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ABSTRACT

We estimate contrasts fol p(F~Y(u) — G=Y(u))du between two continuous distributions F and G on
R such that the set { ' = G} is a finite union of intervals, possibly empty or R. The non-negative
convex cost function p is not necessarily symmetric and the sample may come from any joint
distribution H on R? with marginals F and G having light enough tails with respect to p. The rates of
weak convergence and the limiting distributions are derived in a wide class of situations including the
classical Wasserstein distances 1/, and W5. The new phenomenon we describe in the case F' = G
involves the behavior of p near 0, which we assume to be regularly varying with index ranging from 1
to 2 and to satisfy a key relation with the behavior of p near co through the common tails. Rates are
then also regularly varying with powers ranging from 1/2 to 1 also affecting the limiting distribution,
in addition to H.

Central limit theorems, Generalized Wasserstein distances, Empirical
processes, Strong approximation, Dependent samples, Non-parametric
statistics, Goodness-of-fit tests.

62G30, 62G20, 60F05, 60F17

1 Introduction

1.1 Motivation

In [3] we addressed the problem of estimating the distance between two asymptotically well separated and continuous
distributions on the real line R, with respect to a large class of generalized Wasserstein costs. The framework was
the same as in [12] and is very simple. A sequence of independent and indentically distributed (¢.i.d.) random
variables (r.v.) taking values in R? is available. The marginals have distinct continuous cumulative distribution function
(c.d.f.) F and G. For instance, each couple may result from simultaneous experiments. We estimated contrasts

fol c(F~Y(u), G~ (u))du between F and G by the natural and easily computed non-parametric plug-in estimator

fol c(F,; 1 (u), G, (u))du. Here F~ is the generalized inverse of F', IF,, is the empirical c.d. f., and c is a non-negative
cost. The almost sure (a.s.) consistency of this estimator being easily established under minimal assumptions we mainly
developed a sharp method of proof of the Central Limit Theorem (CLT) assuming that the tails of F' and G are distinct
enough and compatible with the cost c. The most original contribution in [3]] was to investigate rather deeply the latter
relationship in the untrimmed case and for dependent samples. This showed that the problem can not be reduced to the

study of each marginal [, ¢(F,,"(u), F~'(u))du and instead requires crossed assumptions on tails, costs and densities
beyond moments. However the special case of the distance W, was not captured, asymptotically non-symmetric costs

or asymptotically too close marginals were not allowed, the case F' = G and the one marginal case were not considered.
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In the present paper — the first version of this preprint is [2] — the general setting remains exactly the same, but we
investigate the most important situations for statistical applications, among which the goodness-of-fit hypothesis F' = G,
the alternative hypothesis where F' # G on R and may have arbitrarily close tails, and the intermediate hypothesis
where the two situations F' = G and F' # G are encountered, but alternate along a finite number of intervals. The
distance W7 and non-symmetric costs are now allowed provided that they are regularly varying at both sides of 0. We
focus on the new difficulties, however we often refer to [3]] to borrow some long arguments and apply already developed
tools. New assumptions arise that again illustrate how delicate tail integrals of transforms of empirical quantile functions
can be for heavy-tailed distributions.

The method of proofs relies on a careful subdivisions of the integrals and events, and a joint approximation of the quantile
processes v/n(F, *(u) — F~1(u)), u € (0,1) by properly scaled Brownian bridges on an appropriate sub-interval. As
a matter of fact, it is not possible to directly apply a functional delta-method since the Hadamard differentiability of
F — F~! can not be extended to encompass distribution with densities arbitrarily close to 0 and in particular with
unbounded supports. Moreover the Brownian approximation - weak or strong - of the quantile processes suffer many
problems near 0 and 1 due to extreme values. Lastly, the general costs we use - even the simple Wasserstein costs -
make the problem more difficult to handle and shows up to be determinant for both rates and limits in the case F' = G.

Let us mention related results in the framework of univariate probability distributions. The commonly used p-Wasserstein
distance W,(F, G) is

W2(F,G) = /O P~ (u) — G~ (u)Pdu. 0

Many authors were interested in the convergence of W' (F,,, ), see e.g. the survey paper [4] or [8,[9,[1]. Up to
our knowledge there are only two recent works studying the convergence of WZ(FF,,, G,,) [10} [14], for independent
samples. The results of [[10] are valid in any finite dimension with the drawback that the estimator is not explicit from
the data and the centering in the central limit theorem (CLT) is the biased EW3 (F,,, G,,) rather than W3 (F, G) itself,
moreover the limiting variance has no closed form expression and seems not easy to estimate. In [14]] the estimator is
the same as our’s, howewer only discrete distributions and W5 distance are considered. Notice also that in the early
work [[13] a trimmed version of the Mallows distance W22 (F,,, G,,) is studied, however under an implicit assumption on
the level of trimming which has to hold in probability. Moreover in the case of dependent samples, a trimmed version
of W2(F,,, G,,) is studied in [12].

We investigate below a larger class of convex costs, even larger than in [3]]. The samples are possibly not independent,
and the conditions relating the tails of " and G to the cost function c are easily checked. Combined to our technique of
proof they allow to control the critical parts of the untrimmed integrals in a weaker sense than in probability, hence
our explicit sufficient conditions are lighter than the above mentionned implicit ones. We obtain a general CLT for
W.(F,,,G,,) when F' = G are continuous, thus providing a new class of goodness-of-fit and comparison tests with
exact rates and non-degenerate limits. In order to evaluate the power of these tests we study the weak convergence
under many alternatives ' # G among which the case where ' = G on large intervals.

1.2 Setting

The p-Wasserstein distance between two c.d.f. F' and G on R is defined by

WP(F,G) min E[X — Y|P )

T X~FY~G

where X ~ FY ~ G means that X and Y are joint real r.v. having c.d. f. F' and G respectively. The minimum in (2)
is . To any non negative function ¢(z, ) from R? to R let associate the Wasserstein type cost

We(F.G)= min Ee(X,Y). 3)

We are interested in triplets (¢, F, G) such that W(F, G) is finite and can be estimated by using an explicit CLT. To
guaranty that an analogue of (T]) exists we consider cost functions defining a negative measure on R?, hence satisfying

c(a’,y') —c(’,y) —c(z,y) + c(z,y) <0, z<a',y<y. (4)

If ¢ satisfies @ then for any functions a and b, a(x) + b(y) + ¢(z,y) satisfies {@). In particular ¢(x,y) = —zy and
(x —y)? = 2% +y? — 22y satisfy . More generally if p is a convex real function then ¢(z, y) = p(x — y) satisfies (E])
Two important special cases are the symmetric power functions |z —y|P, p > 1, associated to W), and the non-symmetric
contrast functions c(z,y) = (z — y)(a — 1,_y<o) associated to the o' quantile, 0 < a < 1. The following result
yields the minimum in (3] in a closed form analogous to (L.
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Theorem 1 (Cambanis, Simon, Stout [S]) If c satisfies (@) then

WC(RG):/O c(F~(u), G~ (u))du.

Let (X;,Y;)1<i<n be an i.i.d. sample of a random vector with joint c.d.f. H on R? and marginal c.d.f. F and G
on R. Write F,, and G,, the random empirical c.d. f. built from the two marginal samples. Thus F,, and G,, are not
independent in general. Consider a cost function c satisfying @) Let X(;) (resp. Y(;)) denote the it" order statistic of
the sample (X;)1<i<n (resp. (Yi)i<icn).ie. X1y < ... < X(5). By Theorem the non-parametric statistic

1
WC(]FTI) Gn) = Z C(X(i)a }/(2)) o)

n <
=1

is a natural estimator of W, (F, ). Now, the c¢(X(;), Y(;))’s being neither independent nor with identical distributions
the statistic (5)) is not classical - such as i.i.d. mean, L-statistic, U-statistic etc. Notice also that W (F, G) does not
depend on the generally unknown H whereas the r.v. W,.(F,,, G,,) strongly depends on H through its distribution. In
[3] we established the CLT

VI (We(Fy, Gy) — We(F, Q) =wear N (0,07)

whenever the tails of F' and G differ from at least 7 > 0 and ¢(z, y) is asymptotically p(x — y) with p non-negative,
symmetric, convex. The influence of H only appeared in the limiting variance 02 = o*(H, c¢) together with c. The
sufficient conditions relating explicitly ¢, ' and G were designed to carefully control the extremes, define sharply the
truncation level and approximate the underlying joint quantile processes. We now intend to complete the picture by
extending this CLT to other important cases, in particular 7 = 0 and non symmetric costs p.

1.3 Overview

Hereafter we consider a cost ¢(x,y) = p.(z — y) where p. is a non-negative real convex function such that p.(0) = 0,
and is not assumed to be symmetric. In the spirit of [3]] we separate out three sets of assumptions, labeled (F'G), (C)
and (CFQG) respectively.

First, (F'G) concerns the regularity and tails of ' and G, and especially their density-quantile function. Conditions
(F Q) are satisfied by distributions having regular tails, among which all classical probability distributions.

Second, (C) restricts the rate of increase at infinity of p. and the regular variation at 0 of p., without even assuming
differentiability at 0. Conditions (C') encompass a large class of Wasserstein type costs ¢ and the distance W7 is now
allowed, together with non-symmetric variants of Wasserstein distances W2, p > 1, possibly with slowly varying
factors — a non trivial extension — or exponential and over-exponential costs.

The conditions (F'G) and (C) are thus designed to separately select a class of probability distributions and admissible
costs.

The third set (C F'G) aims at mixing the requirements on ¢, F' and G making them compatible. We distinguish between
(CFGEg), (CFGp) and (CFGEp) depending on the situations {F = G} = Ror{F #G} =Ror{F =G} #R
and {F # G} # R, respectively. The joint distribution H of the couples is not restricted and again only affects the
limiting distributions. In order to exhibit an exact rate of convergence it shows up that the tail constraints on /" and G
that naturaly depend on p at co also strongly depend on the exact regular variation of p. at 0 whenever F' = G in tails,
that is the key requirement of (CFGg) and (CFGEgp).

When dealing with empirical Wasserstein type integrals, to adapt the functional delta method one would need to truncate
and then to assume a convergence in probability of the extremal parts. This would be a restriction excluding many
distributions F' and G, depending on where the integral is non-adaptively trimmed. Moreover, proving the validity
of the assumed convergence of the truncated parts would require variants of Steps 1, 2, 3 of our proofs. In contrast,
(CFGE) and (CFGp) explicitly relate the tails to the cost in such a way that the implicit truncation levels can be
defined appropriately.

