IL2,n
+ IL3,n

where, for n > n0(ω),

ILk,n
=

∫

Lk,n

ρc

(

Bn(u) + Zn(u)√
nh(u)

)

du, k = 1, 2, 3, (40)

and L = L1,n ∪ L2,n ∪ L3,n with L1,n = L ∩ {|Bn(u)| 6 α}, L2,n = L ∩
{|Bn(u)| > 1/α} and L3,n = L ∩ {α < |Bn(u)| < 1/α}. Also define

0 < h = min
u∈L

h(u) 6 h = max
u∈L

h(u) < +∞.

(4.1) Choose α ∈ (0, 1) arbitrarily small. In view of the almost sure rate 1/nυ

from Lemma 20 and (11) we have, given u, u then h,

lim
n→+∞

vnIL1,n
6 lim

n→+∞
1

ρ(1/
√
n)

∫

L1,n

ρ

(

α+ 1/nυ

√
nh

)

du

6 lim
n→+∞

ρ(2α/
√
nh)

ρ(1/
√
n)

=
(2α)b

hb
a.s. (41)
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The last equality holds by definition of ρ ∈ RV (0, b).

(4.2) Write L+
2,n = L ∩ {Bn(u) > 1/α} and L−

2,n = L ∩ {Bn(u) 6 −1/α}. By
Lemma 20 we have, for n large enough,

vnIL+

2,n
=

1

ρ(1/
√
n)

∫

L+

2,n

ρ+

(

βn(u)√
n

)

du 6
1

ρ(1/
√
n)

∫

L+

2,n

ρ+

(

2Bn(u)

h(u)
√
n

)

du

then similar arguments as for (ii) in the proof of Lemma 21 yield

vnIL+

2,n
6 c0

ρ+(1/
√
n)

ρ(1/
√
n)

∫

L+

2,n

(

2Bn(u)

h(u)

)b++sn

du

where sn → 0 is defined at (35) with τ = 2/α. By replacing min(u, 1− u) with
u(1− u) 6 min(u, 1− u) in (CFG3) it follows that

vnIL+

2,n
6 K

∫

L
1{Bn(u)>1/α}

∣

∣

∣

∣

∣

F−1(u)
√

u(1− u)

∣

∣

∣

∣

∣

b++sn (

Bn(u)
√

u(1− u)

)b++sn

du

where K > 0. As a consequence of (CFGE) we obtain exactly as for (33) and
(34) that if b′ ∈ (b, 2) is chosen sufficiently close to b then

∫

(0,1)

∣

∣

∣

∣

∣

F−1(u)
√

u(1− u)

∣

∣

∣

∣

∣

b′

du = K ′ < +∞. (42)

Since 2u− 1 6 H(u, u) 6 u for u ∈ (0, 1) we have

−(1− u)2 6 Cov(BX
n (u), BY

n (u)) = H(u, u)− u2 6 u(1− u)

hence
0 6 V ar(Bn(u)) 6 2u(1− u) + 2(1− u)2 = 2(1− u)

and the random variable Bn(u)/
√

u(1− u) is centered Gaussian with variance
bounded above by 2/u. Let denote N (0, 1) the standard normal distribution.
By Hölder inequality we have, for u ∈ L and n large,

E



1{Bn(u)>1/α}

∣

∣

∣

∣

∣

Bn(u)
√

u(1− u)

∣

∣

∣

∣

∣

b++sn


 6 K ′′
P

(

sup
u6u6u

|Bn(u)| >
1

α

)1/2

where K ′′ = (3/u) supb+6s6b

(

E |N (0, 1)|2s
)1/2

< +∞ only depends on b. We

conclude that it asymptotically holds

E

(

vnIL+

2,n

)

6 KK ′K ′′
P

(

sup
u6u6u

|Bn(u)| >
1

α

)1/2

6 C exp

(

− 1

α2

)

(43)

where C depends onM, b, F and α was left arbitrary from the beginning. Clearly
E(vnIL−

2,n
) also obeys (43) by the same arguments. Notice that for the left hand
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tail u and 1 − u play a symetric role in the previous control of the variance of
Bn(u) by u(1− u).

