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ABSTRACT

We estimate contrasts
∫ 1

0
ρ(F−1(u)−G−1(u))du between two continuous distributions F and G on

R such that the set {F = G} is a finite union of intervals, possibly empty or R. The non-negative
convex cost function ρ is not necessarily symmetric and the sample may come from any joint
distribution H on R2 with marginals F and G having light enough tails with respect to ρ. The rates of
weak convergence and the limiting distributions are derived in a wide class of situations including the
classical Wasserstein distances W1 and W2. The new phenomenon we describe in the case F = G
involves the behavior of ρ near 0, which we assume to be regularly varying with index ranging from 1
to 2 and to satisfy a key relation with the behavior of ρ near∞ through the common tails. Rates are
then also regularly varying with powers ranging from 1/2 to 1 also affecting the limiting distribution,
in addition to H .
Central limit theorems, Generalized Wasserstein distances, Empirical
processes, Strong approximation, Dependent samples, Non-parametric
statistics, Goodness-of-fit tests.
62G30, 62G20, 60F05, 60F17

1 Introduction

1.1 Motivation

In [3] we addressed the problem of estimating the distance between two asymptotically well separated and continuous
distributions on the real line R, with respect to a large class of generalized Wasserstein costs. The framework was
the same as in [12] and is very simple. A sequence of independent and indentically distributed (i.i.d.) random
variables (r.v.) taking values in R2 is available. The marginals have distinct continuous cumulative distribution function
(c.d.f.) F and G. For instance, each couple may result from simultaneous experiments. We estimated contrasts∫ 1

0
c(F−1(u), G−1(u))du between F and G by the natural and easily computed non-parametric plug-in estimator∫ 1

0
c(F−1

n (u),G−1
n (u))du. Here F−1 is the generalized inverse of F , Fn is the empirical c.d.f., and c is a non-negative

cost. The almost sure (a.s.) consistency of this estimator being easily established under minimal assumptions we mainly
developed a sharp method of proof of the Central Limit Theorem (CLT) assuming that the tails of F and G are distinct
enough and compatible with the cost c. The most original contribution in [3] was to investigate rather deeply the latter
relationship in the untrimmed case and for dependent samples. This showed that the problem can not be reduced to the
study of each marginal

∫ 1

0
c(F−1

n (u), F−1(u))du and instead requires crossed assumptions on tails, costs and densities
beyond moments. However the special case of the distance W1 was not captured, asymptotically non-symmetric costs
or asymptotically too close marginals were not allowed, the case F = G and the one marginal case were not considered.
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In the present paper – the first version of this preprint is [2] – the general setting remains exactly the same, but we
investigate the most important situations for statistical applications, among which the goodness-of-fit hypothesis F = G,
the alternative hypothesis where F 6= G on R and may have arbitrarily close tails, and the intermediate hypothesis
where the two situations F = G and F 6= G are encountered, but alternate along a finite number of intervals. The
distance W1 and non-symmetric costs are now allowed provided that they are regularly varying at both sides of 0. We
focus on the new difficulties, however we often refer to [3] to borrow some long arguments and apply already developed
tools. New assumptions arise that again illustrate how delicate tail integrals of transforms of empirical quantile functions
can be for heavy-tailed distributions.

The method of proofs relies on a careful subdivisions of the integrals and events, and a joint approximation of the quantile
processes

√
n(F−1

n (u)− F−1(u)), u ∈ (0, 1) by properly scaled Brownian bridges on an appropriate sub-interval. As
a matter of fact, it is not possible to directly apply a functional delta-method since the Hadamard differentiability of
F → F−1 can not be extended to encompass distribution with densities arbitrarily close to 0 and in particular with
unbounded supports. Moreover the Brownian approximation - weak or strong - of the quantile processes suffer many
problems near 0 and 1 due to extreme values. Lastly, the general costs we use - even the simple Wasserstein costs -
make the problem more difficult to handle and shows up to be determinant for both rates and limits in the case F = G.

Let us mention related results in the framework of univariate probability distributions. The commonly used p-Wasserstein
distance Wp(F,G) is

W p
p (F,G) =

∫ 1

0

|F−1(u)−G−1(u)|pdu. (1)

Many authors were interested in the convergence of W p
p (Fn, F ), see e.g. the survey paper [4] or [8, 9, 1]. Up to

our knowledge there are only two recent works studying the convergence of W 2
2 (Fn,Gn) [10, 14], for independent

samples. The results of [10] are valid in any finite dimension with the drawback that the estimator is not explicit from
the data and the centering in the central limit theorem (CLT) is the biased EW 2

2 (Fn,Gn) rather than W 2
2 (F,G) itself,

moreover the limiting variance has no closed form expression and seems not easy to estimate. In [14] the estimator is
the same as our’s, howewer only discrete distributions and W2 distance are considered. Notice also that in the early
work [13] a trimmed version of the Mallows distance W 2

2 (Fn,Gn) is studied, however under an implicit assumption on
the level of trimming which has to hold in probability. Moreover in the case of dependent samples, a trimmed version
of W 2

2 (Fn,Gn) is studied in [12].

We investigate below a larger class of convex costs, even larger than in [3]. The samples are possibly not independent,
and the conditions relating the tails of F and G to the cost function c are easily checked. Combined to our technique of
proof they allow to control the critical parts of the untrimmed integrals in a weaker sense than in probability, hence
our explicit sufficient conditions are lighter than the above mentionned implicit ones. We obtain a general CLT for
Wc(Fn,Gn) when F = G are continuous, thus providing a new class of goodness-of-fit and comparison tests with
exact rates and non-degenerate limits. In order to evaluate the power of these tests we study the weak convergence
under many alternatives F 6= G among which the case where F = G on large intervals.

1.2 Setting

The p-Wasserstein distance between two c.d.f. F and G on R is defined by

W p
p (F,G) = min

X∼F,Y∼G
E|X − Y |p (2)

where X ∼ F, Y ∼ G means that X and Y are joint real r.v. having c.d.f. F and G respectively. The minimum in (2)
is (1). To any non negative function c(x, y) from R2 to R let associate the Wasserstein type cost

Wc(F,G) = min
X∼F,Y∼G

Ec(X,Y ). (3)

We are interested in triplets (c, F,G) such that Wc(F,G) is finite and can be estimated by using an explicit CLT. To
guaranty that an analogue of (1) exists we consider cost functions defining a negative measure on R2, hence satisfying

c(x′, y′)− c(x′, y)− c(x, y′) + c(x, y) 6 0, x 6 x′, y 6 y′. (4)

If c satisfies (4) then for any functions a and b, a(x) + b(y) + c(x, y) satisfies (4). In particular c(x, y) = −xy and
(x− y)2 = x2 + y2− 2xy satisfy (4). More generally if ρ is a convex real function then c(x, y) = ρ(x− y) satisfies (4).
Two important special cases are the symmetric power functions |x−y|p, p > 1, associated toWp and the non-symmetric
contrast functions c(x, y) = (x − y)(α − 1x−y<0) associated to the αth quantile, 0 < α < 1. The following result
yields the minimum in (3) in a closed form analogous to (1).
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Theorem 1 (Cambanis, Simon, Stout [5]) If c satisfies (4) then

Wc(F,G) =

∫ 1

0

c(F−1(u), G−1(u))du.

Let (Xi, Yi)16i6n be an i.i.d. sample of a random vector with joint c.d.f. H on R2 and marginal c.d.f. F and G
on R. Write Fn and Gn the random empirical c.d.f. built from the two marginal samples. Thus Fn and Gn are not
independent in general. Consider a cost function c satisfying (4). Let X(i) (resp. Y(i)) denote the ith order statistic of
the sample (Xi)16i6n (resp. (Yi)16i6n), i.e. X(1) 6 . . . 6 X(n). By Theorem 1, the non-parametric statistic

Wc(Fn,Gn) =
1

n

n∑
i=1

c(X(i), Y(i)) (5)

is a natural estimator of Wc(F,G). Now, the c(X(i), Y(i))’s being neither independent nor with identical distributions
the statistic (5) is not classical - such as i.i.d. mean, L-statistic, U-statistic etc. Notice also that Wc(F,G) does not
depend on the generally unknown H whereas the r.v. Wc(Fn,Gn) strongly depends on H through its distribution. In
[3] we established the CLT √

n (Wc(Fn,Gn)−Wc(F,G))→weak N
(
0, σ2

)
whenever the tails of F and G differ from at least τ > 0 and c(x, y) is asymptotically ρ(x− y) with ρ non-negative,
symmetric, convex. The influence of H only appeared in the limiting variance σ2 = σ2(H, c) together with c. The
sufficient conditions relating explicitly c, F and G were designed to carefully control the extremes, define sharply the
truncation level and approximate the underlying joint quantile processes. We now intend to complete the picture by
extending this CLT to other important cases, in particular τ = 0 and non symmetric costs ρ.

1.3 Overview

Hereafter we consider a cost c(x, y) = ρc(x− y) where ρc is a non-negative real convex function such that ρc(0) = 0,
and is not assumed to be symmetric. In the spirit of [3] we separate out three sets of assumptions, labeled (FG), (C)
and (CFG) respectively.

First, (FG) concerns the regularity and tails of F and G, and especially their density-quantile function. Conditions
(FG) are satisfied by distributions having regular tails, among which all classical probability distributions.

Second, (C) restricts the rate of increase at infinity of ρc and the regular variation at 0 of ρc, without even assuming
differentiability at 0. Conditions (C) encompass a large class of Wasserstein type costs c and the distance W1 is now
allowed, together with non-symmetric variants of Wasserstein distances W p

p , p > 1, possibly with slowly varying
factors – a non trivial extension – or exponential and over-exponential costs.

The conditions (FG) and (C) are thus designed to separately select a class of probability distributions and admissible
costs.

The third set (CFG) aims at mixing the requirements on c, F and G making them compatible. We distinguish between
(CFGE), (CFGD) and (CFGED) depending on the situations {F = G} = R or {F 6= G} = R or {F = G} 6= R
and {F 6= G} 6= R, respectively. The joint distribution H of the couples is not restricted and again only affects the
limiting distributions. In order to exhibit an exact rate of convergence it shows up that the tail constraints on F and G
that naturaly depend on ρ at∞ also strongly depend on the exact regular variation of ρc at 0 whenever F = G in tails,
that is the key requirement of (CFGE) and (CFGED).

When dealing with empirical Wasserstein type integrals, to adapt the functional delta method one would need to truncate
and then to assume a convergence in probability of the extremal parts. This would be a restriction excluding many
distributions F and G, depending on where the integral is non-adaptively trimmed. Moreover, proving the validity
of the assumed convergence of the truncated parts would require variants of Steps 1, 2, 3 of our proofs. In contrast,
(CFGE) and (CFGD) explicitly relate the tails to the cost in such a way that the implicit truncation levels can be
defined appropriately.

Before entering the mathematical details of these assumptions let us present two consequences of our results. The
regular variation of tails is in the sense of (i) in Section 2.2 below and→weak denotes the convergence in distribution.

Proposition 2 Consider the Wasserstein distance W p
p for 1 < p < 2. Assume that F = G is two times differentiable,

logF (x) and log(1 − F (x)) are regularly varying as |x| → ∞, and F (x)(1 − F (x)) 6 C|x|−(
2(p+2)
2−p +ε) for some

3
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ε > 0, C > 0 and all |x| large enough. Then it holds

n
p
2W p

p (Fn,Gn)→weak

∫ 1

0

|B(u)|p du,

where B is an explicit centered Gaussian process and the limiting r.v. is positive and finite.

The restriction p < 2 is not surprising since when X and Y are Gaussian and the two samples are independent, the
limiting random integral is a.s. infinite. More precisely, in the case p = 2 we establish the weak convergence of
nW 2

2 (Fn,Gn) by requiring F to be sub-Gaussian, as in [9] for nW 2
2 (Fn, F ).

In the case p = 1 we get, with the same Gaussian process B as above, the following result, which seems new for
W1(Fn,Gn) = ||Fn −Gn||1.