Before entering the mathematical details of these assumptions let us present two consequences of our results. The
regular variation of tails is in the sense of (i) in Section[QLZ]below and —cqk denotes the convergence in distribution.

Proposition 2 Consider the Wasserstein distance W} for 1 < p < 2. Assume that F' = G is two times differentiable,
2(p+2)

log F () and log(1 — F(x)) are regularly varying as || — oo, and F(z)(1 — F(z)) < Clz|~ =5 ) for some
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e >0, C > 0and all |x| large enough. Then it holds

1
P
n2WE(Fpn,Gn) = weak / IB(u)|” du,
0
where B is an explicit centered Gaussian process and the limiting r.v. is positive and finite.

The restriction p < 2 is not surprising since when X and Y are Gaussian and the two samples are independent, the
limiting random integral is a.s. infinite. More precisely, in the case p = 2 we establish the weak convergence of
nW3(F,,G,) by requiring F to be sub-Gaussian, as in [9]] for nW3 (F,,, F).

In the case p = 1 we get, with the same Gaussian process B as above, the following result, which seems new for
Wl(Fny Gn) = HFn - Gn”l

Proposition 3 Assume that the set {F = G} is a finite union of non empty intervals of R, that F, G are two times
differentiable and that log F(z), log G(x), log(1 — F(z)) and log(1 — G(x)) are regularly varying as |x| — oc. Let
r = 2if {F = G} is compact, and r = 6 otherwise. Assume that max(F (z)(1—F(z)), G(z)(1-G(x))) < Clz| ="+
Sor some e > 0, C > 0 and all |x| large enough. Then it holds

\/E(Wl(FnyGn) - Wl(F7 G)) —weak /
F-1£G-1

B(u)dqu/ |B(u)| du

F-1=G-1
and the limiting r.v. is finite.

As can be seen in the two previous results this paper focuses on the probability distributions with infinite support.
Nevertheless our results also hold for compactly supported probability distributions with derivable densities. At the end
of Section [3|we provide simplified sufficient assumptions in the compactly supported case.

The paper is organized as follows. Assumptions are discussed in Section[2] In Section [3] we state our main results in the
form of CLT’s for W..(F,,, G,,) — W.(F, G) at various rates. We propose a few perspectives for applications in Section
M] All the results are proved in Section[3]

2 Assumptions

2.1 Assumptions (F'G)

Consider a sequence (X,,,Y,,) € R? of independent random vectors having the same c.d.f. H as (X,Y). The
distribution H may have a density or not. However we assume that the marginal c.d.f.’s F' of X and G of Y have
support R and positive densities f = F’ and g = G’. Let (E, D) be the partition of (0, 1) defined by
E={u:F'uw=G"w}, D={u:F '(u)#G "(u)}. (6)
If u shifts infinitely many times between E and D it becomes difficult to control the stochastic integral W,.(F,,, G,,).
The case where |F‘1(u) - G‘l(u)‘ > 7 > 0asu — 1and v — 0 has been treated in details in [3]. We allow the
diagonal |F~!(u) — G~!(u)| < 7 and thus encompass the case E = (0, 1) together with some tractable situations
where E # () and D # (). Let assume that there exists a finite integer £ > 2 and 0 = ug < u1 < ... < u,, = 1 such
that, writing Ay = (uk—1, uk),
(FGO) F~Yup) =G '(up)and A, C Eor Ay, C D,fork =1,..., k.

This covers three generic cases, namely £ = (0,1), D = (0,1) and when D # (), E # () are finite unions of intervals.
The exponential rate of decrease of the right and left tails of F and G are defined to be, for v € R,

Y (r) = —1logP(X > z), ¥f(z) =—logP(Y > 1),

¥3(@) = —logP(X < —2), vy (2) = —logP(Y < ).
Only 1/)}: and 1/);; will be considered in subsequent proofs where arguments given for the right hand tail « — 1 in the

integrals W,.(F, G) and W,(F,,, G,,) work similarly for the left hand tail & — 0. Define the density quantile functions
hx = foF~'and hy = go G~ then assume

(FG1) F,GeCy(R), f,g>0onR.
(FG2)  sup min(u,1—u)|(log h(u))/| < +oo forh = hx,hy.
O<u<1

min(u, 1 — )
(FG8) - b FT(w) | + 1) ha)

Observe that (F'G1) and (F'G2) are classical in the context of approximation of quantile processes — see e.g. [6].

< +oo for (h,T) = (hx,F)or (hy,G).
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Remark 4 Rewriting (FG2) and (FG3) we get

min(F(x),1 — F(x)) 1 ‘fl(f)‘

i f(z) <a:| 17 @) > =
min(G(x),1 — G(x)) 1 |g’(x)\

E W (it 56 <+

In Proposztlon 5 0f[3] we provided a simple sufficient condition for (FG1), (FG2), (FG3) based on the regular
variation of 1/) Y and wY All classical tail distributions satisfy the conditions (F Q).

2.2 Notation for regularity

To specify the allowed cost functions ¢(x, y) the following definitions are required. As usual for k € N, and I C R
let Ci,(I) denote the set of functions that are & times continuously differentiable on I and Cy([) the set of continuous
functions on I. In forthcoming assumptions and proofs we consider functions defined either on (0, ) or on (yg, +00)
for some 0 < xp < yo. We distinguish the two domains by using a variable x — 0 and a variable y — +o0. In [3] only
large values y € (yo, +00) played a role in terms of regular variation, so that we keep the same setting in (i) below.
Unexpectedly, it turns out that the two domains interfere when |F' — G| is arbitrarily small, and we need (ii).

(i) Regularity on (yo, +00). Let Ma((yo, +00)) be the subset of functions I € Ca2((yo, +00)) such that [ is monotone
on (yo, +00). Write RV (400, ) the set of regularly varying functions at +o0o with index v > 0. If ¥ = 0 we restrict
ourselves to slowly varying functions L at +oo such that

L'(y) = E(y)yL(y) A e(y) =0. (7)

This weak restriction is explained at Section 6 of [3]]. In order to find distributions F' and G compatible with the cost ¢
we further impose

Ly)z—=, h=1 y=un. (8)
For v = 0, introduce
RV5(+00,0) = {L : L € M3 ((yo,+0o0)) such that (7), (8) hold}
and for v > 0,
RV (400,7) = {l:1 € M2 ((y0,+0)),1(y) =y L(y) such that L' obeys (7)} .
(ii) Regularity on (0, z¢). We consider positive slowly varying functions L at 0,
Z%LL(Z:)):Iforany9>0. “
For b > 1 let introduce
RV5(0,b) = {p: L € C2((0,30)), p(z) = 2"L(z) such that L satisfies @)} .
For b = 1 let define
RV5(0,1) ={p: L € C2((0,0)), p(x) = zL(z) such that L satisfies @), (TO)}
where we impose the following finite limit
wli{% L(z) = L(0) e R,. (10)

2.3 Assumptions (C')

We consider costs such that, for some 0 < 2o < yg < +00,
(CO) c(z,72)=pc(z—2") 20, z2z €e€R, ¢0,0)=0, p.isconvex.
(C1) pe(x) = p—(—z)lego + p+(:c)1m>o, reR, pi€Ca((0,+00)).

(C2) py(z) = b+L+(I) 0<z<wo, pt € RV2(0,b4), by =1,
p_(x) =ab-L_(x) > 0<xz<x9, p-€RV2(0,b_), b_>1.

(C3) p+ly) = eXp(lJr(y))a Y=Y, I+ € RVa(+oo,74), v+ 20,
p—(y) =exp(l-(y)), y=wo, [l € RVa(+o0,7-), 7-=0.
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Notice that pL(0) = 0 and py are positive, continuous, convex and increasing on R,. Define p(z) =
max(p4(x), p—(x)) and b = min(b4,b_). For 0 < z < x it holds

L_;,_(IE) if b+ < b_,

L_(x) ifb_ < by, (11)

p(x) = 2"L(z), L(z) = { i
max(Ly (z), L_(x)) ifby =b_.

Further assume that

. p+(@) — im p—()
(C4) limy p(z) 7 Jm p(z)

Typical costs satisfying the conditions (C) are the following.

=7, w,7m— €[0,1].

Example 5 Let a = (a_,ay) be such that ay. > 0 and b = (b_,b,.) be such that by > 1. Then

b_ b
c(%b(za Z/) = a— (Zl - Z) locor +ay (Z - Z/) " 1.

satisfies (C) with y_ = v, = 0 and (y) = O(1/logy). This includes the Wasserstein distance W}, p > 1, by taking
a = (1,1) and b = (p,p). It is possible to define costs mixing the Wasserstein distance W2, p > 1 near 0 and W,
q = 1 away from 0. Note that de facto when E is not compact we will restrict to p < 2 near 0 in order to include at
least the Gaussian distributions in (CFGg) and (CFGgp) below. For instance the cost p(x) = |z|(1 + |x|) is well
suited for distributions with heavier tails than Gaussian.

2.4 Assumptions (CFG)

The joint influence of I+, L+ and by on the allowed tails F~! and G~ is expressed as follows. Remind the sets E and
D from @ We need three different assumptions, each corresponding to the generic cases £ = (0,1), D = (0,1) and
when at least one interval is included in £ and one in D.

Studying the case E = (0, 1) we worked out the following conditions (C FGg). They only deal with the behavior of
F, G, p. at infinity but also involve the orders by > 1 of the local regular variation (C2) near zero that indeed rule

the CLT rate. The case b_ = 2 or by = 2, which is restricted to sub-Gaussian distributions, is treated separately at
Theorem [11]
Assumption (CFGp). Assume that b_ < 2 and by < 2. Assume that for some 03 > 0 and
(1) € {4, 0%), (-, 0%), (1=, ¥%), (L4, ¥x) } (12)
we have,
(1) if 1 < b < 2, forall y > yo,
_ b _
Loy~ (y) < (1 — 2> y +log L (exp(—y/2)) — 2log ¢~ " (y) — falogy, (13)
and,
(#i) if b =1, for all y > yo,
Loy~ (y) < § —2logy" () — bz logy. (14)

From the study of the case D = (0, 1) the conditions (C'F'G p) that comes out only deal with the behavior of F, G, p.
at infinity and the CLT rate is standard. The special case where |[F~!(u) — G~!(u)| > 7 > 0asu — landu — 0

under (C2) with b > 1 is already covered by [3]]. In order to cover more cases we further impose and allow b = 1.
Therefore (CFGp) extends the condition (CF'G) in [3].