(4.3) Let L+
3,n = L∩{α < Bn(u) < 1/α} and L−

3,n = L∩{−1/α < Bn(u) < −α}.
By Lemma 20 again we almost surely ultimately have

sign(Bn(u) + Zn(u))1L3,n
(u) = sign(Bn(u))1L3,n

(u)

where sign(x) = 1x>0 − 1x<0. Therefore, (C2) implies, for all n large enough,

1L3,n
(u)ρc

(

Bn(u) + Zn(u)√
nh(u)

)

= 1L+

3,n
(u)ρ+

(

Bn(u) + Zn(u)√
nh(u)

)

+ 1L−

3,n
(u)ρ−

( |Bn(u) + Zn(u)|√
nh(u)

)

.

Now assume that α < 2/h and L3,n 6= ∅, so that

vnIL3,n
=

1

ρ(1/
√
n)

(

∫

L+

3,n

ρ+

( |Bn(u)|√
nh(u)

)

du+R+
n

)

+
1

ρ(1/
√
n)

(

∫

L−

3,n

ρ−

( |Bn(u)|√
nh(u)

)

du+R−
n

)

where we have, by convexity and differentiability of ρ± on (0,+∞),

R±
n =

∫

L±

3,n

(

ρ±

( |Bn(u) + Zn(u)|√
nh(u)

)

− ρ±

( |Bn(u)|√
nh(u)

))

du

6 sup
u∈L±

3,n

ρ′±

( |Bn(u)|+ |Zn(u)|√
nh(u)

) |Zn(u)|√
nh(u)

The regular variation (C2) further implies xρ′±(x)/ρ±(x) → 1 as x → 0. As a
consequence, with probability one, for all n large it holds

R±
n

ρ(1/
√
n)

6
1

ρ(1/
√
n)
ρ±

( |Bn(u)|+ |Zn(u)|√
nh(u)

)

sup
u∈L3,n

|Zn(u)|
|Bn(u)|+ |Zn(u)|

6
ρ± (2/

√
nhα)

ρ(1/
√
n)

2

αnυ
6
ρ± (2/

√
nhα)

ρ±(1/
√
n)

2

αnυ
6

(

2

hα

)b± 3

αnυ

which vanishes as n → +∞. Here we have used that ρ± (θx) /ρ± (x) → θb± as
x→ 0 for any fixed θ > 0, and Lemma 20. Finally we see that

1

ρ±(1/
√
n)

∫

L±

3,n

ρ±

( |Bn(u)|√
nh(u)

)

du =

∫

L±

3,n

( |Bn(u)|
h(u)

)b

du +R±
3,n

with

R±
3,n =

∫

L±

3,n

L±
n (u)

( |Bn(u)|
h(u)

)b

du, L±
n (u) =

L±(|Bn(u)| /
√
nh(u))

L±(1/
√
n)

− 1.
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Clearly, it follows

∣

∣R±
3,n

∣

∣ 6

(

1

hα

)b

sup
u∈L3,n

∣

∣L±
n (u)

∣

∣ 6

(

1

hα

)b
(

sup
α/h

√
n6x61/αh

√
n

L±(x)

L±(1/
√
n)

− 1

)

thus, by (21) and (22) we get
∣

∣R±
3,n

∣

∣→ 0 as n→ +∞. We conclude that

I∗L3,n
= ρ+(1/

√
n)

∫

L+

3,n

( |Bn(u)|
h(u)

)b+

du + ρ−(1/
√
n)

∫

L−

3,n

( |Bn(u)|
h(u)

)b−

du

(44)
almost surely satisfies limn→+∞ vn|IL3,n

− I∗L3,n
| = 0.