Proposition 3 Assume that the set {F = G} is a finite union of non empty intervals of R, that F,G are two times
differentiable and that logF (x), logG(x), log(1− F (x)) and log(1−G(x)) are regularly varying as |x| → ∞. Let
r = 2 if {F = G} is compact, and r = 6 otherwise. Assume that max(F (x)(1−F (x)), G(x)(1−G(x))) 6 C|x|−(r+ε)

for some ε > 0, C > 0 and all |x| large enough. Then it holds
√
n (W1(Fn,Gn)−W1(F,G))→weak

∫
F−1 6=G−1

B(u)du+

∫
F−1=G−1

|B(u)| du

and the limiting r.v. is finite.

As can be seen in the two previous results this paper focuses on the probability distributions with infinite support.
Nevertheless our results also hold for compactly supported probability distributions with derivable densities. At the end
of Section 3 we provide simplified sufficient assumptions in the compactly supported case.

The paper is organized as follows. Assumptions are discussed in Section 2. In Section 3 we state our main results in the
form of CLT’s for Wc(Fn,Gn)−Wc(F,G) at various rates. We propose a few perspectives for applications in Section
4. All the results are proved in Section 5.

2 Assumptions

2.1 Assumptions (FG)

Consider a sequence (Xn, Yn) ∈ R2 of independent random vectors having the same c.d.f. H as (X,Y ). The
distribution H may have a density or not. However we assume that the marginal c.d.f.’s F of X and G of Y have
support R and positive densities f = F ′ and g = G′. Let (E,D) be the partition of (0, 1) defined by

E =
{
u : F−1(u) = G−1(u)

}
, D =

{
u : F−1(u) 6= G−1(u)

}
. (6)

If u shifts infinitely many times between E and D it becomes difficult to control the stochastic integral Wc(Fn,Gn).
The case where

∣∣F−1(u)−G−1(u)
∣∣ > τ > 0 as u → 1 and u → 0 has been treated in details in [3]. We allow the

diagonal
∣∣F−1(u)−G−1(u)

∣∣ 6 τ and thus encompass the case E = (0, 1) together with some tractable situations
where E 6= ∅ and D 6= ∅. Let assume that there exists a finite integer κ > 2 and 0 = u0 < u1 < ... < uκ = 1 such
that, writing Ak = (uk−1, uk),

(FG0) F−1(uk) = G−1(uk) and Ak ⊂ E or Ak ⊂ D, for k = 1, ..., κ.

This covers three generic cases, namely E = (0, 1), D = (0, 1) and when D 6= ∅, E 6= ∅ are finite unions of intervals.
The exponential rate of decrease of the right and left tails of F and G are defined to be, for x ∈ R+,

ψ+
X(x) = − logP(X > x), ψ+

Y (x) = − logP(Y > x),

ψ−X(x) = − logP(X < −x), ψ−Y (x) = − logP(Y < −x).

Only ψ+
X and ψ+

Y will be considered in subsequent proofs where arguments given for the right hand tail u→ 1 in the
integrals Wc(F,G) and Wc(Fn,Gn) work similarly for the left hand tail u→ 0. Define the density quantile functions
hX = f ◦ F−1 and hY = g ◦G−1 then assume

(FG1) F,G ∈ C2(R), f, g > 0 on R.

(FG2) sup
0<u<1

min(u, 1− u)
∣∣(log h(u))

′∣∣ < +∞ for h = hX , hY .

(FG3) sup
0<u<1

min(u, 1− u)

(|Γ−1(u)|+ 1)h(u)
< +∞ for (h,Γ) = (hX , F ) or (hY , G).

Observe that (FG1) and (FG2) are classical in the context of approximation of quantile processes – see e.g. [6].

4
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Remark 4 Rewriting (FG2) and (FG3) we get

sup
x∈R

min(F (x), 1− F (x))

f(x)

(
1

|x|+ 1
+
|f ′(x)|
f(x)

)
< +∞,

sup
x∈R

min(G(x), 1−G(x))

g(x)

(
1

|x|+ 1
+
|g′(x)|
g(x)

)
< +∞.

In Proposition 5 of [3] we provided a simple sufficient condition for (FG1), (FG2), (FG3) based on the regular
variation of ψ±X and ψ±Y . All classical tail distributions satisfy the conditions (FG).

2.2 Notation for regularity

To specify the allowed cost functions c(x, y) the following definitions are required. As usual for k ∈ N∗ and I ⊂ R
let Ck(I) denote the set of functions that are k times continuously differentiable on I and C0(I) the set of continuous
functions on I . In forthcoming assumptions and proofs we consider functions defined either on (0, x0) or on (y0,+∞)
for some 0 < x0 < y0. We distinguish the two domains by using a variable x→ 0 and a variable y → +∞. In [3] only
large values y ∈ (y0,+∞) played a role in terms of regular variation, so that we keep the same setting in (i) below.
Unexpectedly, it turns out that the two domains interfere when |F −G| is arbitrarily small, and we need (ii).

(i) Regularity on (y0,+∞). LetM2((y0,+∞)) be the subset of functions l ∈ C2((y0,+∞)) such that l′′ is monotone
on (y0,+∞). Write RV (+∞, γ) the set of regularly varying functions at +∞ with index γ > 0. If γ = 0 we restrict
ourselves to slowly varying functions L at +∞ such that

L′(y) =
ε(y)L(y)

y
, lim

y→+∞
ε(y) = 0. (7)

This weak restriction is explained at Section 6 of [3]. In order to find distributions F and G compatible with the cost c
we further impose

L′(y) >
l1
y
, l1 > 1, y > y0. (8)

For γ = 0, introduce

RV2(+∞, 0) = {L : L ∈M2 ((y0,+∞)) such that (7), (8) hold}
and for γ > 0,

RV2(+∞, γ) = {l : l ∈M2 ((y0,+∞)) , l(y) = yγL(y) such that L′ obeys (7)} .
(ii) Regularity on (0, x0). We consider positive slowly varying functions L at 0,

lim
x↘0

L(θx)

L(x)
= 1 for any θ > 0. (9)

For b > 1 let introduce

RV2(0, b) =
{
ρ : L ∈ C2 ((0, x0)) , ρ(x) = xbL(x) such that L satisfies (9)

}
.

For b = 1 let define

RV2(0, 1) = {ρ : L ∈ C2 ((0, x0)) , ρ(x) = xL(x) such that L satisfies (9), (10)}
where we impose the following finite limit

lim
x↘0

L(x) = L(0) ∈ R+. (10)

2.3 Assumptions (C)

We consider costs such that, for some 0 < x0 < y0 < +∞,

(C0) c(z, z′) = ρc(z − z′) > 0, z, z′ ∈ R, c(0, 0) = 0, ρc is convex.
(C1) ρc(x) = ρ−(−x)1x60 + ρ+(x)1x>0, x ∈ R, ρ± ∈ C2((0,+∞)).

(C2) ρ+(x) = xb+L+(x) > 0, 0 < x 6 x0, ρ+ ∈ RV 2(0, b+), b+ > 1,
ρ−(x) = xb−L−(x) > 0, 0 < x 6 x0, ρ− ∈ RV 2(0, b−), b− > 1.

(C3) ρ+(y) = exp(l+(y)), y > y0, l+ ∈ RV 2(+∞, γ+), γ+ > 0,
ρ−(y) = exp(l−(y)), y > y0, l− ∈ RV 2(+∞, γ−), γ− > 0.

5
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Notice that ρ±(0) = 0 and ρ± are positive, continuous, convex and increasing on R+. Define ρ (x) =
max(ρ+(x), ρ−(x)) and b = min(b+, b−). For 0 6 x 6 x0 it holds

ρ(x) = xbL(x), L(x) =

{
L+(x) if b+ < b−,
L−(x) if b− < b+,

max(L+(x), L−(x)) if b+ = b−.
(11)

Further assume that

(C4) lim
x→0

ρ+(x)

ρ(x)
= π+, lim

x→0

ρ−(x)

ρ(x)
→ π−, π+, π− ∈ [0, 1] .

Typical costs satisfying the conditions (C) are the following.

Example 5 Let a = (a−, a+) be such that a± > 0 and b = (b−, b+) be such that b± > 1. Then

ca,b(z, z
′) = a− (z′ − z)b− 1z<z′ + a+ (z − z′)b+ 1z′<z

satisfies (C) with γ− = γ+ = 0 and ε(y) = O(1/ log y). This includes the Wasserstein distance W p
p , p > 1, by taking

a = (1, 1) and b = (p, p). It is possible to define costs mixing the Wasserstein distance W p
p , p > 1 near 0 and W q

q ,
q > 1 away from 0. Note that de facto when E is not compact we will restrict to p < 2 near 0 in order to include at
least the Gaussian distributions in (CFGE) and (CFGED) below. For instance the cost ρ(x) = |x|(1 + |x|) is well
suited for distributions with heavier tails than Gaussian.

2.4 Assumptions (CFG)

The joint influence of l±, L± and b± on the allowed tails F−1 and G−1 is expressed as follows. Remind the sets E and
D from (6). We need three different assumptions, each corresponding to the generic cases E = (0, 1), D = (0, 1) and
when at least one interval is included in E and one in D.

Studying the case E = (0, 1) we worked out the following conditions (CFGE). They only deal with the behavior of
F,G, ρc at infinity but also involve the orders b± > 1 of the local regular variation (C2) near zero that indeed rule
the CLT rate. The case b− = 2 or b+ = 2, which is restricted to sub-Gaussian distributions, is treated separately at
Theorem 11.

Assumption (CFGE). Assume that b− < 2 and b+ < 2. Assume that for some θ2 > 0 and

(l, ψ) ∈
{

(l+, ψ
+
X), (l−, ψ

+
X), (l−, ψ

−
X), (l+, ψ

−
X)
}

(12)

we have,
(i) if 1 < b < 2, for all y > y0,

l ◦ ψ−1(y) 6

(
1− b

2

)
y + logL (exp(−y/2))− 2 logψ−1(y)− θ2 log y, (13)

and,
(ii) if b = 1, for all y > y0,

l ◦ ψ−1(y) 6
y

2
− 2 logψ−1(y)− θ2 log y. (14)

From the study of the case D = (0, 1) the conditions (CFGD) that comes out only deal with the behavior of F,G, ρc
at infinity and the CLT rate is standard. The special case where

∣∣F−1(u)−G−1(u)
∣∣ > τ > 0 as u → 1 and u → 0

under (C2) with b > 1 is already covered by [3]. In order to cover more cases we further impose (16) and allow b = 1.
Therefore (CFGD) extends the condition (CFG) in [3].

Assumption (CFGD). Let θ−, θ+ be the parameter θ > 1 of condition (CFG) in [3] for the left and right tails
respectively.
(i) For any (l, ψ) from (12) and θ = θ+ if l = l+ or θ = θ− if l = l− we have

(ψ ◦ l−1)′(y) > 2 +
2θ

y
, y > y0. (15)

(ii) If
lim inf
u→1

∣∣F−1(u)−G−1(u)
∣∣ = 0 or lim inf

u→0

∣∣F−1(u)−G−1(u)
∣∣ = 0

6
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and for (l, ψ)=(l+, ψ
+
X), (l−, ψ

+
Y ) or (l, ψ) = (l−, ψ

−
X), (l+, ψ

−
Y ) respectively, assume that for some θ2 > 0 it holds

l ◦ ψ−1(y) 6
y

2
− 2 logψ−1(y)− θ2 log y, y > y0. (16)

When D 6= ∅ and E 6= ∅, two situations arise. Firstly, if E is compact in (0, 1), that is (A1 ∪Aκ) ⊂ D we only need
(CFGD). Secondly if at least one among A1 or Aκ is included in E, which means that F = G on an infinite interval,
then we need to also impose (CFGE) on the involved intervals.

Assumption (CFGED). Assume (CFGD). If A1 ⊂ E then assume (CFGE) for (l, ψ)=(l−, ψ
−
X), (l+, ψ

−
X). If

Aκ ⊂ E then assume (CFGE) for (l, ψ) = (l−, ψ
+
X), (l+, ψ

+
X).

Remark 6 If γ± > 0 we have θ± > 2 and, if γ± = 0 we have, as in [3],

θ± > 2− lim inf
y→+∞

log(1/ε±(y))

log l±(y)

where ε±(y) corresponds to the function ε(y) of (7) applied to L(y) = l±(y).