Assumption (CFGp). Let 6_, 0, be the parameter # > 1 of condition (CF'G) in [3] for the left and right tails

respectively.
(i) For any (I,) from and @ =0, ifl =1y orf =6_1if | =I_ we have

20
(ol (y) >2+ 25 Y > . (15)

(i4) If
liminf [F~'(u) = G~ '(u)| =0 or liminf|F~'(u) — G " (u)| =0
u—1 u—0
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and for (1,9)=(l4,v%), (I, ¥{) or (1,9) = (I_, %), (I4+, 1y ) respectively, assume that for some > > 0 it holds

Loy (y) < g —2log ¢~ (y) — b2logy, Yy > yo. (16)

When D # () and E # (), two situations arise. Firstly, if E is compact in (0, 1), that is (4; U A,) C D we only need
(CFGp). Secondly if at least one among A; or A is included in E, which means that ' = G on an infinite interval,
then we need to also impose (C' F'Gg) on the involved intervals.

Assumption (CFGgp). Assume (CFGp). If Ay C E then assume (CFGg) for (I,)=(1_,v%), (l4+,¢x). If
A, C E then assume (CFGp) for (I,v) = (I_,v%), (l4,¥%).
Remark 6 If~v. > 0we have 0L > 2 and, if v+ = 0 we have, as in [3]],

6% > 2 lim inf 281/2= W)
y—+oo  logly(y)

where £ (y) corresponds to the function e(y) of (7) applied to L(y) = L4 (y).

Remark 7 As will be seen in the proofs, (CFGg) and (FG3) imply that we can find b such that 1 < b < b’ < 2 and

b v
1 1— 1 F—l
= PAT=E
0 hx (u) 0 u(l —u)

which is a little stronger than the necessary condition that the left hand integral is finite. By using F~'(u) =

P~ L(log(1/(1 — u))), also reads

B B L(V1—u
(F~Hw)*p (FH(w) < T 2( ) 7
(1 —u)' =2 (log(1/ (1 — u)))?

In particular, if L(x) = 1 we deduce that (FG) and (CFGg) imply

1 2/(2—b)
P(X >y) < <) , > Yp.

This induces the moment conditions of Propositions[2|and

U > Ug.

Example 8 For light tails of Weibull type, ¥ (y) = y*, w > 0, is true and (C FG ) requires that 1(y'/") < Cy
as y — +oo and hence a cost of type l(y) =y, y > yo and l(z) = z°, x < w0, is allowed provided that v < w and
1 < b < 2. For heavy tailed distributions such as Pareto, 1(y) = plogy with index p > 2, the conditions (CFGg),

(CFGp) and (CFGgp) induce more constraints. For instance (CFG ) applied with p.(z) = 2%, x < x¢, and
l(y) = alogy, y > yo, implies thatp > 4/(2 — b) and 1 < o < p(1 — b/2 — 2/p), hence the minimal requirement on
pisp = 6/(2 —b). Choosing p.(z) = z° on R we have o = b and the last constraint becomes p > 2(b+2)/(2 —b).

3 Statement of the results

Consider the joint Gaussian process G = { (B* (u),BY (u)) : u € (0,1)} with

X u v (3
BX (u) = fx((u)), BY (u) = B () (18)

hy (u)’
where (BX, BY) are two standard Brownian bridges with covariance
cov(B™X (u), B* (v)) = cov(BY (u), BY (v)) = min(u,v) — uv, wu,v € (0,1),

and cross covariance

cov(BX (u), BY (v)) = H(F~Y(u), G~ (v)) —uv, wu,ve (0,1).

The existence of G is proved in [3]. Let B(u) = B* (u) — BY (u), u € (0, 1), that is the Gaussian process driving the
limit distribution in Propositions [2]and [3]as well as in forthcoming results.
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We are now ready to state our main results. Remind (TT)) and set

_ 1 _ nb/2 19
= SV L) )

hence, in our first statement we have K/n < v,, = o(n) for some K > 0. The constants 7_ and 74 come from (C4).
Our first result concerns F' = G.

Un

Theorem 9 Assume (FG), (C), E = (0,1) and (CFGg), in which case 1 < b~ ,b" < 2. Then

1 1
vnWC(FnaGn) —weak 777/ ]-{]B(u)<0} |]B%(u)|b7 du + 7T+/ 1{B(u)>0} |I|EB(U‘)‘bJr du
0 0

and the limiting r.v. is finite and, if P(X =Y') < 1, positive.

Remark 10 As shown in [[7l], and since BX is a centered Gaussian process,

b
1 1 1—
P </ |]B%X(u)|bdu < +oo> = 1 is equivalent to / vull —w) du < +o0.
0 0 hx (u)

The latter bound being guaranteed by (CFGg) and (FG3), which imply , the finiteness of the limiting r.v. in
Theorem 9 follows.

For light tails one can handle the limiting case b = 2 — here stated with b = b* = b~ = 2 and L(x) = 1 for |z| < z¢
for sake of simplicity.

Theorem 11 Assume that E = (0,1), (FG1), (FG2) and

u 1—u Lu(l —u)
Iim ——— = 1i = —2d . 20
B (@)~ () / W (w) ST 0

Moreover assume (CO) with p.(z) = 22 for |x| < xo, hence b= bT = b~ = 2. Then
1
WWo(Fr, G) ek / B(u)*du.
0

Notice that Theorem includes the case W, = W and shows that the cost function only matters at 0.
Example 12 For light tails of Weibull type it holds, for some w > 0,
o (u) = w(l = w) (log(1/(1 —w))) /"

and (1 —u)/h3% (u) = 1/w ((1 — u)log(1/(1 — u)))2(171/w). The first condition in @) is then satisfied for w > 1

and the second for w > 2, so that w > 2 is required. This excludes Gaussian tails, as in Theorem 4.6 in [9)].

Remark 13 Theoremrequires no assumption on the cost p(y) as y — +oo. In particular, (C3) may hold with any
Y4, V—. Since only sub-Gaussian tails are allowed by @) the tail part of W.(F,,, G,,) indeed behaves the same as for
compactly supported distributions. Namely, empirical extremes of both samples remain simultaneously stuck together
very closely to their common deterministic counterpart F~1 that increases very slowly.

Our second main statement is an extension of the main theorem of [3]] which now allows F' and G to have arbitrarily
close tails.

Theorem 14 Assume (FG), (C), D = (0,1) and (CFGp). Then
\/H(WC(JF", Gn) - Wc(Fa G)) —rweak N (07 02)

o’ =E ((/01 |pL(F~ 1 (u) — Gl(u))|B(u)du)2> < +00.

where
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Remark 15 The finiteness and a closed form expression for 0® = o (c, H) have been proved in [3|]. We also refer to
the latter paper for explicit examples in the independent samples case.

Our third result shows that if there exists a point, or equivalently an open interval, where F' # G then the rate is \/n,
whether E # ) or not.

Theorem 16 Assume (F'G), (C), D # § and (CFGgp). If 1 < b < 2 then
\/E(WC<F7L7 G’I’L) - WC(F) G)) _>weak N (07 OQD)

oh = (( [ 1 - <u>>|B<u>du)2> < +oo.

Ifb = 1 then, for L+(0) from (0},
\/H(Wc(Fna Gn) - Wc(Fa G)) —weak /D |p’c(F71(u) - Gil(u)”B(u)du

where

F 1 L (0) / 1p(uy <oy [B(w)]| du
E
g1y (0) /E 15(u)50) [B(w)]| du.

Remark 17 In the second part of Theorem m the first term in the limiting r.v. has distribution N (0 o D) and is
correlated in an explicit way to the other two terms. Theorem[I6]also shows that whenever 1 < b < 2 Theorem[I4]
remains true if F and G are not stochastically ordered but cross each other at a finite number of points, since this
. l. 2 . 2
implies 07, = o~

The next corollary concerns the Lj-distance Wi(F,,G,) = |F, — G,l/z,- Remind that c,1(z,2") =
a_ (2' —2) e +agr (2 —2") 1 cs.

Corollary 18 Assume (F'G), (C) and (CFGgp). Then
\/ﬁ (ch,,l (]Fna Gn) - Wca,l (Fa G))

_>weak/D(afl{Ffl(u)<G*1(u)}+a+1{F*1(u)>G*1(u)})B(u)du

+ /E (a-1By<oy + at Lip)>oy) [B(w)| du

and, in particular fora_ = ay =1,
Vn(Wi(F,,G,) — Wi(F,G)) —weak / B(u)du Jr/ [B(u)| du.
D E

It is easily seen that straightforward adaptations of the proof of Theorems/@ to leads to analog results for
Vi (We(F,,G) — W.(F,G)) and v, W.(F,, F) by just replacing B(u ) with BX (u). In par-
ticular we get the following corollary of Theorem@

Corollary 19 Ler 1 < p < 2. Assume that F satisfies (FG) and has tails lighter than a Pareto tail with index strictly
larger than 2(p + 2) /(2 — p). Then

1
nPPWE(Fy, F) —eak / |BX (w)[” du
0

and the limiting r.v. is positive and finite.

We conclude this section by stating the counterpart of Theorem 9] for compactly supported probability distributions.
Other extensions to this case of the above results are likewise easy.
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Corollary 20 Assume wlog that F = G has support [0, 1] and is twice differentiable with positive derivative f on
(0,1). Assume moreover (FG2), (FG3) and (C) except (C3) with b~ < b’ and b* < V/ where b’ > 1 and

b
! u(l — u)
/0 (hx(u)> du < +o00. 20

1 1
Uan(]F'ru Gn) —weak T— / 1{B(u)<0} |B(u)|b7 du + T+ / 1{B(u)>0} |B(u)‘bJr du
0 0

Then

and the limiting r.v. is finite and, if P(X =Y) < 1, positive.

This extends Theorem 19 of [3]] to the case ' = G and reduces (CFGg) to the integrability assumption with no
restriction on b, since the influence of the cost is limited to its behaviour near 0.