Step 5. Consider WE
c (Fn,Gn) =

∫ 1

0
ρc(F

−1
n (u),G−1

n (u))du. As we assumed
that

lim
n→+∞

ρ+(1/
√
n)

ρ(1/
√
n)

= π+, lim
n→+∞

ρ−(1/
√
n)

ρ(1/
√
n)

= π−

by (C4) and E = R we have established that vnW
E
c (Fn,Gn) →weak W with

W = π+

∫ 1

0

1{B(u)>0}

( |B(u)|
h(u)

)b+

du+ π−

∫ 1

0

1{B(u)<0}

( |B(u)|
h(u)

)b−

du

and B is a standard Brownian bridge. To see this write WE
c (Fn,Gn) = IIn

+
IJn

+IKn
+IL1,n

+IL2,n
+IL3,n

where each of the first three integrals is indeed the
sum of its left hand tail and right hand tail version, likewise for I∗L3,n

defined

at (44). We have shown that vn(IIn
+ IJn

) → 0 in probability. Let Ψ be a
real valued k-Lipschitz function on R, bounded by m. Given arbitrarily small
constants λ > 0, ε > 0 and α > 0 then an appropriate choice of 0 < u, u < 1
and thus h it holds, for all n large enough, by Lemma 21 and step 4,

E

(

Ψ
(

vn(IKn
+ IL1,n

+ IL2,n
+ IL3,n

)
)

−Ψ
(

vnI
∗
L3,n

))

6 4mP (vnIKn
> λ) + 4mP

(

vn

∣

∣

∣IL3,n
− I∗L3,n

∣

∣

∣ > λ
)

+ 4mP

(

vnIL1,n
>

(5α)b

hb

)

+ kE

(

4λ+
(5α)b

hb
+ vnIL2,n

)

6 12mε+ 4kλ+
k(5α)b

hb
+ 2kC exp

(

− 1

α2

)

which is as small as desired. Finally it is easilly seen that vnI
∗
L3,n

→weak W as

(u, u) → (0, 1) and α → 0 so that E(Ψ (W )) can replace E(Ψ(vnI
∗
L3,n

)) above
with an asymptotically arbitrarily small error. �

5.2 The case F < G

We establish Theorem 9.
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Step 0. In this section D = R. Without loss of generality, assume that F−1 >
G−1 everywhere. We again focus on arguments for the right hand tail, thus
we write ψX = ψ+

X and ψY = ψ+
Y on (y0,+∞). Therefore ψ−1

X > ψ−1
Y and

ψ−1
X > 0 on (u0, 1) where u0 = F−1(y0). We need this stochastic ordering

only to simplify the control of extremes without imposing (CFGE). Let assume
(FG), (C) with b ∈ [1, 2) and (CFGD). For y large it holds ρ± (y) = exp(l±(y))
with l± ∈ RV +

2 (γ±,+∞). By (15), for y0 > 0 and θ+, θ− > 1 playing exactly
the role of θ in (CFG) of [2] we have

(ψX ◦ l−1
+ )′(y) > 2 +

2θ+
y
, (ψY ◦ l−1

− )′(y) > 2 +
2θ−
y
, y > y0. (45)

In particular, this implies

l+ ◦ ψ−1
X (y) 6

y

2
− θ+ log y +K, y > y0. (46)

By (16), whenever F−1(u) −G−1(u) > 0 is not asymptotically away from 0 as
u→ 1 we further ask that, for some θ2 > 0,

l+ ◦ ψ−1
X (y) 6

y

2
− 2 logψ−1

X (y)− θ2 log y, y > y0. (47)

Notice that if F is logconvex then logψ−1
X (y) > log y and (47) already implies

(46) with θ+ > 2 whereas if F is logconcave then logψ−1
X (y) < log y and (46)

implies (47) with θ2 > 1. Since (CFGD) implies (CFG) of [2] through (16)
hence (45), we are allowed to use most results of the latter paper. In particular
Theorem 9 is true when F−1(u) − G−1(u) > δ for some δ > 0 and b > 1
to ensure (C3) in [2]. We thus focus on the case F−1(u) − G−1(u) → 0 as
u → 1 which requires (47) whatever b, and we isolate out the case b = 1
only when necessary to extend the main result of [2], at step 4. We often use
F−1(u) = ψ−1

X (log(1/(1− u))). A consequence is that (47) also reads

ρ ◦ F−1(u) = ρ+ ◦ F−1(u) 6
1

F−1(u)2
√
1− u |log(1− u)|θ2

, u > u0.