Remark 7 As will be seen in the proofs, (CFGE) and (FG3) imply that we can find b′ such that 1 6 b < b′ < 2 and∫ 1

0

(√
u(1− u)

hX(u)

)b
du 6

∫ 1

0

( ∣∣F−1(u)
∣∣√

u(1− u)

)b′
du < +∞ (17)

which is a little stronger than the necessary condition that the left hand integral is finite. By using F−1(u) =
ψ−1(log(1/(1− u))), (13) also reads

(F−1(u))2ρ
(
F−1(u)

)
6

L
(√

1− u
)

(1− u)1−b/2(log(1/(1− u)))θ2
, u > u0.

In particular, if L(x) = 1 we deduce that (FG) and (CFGE) imply

P (X > y) 6

(
1

y2ρ(y)

)2/(2−b)

, y > y0.

This induces the moment conditions of Propositions 2 and 3.

Example 8 For light tails of Weibull type, ψ(y) = yw, w > 0, (17) is true and (CFGE) requires that l(y1/w) < Cy
as y → +∞ and hence a cost of type l(y) = yγ , y > y0 and l(x) = xb, x < x0, is allowed provided that γ < w and
1 6 b < 2. For heavy tailed distributions such as Pareto, ψ(y) = p log y with index p > 2, the conditions (CFGE),
(CFGD) and (CFGED) induce more constraints. For instance (CFGE) applied with ρc(x) = xb, x < x0, and
l(y) = α log y, y > y0, implies that p > 4/(2− b) and 1 6 α < p(1− b/2− 2/p), hence the minimal requirement on
p is p > 6/(2− b). Choosing ρc(x) = xb on R+ we have α = b and the last constraint becomes p > 2(b+ 2)/(2− b).

3 Statement of the results

Consider the joint Gaussian process G =
{(

BX(u),BY (u)
)

: u ∈ (0, 1)
}

with

BX(u) =
BX(u)

hX(u)
, BY (u) =

BY (u)

hY (u)
, (18)

where (BX , BY ) are two standard Brownian bridges with covariance

cov(BX(u), BX(v)) = cov(BY (u), BY (v)) = min(u, v)− uv, u, v ∈ (0, 1) ,

and cross covariance

cov(BX(u), BY (v)) = H(F−1(u), G−1(v))− uv, u, v ∈ (0, 1) .

The existence of G is proved in [3]. Let B(u) = BX(u)− BY (u), u ∈ (0, 1), that is the Gaussian process driving the
limit distribution in Propositions 2 and 3 as well as in forthcoming results.

7
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We are now ready to state our main results. Remind (11) and set

vn =
1

ρ (1/
√
n)

=
nb/2

L (1/
√
n)

(19)

hence, in our first statement we have K
√
n 6 vn = o(n) for some K > 0. The constants π− and π+ come from (C4).

Our first result concerns F = G.

Theorem 9 Assume (FG), (C), E = (0, 1) and (CFGE), in which case 1 6 b−, b+ < 2. Then

vnWc(Fn,Gn)→weak π−

∫ 1

0

1{B(u)<0} |B(u)|b− du+ π+

∫ 1

0

1{B(u)>0} |B(u)|b+ du

and the limiting r.v. is finite and, if P(X = Y ) < 1, positive.

Remark 10 As shown in [7], and since BX is a centered Gaussian process,

P
(∫ 1

0

∣∣BX(u)
∣∣b du < +∞

)
= 1 is equivalent to

∫ 1

0

(√
u(1− u)

hX(u)

)b
du < +∞.

The latter bound being guaranteed by (CFGE) and (FG3), which imply (17), the finiteness of the limiting r.v. in
Theorem 9 follows.

For light tails one can handle the limiting case b = 2 – here stated with b = b+ = b− = 2 and L(x) = 1 for |x| < x0

for sake of simplicity.

Theorem 11 Assume that E = (0, 1), (FG1), (FG2) and

lim
u→0

u

hX(u)
= lim
u→1

1− u
hX(u)

= 0,

∫ 1

0

u(1− u)

h2
X(u)

du < +∞. (20)

Moreover assume (C0) with ρc(x) = x2 for |x| 6 x0, hence b = b+ = b− = 2. Then

nWc(Fn,Gn)→weak

∫ 1

0

B(u)2du.

Notice that Theorem 11 includes the case Wc = W 2
2 and shows that the cost function only matters at 0.

Example 12 For light tails of Weibull type it holds, for some w > 0,

hX(u) = w(1− u) (log(1/(1− u)))
1−1/w

and (1− u)/h2
X(u) = 1/w ((1− u) log(1/(1− u)))

2(1−1/w). The first condition in (20) is then satisfied for w > 1
and the second for w > 2, so that w > 2 is required. This excludes Gaussian tails, as in Theorem 4.6 in [9].

Remark 13 Theorem 11 requires no assumption on the cost ρ(y) as y → +∞. In particular, (C3) may hold with any
γ+, γ−. Since only sub-Gaussian tails are allowed by (20) the tail part of Wc(Fn,Gn) indeed behaves the same as for
compactly supported distributions. Namely, empirical extremes of both samples remain simultaneously stuck together
very closely to their common deterministic counterpart F−1 that increases very slowly.

Our second main statement is an extension of the main theorem of [3] which now allows F and G to have arbitrarily
close tails.

Theorem 14 Assume (FG), (C), D = (0, 1) and (CFGD). Then
√
n (Wc(Fn,Gn)−Wc(F,G))→weak N

(
0, σ2

)
where

σ2 = E

((∫ 1

0

|ρ′c(F−1(u)−G−1(u))|B(u)du

)2
)
< +∞.

8
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Remark 15 The finiteness and a closed form expression for σ2 = σ2(c,H) have been proved in [3]. We also refer to
the latter paper for explicit examples in the independent samples case.

Our third result shows that if there exists a point, or equivalently an open interval, where F 6= G then the rate is
√
n,

whether E 6= ∅ or not.

Theorem 16 Assume (FG), (C), D 6= ∅ and (CFGED). If 1 < b < 2 then
√
n (Wc(Fn,Gn)−Wc(F,G))→weak N

(
0, σ2

D

)
where

σ2
D = E

((∫
D

|ρ′c(F−1(u)−G−1(u))|B(u)du

)2
)
< +∞.

If b = 1 then, for L±(0) from (10),

√
n (Wc(Fn,Gn)−Wc(F,G))→weak

∫
D

|ρ′c(F−1(u)−G−1(u))|B(u)du

+ 1{b−=1}L−(0)

∫
E

1{B(u)<0} |B(u)| du

+ 1{b+=1}L+(0)

∫
E

1{B(u)>0} |B(u)| du.

Remark 17 In the second part of Theorem 16 the first term in the limiting r.v. has distribution N
(
0, σ2

D

)
and is

correlated in an explicit way to the other two terms. Theorem 16 also shows that whenever 1 < b < 2 Theorem 14
remains true if F and G are not stochastically ordered but cross each other at a finite number of points, since this
implies σ2

D = σ2.

The next corollary concerns the L1-distance W1(Fn,Gn) = ‖Fn − Gn‖L1
. Remind that ca,1(z, z′) =

a− (z′ − z) 1z<z′ + a+ (z − z′) 1z′<z .

Corollary 18 Assume (FG), (C) and (CFGED). Then
√
n
(
Wca,1(Fn,Gn)−Wca,1(F,G)

)
→weak

∫
D

(
a−1{F−1(u)<G−1(u)} + a+1{F−1(u)>G−1(u)}

)
B(u)du

+

∫
E

(
a−1{B(u)<0} + a+1{B(u)>0}

)
|B(u)| du

and, in particular for a− = a+ = 1,

√
n (W1(Fn,Gn)−W1(F,G))→weak

∫
D

B(u)du+

∫
E

|B(u)| du.

It is easily seen that straightforward adaptations of the proof of Theorems 9 to 11 leads to analog results for√
n (Wc(Fn, G)−Wc(F,G)) and vnWc(Fn, F ) by just replacing B(u) = BX(u) − BY (u) with BX(u). In par-

ticular we get the following corollary of Theorem 9.

Corollary 19 Let 1 6 p < 2. Assume that F satisfies (FG) and has tails lighter than a Pareto tail with index strictly
larger than 2(p+ 2)/(2− p). Then

np/2W p
p (Fn, F )→weak

∫ 1

0

∣∣BX(u)
∣∣p du

and the limiting r.v. is positive and finite.

We conclude this section by stating the counterpart of Theorem 9 for compactly supported probability distributions.
Other extensions to this case of the above results are likewise easy.

9
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Corollary 20 Assume wlog that F = G has support [0, 1] and is twice differentiable with positive derivative f on
(0, 1). Assume moreover (FG2), (FG3) and (C) except (C3) with b− < b′ and b+ < b′ where b′ > 1 and

∫ 1

0

(√
u(1− u)

hX(u)

)b′
du < +∞. (21)

Then

vnWc(Fn,Gn)→weak π−

∫ 1

0

1{B(u)<0} |B(u)|b− du+ π+

∫ 1

0

1{B(u)>0} |B(u)|b+ du

and the limiting r.v. is finite and, if P(X = Y ) < 1, positive.

This extends Theorem 19 of [3] to the case F = G and reduces (CFGE) to the integrability assumption with no
restriction on b, since the influence of the cost is limited to its behaviour near 0.

Example 21 The Beta distribution with parameters α > 0 and β > 0, has density f(x) = B(α, β) xα−1(1− x)β−1

on (0, 1). Clearly (FG2) and (FG3) are satisfied, and since (21) is true for any b′ > 1, the previous result applies for
any b−, b+ > 1.
This is not always the case. For instance, consider a c.d.f. F on (0, 1) equal to e−1/| log x|w , w > 0 near 0 – and
symmetrically near 1. Then it satisfies (FG2) and (FG3) but only satisfies (21) for b′ 6 2. Hence the previous result
applies for 1 6 b−, b+ < 2.

4 Applications

4.1 Comparison and goodness-of-fit tests

A consequence of Theorems 9 and 16 is the construction of a statistical test of the hypothesis H0 : F = G against
H1 : F 6= G, based on two samples that may arise from correlated experiments. Let us choose the b-Wasserstein
distance with 1 < b < 2. The distributions F and G are supposed to be C2 on R or R+ and satisfy (CFGED) and
(FG). By Theorem 9, under H0 the statistic nb/2Wc(Fn,Gn) converges to a positive finite random variable while
by Theorem 16, under H1 it converges almost surely to +∞ at the rate nb/2Wc(F,G). Mathematically this test is
effectively valid when the set D = {F−1 6= G−1} is a finite union of non empty intervals, but we think that its validity
could be extended to the more general case where D is of positive Lebesgue measure in (0, 1). The use of W 2

2 , with a
rate n is more restrictive since it needs very light tails. Nevertheless if sub-Gaussian tails can be asserted, by Theorem
11 the previous test works with b = 2, which actually is a new test.

In each case the rather minimal (CFG) type conditions have to be checked. They are close to be necessary in the proofs
to overcome the difficulty of controlling how close the empirical tails of Fn and Gn must be under H0, and how far
|Fn−Gn| can deviate from |F −G| in tails underH1. Interestingly the choice of ρ(x) may be with a locally polynomial
shape as x→ 0 and a different shape as x→ +∞ possibly linear, polynomial or exponential. This flexibility allows to
test the tail or the mid-quantiles with more or less accuracy.

In the same vein, concerning the distribution functions, Corollary 18 yields

√
n

(∫ +∞

−∞
|Fn(t)−Gn(t)| dt−

∫
F−1(D)

|F (t)−G(t)| dt

)

→weak

∫
D

B(u)du+

∫
E

|B(u)| du

which seems not to have been already obtained. This provides weak limits for the power of the test under alternatives to
H0 : F = G of the kindH1 : F = G1 where G−1

1 only differs from G−1 on an interval D, for instance with a slightly
different right hand tail only. The test statistic

√
n
∫ +∞
−∞ |Fn(t)−Gn(t)| dt has an almost sure first order rate of escape√

n
∫
G−1

1 (D)
|G1(t)−G(t)| dt.