Example 21 The Beta distribution with parameters o > 0 and 3 > 0, has density f(z) = B(a, 8) x* 1(1 — )P~ 1
on (0,1). Clearly (FG2) and (FG3) are satisfied, and since is true for any b > 1, the previous result applies for
any b=, bT > 1.

This is not always the case. For instance, consider a c.d.f. F on (0, 1) equal to e~ Veezl™ "y > 0 near 0 — and
symmetrically near 1. Then it satisfies (F G2) and (FG3) but only satisfies (21)) for b’ < 2. Hence the previous result
applies for 1 < b=, bT < 2.

4 Applications

4.1 Comparison and goodness-of-fit tests

A consequence of Theorems [9]and [I6]is the construction of a statistical test of the hypothesis H, : F' = G against
H, : F # G, based on two samples that may arise from correlated experiments. Let us choose the b-Wasserstein
distance with 1 < b < 2. The distributions F' and G are supposed to be C? on R or R* and satisfy (CFGgp) and
(FG). By Theorem @ under H the statistic n*/2W.(F,,,G,,) converges to a positive finite random variable while
by Theorem under #; it converges almost surely to 40 at the rate n®/ 2W.(F,G). Mathematically this test is
effectively valid when the set D = {FF~! # G~1} is a finite union of non empty intervals, but we think that its validity
could be extended to the more general case where D is of positive Lebesgue measure in (0, 1). The use of W2, with a
rate n is more restrictive since it needs very light tails. Nevertheless if sub-Gaussian tails can be asserted, by Theorem
[[T]the previous test works with b = 2, which actually is a new test.

In each case the rather minimal (C' F'G) type conditions have to be checked. They are close to be necessary in the proofs
to overcome the difficulty of controlling how close the empirical tails of F,, and G,, must be under Hg, and how far
|F,, — G, | can deviate from | F' — G| in tails under ;. Interestingly the choice of p(x) may be with a locally polynomial
shape as  — 0 and a different shape as z — 400 possibly linear, polynomial or exponential. This flexibility allows to
test the tail or the mid-quantiles with more or less accuracy.

In the same vein, concerning the distribution functions, Corollary [T8]yields

+o0o
vn </ [F,.(t) — G, (t)| dt — /F_l(D) |F(t) — G(t)|dt>

—weak /IDB(u)du-i-/E|B(u)\du

which seems not to have been already obtained. This provides weak limits for the power of the test under alternatives to
Ho : F' = G of the kind H; : I = G where G 1_1 only differs from G ! on an interval D, for instance with a slightly

different right hand tail only. The test statistic /n | joooo |F,.(t) — G, (t)| dt has an almost sure first order rate of escape
\/ﬁfGl_l(D) |G1(t) — G(¢)] dt.

As a by-product of the results of Section 3 one can similarly build goodness-of-fit tests Hy : F' = F{ against
‘H, : F' # F, by using one sample under F' or by using an additional sample distributed as F. Notice that the test
associated to b = 2 was a consequence of [9]].

10
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4.2 An application

The motivation of our initial work was intimately related to the field of computer experiments. Many computer codes
produce as output values of a function computed on so many points that it can be considered as a functional output.
The case we are interested in is when this function is the c.d. f. of a real r.v. It turns out that Wasserstein distances are
now commonly used to analyze such outputs. In view of defining new features for random c.d. f. such as median or
quantiles, more general Wasserstein costs may be used as contrasts to compute these features by solving an optimization
problem — see [[L1]. Nevertheless computer codes only provide samples of the underlying distributions. Whence the
importance of an efficient estimation of distances between c.d. f. and goodness-of-fit tests through random samples.

As an illustration, let us conclude with a notion of quantile for a r.v. taking values in the set of continuous c.d. f.’s.
A useful new result of this article is the first part of Corollary [18|which is strongly related to the preprint [L1]. Let
0 < a < 1. In [11] the a—quantile F, of a random continuous c.d. f. [ is defined to be
F, = ArgminE W,(F, 6),
0eF

where ¢(z,y) = (¢ — y)(o — 15_y<0) is the non-symmetric contrast for the a-quantile of a real .v. and F is the set
of continuous c.d. f. As previously mentioned, in practice a realization F(w) of IF is known through a n-sample of the
distribution F(w). Hence we may assume that a N-sample F}.,...,FY is available, where each [F?, is a n-empirical
c.d.f. of F' and F',...,FV are i.i.d. according to IF. Define

N
1 ;
FN o = Argmin — Z W.(F;,,0),
0EF, st
where F,, is the set of c.d. f. with at most n different values. Then one could use Corollary @]to prove that Fiy ,, o is a
consistent estimator of F,, when [NV and n tend to +o0, and determine the rate of convergence.

5 Proofs

In the forthcoming proofs the high order quantiles are shown to have a secondary order impact compared to the
mid-order quantiles that impose the rate as well as the limiting distribution under our sufficient conditions ensuring that
the tails are not too heavy. For sake of simplicity we only work on the right hand tail, with quantiles of order u € (u, 1)
for an arbitrary small w > 0. The counterpart for the left hand tail is immediate by using the same arguments.

To help the reader the variable of frequently used deterministic functions defined on R like p4, pf, le, l;l or Ly
is denoted = when considered as z — 0 and y when considered as y — +00. In the subsequent proofs the constant
K > 0 may change at each appearance.

In steps numbered 0 we remind active hypotheses while introducing local notation. The non standard Steps 1, 2 and 3 of
the four proofs — including the one in [3] — are designed to address the non trivial problem of controlling the high order
and extreme order quantiles under an explicit and almost minimal assumption on tails, namely (CFGg), (CFGp) or
(CFGED). The secondary order terms in these conditions could be balanced slightly more sharply but at the price of
adding technicalities to connect Steps 1 and 2. Finally we point out that the convergence at Steps 3 is weaker than in
probability, due to the coupling approach.

5.1 Thecase FF =G
We prove Theorem [9]

Step 0. In this section F' = G and hence £ = R. For short, the key functions common to X, Y are denoted F1 P, H
and h. Let assume (F'G), (C) and (CFGg) with 1 < by < 21in (C2). Hence p(x) = max(p4(z), p—(x)) = pc(z)
and p+ () are positive convex increasing functions defined on R* with p4(0) = 0. For 0 < z < x¢ we have
p+ () = 2%+ Lo (z) and, whenever b = 1 it is also assumed through that lim,_,o Ly (x) = L1 (0) < +o0.
Recall that b = min(by,b_) and, for 0 < = < g, p (x) = max(py (z), p_(z)) = 2°L(x) where L(z) is defined at
(TT) and is slowly varying as = — 0. We then have

1 Jn
op = —— lim Y = 14_,L(0).
PV wite = =)

Since L € RV (0,0) we have, by the Karamata representation theorem,

1/x
L(z) = exp (ﬂ(x) JF/B S(yy)dy> ;0 <@ <z, (22)

11
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with B > 0, n(x) and s(y) are bounded measurable functions such that
lim n(z) =ne €R,  lim s(y) =0.

We can then define
no= sup |n(z)| €Ry, c¢o=e2"™>1. (23)
0<z<zo
For y large it holds p4 (y) = exp(l+(y)) where the functions It (y) are not asked to be in RV (400, v+ ) in this proof,
but (7) does matter. However in practice if (C'3) would not hold then (C'F'G ) would be more difficult to translate in
terms of admissible F'. Hence, for some yg > xo,

p(y) =exp(i(y)), U(y)=max(l4(y),l-(y)), ¥ =wo.
Since p4 and p are convex, by (7)) there exists dy > 1, d = min(d_, dy) and dy 4, do such that

li(y) 2 delogy +dox, U(y) = dlogy+do, y=yo (24)
By (CFGE), the joint influence of I, L and b on the allowed tails F'~! is expressed at if b >1and ifb=1

We decompose the integral W..(IF,,, G,,) as follows, with the three remainder terms implicitly treated in a similar way
for left hand tails. We will specify later two positive sequences 4,, and j,, such that n > j,, > 4,, — +00. The proof
consists in four steps, each dealing with one of the four terms

We(Frn,Gp) = Iz, + 1z, + Ix, + 1z, Ia= / pe (FyH(w) — G, (w)) du, (25)
A

where Z,, = (1 — iy, /0, 1], T = (1 — jn/n, 1 —ipn/n], Ky = (W, 1 — jn/n), L = [w,u]and 0 < u < 1/2 <@ < 1.
In order to accurately choose i,, and j,, one has to take into account two difficulties. First, the rate 1/v,, is faster than
1/4/n so that Z,, U 7,, should be sufficiently small. Second, the empirical extreme quantile difference F;;!(u) — G, (u)
may be either very large or very small as u — 1, thus the cost function p..(F,,* (u) — G, *(u)) is evaluated at 0 on some

random subsets of Z,, U 7, and at +oco on some others. The later problem is the most difficult to address.

Step 1. Let K, be a positive sequence such that K,, — +oo and define
n
in = . 26

on (0 (logn + K) o
Notice that (FG1) and imply that p(¢p~!(logn + K,,)) — +oc and i, = o (n*~%/2L(1/y/n)/K,) asn — +oo,
so that 4,,/v/n — 0 even when b = 1, thanks to . The following lemma ensures that i,/ log log n — +o00. Observe
also that ¢y~ (logn + K,,) = F~!(1 — 1/neX~) is an extreme quantile just beyond the expected order F'~1(1 — 1/n)
for X,y and Y{,,y, which is the key to Lemma Let [y] denote the integer part of y. Consider the r.v.

1 n
fzn</l p (ot (w) =Gt (w) du=— > p(Xp —Y)-

n. .
i=n—[iy]

Lemma 22 Assume (F'G1), (C) and (CFGE). There exists K,, such that
K, — o0, lim —5" 0 liminf8"

>0,>0
n—+oologlogn n—+ocloglogn

and
lim wy,lz, = 0 in probability.
n——+0oo )

Proof. (i) Let K,, — +00, K,/ loglogn — 0 be as slow as needed later. By (FG1) we have F~! (1 — 1/nef») —
+00 as n — 400, yet arbitrarily slowly. Thus, by and we have, for any 6" > 1 — b/2, any ' < 6, and all n
large,

‘ S ININD

in =

Kyp(y~—t(logn + Ky))

YN D b )

L(/ym) 1 ) 1Y .
b (k) e
DR

g L (1/VneR)

12
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Applying 22) and K,, — +o00 we get

oo o (Ge) L)

L{1/v/n) ek Vi

vn
Since e < log n we can furthermore choose K, such that
1
K,<—, s,= sup s(y),
Sn Va<y<y/nlogn

where s, — 0 as n — 4o00. The slower is L the faster is 1/s,, hence the resulting requirement is sometimes only the
initial K,/ loglogn — 0. We readily obtain, by ,

L (1/\/ neKn)
limsup ———— = < limsup exp <

n—-+oo L(l/\/ﬁ) n—-+oo

The claimed deterministic lim inf is proved by letting 6’ — 6. Notice that (C FGg) was crucially required.