Let study Wc(Fn,Gn)−Wc(F,G) = IIn
+ IJn

+ IKn
+ IL with the notation

IA =

∫

A

(ρc (τ(u) + τn(u))− ρc (τ(u))) du, A ⊂ (0, 1) , (48)

τ(u) = F−1(u)−G−1(u), τn(u) =
βn(u)√

n
=
βX
n (u)− βY

n (u)√
n

,

and In = (1− in/n, 1], Jn = (1− jn/n, 1− in/n], Kn = (u, 1− jn/n], L =
[u, u] with 0 < u < 1/2 < u < 1.

Step 1. Consider a non negative increasing sequence Kn → +∞ to be chosen
later in such a way that Kn/ log logn→ 0. Define

in =

√
n

Kn exp
(

l ◦ ψ−1
X (logn+Kn)

) . (49)
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We have l ◦ ψ−1
X (y) = l+ ◦ ψ−1

X (y) → +∞ as y → +∞ thus in = o (
√
n/Kn).

When (47) is enforced then for any θ′ ∈ (0, θ2) and all n large enough,

in >
K

Kn

(

F−1

(

1− 1

neKn

))2

exp

(

−Kn

2
+ θ+ log(logn+Kn)

)

>

(

F−1

(

1− 1

n

))2

(logn)θ
′

. (50)

Otherwise, when only (46) holds then for θ′ ∈ (1, θ+),

in >
K

Kn
exp

(

−Kn

2
+ θ+ log(log(n+Kn))

)

> (log n)θ
′

. (51)

Hence in both case we have in/ log logn→ +∞ and in/
√
n→ 0. Let us define

I1In
=

∫

In

ρ+ (τ(u)) du,

I2In
=

∫

In

ρc
(

F
−1
n (u)−G

−1
n (u)

)

du =
1

n

n
∑

i=n−[in]

ρc
(

X(i) − Y(i)
)

.

Lemma 22 Assume that (C), (FG) and (CFGD) hold. Then
√
nI1In

→ 0 and√
nI2In

→ 0 in probability.

Proof. This readily follows from Lemma 21 in [2]. For
√
nI1In

the mentionned
proof only needed θ > 0 hence θ+, θ− > 0. For

√
nI2In

the initial expansion

n
∑

i=n−[in]

ρc
(

X(i) − Y(i)
)

6

n
∑

i=n−[in]

ρ+
(

X(i)

)

+

n
∑

i=n−[in]

ρ−
(

Y(i)
)

almost surely holds for n large enough, when min(X(n−[in]), Y(n−[in])) > 0. �

Step 2. We now study IJn
with jn = nβ, β ∈ (1/2, 1). Recall that ∆n =

Jn ∪Kn ∪ L and τ(u) = F−1(u)−G−1(u) > 0 for all u ∈ ∆n.

(i) Define εn = supu∈∆n
εn(u) where εn(u) = εXn (u) + εYn (u) and

εXn (u) =

√
log logn√

n

√
1− u

hX(u)
, εYn (u) =

√
log logn√

n

√
1− u

hY (u)
.

The current εn is bounded by the one of (28). By combining (27) and (28) with
(50) as in Lemma 18 we get, for some ζ > 0,

lim
n→+∞

(logn)ζ sup
u∈∆n

τn(u) 6 9 lim
n→+∞

(log n)ζεn = 0 a.s.

Let mn → +∞ be a non negative sequence so slow that mnεn → 0. Consider
Jn = J <

n ∪ J>
n where

J<
n = {u ∈ Jn : 0 < τ(u) 6 mnεn(u)} ,

J>
n = {u ∈ Jn : 0 < mnεn(u) < τ(u)} .
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By (27) again we almost surely ultimately have

−9εn(u) < τn(u) =
βX
n (u)√
n

− βY
n (u)√
n

< 9εn(u), u ∈ Jn.