As a by-product of the results of Section 3 one can similarly build goodness-of-fit tests H0 : F = F0 against
H1 : F 6= F0 by using one sample under F or by using an additional sample distributed as F0. Notice that the test
associated to b = 2 was a consequence of [9].

10
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4.2 An application

The motivation of our initial work was intimately related to the field of computer experiments. Many computer codes
produce as output values of a function computed on so many points that it can be considered as a functional output.
The case we are interested in is when this function is the c.d.f. of a real r.v. It turns out that Wasserstein distances are
now commonly used to analyze such outputs. In view of defining new features for random c.d.f. such as median or
quantiles, more general Wasserstein costs may be used as contrasts to compute these features by solving an optimization
problem – see [11]. Nevertheless computer codes only provide samples of the underlying distributions. Whence the
importance of an efficient estimation of distances between c.d.f. and goodness-of-fit tests through random samples.

As an illustration, let us conclude with a notion of quantile for a r.v. taking values in the set of continuous c.d.f.’s.
A useful new result of this article is the first part of Corollary 18 which is strongly related to the preprint [11]. Let
0 < α < 1. In [11] the α−quantile Fα of a random continuous c.d.f. F is defined to be

Fα = Argmin
θ∈F

EWc(F, θ),

where c(x, y) = (x− y)(α− 1x−y<0) is the non-symmetric contrast for the α-quantile of a real r.v. and F is the set
of continuous c.d.f. As previously mentioned, in practice a realization F(ω) of F is known through a n-sample of the
distribution F(ω). Hence we may assume that a N -sample F1

n,. . . ,FNn is available, where each Fin is a n-empirical
c.d.f. of Fi and F1,. . . ,FN are i.i.d. according to F. Define

FN,n,α = Argmin
θ∈Fn

1

N

N∑
i=1

Wc(Fin, θ),

where Fn is the set of c.d.f. with at most n different values. Then one could use Corollary 18 to prove that FN,n,α is a
consistent estimator of Fα when N and n tend to +∞, and determine the rate of convergence.

5 Proofs

In the forthcoming proofs the high order quantiles are shown to have a secondary order impact compared to the
mid-order quantiles that impose the rate as well as the limiting distribution under our sufficient conditions ensuring that
the tails are not too heavy. For sake of simplicity we only work on the right hand tail, with quantiles of order u ∈ (u, 1)
for an arbitrary small u > 0. The counterpart for the left hand tail is immediate by using the same arguments.

To help the reader the variable of frequently used deterministic functions defined on R+ like ρ±, ρ−1
± , l±, l−1

± or L±
is denoted x when considered as x → 0 and y when considered as y → +∞. In the subsequent proofs the constant
K > 0 may change at each appearance.

In steps numbered 0 we remind active hypotheses while introducing local notation. The non standard Steps 1, 2 and 3 of
the four proofs – including the one in [3] – are designed to address the non trivial problem of controlling the high order
and extreme order quantiles under an explicit and almost minimal assumption on tails, namely (CFGE), (CFGD) or
(CFGED). The secondary order terms in these conditions could be balanced slightly more sharply but at the price of
adding technicalities to connect Steps 1 and 2. Finally we point out that the convergence at Steps 3 is weaker than in
probability, due to the coupling approach.

5.1 The case F = G

We prove Theorem 9.

Step 0. In this section F = G and hence E = R. For short, the key functions common to X,Y are denoted F−1, ψ, H
and h. Let assume (FG), (C) and (CFGE) with 1 6 b± < 2 in (C2). Hence ρ(x) = max(ρ+(x), ρ−(x)) > ρc(x)
and ρ±(x) are positive convex increasing functions defined on R∗+ with ρ±(0) = 0. For 0 6 x 6 x0 we have
ρ± (x) = xb±L±(x) and, whenever b± = 1 it is also assumed through (10) that limx→0 L±(x) = L±(0) < +∞.
Recall that b = min(b+, b−) and, for 0 6 x 6 x0, ρ (x) = max(ρ+(x), ρ−(x)) = xbL(x) where L(x) is defined at
(11) and is slowly varying as x→ 0. We then have

vn =
1

ρ (1/
√
n)
, lim

n→+∞

√
n

vn
= 1{b=1}L(0).

Since L ∈ RV (0, 0) we have, by the Karamata representation theorem,

L(x) = exp

(
η(x) +

∫ 1/x

B

s(y)

y
dy

)
, 0 < x 6 x0, (22)

11



A PREPRINT - NOVEMBER 6, 2019

with B > 0, η(x) and s(y) are bounded measurable functions such that
lim
x→0

η(x) = η∞ ∈ R, lim
y→+∞

s(y) = 0.

We can then define
η0 = sup

0<x6x0

|η(x)| ∈ R+, c0 = e2η0 > 1. (23)

For y large it holds ρ± (y) = exp(l±(y)) where the functions l±(y) are not asked to be in RV (+∞, γ±) in this proof,
but (7) does matter. However in practice if (C3) would not hold then (CFGE) would be more difficult to translate in
terms of admissible F . Hence, for some y0 > x0,

ρ (y) = exp(l(y)), l(y) = max(l+(y), l−(y)), y > y0.

Since ρ± and ρ are convex, by (7) there exists d± > 1, d = min(d−, d+) and d0,±, d0 such that
l±(y) > d± log y + d0,±, l(y) > d log y + d0, y > y0. (24)

By (CFGE), the joint influence of l, L and b on the allowed tails F−1 is expressed at (13) if b > 1 and (14) if b = 1.

We decompose the integral Wc(Fn,Gn) as follows, with the three remainder terms implicitly treated in a similar way
for left hand tails. We will specify later two positive sequences in and jn such that n > jn > in → +∞. The proof
consists in four steps, each dealing with one of the four terms

Wc(Fn,Gn) = IIn + IJn + IKn + IL, IA =

∫
A

ρc
(
F−1
n (u)−G−1

n (u)
)
du, (25)

where In = (1− in/n, 1], Jn = (1− jn/n, 1− in/n], Kn = (u, 1− jn/n], L = [u, u] and 0 < u < 1/2 < u < 1.
In order to accurately choose in and jn one has to take into account two difficulties. First, the rate 1/vn is faster than
1/
√
n so that In∪Jn should be sufficiently small. Second, the empirical extreme quantile difference F−1

n (u)−G−1
n (u)

may be either very large or very small as u→ 1, thus the cost function ρc(F−1
n (u)−G−1

n (u)) is evaluated at 0 on some
random subsets of In ∪ Jn and at +∞ on some others. The later problem is the most difficult to address.

Step 1. Let Kn be a positive sequence such that Kn → +∞ and define

in =
n

vnKnρ(ψ−1(log n+Kn))
. (26)

Notice that (FG1) and (24) imply that ρ(ψ−1(log n+Kn))→ +∞ and in = o
(
n1−b/2L(1/

√
n)/Kn

)
as n→ +∞,

so that in/
√
n→ 0 even when b = 1, thanks to (10). The following lemma ensures that in/ log log n→ +∞. Observe

also that ψ−1(log n+Kn) = F−1(1− 1/neKn) is an extreme quantile just beyond the expected order F−1(1− 1/n)
for X(n) and Y(n), which is the key to Lemma 22. Let [y] denote the integer part of y. Consider the r.v.

IIn 6
∫
In
ρ
(
F−1
n (u)−G−1

n (u)
)
du =

1

n

n∑
i=n−[in]

ρ
(
X(i) − Y(i)

)
.

Lemma 22 Assume (FG1), (C) and (CFGE). There exists Kn such that

Kn → +∞, lim
n→+∞

Kn

log log n
= 0, lim inf

n→+∞

log in
log log n

> θ2 > 0

and
lim

n→+∞
vnIIn = 0 in probability.

Proof. (i) Let Kn → +∞, Kn/ log log n→ 0 be as slow as needed later. By (FG1) we have F−1
(
1− 1/neKn

)
→

+∞ as n→ +∞, yet arbitrarily slowly. Thus, by (13) and (26) we have, for any θ′′ > 1− b/2, any θ′ < θ2 and all n
large,

in =
n1−b/2L(1/

√
n)

Knρ(ψ−1(log n+Kn))

>
1

Kn

L(1/
√
n)

L
(

1/
√
neKn

) exp

(
−
(

1− b

2

)
Kn + 2 logψ−1(log n+Kn) + θ2 log(log n+Kn)

)

>
L(1/

√
n)

L
(

1/
√
neKn

) 1

eθ′′Kn

(
F−1

(
1− 1

neKn

))2

(log n+Kn)θ2

>
L(1/

√
n)

L
(

1/
√
neKn

) (log n)θ
′
.

12
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Applying (22) and Kn → +∞ we get

L
(

1/
√
neKn

)
L(1/

√
n)

= exp

(
η

(
1√
neKn

)
− η

(
1√
n

)
+

∫ √neKn
√
n

s(y)

y
dy

)
.

Since eKn < log n we can furthermore choose Kn such that

Kn <
1

sn
, sn = sup√

n6y6
√
n logn

s(y),

where sn → 0 as n→ +∞. The slower is L the faster is 1/sn hence the resulting requirement is sometimes only the
initial Kn/ log log n→ 0. We readily obtain, by (23),

lim sup
n→+∞

L
(

1/
√
neKn

)
L(1/

√
n)

6 lim sup
n→+∞

exp

(
2η0 + sn

Kn

2

)
< +∞.

The claimed deterministic lim inf is proved by letting θ′ → θ2. Notice that (CFGE) was crucially required.

(ii) Concerning the stochastic integral IIn the choice of in in (26) is minimal to guaranty the rate vn and (CFGE) is
not required. Recall that F has support R. Fix ε > 0 and consider the events

An = {vnIIn > 4ε} , Bn =
{
X(n−[in]) > 0 ∩ Y(n−[in]) > 0

}
.

We have P (An) 6 P (An ∩Bn) + P (Bcn) and P (Bcn)→ 0 as n→ +∞. On Bn it holds

vnIIn 6
vn
n

n∑
i=n−[in]

(
ρ+

(
X(i)

)
+ ρ−

(
Y(i)

))
6
vn
n

(in + 1)
(
ρ+

(
X(n)

)
+ ρ−

(
Y(n)

))
hence P (An ∩Bn) 6 P (Cn,X) + P (Cn,Y ) where

Cn,X =

{
ρ+

(
X(n)

)
> ε

n

vnin

}
, Cn,Y =

{
ρ−
(
Y(n)

)
> ε

n

vnin

}
.

In order to evaluate P (Cn,X) = 1− (1− P (ρ+(X) > εn/vnin))
n we combine ρ−1

+ (x) = l−1
+ (log x), l−1 6 l−1

+ and
ψX = ψ with (26) to obtain, for n large enough to have Kn > 1/ε,

P
(
ρ+(X) > εKnρ(ψ−1(log n+Kn))

)
6 exp

(
−ψ ◦ l−1

(
log ε+ logKn + l(ψ−1(log n+Kn))

))
6

1

neKn
.

Therefore P (Cn,X) 6 1 − exp (− exp(−Kn)) ∼ exp(−Kn) → 0 as n → +∞, and similarly P (Cn,Y ) → 0. This
implies that vnIIn → 0 in probability. �

Step 2. Write βn(u) = βXn (u)− βYn (u) with

βXn (u) =
√
n(F−1

n (u)− F−1(u)), βYn (u) =
√
n(G−1

n (u)− F−1(u)), (27)

thus IA =
∫
A
ρc (βn(u)/

√
n) du in (25). Let ∆n = Jn ∪ Kn ∪ L = [u, 1− in/n]. The next lemma shows that in the

integral I∆n
the cost function ρ is evaluated near 0 provided that n is large.

Lemma 23 Assume (FG) and (CFGE). For any 0 < ξ < 1/2− b/4 it holds

lim
n→+∞

(log n)ξ sup
u∈∆n

|βn(u)|√
n

= 0 a.s.