K
2n9 + sn;> < +00.

(ii) Concerning the stochastic integral Iz, the choice of 7,, in is minimal to guaranty the rate v, and (CFGE) is
not required. Recall that £ has support R. Fix € > 0 and consider the events

A, ={vplz, 24}, B, = {X(n—[in]) >0N Y(n_[,;n]) > 0} .
We have P (4,) < P(A,NB,)+P(BS)and P (B:) — 0as n — +o0o0. On B,, it holds

n

UTL U’n .
ol <0 3 (o4 (X@) +0- (Vi) < Fin+1) (o (X)) + - (Vi)

i=n—[in]

hence P (A4,, N B,,) < P(C), x) + P (C,,y) where

n n
Cnx = {P+ (X)) > o } v Gy = {p— (Yiny) = o } -

In order to evaluate P (C,, x) = 1 — (1 — P (p4(X) > en/v,i,))" we combine p7 ' (z) = 157 (logz), I=! < 17" and
hx = 1) with to obtain, for n large enough to have K,, > 1/e,
P (p+(X) > eKnp(¥~ ' (logn + K,,)))

< exp (—1/} ol™! (logs +log K, + (¢ (logn + Kn))))
1
nekn’

<

Therefore P (C, x) < 1 — exp (—exp(—K,)) ~ exp(—K,) — 0as n — +o0, and similarly P (C,, y) — 0. This
implies that v,, /7, — 0 in probability. [l

Step 2. Write 3, (u) = B (u) — BY (u) with

o (u) = V(F () = F7H(w), By (u) = V(G (u) — F~H(u)), @27)

thus Iy = [, pe (Bn(uw)/+/n) du in . Let A, = J, UK, UL = [u,1 — i, /n]. The next lemma shows that in the
integral I, the cost function p is evaluated near O provided that n is large.

Lemma 23 Assume (FG) and (CFGE). Forany 0 < £ < 1/2 — b/4 it holds

. B (u)|
lim (logn)¢ su |
n—>+oo( & ) uEApn \/ﬁ

=0

Proof. (i) Assuming (FG1), (FG2) and since i,/ log log n — 400 by Lemma[22we can apply the classical hungarian
results to |3, (u)| < [Ba (u)| + | BY (u)]| exactly as for Lemma 23 in [3] to get

h n
limsup sup () 18n ()| <8 as. (28)
n—+oo ueA, /(1 —u)loglogn

13
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Next observe that (F'G3) implies, for some 0 < M < +ocoand u € A,,,

1 V/1—u [loglogn <F*1(u) loglogn
M h(u) n o Vi-u

F~1(1—i
<ep = P (L in/m) : in/) log log n. (29)
Vin

(ii) Remind that e Kn <1 <, forall n large and F~! (1 —i,/n) — +o0o as n — oo with no obvious control
on the rate. By (26) and the consequence (13)) of (CFGg) we have already seen in the proof of Lemma ﬂ that if
0" <1-0b/2and 9” < 0 <6y thenit holds for all n large enough,

in > a% (Fl <1 - nelK >)2 (logn + Kn)®
(1)) e
(1 (-3))

hence for any 0 < & < 6" /2 it holds lim,, , ; o (log n)*e,, = 0. The conclusion follows, by and (29). O

(loglogn)(log n)

Let j, = n? with 1 /2 < B < 1,sothati, <+/n < j, forall n large. Remind ¢,, from . Let introduce

1—u [loglo
en(u) ZQW gngn S 9n, u€Jn. (30)

Lemma 24 Assume (F'G), (C) and (CFGE). Then we have

lim v, Iz, =0 a.s.
n—+oo

Proof. (i) By Lemma[23] for all n large enough and any v € 7, it holds
1 < 1—u <enln) < 1
— X Su L eEplu) & .
n S uen Vo n (log n)

Consider L defined in (TI). Using (22) and (23] we get
L(en(u) _ " syl
L, = sup < exp | 2no +/ —dy 3D
wea, L(1/v/n) (logn)t Y

log L,

hence

lim <

< 210 +1 ~ 0. 5
n—+0o logn n_}}_loo logn < no + logn sup |S(y)|> 0 (32)

(log n)é <y<n

(ii) Remind that p are increasing. By Lemma and (C2) we almost surely have, for all n large,

Ir, < [ pr(en(w)idu+ [ p-(en(u))du
TIn™{Brn =0} TInN{Brn <0}

where, by (28)), (29) and (30), sup,,c 7, €n(u) < 9¢,, — 0. Hence, recalling we are reduced to study the bounding
determlnlst1c 1ntegra1

I, < [ pleatu)du= [ ()" Lieau)du

n n

By (T1), L, from (31)) and (FG3) we further have
F'(w)\"
vnls, < Ly(loglogn)®/? / ( du. (33)
n - /1 _ u

We next show that L,, (loglog n)®/? is a secondary order factor compared to the integral in , whatever the choice of
1/2 < B < 1 defining j,, in J,,.

14
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(i) The fact that I(y) > logy as y — +o0 combined to (CF'Gg) shows that for all v large enough, we have
1
FHu) =y~ (1
= (1o 1)

< exp (low1 (log 1 i u>)

b 1 1
< exp <<1 — 2) log T +1log L(v/1 — u) — 2log F~'(u) — 6, loglog T

. LT )
For<(75) G

Therefore we get

and

= =

1 b(5-b)/6 (ﬁ)b/?)
s [7 <1u> (log(1/(1 — u))yeoi8 ™ GY

Since 1 < b < 2 we can find «y such that 0 < b(5 — b)/6 < v < 1. The second factor in the integral (34) is slowly
varying in 1 — u as u — 1 thus the whole integral is ultimately bounded from above by

1 K 1~ l=in/n 1
_ — (=)t - -
(1=) /jn (1 _u) du= [~ =w)], 3 < Samas- (35)
We deduce from (32), (33), (34) and (35) the convergence
. Ly(loglogn)®/?
oA ondz, S lm ey =0 e

at a power rate. [

Step 3. Compared to 7, the interval /C,, is so large that v,,Ix;, can no more converge to zero in probability. Instead
it is made small with high probability by choosing @ and 3 properly, at Lemma [26] Moreover, in order to evaluate
the integral of p. (8, (u)/+/n) over K,, accurately enough it is no more sufficient to bound the process, therefore we
approximate it at Lemma [25] by a Gaussian process which helps revealing the underlying deterministic integral to
compute. Lastly the fact that 5, (u) itself may be very small or very large along K,, makes a bit tedious the uniform
control of the slowly varying part L(z) of p(x).

Define A/, = (jn/n,1 — jn/n). We first recall the strong approximation of the joint quantile processes

Qn(u) = (B (w), By (w), ue A,

by the joint Gaussian processes

— (BX(w).BY (u XuiBi((U) YuiBZ(u) ’
gn(u)* (Bn( )7Bn( ))7 Bn( )* hX(u>7 Bn( )* hy(’u>7 GAna

where B (u) = H,,(Hx (u)), BY (u) = H,,(HY (u)) and H,, is a PX-Y -Brownian bridge indexed by the halfplanes
Hx(u) = {(z,y):a < F ' (u)}, H (u)={(z,9):y<F '(u)}.
Therefore Bff and B,{ are two standard Brownian bridges with cross covariance given for u, v € (0, 1) by
cov(B; (u), BY (v)) = P*Y (Hx (u) N HY (v)) = PY (Hx (u))PXY (HY (v))
=P(X<F 'u),Y <F '(v)) —w
= H(F_l(u), F_l(v)) — uv.

Notice that H(F~1(u), F~!(v)) is the copula function of (X,Y"). From now and for the remainder of the proof we
work on the probability space of the following Lemma [25] The weak convergence finally established on this space at
Steps 4 and 5 remains valid on any probability space.

15
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Lemma 25 Assume (FG). Then we can build on the same probability space versions of (X, Yn)n>1 and (Hy),,-,

such that Qn(u) = Gn(u) + Z,(u) foralln > 1 and u € A, where Z,,(u) = (ZX(u)/hx(u), ZY (u)/hy (u))
satisfies, for some v € (0,1/22),
Z};(u)| =0 a.s.

lim n" sup fo(u)|: lim n" sup

n—+oo ueAl, noE0 yueAl,

Proof. This follows from Theorem 28 in [3]] with FF = G. O

The joint strong approximation of Lemmaapplied with F' = G and hx = hy = h combined to (CFGg) provides
a stochastic control of the deviations of v, i, that is weaker than in probability but sufficient for the targeted weak
convergence. Since it concerns the probability distribution of i, the following lemma remains true on any probability
space.

Lemma 26 Assume (F'G), (C) and (CFGE). There exists B € (1/2,1) such that for any choice of A > 0 and e > 0
one can find ug € (1/2,1) and ng > 0 such that, for all @ € [Ty, 1) and n > ny,
P (v, Ik, > A) < e.

Proof. Fix A > 0 and € > 0 then consider, with /3,, as in (27) the event

o (82}

(i) For 0 < 7 < min(1, A\/2) define the random sets
Kim={ue Ky [Bu(u)] <7}, K77 =K,\K5

Recalling that the cost p4 is convex, positive and such that p4 (0) = 0 we have py(72) < TpL(x) forall z > 0. It
follows that

vl <v/ P <1>du+v/ p <1>du
n <7 X Un TP+ |\ —F= n To_ | —
o K57 N{B <0} vn K570{8. >0} vn

max(p_ (1/y/n), py (1/y/7))
s p(1/\/n) /

du < T.

As a consequence,

B(CY) = P (vn(Tcsr + Iear) > A) < B (vnlar > A—7) <P <U7,,1,CZT > 2) .