Notice that if u ∈ J >
n then

0 < (mn − 9)εn(u) < τ(u) + τn(u) < τ(u) + 9εn(u) < τ(u)

(

1 +
9

mn

)

(52)

whereas if u ∈ J <
n then it is possible that τ(u) + τn(u) < 0 since

−9εn(u) < τn(u) < τ(u) + τn(u) < (mn + 9)εn(u). (53)

Let us control |IJn
| 6

∣

∣IJ<
n

∣

∣+
∣

∣IJ>
n

∣

∣, starting with the first term.

(ii) Recall that supu∈J<
n
mnεn(u) → 0 as n → +∞. By (53) we have, for

u ∈ IJ<
n

and mn > 9,

|ρc (τ(u) + τn(u))− ρc (τ(u))| 6 ρc (τ(u) + τn(u)) + ρ+ (τ(u))

6 ρ− (9εn(u)) + 2ρ+(2mnεn(u)).

hence
√
n
∣

∣IJ<
n

∣

∣ 6 R1,n +R2,n for all n large enough, with

R1,n = K
√
n

∫

J<
n

εn(u)
b−L− (9εn(u)) du,

R2,n = K
√
n

∫

J<
n

(mnεn(u))
b+L+ (2mnεn(u)) du.

Lemma 23 Assume (C), (FG) and (CFG). We have R1,n → 0 and R2,n → 0.

Proof. If F−1(u)−G−1(u) > δ then the set J<
n is ultimately empty. Otherwise

(47) holds. We have
√
1− u (1/hX(u) + 1/hY (u)) 6 2F−1(u)/

√
1− u for u ∈

Jn in view of F−1(u) > G−1(u) and (FG3). If min(b+, b−) − 1 > 0 this extra
power cancels the slowly varying functions and we asymptotically have

R1,n +R2,n 6 K
√
n

∫

J<
n

mnεn(u)du 6 Kmn

√

log logn

∫

Jn

F−1(u)√
1− u

du.

If b+ = 1 then L+(x) is bounded on [0, x0] since xL+(x) is convex non negative
and starts from 0. Hence L+ (2mnεn(u)) is bounded on Jn, and the above
upper bound remains true. Likewise if b− = 1 then L− (9εn(u)) is bounded on
Jn. Observe that (47) and l(y) > log y imply

ψ−1
X (y) 6 exp(l ◦ ψ−1

X (y)) 6
1

ψ−1
X (y)2

exp
(y

2
− θ log y

)

thus ψ−1
X (y)6 6 ey and F−1(u) < 1/(1− u)1/6. Therefore

∫

Jn

F−1(u)√
1− u

du 6 K

(

jn
n

)1/3

= Kn(β−1)/3
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with β < 1 and the conclusion follows since mn → +∞ is arbitrarily slow. �

We have shown that
√
nIJ<

n
→ 0 almost surely.

(iii) By (52) we ultimately have, for all u ∈ Jn,

|ρc (τ(u) + τn(u))− ρc (τ(u))| = |ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| .

Consider now J >
n = J<δ

n ∪ J>δ
n with

J <δ
n = {u ∈ Jn : mnεn(u) < τ(u) < δ} , J>δ

n = {u ∈ Jn : τ(u) > δ} .

Since τ(u) > δ on J>δ
n and Proposition 31 and Lemma 24 of [2] are satisfied by

ρ+ – thanks to (7) and (8) – we readily deduce from Lemma 22 of [2] that

lim
n→+∞

√
n

∫

J>δ
n

|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| du = 0 a.s.

Concerning J<δ
n observe that by (52) again 0 < τ(u) + τn(u) < 2δ for all n

large. Since ρ+ is convex it ensues

|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| 6 max
(

ρ′+ (τ(u) + τn(u)) , ρ
′
+ (τ(u))

)

|τn(u)|
6 Kδ |τn(u)|

with Kδ = ρ′+ (2δ). Therefore, with probability one, for all n large enough

sup
u∈J<δ

n

|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| 6 Kδ sup
u∈J<δ

n

|τn(u)| 6 K sup
u∈J<δ

n

|εn(u)| .

As already seen, (16) implies F−1(u) < 1/(1 − u)1/6. As a consequence, with
probability one it ultimately holds

√
n

∫

J<δ
n

|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| du 6 K
√
n

∫

Jn

εn(u)du

6 K
√

log logn

∫

Jn

F−1(u)√
1− u

du 6 Kn(β−1)/3
√

log logn

which vanishes as n→ +∞. We conclude that
√
nIJ>

n
→ 0 almost surely.