Proof. (i) Assuming (FG1), (FG2) and since in/ log log n→ +∞ by Lemma 22 we can apply the classical hungarian
results to |βn(u)| 6

∣∣βXn (u)
∣∣+
∣∣βYn (u)

∣∣ exactly as for Lemma 23 in [3] to get

lim sup
n→+∞

sup
u∈∆n

h(u) |βn(u)|√
(1− u) log log n

6 8 a.s. (28)

13
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Next observe that (FG3) implies, for some 0 < M < +∞ and u ∈ ∆n,

1

M

√
1− u
h(u)

√
log log n

n
6
F−1(u)√

1− u

√
log log n

n

6 εn =
F−1(1− in/n)√

in

√
log log n. (29)

(ii) Remind that e−Kn < 1 < in for all n large, and F−1 (1− in/n) → +∞ as n → +∞ with no obvious control
on the rate. By (26) and the consequence (13) of (CFGE) we have already seen in the proof of Lemma 22 that if
θ′′ < 1− b/2 and θ′′ < θ′ < θ2 then it holds, for all n large enough,

in >
1

eθ′′Kn

(
F−1

(
1− 1

neKn

))2

(log n+Kn)θ2

>

(
F−1

(
1− 1

n

))2

(log n)θ
′

>

(
F−1

(
1− in

n

))2

(log log n)(log n)θ
′′

hence for any 0 < ξ < θ′′/2 it holds limn→+∞(log n)ξεn = 0. The conclusion follows, by (28) and (29). �

Let jn = nβ with 1/2 < β < 1, so that in <
√
n < jn for all n large. Remind εn from (29). Let introduce

εn(u) = 9

√
1− u
h(u)

√
log log n

n
6 9εn, u ∈ Jn. (30)

Lemma 24 Assume (FG), (C) and (CFGE). Then we have

lim
n→+∞

vnIJn = 0 a.s.

Proof. (i) By Lemma 23, for all n large enough and any u ∈ Jn it holds

1

n
6 sup
u∈Jn

√
1− u
n
6 εn(u) 6

1

(log n)ξ
.

Consider L defined in (11). Using (22) and (23) we get

Ln = sup
u∈Jn

L(εn(u))

L(1/
√
n)
6 exp

(
2η0 +

∫ n

(logn)ξ

|s(y)|
y

dy

)
(31)

hence

lim
n→+∞

logLn
log n

6 lim
n→+∞

1

log n

(
2η0 + log n sup

(logn)ξ6y6n
|s(y)|

)
= 0. (32)

(ii) Remind that ρ± are increasing. By Lemma 23 and (C2) we almost surely have, for all n large,

IJn 6
∫
Jn∩{βn>0}

ρ+(εn(u))du+

∫
Jn∩{βn<0}

ρ−(εn(u))du

where, by (28), (29) and (30), supu∈Jn εn(u) 6 9εn → 0. Hence, recalling (11) we are reduced to study the bounding
deterministic integral

IJn 6
∫
Jn
ρ(εn(u))du =

∫
Jn

(εn(u))
b
L(εn(u))du.

By (11), Ln from (31) and (FG3) we further have

vnIJn 6 Ln(log log n)b/2
∫
Jn

(
F−1(u)√

1− u

)b
du. (33)

We next show that Ln(log log n)b/2 is a secondary order factor compared to the integral in (33), whatever the choice of
1/2 < β < 1 defining jn in Jn.

14
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(iii) The fact that l(y) > log y as y → +∞ combined to (CFGE) shows that for all u large enough, we have

F−1(u) = ψ−1

(
log

1

1− u

)
6 exp

(
l ◦ ψ−1

(
log

1

1− u

))
6 exp

((
1− b

2

)
log

1

1− u
+ logL(

√
1− u)− 2 logF−1(u)− θ2 log log

1

1− u

)
.

Therefore we get

F−1(u)3 6

(
1

1− u

)1−b/2
L(
√

1− u)

(log(1/(1− u)))θ2

and ∫
Jn

(
F−1(u)√

1− u

)b
du 6

∫
Jn

(
1

1− u

)(1−b/2)b/3+b/2
L(
√

1− u)b/3

(log(1/(1− u)))θ2b/3
du

6
∫
Jn

(
1

1− u

)b(5−b)/6
L(
√

1− u)b/3

(log(1/(1− u)))θ2b/3
du. (34)

Since 1 6 b < 2 we can find γ such that 0 < b(5 − b)/6 < γ < 1. The second factor in the integral (34) is slowly
varying in 1− u as u→ 1 thus the whole integral is ultimately bounded from above by

(1− γ)

∫
Jn

(
1

1− u

)γ
du =

[
−(1− u)1−γ]1−in/n

1−jn/n
6

1

n(1−γ)(1−β)
. (35)

We deduce from (32), (33), (34) and (35) the convergence

lim
n→+∞

vnIJn 6 lim
n→+∞

Ln(log log n)b/2

n(1−γ)(1−β)
= 0 a.s.

at a power rate. �

Step 3. Compared to Jn the interval Kn is so large that vnIKn can no more converge to zero in probability. Instead
it is made small with high probability by choosing u and β properly, at Lemma 26. Moreover, in order to evaluate
the integral of ρc(βn(u)/

√
n) over Kn accurately enough it is no more sufficient to bound the process, therefore we

approximate it at Lemma 25 by a Gaussian process which helps revealing the underlying deterministic integral to
compute. Lastly the fact that βn(u) itself may be very small or very large along Kn makes a bit tedious the uniform
control of the slowly varying part L(x) of ρ(x).

Define ∆′n = (jn/n, 1− jn/n). We first recall the strong approximation of the joint quantile processes

Qn(u) =
(
βXn (u), βYn (u)

)
, u ∈ ∆′n,

by the joint Gaussian processes

Gn(u) =
(
BXn (u),BYn (u)

)
, BXn (u) =

BXn (u)

hX(u)
, BYn (u) =

BYn (u)

hY (u)
, u ∈ ∆′n,

where BXn (u) = Hn(HX(u)), BYn (u) = Hn(HY (u)) and Hn is a PX,Y -Brownian bridge indexed by the halfplanes

HX(u) =
{

(x, y) : x 6 F−1(u)
}
, HY (u) =

{
(x, y) : y 6 F−1(u)

}
.

Therefore BXn and BYn are two standard Brownian bridges with cross covariance given for u, v ∈ (0, 1) by

cov(BXn (u), BYn (v)) = PX,Y (HX(u) ∩HY (v))− PX,Y (HX(u))PX,Y (HY (v))

= P
(
X 6 F−1(u), Y 6 F−1(v)

)
− uv

= H(F−1(u), F−1(v))− uv.

Notice that H(F−1(u), F−1(v)) is the copula function of (X,Y ). From now and for the remainder of the proof we
work on the probability space of the following Lemma 25. The weak convergence finally established on this space at
Steps 4 and 5 remains valid on any probability space.

15
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Lemma 25 Assume (FG). Then we can build on the same probability space versions of (Xn, Yn)n>1 and (Hn)n>1

such that Qn(u) = Gn(u) + Zn(u) for all n > 1 and u ∈ ∆′n where Zn(u) = (ZXn (u)/hX(u), ZYn (u)/hY (u))
satisfies, for some υ ∈ (0, 1/22),

lim
n→+∞

nυ sup
u∈∆′n

∣∣ZXn (u)
∣∣ = lim

n→+∞
nυ sup

u∈∆′n

∣∣ZYn (u)
∣∣ = 0 a.s.

Proof. This follows from Theorem 28 in [3] with F = G. �

The joint strong approximation of Lemma 25 applied with F = G and hX = hY = h combined to (CFGE) provides
a stochastic control of the deviations of vnIKn that is weaker than in probability but sufficient for the targeted weak
convergence. Since it concerns the probability distribution of IKn the following lemma remains true on any probability
space.

Lemma 26 Assume (FG), (C) and (CFGE). There exists β ∈ (1/2, 1) such that for any choice of λ > 0 and ε > 0
one can find u0 ∈ (1/2, 1) and n0 > 0 such that, for all u ∈ [u0, 1) and n > n0,

P (vnIKn > λ) < ε.

Proof. Fix λ > 0 and ε > 0 then consider, with βn as in (27) the event

Cλn =

{
vn

∫
Kn

ρc

(
βn(u)√

n

)
du > λ

}
.

(i) For 0 < τ < min(1, λ/2) define the random sets

K<τn = {u ∈ Kn : |βn(u)| < τ} , K>τn = Kn\K<τn .

Recalling that the cost ρ± is convex, positive and such that ρ±(0) = 0 we have ρ±(τx) 6 τρ±(x) for all x > 0. It
follows that

vnIK<τn 6 vn

∫
K<τn ∩{βn<0}

τρ+

(
1√
n

)
du+ vn

∫
K<τn ∩{βn>0}

τρ−

(
1√
n

)
du

6
max(ρ− (1/

√
n) , ρ+ (1/

√
n))

ρ (1/
√
n)

τ

∫
K<τn

du 6 τ.

As a consequence,

P
(
Cλn
)

= P
(
vn(IK<τn + IK>τn ) > λ

)
6 P

(
vnIK>τn > λ− τ

)
6 P

(
vnIK>τn >

λ

2

)
.

(ii) For all n > n0 and n0 = n0(ε, ξ) large enough we have (log n)ξ <
√
n together with, by Lemma 23 and since

K>τn ⊂ Kn ⊂ ∆n,

P (Dn) > 1− ε

2
, Dn =

{
sup

u∈K>τn

|βn(u)|√
n
6

1

(log n)ξ

}
.

Assume now that n > n0. On the event Dn, for any u ∈ K>τn we have

τ√
n
6 min

(
1√
n
,
|βn(u)|√

n

)
6

1

(log n)ξ

which by (11), (22) and (23) yields

L (|βn(u)| /
√
n)

L (1/
√
n)

6 exp

(
2η0 +

∫ √n/τ
min(

√
n,
√
n/|βn(u)|)

|s(y)|
y

dy

)

6 c0 exp

(
sn

∫ √n/τ
min(

√
n,
√
n/|βn(u)|)

1

y
dy

)
= c0 exp (sn (max (0, log(|βn(u)|))− log τ))

6 c0

∣∣∣∣βn(u)

τ

∣∣∣∣qn(u)

16
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where the sequence sn and the stochastic process qn(u) are defined by

sn = sup
(logn)ξ6y6

√
n/τ

|s(y)| , qn(u) = sn1{|βn(u)|>1}. (36)

Since s(y)→ 0 as y → +∞ we have

lim
n→+∞

sup
u∈K>τn

qn(u) 6 lim
n→+∞

sn = 0 (37)

and this uniform convergence of qn is certain, not almost sure. In other words, the uncertainty in the following inequality
only comes from P (Dn). We have shown that for all n large, on the event Dn, it holds

vnIK>τn 6 vn

∫
K>τn

ρ

(
|βn(u)|√

n

)
du 6

c0
τsn

∫
K>τn
|βn(u)|b+qn(u)

du (38)

where τsn → 1 as n→ +∞. We are ready to bound P
(
Dn ∩

{
vnIK>τn > λ/2

})
.

(iii) On the probability space of Lemma 25 we have

|βn(u)| 6
∣∣BXn (u)

∣∣
h(u)

+

∣∣BYn (u)
∣∣

h(u)
+

∣∣ZXn (u)
∣∣

h(u)
+

∣∣ZYn (u)
∣∣

h(u)
.

If α > 1 then (x+ y)α 6 2α−1(xα + yα) for all x, y > 0. Combining this fact with b+ qn(u) > b > 1 and (37) thus
implies that, for K > 1 fixed and all n large enough,

1

K4b−1

∫
K>τn
|βn(u)|b+qn(u)

du 6 RXn +RYn + SXn + SYn

where

RXn =

∫
K>τn

∣∣∣∣BXn (u)

h(u)

∣∣∣∣b+qn(u)

du, SXn =

∫
K>τn

∣∣∣∣ZXn (u)

h(u)

∣∣∣∣b+qn(u)

du.

It remains to prove that for an appropriate choice of u and β we have

lim sup
n→+∞

P
(
Dn ∩

{
RXn >

λτ sn

8c0

})
<
ε

8
,

lim sup
n→+∞

P
(
Dn ∩

{
SXn >

λτ sn

8c0

})
<
ε

8
,

which ensures by (38) that P
(
Dn ∩

{
vnIK>τn > λ/2

})
6 ε/2. For short, it is assumed below that 1/9 < τsn/8.