(ii) For all n > ng and ng = ng(e, &) large enough we have (logn)¢ < /n together with, by Lemman and since

Ko™ Cc Ky cAn,
1
P(Dn)>1—§, Dn:{ sup [Bn(1)] < }

2 wecer vno - (logn)é

Assume now that n > ng. On the event D,,, for any v € K7 we have

< (G ) < e

which by (TT), 22) and 23) yields

L(|Bn(u)| /v/n) va/T Is(y)]
L(1/y/n) S oxp (2770 * /mm(f /B @)]) Y a )

v/t 1
<cpexp | s / —dy
min(yv/n,v/n/|Bn(w)]) Y

= ¢p exp (s (max (0,1log(|8n(u)])) — log 7))

qn (u)
<o ‘ Ln ()
-
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where the sequence s,, and the stochastic process g, () are defined by
|

Sy = sup s, an(uw) = snlyp, @w)|>1}- (36)

(logn)s<y<v/n/T
Since s(y) — 0 as y — +o0o we have

lim sup gp(u) < lim s,=0 (37)

n——+o0o weks" n—-+o0o

and this uniform convergence of ¢, is certain, not almost sure. In other words, the uncertainty in the following inequality
only comes from P (D,,). We have shown that for all n large, on the event D,,, it holds

| B ()] Co / b+qn (u)
nI >r K Up < n "
Vpliesr < v /iCiT p( NG du = . |8 ()] du (38)

where 75" — 1 as n — 4o00. We are ready to bound P (D,, N {vnIic>- = A/2}).

(iii) On the probability space of Lemma 25 we have
Y| (B | ZX] |2 W)
h(u) h(u) h(u) h(u)

If « > 1 then (z + y)® < 2271 (2 + y®) for all z,y > 0. Combining this fact with b + g,,(u) > b > 1 and (37) thus
implies that, for K > 1 fixed and all n large enough,

1 u
e 1Bl < Y RY 4 48
’CnT
where bt g () btan(u)
RX :/ B’r)l((u) i du SX :/ Z';)L(( ) i du
"7 Jeze | h(u) DT e | h(u) '

It remains to prove that for an appropriate choice of @ and 8 we have

lim sup P (Dn N {RnX > AT }) < §7
n—+400 8co 3
ATEn
limsupP (D, N 45X > 27 <:,
n—+00 8co 8

which ensures by that P (D, N {vnIc>- > A/2}) < /2. For short, it is assumed below that 1/9 < 75 /8.

(iv) The following integral 7T}, is crucial with respect to the integrability of the processes B:X and Z:X. Let b’ > b be so
close to bthat 0 < b'(5 — b')/6 < v < 1. Consider the random function ¢, (u) from (36)). For all n large enough we

have b < b+ g, (u) < b’ hence and entail
— | b+an(v)
Tn:/ vi—u dug/ dug/
K, | h(u) Kn Kn
_ 1—v 1—=jn/n _ 7\1—v
T e
L—n w -~

(v) On the one hand we have, by Fubini-Tonelli and recalling that B;X is a standard Brownian bridge and the sequence
sy, is defined at (37),

b/
du

-1 (u) b4-qn (u)

1—u

F~(u)

1—u

b+gqn (u)
BX
E(RY) < T, sup E n (1)

wern \ | Vall—w)
<T, sup IE(|N(O,1)|”+5) :Tn]E(|/\/(O, 1)|"+Sn).

0<s<sn

Assuming 7 so large that s, < 2 — b we get E(RY) /T, < E(JN (0,1)]) = 1 then choosing Ty such that
(1 =)= < 8(1 — ¥)A/9coe yields, for all w € [up, 1),

A 960 e
P(RY >~ =T, < -. 39
( " 900) < A < 8 ( )
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On the other hand we have K7 C K,, C A/ and

ZX (U) b“l"]n(’“‘)
SX < sup |2L T,.
" uEICgT V1i—u
By Lemmait almost surely holds, for &’ > b and all n large,
X
sup Zn (U) <'s — < ’I’L (1-8)/2—v
wekz™ |V1I—u ueIC n“\/l —u In

which vanishes provided 1 — 2v < 3 < 1. Therefore, for this choice of 3,

lim SX =0 as., lim P <SX A ) =0. (40)

n——+oo n—-+oo 900

(vi) Putting together the conclusions of (i)-(v), and especially (38), (39) and (@0), implies

A

Finally notice that the same 3 works whatever the choice of \,e. [

Step 4. Now £ = [u, 7] is fixed. By Lemmas[23|and 23] there almost surely exists no(w) such that, for all n > ng(w),
en(u) from (30), B, ( )= BX(u) — BY (u) and Z,,(u) = ZX (u) — ZY (u),

Bn(u B, (u) + Z,(u
) < enw) <, ali) = 2 e
As a consequence, the cost p, is evaluated at 0 all along this step. Let o > 0 and consider I = Iz, , + Iz, + Iz,
where, for n > ng(w),
B, Zn,
Il:k n / Pc <M) dua k= 1,2,3, 41)
’ Lim Vnh(u)

and £ = LL” @] £2,n U £3,n with El,n =LnN {|Bn(u)| < Oz}, Egm =LnN {|Bn(u)| = 1/05} and £3,n =LnN
{a < |Bp(u)] < 1/a}. Also define

0 < h=minh(u) < h=maxh(u) < +oo.
ueLl ueLl

Step 4.1 Choose « € (0, 1) arbitrarily small. In view of the almost sure rate 1/n" from Lemma and we have,
given u, u then h,

a+1/nv
lim v,lz < lim LA I
i e, € I /Lp( Vb ) "

b
< i PRV _ (20)
n—+oo p(1/y/n) I
The last equality holds by definition of p € RV (0, b).

a.s. (42)

Step 4.2 Write L;n =LN{By(u) > 1/a}and L, , = LN{B,(u) < —1/a}. By Lemma we have, for n large

erouen 1 B,(u) 1 2B, (u)
ke, = a7 s, e (o) o iar oy, 2 (i)

then similar arguments as for (ii) in the proof of Lemma 26]yield

o oS ()

where s, — 0 is defined at (36) with 7 = 2/a. By replacing min(u, 1 —u) with u(1 —u) < min(u, 1 —u) in (CFG3)

it follows that bt bt
+ TSn +TS5n
B,
_ Balw) du
u(l —u)

Fl(u)

oI gK/1 W>1/a) |
L3 |, (Bnw1/ed | TR
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’

where K > 0. As a consequence of (CFG ) we obtain exactly as for and that if b’ € (b,2) is chosen
F1 '
) du = K' < +o0. (43)

sufficiently close to b then
/(071) u(l —w)

Since 2u — 1 < H(u,u) < uforu € (0,1) we have
(1 - w)? < Cou(BX (w), BY (w)) = H(u,u) — u* < u(l — )

hence
0 < Var(Bu(u)) < 2u(l —u) +2(1 —u)? = 2(1 — u)

and the r.v. B, (u)/+/u(l — u) is centered Gaussian with variance bounded above by 2/u. Let denote (0, 1) the
standard normal distribution. By Holder inequality we have, for v € £ and n large,

b++8” 1 1/2
< K'P ( up_|Bu() )

uLusu «

Bn(u)
u(l —u)

WV

E | 4B, (w)>1/0}

1/2
where K" = (3/u) sup,, < <y (E IN(0, 1)|28) < 400 only depends on b. We conclude that it asymptotically
holds
1 2 1
E (vnI£+ ) < KK'K"P ( sup |Bp(u)| > ) < Cexp (—2) (44)
Zmn uu<su « «
where C depends on M, b, F and « was left arbitrary from the beginning. Clearly E(v,, I 5, ) also obeys |j by the
same arguments. Notice that for the left hand tail u and 1 — w play a symetric role in the previous control of the variance
of By, (u) by u(l — u).

Step 4.3 Let introduce L3, = LN {—1/a < By(u) < —a} and L3, = LN {a < By(u) < 1/a}. By Lemma
we almost surely ultlmately have

sign(Bn(u) + Zn(u))1e; , (u) = sign(Bn(u))les , (u)
where sign(z) = 1350 — 1y<o. Therefore, (C2) implies, for all n large enough,

Lz, (u)pe (EWM)

V()
= 15;”( u)p+ (W) + 1£;1L(u)p7 (W) .

Now assume that o < 2/h and L3 ,, # (), so that
| By (w)]
nI =
i <1/f> (/ e O <¢ﬁh<u>

) i)
i (o (1t
(

where we have, by convexity and differentiability of p+ on (0, +00),
B,
Ba@I\
Vnh(u)

ri= [ (e (B 2l
< sup p ) | Zn (u)|
) \ T Jh(w) ) V()

3,n
/ (IBn(U)I + | Zn(w)
ueﬁin
The regular variation (C2) further implies zp/, (x)/p+(z) — 1 as  — 0. As a consequence, with probability one, for
all n large it holds

RE 1 Ba(w)| +1Za()]) |Z,(w)]
p(l/ﬁ)gp(l/m”*( Vrh(u) >ue£n B (w)] + | Zn(u)]
L P (/Viho) 2 pi(2/Vitha) 2 <<2>bi 3
S T ane S pr(jvm) an' S\ha) anv
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which vanishes as n — +oo0. Here we have used that pi (6x) /p+ (z) — 6%+ as 2 — 0 for any fixed § > 0, and
Lemma 25} Finally we see that

77 /ﬁ "~ (%EZD " /ﬁ ('i’ig”)bdu + B

b
Ry, = / . Litw) ('im)') du, L(u)= Li('?ﬁi/%h(w) L

with

3,n

Clearly, it follows

red< () s < (B) (s RO
’ ha u€Ls,n ha a/hy/n<e<1l/ahy/n Li(l/\/ﬁ)

thus, by and we get |R§En‘ — 0 as n — 4-o00. We conclude that

N———

EAGIS EAGIS
I =p (1/\/5)/ ( du+ p_(1 \/ﬁ)/ du (45)
£3,n + Lg’,n h(u) / E;n h,(u)
almost surely satisfies lim,, , y oo Un| Iz, ,, — 17, | =0.