Step 3. The convergence of IKn
is weaker than in probability.

Lemma 24 Assume (FG), (C) and (CFGD). There exists β ∈ (1/2, 1) such
that for any choice of λ > 0 and ε > 0 one can find u ∈ (1/2, 1) and n0 > 0
such that, for all n > n0,

P
(√
nIKn

> λ
)

< ε.

Proof. Fix δ > 0 and consider

K<δ
n = {u ∈ Kn : 0 < τ(u) < δ} , K>δ

n = {u ∈ Kn : τ(u) > δ} .
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The claimed result holds for IK>δ
n

by applying Lemma 25 from [2] with δ = τ0
and u = F (M). Let us apply Lemma 20 to get, for K > sup|x|<2δ ρ

′
c(x),

√
nIK<δ

n
=

√
n

∫

K<δ
n

|ρc (τ(u) + τn(u))− ρc (τ(u))| du 6 K

∫

K<δ
n

|βn(u)| du

6 K

∫

Kn

(
∣

∣BX
n (u)

∣

∣

hX(u)
+

∣

∣BY
n (u)

∣

∣

hY (u)

)

du+

∫

Kn

(
∣

∣ZX
n (u)

∣

∣

hX(u)
+

∣

∣ZY
n (u)

∣

∣

hY (u)

)

du.

The first two terms satisfy

E

(

∫

Kn

∣

∣BX
n (u)

∣

∣

hX(u)
du

)

6

∫

Kn

√
1− u

hX(u)

E
(∣

∣BX
n (u)

∣

∣

)

√

u(1− u)
du

6

∫ 1

u

F−1(1− u)√
1− u

du 6 3 (1− u)1/3

and the last two terms obey, with probability one as n→ +∞,

∫

Kn

∣

∣ZX
n (u)

∣

∣

hX(u)
du 6 sup

u∈Kn

∣

∣ZX
n (u)

∣

∣

∫

Kn

F−1(1− u)

1− u
du

6
1

nυ

∫ 1−jn/n

u

F−1(1− u)

1− u
du

6
1

nυ

∫ 1−jn/n

u

1

(1− u)7/6
du 6

6

nυ
n(1−β)/6

which vanishes if β > 1− 6υ is chosen close enough to 1. �

Step 4. Here we recall that (C2) with b± > 1 and (15) respectively imply
(C3) and (CFG) in [2]. Clearly steps 4 and 5 of [2] remain true in the current
framework and lead to the same conclusion as the main theorem in the latter
paper, whence Theorem 9. The new case to conclude with is b = 1. Since we
almost surely have

0 6 |τn(u)| < τ = min
u∈L

τ(u)

for all n large enough, we only deal with ρ+. Assuming that b+ = 1 and ρ+(x) =
xL+(x) we have, for some ε > 0 such that Lε ⊂ (0, 1) is an ε-neighborhood of
L,

∣

∣

∣

∣

∣

√
n

∫

L
(ρ+(τ(u) + τn(u))− ρ+(τ(u))) du−√

n

∫ u

u

ρ′+(τ(u))τn(u)du

∣

∣

∣

∣

∣

6

√
n

2
sup
u∈Lε

∣

∣ρ′′+(τ(u)
∣

∣

∫ u

u

τ2n(u)du 6
K√
n

∫ u

u

β2
n(u)du

which almost surely vanishes by the law of the iterated logarithm. Thus we
can conclude as in [2] by combining this with the previous steps 1, 2, 3. In
particular, the limiting variance is finite as a consequence of (15).
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5.3 The general case

We now prove Theorem 11. Recall that (FG0) implies the existence of 0 = u0 <
u1 < ... < uκ = 1 such that F−1(uk) = G−1(uk) and Ak = (uk−1, uk) ⊂ E or
Ak ⊂ D for k = 1, ..., κ. We now study the mixed case where at least one of
these intervals is included in E and one in D, so that κ > 2. Consider, using
notation (48),

√
n(Wc(Fn,Gn)−Wc(F,G)) =

√
n

κ
∑

k=1

IAk
.