(iv) The following integral Tn is crucial with respect to the integrability of the processes BXn and ZXn . Let b′ > b be so
close to b that 0 < b′(5− b′)/6 < γ < 1. Consider the random function qn(u) from (36). For all n large enough we
have b 6 b+ qn(u) < b′ hence (34) and (35) entail

Tn =

∫
Kn

∣∣∣∣√1− u
h(u)

∣∣∣∣b+qn(u)

du 6
∫
Kn

∣∣∣∣F−1(u)√
1− u

∣∣∣∣b+qn(u)

du 6
∫
Kn

∣∣∣∣F−1(u)√
1− u

∣∣∣∣b
′

du

6

[
− (1− u)1−γ

1− γ

]1−jn/n

u

6
(1− u)1−γ

1− γ
.

(v) On the one hand we have, by Fubini-Tonelli and recalling that BXn is a standard Brownian bridge and the sequence
sn is defined at (37),

E
(
RXn
)
6 Tn sup

u∈Kn
E

∣∣∣∣∣ BXn (u)√
u(1− u)

∣∣∣∣∣
b+qn(u)


6 Tn sup

06s6sn
E
(
|N (0, 1)|b+s

)
= TnE

(
|N (0, 1)|b+sn

)
.

Assuming n so large that sn < 2 − b we get E
(
RXn
)
/Tn < E(|N (0, 1)|2) = 1 then choosing u0 such that

(1− u0)1−γ < 8(1− γ)λ/9c0ε yields, for all u ∈ [u0, 1),

P
(
RXn >

λ

9c0

)
<

9c0
λ
Tn <

ε

8
. (39)
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On the other hand we have K>τn ⊂ Kn ⊂ ∆′n and

SXn 6 sup
u∈K>τn

∣∣∣∣ ZXn (u)√
1− u

∣∣∣∣b+qn(u)

Tn.

By Lemma 25 it almost surely holds, for b′ > b and all n large,

sup
u∈K>τn

∣∣∣∣ ZXn (u)√
1− u

∣∣∣∣ 6 sup
u∈Kn

1

nυ
√

1− u
=

1

nυ

√
n

jn
6 n(1−β)/2−υ

which vanishes provided 1− 2υ < β < 1. Therefore, for this choice of β,

lim
n→+∞

SXn = 0 a.s., lim
n→+∞

P
(
SXn >

λ

9c0

)
= 0. (40)

(vi) Putting together the conclusions of (i)-(v), and especially (38), (39) and (40), implies

P
(
Cλn
)
6 1− P (Dn) + P

(
Dn ∩

{
vnIK>τn >

λ

2

})
<
ε

2
+ 4

ε

8
= ε.

Finally notice that the same β works whatever the choice of λ, ε. �

Step 4. Now L = [u, u] is fixed. By Lemmas 23 and 25 there almost surely exists n0(ω) such that, for all n > n0(ω),
εn(u) from (30), Bn(u) = BXn (u)−BYn (u) and Zn(u) = ZXn (u)− ZYn (u),∣∣∣∣βn(u)√

n

∣∣∣∣ 6 εn(u) 6 x0, βn(u) =
Bn(u) + Zn(u)

h(u)
, u ∈ L.

As a consequence, the cost ρc is evaluated at 0 all along this step. Let α > 0 and consider IL = IL1,n
+ IL2,n

+ IL3,n

where, for n > n0(ω),

ILk,n =

∫
Lk,n

ρc

(
Bn(u) + Zn(u)√

nh(u)

)
du, k = 1, 2, 3, (41)

and L = L1,n ∪ L2,n ∪ L3,n with L1,n = L ∩ {|Bn(u)| 6 α}, L2,n = L ∩ {|Bn(u)| > 1/α} and L3,n = L ∩
{α < |Bn(u)| < 1/α}. Also define

0 < h = min
u∈L

h(u) 6 h = max
u∈L

h(u) < +∞.

Step 4.1 Choose α ∈ (0, 1) arbitrarily small. In view of the almost sure rate 1/nυ from Lemma 25 and (11) we have,
given u, u then h,

lim
n→+∞

vnIL1,n
6 lim
n→+∞

1

ρ(1/
√
n)

∫
L1,n

ρ

(
α+ 1/nυ√

nh

)
du

6 lim
n→+∞

ρ(2α/
√
nh)

ρ(1/
√
n)

=
(2α)b

hb
a.s. (42)

The last equality holds by definition of ρ ∈ RV (0, b).

Step 4.2 Write L+
2,n = L ∩ {Bn(u) > 1/α} and L−2,n = L ∩ {Bn(u) 6 −1/α}. By Lemma 25 we have, for n large

enough,

vnIL+
2,n

=
1

ρ(1/
√
n)

∫
L+

2,n

ρ+

(
βn(u)√

n

)
du 6

1

ρ(1/
√
n)

∫
L+

2,n

ρ+

(
2Bn(u)

h(u)
√
n

)
du

then similar arguments as for (ii) in the proof of Lemma 26 yield

vnIL+
2,n
6 c0

ρ+(1/
√
n)

ρ(1/
√
n)

∫
L+

2,n

(
2Bn(u)

h(u)

)b++sn

du

where sn → 0 is defined at (36) with τ = 2/α. By replacing min(u, 1−u) with u(1−u) 6 min(u, 1−u) in (CFG3)
it follows that

vnIL+
2,n
6 K

∫
L

1{Bn(u)>1/α}

∣∣∣∣∣ F−1(u)√
u(1− u)

∣∣∣∣∣
b++sn (

Bn(u)√
u(1− u)

)b++sn

du

18
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where K > 0. As a consequence of (CFGE) we obtain exactly as for (34) and (35) that if b′ ∈ (b, 2) is chosen
sufficiently close to b then ∫

(0,1)

∣∣∣∣∣ F−1(u)√
u(1− u)

∣∣∣∣∣
b′

du = K ′ < +∞. (43)

Since 2u− 1 6 H(u, u) 6 u for u ∈ (0, 1) we have

−(1− u)2 6 Cov(BXn (u), BYn (u)) = H(u, u)− u2 6 u(1− u)

hence
0 6 V ar(Bn(u)) 6 2u(1− u) + 2(1− u)2 = 2(1− u)

and the r.v. Bn(u)/
√
u(1− u) is centered Gaussian with variance bounded above by 2/u. Let denote N (0, 1) the

standard normal distribution. By Hölder inequality we have, for u ∈ L and n large,

E

1{Bn(u)>1/α}

∣∣∣∣∣ Bn(u)√
u(1− u)

∣∣∣∣∣
b++sn

 6 K ′′P( sup
u6u6u

|Bn(u)| > 1

α

)1/2

where K ′′ = (3/u) supb+6s6b

(
E |N (0, 1)|2s

)1/2

< +∞ only depends on b. We conclude that it asymptotically
holds

E
(
vnIL+

2,n

)
6 KK ′K ′′P

(
sup

u6u6u
|Bn(u)| > 1

α

)1/2

6 C exp

(
− 1

α2

)
(44)

where C depends on M, b, F and α was left arbitrary from the beginning. Clearly E(vnIL−2,n
) also obeys (44) by the

same arguments. Notice that for the left hand tail u and 1−u play a symetric role in the previous control of the variance
of Bn(u) by u(1− u).

Step 4.3 Let introduce L−3,n = L ∩ {−1/α < Bn(u) < −α} and L+
3,n = L ∩ {α < Bn(u) < 1/α}. By Lemma 25

we almost surely ultimately have
sign(Bn(u) + Zn(u))1L3,n

(u) = sign(Bn(u))1L3,n
(u)

where sign(x) = 1x>0 − 1x<0. Therefore, (C2) implies, for all n large enough,

1L3,n(u)ρc

(
Bn(u) + Zn(u)√

nh(u)

)
= 1L+

3,n
(u)ρ+

(
Bn(u) + Zn(u)√

nh(u)

)
+ 1L−3,n

(u)ρ−

(
|Bn(u) + Zn(u)|√

nh(u)

)
.

Now assume that α < 2/h and L3,n 6= ∅, so that

vnIL3,n
=

1

ρ(1/
√
n)

(∫
L+

3,n

ρ+

(
|Bn(u)|√
nh(u)

)
du+R+

n

)

+
1

ρ(1/
√
n)

(∫
L−3,n

ρ−

(
|Bn(u)|√
nh(u)

)
du+R−n

)
where we have, by convexity and differentiability of ρ± on (0,+∞),

R±n =

∫
L±3,n

(
ρ±

(
|Bn(u) + Zn(u)|√

nh(u)

)
− ρ±

(
|Bn(u)|√
nh(u)

))
du

6 sup
u∈L±3,n

ρ′±

(
|Bn(u)|+ |Zn(u)|√

nh(u)

)
|Zn(u)|√
nh(u)

The regular variation (C2) further implies xρ′±(x)/ρ±(x)→ 1 as x→ 0. As a consequence, with probability one, for
all n large it holds

R±n
ρ(1/
√
n)
6

1

ρ(1/
√
n)
ρ±

(
|Bn(u)|+ |Zn(u)|√

nh(u)

)
sup

u∈L3,n

|Zn(u)|
|Bn(u)|+ |Zn(u)|

6
ρ± (2/

√
nhα)

ρ(1/
√
n)

2

αnυ
6
ρ± (2/

√
nhα)

ρ±(1/
√
n)

2

αnυ
6

(
2

hα

)b± 3

αnυ
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which vanishes as n → +∞. Here we have used that ρ± (θx) /ρ± (x) → θb± as x → 0 for any fixed θ > 0, and
Lemma 25. Finally we see that

1

ρ±(1/
√
n)

∫
L±3,n

ρ±

(
|Bn(u)|√
nh(u)

)
du =

∫
L±3,n

(
|Bn(u)|
h(u)

)b
du+R±3,n

with

R±3,n =

∫
L±3,n

L±n (u)

(
|Bn(u)|
h(u)

)b
du, L±n (u) =

L±(|Bn(u)| /
√
nh(u))

L±(1/
√
n)

− 1.

Clearly, it follows

∣∣R±3,n∣∣ 6 ( 1

hα

)b
sup

u∈L3,n

∣∣L±n (u)
∣∣ 6 ( 1

hα

)b(
sup

α/h
√
n6x61/αh

√
n

L±(x)

L±(1/
√
n)
− 1

)

thus, by (22) and (23) we get
∣∣R±3,n∣∣→ 0 as n→ +∞. We conclude that

I∗L3,n
= ρ+(1/

√
n)

∫
L+

3,n

(
|Bn(u)|
h(u)

)b+
du+ ρ−(1/

√
n)

∫
L−3,n

(
|Bn(u)|
h(u)

)b−
du (45)

almost surely satisfies limn→+∞ vn|IL3,n
− I∗L3,n

| = 0.

Step 5. Consider Wc(Fn,Gn) =
∫ 1

0
ρc(F−1

n (u),G−1
n (u))du. As we assumed that

lim
n→+∞

ρ+(1/
√
n)

ρ(1/
√
n)

= π+, lim
n→+∞

ρ−(1/
√
n)

ρ(1/
√
n)

= π−

by (C4) and E = R we have established that vnWE
c (Fn,Gn)→weak W with

W = π+

∫ 1

0

1{B(u)>0}

(
|B(u)|
h(u)

)b+
du+ π−

∫ 1

0

1{B(u)<0}

(
|B(u)|
h(u)

)b−
du

and B is a standard Brownian bridge. To see this write WE
c (Fn,Gn) = IIn + IJn + IKn + IL1,n + IL2,n + IL3,n

where each of the first three integrals is indeed the sum of its left hand tail and right hand tail version, likewise for I∗L3,n

defined at (45). We have shown that vn(IIn + IJn)→ 0 in probability. Let Ψ be a real valued k-Lipschitz function on
R, bounded by m. Given arbitrarily small constants λ > 0, ε > 0 and α > 0 then an appropriate choice of 0 < u, u < 1
and thus h it holds, for all n large enough, by Lemma 26 and Step 4,

E
(

Ψ
(
vn(IKn + IL1,n

+ IL2,n
+ IL3,n

)
)
−Ψ

(
vnI
∗
L3,n

))
6 4mP (vnIKn > λ) + 4mP

(
vn

∣∣∣IL3,n
− I∗L3,n

∣∣∣ > λ
)

+ 4mP
(
vnIL1,n

>
(5α)b

hb

)
+ kE

(
4λ+

(5α)b

hb
+ vnIL2,n

)
6 12mε+ 4kλ+

k(5α)b

hb
+ 2kC exp

(
− 1

α2

)
which is as small as desired. Finally it is easilly seen that vnI∗L3,n

→weak W as (u, u) → (0, 1) and α → 0 so that
E(Ψ (W )) can replace E(Ψ(vnI

∗
L3,n

)) above with an asymptotically arbitrarily small error. �

5.2 The case F < G

We establish Theorem 14.