Step 5. Consider W,.(F,,,G,,) = fol pe(Fr 1 (w), G, (u))du. As we assumed that

(V) p—(1/\/7)

— " = T4, lim —————===7n_

m
ns+oo p(1/y/n) n—too p(1/4/n)
by (C4) and E = R we have established that v, WE(F,,, G,,) —wear W with

1 b 1 b
IB(U)|> " / (IB(U)I)
W = 1B — du+m_ 1B d
7T—F/o B )>0}( h(u) T 0 (B <0} h(u) B

and B is a standard Brownian bridge. To see this write WZ(F,,,G,,) = I, + Iz, + I, + Iz, + Iz,, + Iz,
where each of the first three integrals is indeed the sum of its left hand tail and right hand tail version, likewise for I7._
defined at . We have shown that vy, (Iz, + I 7,) — 0 in probability. Let ¥ be a real valued k-Lipschitz function on
R, bounded by m. Given arbitrarily small constants A > 0, € > 0 and o > 0 then an appropriate choice of 0 < u,u < 1
and thus h it holds, for all n large enough, by Lemma[26]and Step 4,

E (\I/ (Un(fycn + I[;Ln + I[:Z,n + I[:S,n)) - (Unjzg,n>)

< AP (valx, > A) +4mP (vn |1z, ~ 17, | > )

5)? 5a)°
+ 4mP <vn1517n > (;;) ) +kE <4>\+ (;) +vn1¢2,n>

b 1
< 12me + 4kA + FOU Lo cep (—2>
h «

which is as small as desired. Finally it is easilly seen that v, I7, =~ —weak W as (u,@) — (0,1) and @ — 0 so that
E(W (W)) can replace E(¥(v, I, ))above with an asymptotically arbitrarily small error. [

5.2 Thecase FF < G

We establish Theorem [T4]

Step 0. In this section D = (0, 1). Without loss of generality, assume that F'~! > G~ everywhere. We again focus
on arguments for the right hand tail, thus we write ¥ x = 1/); and ¢y = 1/1;5 on (yo, +00). Therefore 1/);(1 > 1/){,1

and 15" > 0 on (ug,1) where ug = F~*(yp). We need this stochastic ordering only to simplify the control of
extremes without imposing (CFGg). Let assume (F'G), (C) with b € [1,2) and (CFGp). For y large it holds
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p+ (y) = exp(l+(y)) with I € RV (v4, +o0). By , for yo > 0 and 64,0_ > 1 playing exactly the role of 6 in
(CFG) of [13] we have

- 26 _ 260_
Wx ol () 22+ =5, Wy olZ) (@) 22+ == v>u (46)
In particular, this implies
Lowx'(y) < 5 —Oilogy+ K, y>yo. )

By , whenever F~1(u) — G~!(u) > 0 is not asymptotically away from 0 as u — 1 we further ask that, for some
6, > 0,

- Y -
Loty (y) < 5 — 2log vy’ (y) — b2logy, v > wo. (48)

Notice that if F' is logconvex then log w;(l(y) > logy and l@b already implies with 8, > 2 whereas if F’
is logconcave then log ' (y) < logy and implies (48) with #; > 1. Since (CFGp) implies (CFG) of
[3]] through hence , we are allowed to use most results of the latter paper. In particular Theorem [T4] is
true when F~"(u) — G~ (u) > 0 for some 6 > 0 and b > 1 to ensure (C3) in [3]. We thus focus on the case
F~Y(u) — G7(u) — 0 as u — 1 which requires whatever b, and we isolate out the case b = 1 only when

necessary to extend the main result of [3], at Step 4. We often use F'~*(u) = vx' (log(1/(1 — u))). A consequence is
that (@8) also reads

1
o F7 u) = o F~Yu) < , U > up.
po 70 = o 0 PN € e .
Let us study W, (F,,G,,) — W.(F,G) = Iz, + I5, + Ix, + I with the notation
Ia =/ (pe (T(u) + Tn(u)) = pe (T(w)) du, A C(0,1), (49)
A
_ Balw) _ BX(w) - BT (W

(u) = F~ u) — G Hu), 7n(u)

vn Vvn ’
andZ, = (1 —in/n, 1, Tn = (1 — jn/n, 1 —in/n), Ky = (W, 1 — jp/n), L = [u,u] with0 < u < 1/2 <7 < 1.

Step 1. Consider a non negative increasing sequence /,, — 400 to be chosen later in such a way that K, / loglogn —
0. Define
Vn

- K, exp (l o @b;(l(logn + Kn)) ’

We have [ o ¢ (y) = 14 095! (y) — 400 as y — +oo thus i, = 0 (y/n/K,). When is enforced then for any
6" € (0, 02) and all n large enough,

K [ 1 2 K,
in = %, (F (1 - neKn)> exp (—2 + 64 log(logn + Kn)>

> (F—l <1— i))g(logn)el. (51

Otherwise, when only holds then for ' € (1,6, ),

in

(50)

K K, /
in > 7o OXP (2 + 6, log(log(n + K’n))) > (logn)?. (52)

Hence in both case we have i,,/ loglogn — 400 and i,,/y/n — 0. Let us define

i = [ o) du,

n
n

o pe (X —Yi)-

i=n—[iy]

B~ [ e () - G ) du=

n

Lemma 27 Assume that (C), (FG) and (CFGp) hold. Then \/nl; — 0 and \/nl7 — 0 in probability.
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Proof. This readily follows from Lemma 22 in [3]. For \/ﬁl%n the mentioned proof only needed & > 0 hence
0+,0_ > 0. For \/ﬁl%n the initial expansion

n n n

S ore(Xy=Ya) < Y o (Xa)+ D - (Vi)

i=n—{[in] i=n—{[in] i=n—[in]
almost surely holds for n large enough, when min(X(n_[in]), Y(n_[in})) >0. O

Step 2. We now study I 7, with j,, = n”, 8 € (1/2,1). Recall that A,, = 7, UK, UL and 7(u) = F~(u)—G~(u) >
O forallu € A,.

(i) Define &,, = sup, e, en(u) where &, (u) = &5 (u) + €} (u) and
5X(u)* Vioglogn /1 —u 5Y(u)* Vioglogn /1 —u
" v hx(u)’ " v hy(u)

The current ¢, is bounded by the one of (29). By combining (28) and (29) with (51)) as in Lemma 23] we get, for some
¢ >0,

lim (logn)¢ sup 7,,(u) <9 lim (logn)‘e, =0 a.s.
n;rilw(ogn) useuApnT(u) 9niri1m(ogn)s 0 as

Let m,, — +00 be a non negative sequence so slow that m,e, — 0. Consider 7, = J,=~ U J,” where
TIs={ue€ TJ,:0<7(u) <mpen(u)},
J7 ={u€ Tn:0<mpen(u) <7(u)}.

By (28) again we almost surely ultimately have

X Y
—9ep(u) < Tp(u) = ﬁ"\/(ﬁu) - %(nu) <%,(u), u€ Ty
Notice that if u € J,;” then
0< (my,—9en(u) < 7(u) + 7 (u) < 7(u) + 9, (u) < 7(u) (1 + 73) (53)
whereas if u € J,= then it is possible that 7(u) + 7,,(u) < 0 since
—9e,(u) < Th(u) < 7(u) + T (u) < (My + 9)en (w). 34

Let us control |17, | < |I <]+ |1;>

, starting with the first term.
(i) Recall that sup,,¢ ;< mpe, (u) — 0asn — +oo. By we have, for u € I ;< and m,, > 9,

|pe (7(w) + 70 (u)) = pe (T(u)] < pe (T(u) + Tn(u)) + py (T(u))
< p— (9en(u)) 4 204 (2mpen (u)).
hence /n |1 ;< | < Ry, + Ra,p for all n large enough, with
Ry, =Kyn en(u)’=L_ (92, (u)) du,
Vo
Ry =Ev/n | (mnen(u))™ Ly (2mpen(u)) du.
T
Lemma 28 Assume (C), (FG) and (CFG). We have Ry ,, — 0 and Rz, — 0.

Proof. If F~'(u) — G7'(u) > J then the set J,= is ultimately empty. Otherwise holds. We have
VI—u(l/hx(u)+ 1/hy(v)) < 2F~Y(u)/v/1—u for u € J, in view of F~1(u) > G~(u) and (FG3). If
min(by,b_) — 1 > 0 this extra power cancels the slowly varying functions and we asymptotically have

F—l
Ry, + Ron < K\ Mpen(u)du < Kmy,+/log logn/ (u) du.
T5 J. V1—u
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If by = 1 then L (x) is bounded on [0, x¢] since L (x) is convex non negative and starts from 0. Hence
Ly (2mpen(u)) is bounded on 7, and the above upper bound remains true. Likewise if b_ = 1 then L_ (9e,,(u)) is
bounded on 7,,. Observe that and I(y) > logy imply

- _ 1 y
Ly) < L)) € ——— y_
wX (y) = eXp(l © 11[}X (y)) ~ 1/})—(1 (y)2 exp (2 910g y)
thus 5" ()% < e¥ and F~'(u) < 1/(1 — u)'/S. Therefore

1 . 1/3
/ F (u)du <K <3n> _ Kn(B-1/3
- V1—u n

with 5 < 1 and the conclusion follows since m,, — +oo is arbitrarily slow. O

We have shown that \/nI ;< — 0 almost surely.

(i) By (53) we ultimately have, for all v € J,,,
|pe (T(u) + o () — pe (T(w)| = |p+ (T(u) + 70 (w) — p+ (T(w))] .
Consider now J> = J,% U J,>° with
T ={u € T i mpen(u) <7(u) <6}, J7° ={u€ Jn:7(u)>d}.

Since 7(u) > & on J,>° and Proposition 31 and Lemma 25 of [3] are satisfied by p, — thanks to (7) and (8) — we
readily deduce from Lemma 23 of [3] that

lim v/ / oy () + 7)) = py (1)) du =0 a.s.

n—-+oo
Concerning 7,~° observe that by (53) again 0 < 7(u) + 7,,(u) < 2 for all n large. Since p, is convex it ensues
o+ (7(w) + Tn () — py (7(w))] < max (p)y (7(u) + 7o (w)), Py (7(u))) |7 ()]
Ks | (u)]
with K5 = p/, (26). Therefore, with probability one, for all n large enough

sup |p4 (7(u) + 1 (w) — p4 (T(w)| < Ks sup [ma(u)| < K sup [en(u)].
uEIS? ueJ? u€Js®

<m
<

As already seen, implies F~'(u) < 1/(1 — u)"/6 for all u < 1 large enough. As a consequence, with probability
one it ultimately holds

Vit [ s 0 ) = i ) < K [ ey
Tn
< K+/loglogn \/7d u< KnP- 1)/?’\/1oglogn

which vanishes as n — +00. We conclude that v/nl 7> — 0 almost surely.