Let 0 6 λ < min16k6κ(uk−uk−1)/2. Define the intervalsA+
k,λ = (uk−1, uk−1 + λ) ⊂

Ak for 2 6 k 6 κ and A−
k,λ = (uk − λ, uk) ⊂ Ak for 1 6 k 6 κ − 1. If Ak ⊂ D

we have F−1(u) 6= G−1(u) for u ∈ A+
k,λ ∪ A−

k,λ. If Ak ⊂ E the intervals A+
k,λ

and A−
k,λ are assumed to be empty instead. Consider first the intervals A+

k,λ for
2 6 k 6 κ and set 0 < u− < u1 < uκ−1 < u+ < 1. Since

lim
n→+∞

sup
u−<u<u+

∣

∣

∣

∣

βn(u)√
n

∣

∣

∣

∣

= 0 a.s.

we have, by (C2), for K = supu−<u<u+
(ρ′−(2 |τ(u)|), ρ′+(2 |τ(u)|)) < +∞,

lim
n→+∞

sup
u−<u<u+

ρc(βn(u)/
√
n)

|βn(u)/
√
n| 6 K a.s.

Therefore, in view of step 4 in the previous proof for F 6= G we get

√
n
∣

∣

∣IA+

k,λ

∣

∣

∣ 6 K

∫

A+

k,λ

|βn(u)| du 6
K

h

(

∫

A+

k,λ

|Bn(u)| du+

∫

A+

k,λ

|Zn(u)| du
)

where h = minu−<u<u+
min(hX(u), hX(u)) > 0. Lemma 20 further yields

lim
n→+∞

P

(√
n
∣

∣

∣IA+

k,λ

∣

∣

∣ > α
)

6 P

(

∫

A+

k,λ

|B(u)| du > 2αh

K

)

for any α > 0 and all 2 6 k 6 κ, where B has the same law as Bn = BX
n −BY

n .
The latter upper bound vanishes as λ→ 0. A similar conclusion holds for A−

k,λ

and 1 6 k 6 κ − 1. Write A∗
1,λ = A1\A−

1,λ, A
∗
κ,λ = Aκ\A+

κ,λ and A∗
k,λ =

Ak\(A+
k,λ ∪ A−

k,λ) for 2 6 k 6 κ− 1.

(i) Consider the case 1 < b < 2. Fix λ > 0 arbitrarily small and write

√
n(Wc(Fn,Gn)−Wc(F,G)) =

√
nIE +

√
nI∗D,λ +

√
nI±D,λ (54)

where

IE =
∑

Ak⊂E

IA∗
k,λ

=
∑

Ak⊂E

IAk
, I∗D,λ =

∑

Ak⊂D

IA∗
k,λ
, I±D,λ =

∑

Ak⊂D

IA+

k,λ
∪A−

k,λ
.
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We just proved that

lim
λ→0

lim
n→+∞

P

(√
nI±D,λ > α

)

= 0.

Since b > 1 we have vn/
√
n→ 0 as n→ +∞. Therefore step 1 to 4 of the proof

4.1 when F = G show that

lim
n→+∞

√
nIE = lim

n→+∞

√
n

vn
vnIE = 0 in probability.

In the case κ > 3 then for all 2 6 k 6 κ − 1 with Ak ⊂ D we have δk =
infu∈A∗

k
|τ(u)| > δ > 0 and τ(u) has constant sign on Ak. It follows from

step 1 to 4 of the proof 4.2 when F 6= G that the weak limit of
√
nI∗D,λ is

∫

Dλ
ρ′c(τ(u))B(u)du where Dλ =

⋃

Ak⊂D IA∗
k,λ

and B(u) = BX(u)/hX(u) −
BY (u)/hY (u). By letting λ→ 0 we conclude that

√
n(Wc(Fn,Gn)−Wc(F,G)) →weak

∫

D

ρ′c(τ(u))
B(u)

h(u)
du

which is easily seen to have the normal distribution N (0, σ2
D).