Step 0. In this section D = (0, 1). Without loss of generality, assume that F−1 > G−1 everywhere. We again focus
on arguments for the right hand tail, thus we write ψX = ψ+

X and ψY = ψ+
Y on (y0,+∞). Therefore ψ−1

X > ψ−1
Y

and ψ−1
X > 0 on (u0, 1) where u0 = F−1(y0). We need this stochastic ordering only to simplify the control of

extremes without imposing (CFGE). Let assume (FG), (C) with b ∈ [1, 2) and (CFGD). For y large it holds
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ρ± (y) = exp(l±(y)) with l± ∈ RV +
2 (γ±,+∞). By (15), for y0 > 0 and θ+, θ− > 1 playing exactly the role of θ in

(CFG) of [3] we have

(ψX ◦ l−1
+ )′(y) > 2 +

2θ+

y
, (ψY ◦ l−1

− )′(y) > 2 +
2θ−
y
, y > y0. (46)

In particular, this implies
l+ ◦ ψ−1

X (y) 6
y

2
− θ+ log y +K, y > y0. (47)

By (16), whenever F−1(u)−G−1(u) > 0 is not asymptotically away from 0 as u→ 1 we further ask that, for some
θ2 > 0,

l+ ◦ ψ−1
X (y) 6

y

2
− 2 logψ−1

X (y)− θ2 log y, y > y0. (48)

Notice that if F is logconvex then logψ−1
X (y) > log y and (48) already implies (47) with θ+ > 2 whereas if F

is logconcave then logψ−1
X (y) < log y and (47) implies (48) with θ2 > 1. Since (CFGD) implies (CFG) of

[3] through (16) hence (46), we are allowed to use most results of the latter paper. In particular Theorem 14 is
true when F−1(u) − G−1(u) > δ for some δ > 0 and b > 1 to ensure (C3) in [3]. We thus focus on the case
F−1(u) − G−1(u) → 0 as u → 1 which requires (48) whatever b, and we isolate out the case b = 1 only when
necessary to extend the main result of [3], at Step 4. We often use F−1(u) = ψ−1

X (log(1/(1− u))). A consequence is
that (48) also reads

ρ ◦ F−1(u) = ρ+ ◦ F−1(u) 6
1

F−1(u)2
√

1− u |log(1− u)|θ2
, u > u0.

Let us study Wc(Fn,Gn)−Wc(F,G) = IIn + IJn + IKn + IL with the notation

IA =

∫
A

(ρc (τ(u) + τn(u))− ρc (τ(u))) du, A ⊂ (0, 1) , (49)

τ(u) = F−1(u)−G−1(u), τn(u) =
βn(u)√

n
=
βXn (u)− βYn (u)√

n
,

and In = (1− in/n, 1], Jn = (1− jn/n, 1− in/n], Kn = (u, 1− jn/n], L = [u, u] with 0 < u < 1/2 < u < 1.

Step 1. Consider a non negative increasing sequence Kn → +∞ to be chosen later in such a way that Kn/ log log n→
0. Define

in =

√
n

Kn exp
(
l ◦ ψ−1

X (log n+Kn)
) . (50)

We have l ◦ ψ−1
X (y) = l+ ◦ ψ−1

X (y)→ +∞ as y → +∞ thus in = o (
√
n/Kn). When (48) is enforced then for any

θ′ ∈ (0, θ2) and all n large enough,

in >
K

Kn

(
F−1

(
1− 1

neKn

))2

exp

(
−Kn

2
+ θ+ log(log n+Kn)

)
>

(
F−1

(
1− 1

n

))2

(log n)θ
′
. (51)

Otherwise, when only (47) holds then for θ′ ∈ (1, θ+),

in >
K

Kn
exp

(
−Kn

2
+ θ+ log(log(n+Kn))

)
> (log n)θ

′
. (52)

Hence in both case we have in/ log log n→ +∞ and in/
√
n→ 0. Let us define

I1
In =

∫
In
ρ+ (τ(u)) du,

I2
In =

∫
In
ρc
(
F−1
n (u)−G−1

n (u)
)
du =

1

n

n∑
i=n−[in]

ρc
(
X(i) − Y(i)

)
.

Lemma 27 Assume that (C), (FG) and (CFGD) hold. Then
√
nI1
In → 0 and

√
nI2
In → 0 in probability.
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Proof. This readily follows from Lemma 22 in [3]. For
√
nI1
In the mentioned proof only needed θ > 0 hence

θ+, θ− > 0. For
√
nI2
In the initial expansion

n∑
i=n−[in]

ρc
(
X(i) − Y(i)

)
6

n∑
i=n−[in]

ρ+

(
X(i)

)
+

n∑
i=n−[in]

ρ−
(
Y(i)

)
almost surely holds for n large enough, when min(X(n−[in]), Y(n−[in])) > 0. �

Step 2. We now study IJn with jn = nβ , β ∈ (1/2, 1). Recall that ∆n = Jn∪Kn∪L and τ(u) = F−1(u)−G−1(u) >
0 for all u ∈ ∆n.

(i) Define εn = supu∈∆n
εn(u) where εn(u) = εXn (u) + εYn (u) and

εXn (u) =

√
log log n√

n

√
1− u
hX(u)

, εYn (u) =

√
log log n√

n

√
1− u
hY (u)

.

The current εn is bounded by the one of (29). By combining (28) and (29) with (51) as in Lemma 23 we get, for some
ζ > 0,

lim
n→+∞

(log n)ζ sup
u∈∆n

τn(u) 6 9 lim
n→+∞

(log n)ζεn = 0 a.s.

Let mn → +∞ be a non negative sequence so slow that mnεn → 0. Consider Jn = J<n ∪ J>n where

J<n = {u ∈ Jn : 0 < τ(u) 6 mnεn(u)} ,
J>n = {u ∈ Jn : 0 < mnεn(u) < τ(u)} .

By (28) again we almost surely ultimately have

−9εn(u) < τn(u) =
βXn (u)√

n
− βYn (u)√

n
< 9εn(u), u ∈ Jn.

Notice that if u ∈ J>n then

0 < (mn − 9)εn(u) < τ(u) + τn(u) < τ(u) + 9εn(u) < τ(u)

(
1 +

9

mn

)
(53)

whereas if u ∈ J<n then it is possible that τ(u) + τn(u) < 0 since

−9εn(u) < τn(u) < τ(u) + τn(u) < (mn + 9)εn(u). (54)

Let us control |IJn | 6
∣∣IJ<n ∣∣+

∣∣IJ>n ∣∣, starting with the first term.

(ii) Recall that supu∈J<n mnεn(u)→ 0 as n→ +∞. By (54) we have, for u ∈ IJ<n and mn > 9,

|ρc (τ(u) + τn(u))− ρc (τ(u))| 6 ρc (τ(u) + τn(u)) + ρ+ (τ(u))

6 ρ− (9εn(u)) + 2ρ+(2mnεn(u)).

hence
√
n
∣∣IJ<n ∣∣ 6 R1,n +R2,n for all n large enough, with

R1,n = K
√
n

∫
J<n

εn(u)b−L− (9εn(u)) du,

R2,n = K
√
n

∫
J<n

(mnεn(u))b+L+ (2mnεn(u)) du.

Lemma 28 Assume (C), (FG) and (CFG). We have R1,n → 0 and R2,n → 0.

Proof. If F−1(u) − G−1(u) > δ then the set J<n is ultimately empty. Otherwise (48) holds. We have√
1− u (1/hX(u) + 1/hY (u)) 6 2F−1(u)/

√
1− u for u ∈ Jn in view of F−1(u) > G−1(u) and (FG3). If

min(b+, b−)− 1 > 0 this extra power cancels the slowly varying functions and we asymptotically have

R1,n +R2,n 6 K
√
n

∫
J<n

mnεn(u)du 6 Kmn

√
log log n

∫
Jn

F−1(u)√
1− u

du.
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If b+ = 1 then L+(x) is bounded on [0, x0] since xL+(x) is convex non negative and starts from 0. Hence
L+ (2mnεn(u)) is bounded on Jn, and the above upper bound remains true. Likewise if b− = 1 then L− (9εn(u)) is
bounded on Jn. Observe that (48) and l(y) > log y imply

ψ−1
X (y) 6 exp(l ◦ ψ−1

X (y)) 6
1

ψ−1
X (y)2

exp
(y

2
− θ log y

)
thus ψ−1

X (y)6 6 ey and F−1(u) < 1/(1− u)1/6. Therefore∫
Jn

F−1(u)√
1− u

du 6 K

(
jn
n

)1/3

= Kn(β−1)/3

with β < 1 and the conclusion follows since mn → +∞ is arbitrarily slow. �

We have shown that
√
nIJ<n → 0 almost surely.

(iii) By (53) we ultimately have, for all u ∈ Jn,

|ρc (τ(u) + τn(u))− ρc (τ(u))| = |ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| .
Consider now J>n = J<δn ∪ J>δn with

J<δn = {u ∈ Jn : mnεn(u) < τ(u) < δ} , J>δn = {u ∈ Jn : τ(u) > δ} .
Since τ(u) > δ on J>δn and Proposition 31 and Lemma 25 of [3] are satisfied by ρ+ – thanks to (7) and (8) – we
readily deduce from Lemma 23 of [3] that

lim
n→+∞

√
n

∫
J>δn
|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| du = 0 a.s.

Concerning J<δn observe that by (53) again 0 < τ(u) + τn(u) < 2δ for all n large. Since ρ+ is convex it ensues

|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| 6 max
(
ρ′+ (τ(u) + τn(u)) , ρ′+ (τ(u))

)
|τn(u)|

6 Kδ |τn(u)|
with Kδ = ρ′+ (2δ). Therefore, with probability one, for all n large enough

sup
u∈J<δn

|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| 6 Kδ sup
u∈J<δn

|τn(u)| 6 K sup
u∈J<δn

|εn(u)| .

As already seen, (16) implies F−1(u) < 1/(1− u)1/6 for all u < 1 large enough. As a consequence, with probability
one it ultimately holds

√
n

∫
J<δn
|ρ+ (τ(u) + τn(u))− ρ+ (τ(u))| du 6 K

√
n

∫
Jn
εn(u)du

6 K
√

log log n

∫
Jn

F−1(u)√
1− u

du 6 Kn(β−1)/3
√

log log n

which vanishes as n→ +∞. We conclude that
√
nIJ>n → 0 almost surely.

Step 3. The convergence of IKn is weaker than in probability.

Lemma 29 Assume (FG), (C) and (CFGD). There exists β ∈ (1/2, 1) such that for any choice of λ > 0 and ε > 0
one can find u0 ∈ (1/2, 1) and n0 > 0 such that, for all u ∈ [u0, 1) and all n > n0,

P
(√
nIKn > λ

)
< ε.