(ii) Assume that b = 1. Starting again from (54) we again obtain that

√
nI∗D,λ →weak

∫

Dλ

ρ′c(τ(u))B(u)du

while the steps 1 to 4 of the proof 4.1 now entails, for vn from (19),

vnIE →weak π+

∫

E

1{B(u)>0} |B(u)| du+ π−

∫

E

1{B(u)<0} |B(u)| du.

Finally observe that (C4) implies
√
n/vn → L+(0)/π+ and

√
n/vn → L−(0)/π−

as n→ +∞. As previoulsy we conclude by letting λ→ 0.

5.4 A special case : F = G and b = 2

We establish Theorem 14.

Step 0. Assume (C0), ρc(x) = x2 for |x| < x0, E = R, (FG1), (FG2) and

lim
u→0

u

h(u)
= lim

u→1

1− u

h(u)
= 0,

∫ 1

0

u(1− u)

h2(u)
du < +∞.

This proof partially follows the line of the proof of Lemma 2.4 of [10].

Step 1. We show that sup1/n6u61−1/n

∣

∣F
−1
n (u)−G

−1
n (u)

∣

∣→ 0 in probability, so
that the behaviour of ρc near 0 only matters. Write h = hX . Define Ui = F (Xi)
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and Vi = F (Yi), i = 1, ..., n. Consider nIIn
with in = 1 and

IIn
=

∫ 1

1−1/n

(

F
−1
n (u)−G

−1
n (u)

)2
du

=

∫ 1

1−1/n

(

F−1(U(n))− F−1(V(n))
)2

6
2

n

(

F−1(U(n))− F−1(1− 1

n
)

)2

du

+
2

n

(

F−1(V(n))− F−1(1 − 1

n
)

)2

.

By the mean theorem, for some random U∗
(n) between U(n) and 1− 1/n,

F−1(U(n))− F−1(1− 1

n
) =

U(n) − 1 + 1/n

h(U∗
(n))

=
U(n) − 1 + 1/n

h(U(n))

h(U(n))

h(U∗
(n))

.

By a classical argument – see [BFK17] – we have, thanks to (FG2),

max

(

h(U(n))

h(U∗
(n))

,
h(U∗

(n))

h(U(n))

)

6 max

(

1− U(n)

1− U∗
(n)

,
1− U∗

(n)

1− U(n)

)K

.

Now recall that U(n) − 1 + 1/n = OP (1/n) and d(n) = n(1 − U(n)) →weak d(∞)

where d(∞) is a positive fintite random variable. Hence

(

F−1(U(n))− F−1(1− 1

n
)

)2

6
(U(n) − 1 + 1/n)2

h2(U(n))
max

(

1

d(n)
, d(n)

)2K

=
(1− U(n))

2

h2(U(n))

(

1− 1

d(n)

)2

max

(

1

d(n)
, d(n)

)2K

where (1−U(n))
2/h2(U(n)) → 0 almost surely and

(

1− 1/d(n)
)2

max
(

1/d(n), d(n)
)2K

=
OP (1). Hence nIIn

= oP (1).

Step 2. Now consider, for jn = nβ,

nIJn
=

∫ 1−1/n

1−jn/n

(

βX
n (u)− βY

n (u)
)2
du.

Lemma 25 There exists a sequence of processes BX
n having the same law as

BX of (18) such that

Ξn = sup
1/n6u61−1/n

∣

∣βX
n (u)− B

X
n (u)

∣

∣

h(u)√
1− u

= OP (1).

Proof. It is an immediate extension of Corollary 4.2.1. page 382 of [5]
starting from (4.2.2) of Theorem 4.2.1 of [5]. �
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As a consequence,

P (nIJn
> 3α) 6 P

(

∫ 1−1/n

1−jn/n

(

B
X
n (u)− B

Y
n (u)

)2
du > α

)

+ 2P

(

Ξ2
n

∫ 1−1/n

1−jn/n

1− u

h2(u)
du > α

)

hence nIJn
→ 0 in probability. We conclude the proof by applying the steps 3

to 5 in Section 5.1 with many simplifications since L(x) = 1 now.
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