Proof. Fix δ > 0 and consider

K<δn = {u ∈ Kn : 0 < τ(u) < δ} , K>δn = {u ∈ Kn : τ(u) > δ} .
The claimed result holds for IK>δn by applying Lemma 26 from [3] with δ = τ0 and u = F (M). Let us apply Lemma
25 to get, for K > sup|x|<2δ ρ

′
c(x),

√
nIK<δn =

√
n

∫
K<δn
|ρc (τ(u) + τn(u))− ρc (τ(u))| du 6 K

∫
K<δn
|βn(u)| du

6 K
∫
Kn

(∣∣BXn (u)
∣∣

hX(u)
+

∣∣BYn (u)
∣∣

hY (u)

)
du+

∫
Kn

(∣∣ZXn (u)
∣∣

hX(u)
+

∣∣ZYn (u)
∣∣

hY (u)

)
du.
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The first two terms satisfy

E

(∫
Kn

∣∣BXn (u)
∣∣

hX(u)
du

)
6
∫
Kn

√
1− u
hX(u)

E
(∣∣BXn (u)

∣∣)√
u(1− u)

du

6
∫ 1

u

F−1(1− u)√
1− u

du 6 3 (1− u)
1/3

and the last two terms obey, with probability one as n→ +∞,∫
Kn

∣∣ZXn (u)
∣∣

hX(u)
du 6 sup

u∈Kn

∣∣ZXn (u)
∣∣ ∫
Kn

F−1(1− u)

1− u
du

6
1

nυ

∫ 1−jn/n

u

F−1(1− u)

1− u
du

6
1

nυ

∫ 1−jn/n

u

1

(1− u)7/6
du 6

6

nυ
n(1−β)/6

which vanishes if β > 1− 6υ is chosen close enough to 1. �

Step 4. Here we recall that (C2) with b± > 1 and (15) respectively imply (C3) and (CFG) in [3]. Clearly Steps 4 and
5 of [3] remain true in the current framework and lead to the same conclusion as the main theorem in the latter paper,
whence Theorem 14. The new case to conclude with is b = 1. By Glinvenko-Cantelli and (FG), we almost surely have

0 6 |τn(u)| = |βn(u)|√
n

< τ = min
u∈L

τ(u)

for all n large enough, we only deal with ρ+. Assuming that b+ = 1 and ρ+(x) = xL+(x) we have, for some ε > 0
such that Lε ⊂ (0, 1) is an ε-neighborhood of L,∣∣∣∣∣√n

∫
L

(ρ+(τ(u) + τn(u))− ρ+(τ(u))) du−
√
n

∫ u

u

ρ′+(τ(u))τn(u)du

∣∣∣∣∣
6

√
n

2
sup
u∈Lε

∣∣ρ′′+(τ(u)
∣∣ ∫ u

u

τ2
n(u)du 6

K√
n

∫ u

u

β2
n(u)du

which almost surely vanishes by the law of the iterated logarithm. Thus we can conclude as in [3] by combining this
with the previous Steps 1, 2, 3. In particular, the limiting variance is finite as a consequence of (15).
In order to complete the proof of Theorem 14 note that whenever F > G we similarly get∣∣∣∣∣√n

∫
L

(ρ−(−τ(u)− τn(u))− ρ−(−τ(u))) du−
√
n

∫ u

u

ρ′−(−τ(u))τn(u)du

∣∣∣∣∣
6

K√
n

∫ u

u

β2
n(u)du

which explains why the term ρ′−(−τ(u)) = |ρ′c(τ(u))| shows up.

5.3 The general case

We now prove Theorem 16. Recall that (FG0) implies the existence of 0 = u0 < u1 < ... < uκ = 1 such that
F−1(uk) = G−1(uk) and Ak = (uk−1, uk) ⊂ E or Ak ⊂ D for k = 1, ..., κ. We now study the mixed case where at
least one of these intervals is included in E and one in D, so that κ > 2. Consider, using notation (49),

√
n(Wc(Fn,Gn)−Wc(F,G)) =

√
n

κ∑
k=1

IAk .

Let 0 6 λ < min16k6κ(uk − uk−1)/2. Define the intervals A+
k,λ = (uk−1, uk−1 + λ) ⊂ Ak for 2 6 k 6 κ and

A−k,λ = (uk − λ, uk) ⊂ Ak for 1 6 k 6 κ − 1. If Ak ⊂ D we have F−1(u) 6= G−1(u) for u ∈ A+
k,λ ∪ A

−
k,λ. If
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Ak ⊂ E the intervals A+
k,λ and A−k,λ are assumed to be empty instead. Consider first the intervals A+

k,λ for 2 6 k 6 κ
and set 0 < u− < u1 < uκ−1 < u+ < 1. Since

lim
n→+∞

sup
u−<u<u+

∣∣∣∣βn(u)√
n

∣∣∣∣ = 0 a.s.

we have, by (C2), for K = supu−<u<u+
(ρ′−(2 |τ(u)|), ρ′+(2 |τ(u)|)) < +∞,

lim
n→+∞

sup
u−<u<u+

ρc(βn(u)/
√
n)

|βn(u)/
√
n|
6 K a.s.

Therefore, in view of Step 4 in the previous proof for F 6= G we get

√
n
∣∣∣IA+

k,λ

∣∣∣ 6 K ∫
A+
k,λ

|βn(u)| du 6 K

h

(∫
A+
k,λ

|Bn(u)| du+

∫
A+
k,λ

|Zn(u)| du

)
where h = minu−<u<u+ min(hX(u), hX(u)) > 0. Lemma 25 further yields

lim
n→+∞

P
(√

n
∣∣∣IA+

k,λ

∣∣∣ > α
)
6 P

(∫
A+
k,λ

|B(u)| du > 2αh

K

)
for any α > 0 and all 2 6 k 6 κ, where B has the same law as Bn = BXn − BYn . The latter upper bound vanishes
as λ → 0. A similar conclusion holds for A−k,λ and 1 6 k 6 κ − 1. Write A∗1,λ = A1\A−1,λ, A∗κ,λ = Aκ\A+

κ,λ and
A∗k,λ = Ak\(A+

k,λ ∪A
−
k,λ) for 2 6 k 6 κ− 1.

(i) Consider the case 1 < b < 2. Fix λ > 0 arbitrarily small and write

√
n(Wc(Fn,Gn)−Wc(F,G)) =

√
nIE +

√
nI∗D,λ +

√
nI±D,λ (55)

where
IE =

∑
Ak⊂E

IA∗k,λ =
∑
Ak⊂E

IAk , I∗D,λ =
∑
Ak⊂D

IA∗k,λ , I±D,λ =
∑
Ak⊂D

IA+
k,λ∪A

−
k,λ
.

We just proved that
lim
λ→0

lim
n→+∞

P
(√

nI±D,λ > α
)

= 0.

Since b > 1 we have vn/
√
n→ 0 as n→ +∞. Therefore Steps 1 to 4 of Section 5.1 when F = G show that

lim
n→+∞

√
nIE = lim

n→+∞

√
n

vn
vnIE = 0 in probability.

In the case κ > 3 then for all 2 6 k 6 κ − 1 with Ak ⊂ D we have δk = infu∈A∗k |τ(u)| > δ > 0 and τ(u) has
constant sign on Ak. It follows from Steps 1 to 4 of Section 5.2 when F 6= G that the weak limit of

√
nI∗D,λ is∫

Dλ
ρ′c(τ(u))B(u)du where Dλ =

⋃
Ak⊂D IA∗k,λ and B(u) = BX(u)/hX(u)−BY (u)/hY (u). By letting λ→ 0 we

conclude that
√
n(Wc(Fn,Gn)−Wc(F,G))→weak

∫
D

ρ′c(τ(u))B(u)du

which is easily seen to have the normal distribution N (0, σ2
D).

(ii) Assume that b = 1. Starting again from (55) we again obtain that
√
nI∗D,λ →weak

∫
Dλ

ρ′c(τ(u))B(u)du

while the Steps 1 to 4 of Section 5.2 now entails, for vn from (19),

vnIE →weak π+

∫
E

1{B(u)>0} |B(u)| du+ π−

∫
E

1{B(u)<0} |B(u)| du.

The above approximation with the same B proves that the weak convergence of the couple
(√

nI∗D,λ, vnIE

)
holds,

thus the sum weakly converges.

Finally observe that (C4) implies
√
n/vn → L+(0)/π+ and

√
n/vn → L−(0)/π− as n → +∞. As previoulsy we

conclude by letting λ→ 0.
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5.4 A first special case : F = G and b = 2

We establish Theorem 11.

Step 0. Assume (C0), ρc(x) = x2 for |x| < x0, E = R, (FG1), (FG2) and

lim
u→0

u

h(u)
= lim
u→1

1− u
h(u)

= 0,

∫ 1

0

u(1− u)

h2(u)
du < +∞.

This proof partially follows the line of the proof of Lemma 2.4 of [9].

Step 1. We show that sup1/n6u61−1/n

∣∣F−1
n (u)−G−1

n (u)
∣∣→ 0 in probability, so that the behaviour of ρc near 0 only

matters. Write h = hX . Define Ui = F (Xi) and Vi = F (Yi), i = 1, ..., n. Consider nIIn with in = 1 and

IIn =

∫ 1

1−1/n

(
F−1
n (u)−G−1

n (u)
)2
du

=

∫ 1

1−1/n

(
F−1(U(n))− F−1(V(n))

)2
6

2

n

(
F−1(U(n))− F−1(1− 1

n
)

)2

du

+
2

n

(
F−1(V(n))− F−1(1− 1

n
)

)2

.

By the mean theorem, for some random U∗(n) between U(n) and 1− 1/n,

F−1(U(n))− F−1(1− 1

n
) =

U(n) − 1 + 1/n

h(U∗(n))
=
U(n) − 1 + 1/n

h(U(n))

h(U(n))

h(U∗(n))
.

By a classical argument – see [3] – we have, thanks to (FG2),

max

(
h(U(n))

h(U∗(n))
,
h(U∗(n))

h(U(n))

)
6 max

(
1− U(n)

1− U∗(n)

,
1− U∗(n)

1− U(n)

)K
.

Now recall that U(n) − 1 + 1/n = OP (1/n) and d(n) = n(1−U(n))→weak d(∞) where d(∞) is a positive fintite r.v.
Hence (

F−1(U(n))− F−1(1− 1

n
)

)2

6
(U(n) − 1 + 1/n)2

h2(U(n))
max

(
1

d(n)
, d(n)

)2K

=
(1− U(n))

2

h2(U(n))

(
1− 1

d(n)

)2

max

(
1

d(n)
, d(n)

)2K

where (1− U(n))
2/h2(U(n))→ 0 almost surely and

(
1− 1/d(n)

)2
max

(
1/d(n), d(n)

)2K
= OP (1). Hence nIIn =

oP (1).

Step 2. Now consider, for jn = nβ ,

nIJn =

∫ 1−1/n

1−jn/n

(
βXn (u)− βYn (u)

)2
du.

Lemma 30 There exists a sequence of processes BXn having the same law as BX of (18) such that

Ξn = sup
1/n6u61−1/n

∣∣βXn (u)− BXn (u)
∣∣ h(u)√

1− u
= OP (1).

Proof. It is an immediate extension of Corollary 4.2.1. page 382 of [6] starting from (4.2.2) of Theorem 4.2.1 of [6]. �
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As a consequence,

P (nIJn > 3α) 6 P

(∫ 1−1/n

1−jn/n

(
BXn (u)− BYn (u)

)2
du > α

)

+ 2P

(
Ξ2
n

∫ 1−1/n

1−jn/n

1− u
h2(u)

du > α

)
hence nIJn → 0 in probability. We conclude the proof by applying the Steps 3 to 5 in Section 5.1 with many
simplifications since L(x) = 1 now.

5.5 A second special case : F = G has compact support

The proof of Corollary 20 follows exactly the same path as the proof of Theorem 9 up to the following slight changes.

Step 0. We mainly require (FG2), (FG3) to apply the Hungarian construction but not (C3) for the cost at +∞ since
the support is bounded.

Step 1. In Step 1 of Section 5.1 we only need Kn → +∞.

Step 2. It is much shortened thanks to the boundedness of F−1 by taking Kn such that in/ log log n→ +∞ and (29)
is no more required since by (21) (

√
u(1− u)/h(u))b

′
is integrable.

Steps 3 and 4. Since F−1 is bounded we use (21) that implies the a.s. finiteness of
∫ 1

0

∣∣BX(u)
∣∣b′ du and∫ 1

0

∣∣BY (u)
∣∣b′ du.
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