Step 3. The convergence of I, is weaker than in probability.

Lemma 29 Assume (FG), (C) and (CFGp). There exists 8 € (1/2,1) such that for any choice of A > 0 and € > 0
one can find ug € (1/2,1) and ng > 0 such that, for all @ € [ug, 1) and all n > ny,

P (vVnlg, > A) <e.
Proof. Fix § > 0 and consider
K ={uek,:0<7(u)<dy, KP°={ueck,:r(u)>d}.

The claimed result holds for /;--s by applying Lemma 26 from [3]] with § = 79 and u = F(M). Let us apply Lemma
23]t get, for K > supjy) <5 (%)

Vitlzs =Vt [ Ipe (70 + ) = pe (e du < K [ 13a0]do

c [ (1Bl i
X . h

)| 22| |, |20 (w)
Ty () >du—|—/}cn < ox () + oy () du.

23

£
S
S

75
S~—"
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The first two terms satisfy

o[ talan) < [ e g

. o (1—u)
= w \/1*’11,

and the last two terms obey, with probability one as n — +o0,

|Z;1X(u)| X Y1 — )
/Kn 7}1)((“) du < us;lig |Z ’/ 17u du

1 i (1 - )

= au<3(l-u)?

< = d
nY Ju 1—u “
1—jn/n
< i/ ! ;du < En(l—ﬁ)/ﬁ
nY Jo (1 _ u)?/b nv

which vanishes if 5 > 1 — 6v is chosen close enough to 1. [

Step 4. Here we recall that (C'2) with by > 1 and respectively imply (C3) and (CFG) in [3]]. Clearly Steps 4 and
5 of [3] remain true in the current framework and lead to the same conclusion as the main theorem in the latter paper,
whence Theorem The new case to conclude with is b = 1. By Glinvenko-Cantelli and (F'G), we almost surely have

Bnl) - in ()

\/ﬁ - ueLl

for all n large enough, we only deal with p.. Assuming that b, = 1 and p(x) = 2L (x) we have, for some € > 0
such that £. C (0, 1) is an e-neighborhood of L,

0 < |mn(u)| =

|\/ﬁ/ (p4(7(w) + 70 (w)) = py(7(w))) du — \/ﬁ/u Pl (7 (1)) 7 () du

Vn K [" o
<55 sup [P I/n <ﬁémww

which almost surely vanishes by the law of the iterated logarithm. Thus we can conclude as in [3]] by combining this
with the previous Steps 1, 2, 3. In particular, the limiting variance is finite as a consequence of (I3).
In order to complete the proof of Theorem[T4]note that whenever F' > G we similarly get

‘f / — 7)) = p- (r)du = Vi [ ()

which explains why the term p’_(—7(u)) = |pL.(7(u))| shows up.

5.3 The general case

We now prove Theorem. Recall that (F'G0) implies the existence of 0 = ug < u3 < ... < u, = 1 such that
F~Y(uy) = G~ Y(ug) and Ay, = (ug_1,ur) C Eor Ay C D fork = 1,..., k. We now study the mixed case where at
least one of these intervals is included in £ and one in D, so that Kk > 2. Consider, using notation @]),

\/’E(WC(]F'MGTL) - WC(F7 G)) - \/HZIAk
k=1

Let 0 < A < minjgrgr(up — ugp—1)/2. Define the intervals AZ/\ = (ug—1,ur—1 +A) C Ag for2 < k < k and
Ap = (up —Aug) C Agfor1 < k <k —1. If Ay C D wehave F~1(u) # G 1(u) foru € A, UA, . If
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Ay, C E the intervals A , and A, , are assumed to be empty instead. Consider first the intervals A; , for2 < k < &
andset 0 < u_ < uy < ug—1 < ug < 1. Since

Jn
we have, by (C2), for K = sup,_<ycu, (¢ (2 [r(w)]), 0, (2 [r(w)])) < +oo.
. el () /)
e B0 B S

Therefore, in view of Step 4 in the previous proof for F' # G we get

Vil <& [ Iﬁn(u)IdU<§</A+ Buwldus | |Zn<u>|du>

koA koA

where h = min,_ <y<,, min(hx(u), hx(u)) > 0. Lemmafurther yields

2ah
> ) <19></+ B(u)|du > ;’;)
Al

for any > 0 and all 2 < k < kK, where B has the same law as B,, = Bff — B}f . The latter upper bound vanishes
as A — 0. A similar conclusion holds for A,;)\ and 1 < k < k — 1. Write ATA = Al\Ai/\, A,’:’A = AH\A;)\ and
Aj = Ak\(AkTL,/\ UAg ) for2<k<r—1

lim sup =0 a.s.

n=+00 4 <u<ug

lim P (V| Ly
koA

n—-+oo

(i) Consider the case 1 < b < 2. Fix A > 0 arbitrarily small and write

Vi(We(Frn, Grn) = We(F,G)) = vVl +v/nlj , +Vnlj (55)
where
Ip = Z Ta; | = Z Ln,, Ipy= Z Ta . I, = Z Lit var -
ARCE ALCE ALCD ApCD
We just proved that

lim lim P (Valh, > a) =0.

A—=0n—+o0
Since b > 1 we have v, /y/n — 0 as n — 4o00. Therefore Steps 1 to 4 of Sectionwhen F = G show that
lim +/nlg = lim @vnf £ =0 in probability.
n—-+oo n—-+o0o Un

In the case £ > 3 then for all 2 < k < x — 1 with Ay, C D we have §;, = infyeay 7(u)] > § > 0 and 7(u) has
constant sign on Ay. It follows from Steps 1 to 4 of Section when F' # G that the weak limit of \/nl Do ls
I, pe(T(w))B(u)du where Dy =, cp La; , and B(u) = B~ (u)/hx (u) — B (u)/hy (u). By letting A — 0 we
conclude that

VW.(F,B) = WeFLG)) —wea | () B(w)d
D
which is easily seen to have the normal distribution (0, 0%).

(ii) Assume that b = 1. Starting again from (33) we again obtain that

\/EIE,A —weak / pé(T(u))B(u)du
D
while the Steps 1 to 4 of Section[5.2]now entails, for v,, from (I9),
UndE —weak 7T+/ Ligwy>oy IB(uw)| du 47— / 1{B(uy<o} |B(u)| du.
E E

The above approximation with the same B proves that the weak convergence of the couple (\/ﬁI Do Und E) holds,
thus the sum weakly converges.

Finally observe that (C4) implies /n/v, — L (0)/my and \/n/v, — L_(0)/7m_ as n — 4o00. As previoulsy we
conclude by letting A — 0.
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5.4 A first special case: FF = G and b = 2
We establish Theorem [T11
Step 0. Assume (C0), p.(x) = 22 for |z| < 2o, E = R, (FG1), (FG2) and

U 1—u ! u(l —u)
lim —— = li = ———d “+o00.
lm hw) lim hw) 0, /0 20 u < +00

This proof partially follows the line of the proof of Lemma 2.4 of [9]].

Step 1. We show that sup; /,,<yu<1-1/x |F,; (1) — G, ' (u)| — 0 in probability, so that the behaviour of p. near 0 only

n

matters. Write h = hx. Define U; = F(X;) and V; = F(Y;), i = 1,...,n. Consider nIz, with i, = 1 and

Iz, = /1 (F () — G () du

By the mean theorem, for some random U(*n) between U(n) and 1 — 1/n,

_ _ 1. Uwn—141/n Uy —14+1/nh(Uy))
W) =E 0= =700, WUwy) — h(U,)

By a classical argument — see [3]] — we have, thanks to (FG2),

* * K
W(Ugy) hUG) 1-Uw 1-Uh
X o < max ot .
WUZ) " M(Um)) LUy 1= U
Now recall that U,y — 1 +1/n = Op(1/n) and d(,,y = n(1 = U(n)) —weak d(o0) Where d(o) is a positive fintite r.v.

Hence
1\? _ (U — 1+ 1/n)? 1 e
F*(Un)—F—l(l—)) < max(,dn)
( " n h2(Uny) diny’ "

(1U(n))2< 1 )2 ( 1 >2K
=———"|1——) max | —,d(,
h?(Un)) dn) diny’ "

)ZK

where (1 — U,))?/h?(U(ny) — 0 almost surely and (1 — l/d(n))2 max (1/d (), d(n)
Op(l).

= Op(1). Hence nlz, =

Step 2. Now consider, for j,, = n”,

1-1/n
nig, = [ () - Y ) du

—jn/n

Lemma 30 There exists a sequence of processes B:X having the same law as BX of such that

2y = su BX(u) — BX (u =0Op(1).
1/7L§u§1:1)—1/n‘ ( ) ( )| VvV1i—u P( )

Proof. It is an immediate extension of Corollary 4.2.1. page 382 of [6] starting from (4.2.2) of Theorem 4.2.1 of [6]. [
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As a consequence,

1-1/n

P(nlz, > 3a) gP(/ (an(u)—BX(u))zdu>a>

_jn/"

1-1/n 1_
+2P =2 / —Ldu > a
1—jn/n h?(u)
hence nl;, — 0 in probability. We conclude the proof by applying the Steps 3 to 5 in Section [5.1] with many
simplifications since L(z) = 1 now.

5.5 A second special case : F' = GG has compact support

The proof of Corollary [20]follows exactly the same path as the proof of Theorem [Qup to the following slight changes.

Step 0. We mainly require (F'G2), (F'G3) to apply the Hungarian construction but not (C'3) for the cost at +oco since
the support is bounded.

Step 1. In Step 1 of Section[5.1] we only need K,, — +oc.

Step 2. It is much shortened thanks to the boundedness of F'~! by taking K, such that i,,/ log log n — 400 and
is no more required since by (v/u(l —u)/h(u)) is integrable.

1 /
Steps 3 and 4. Since F~! is bounded we use 1i that implies the a.s. finiteness of / |IB§X(u)’b du and
1 . 0
/ |IB%Y(u)| du.
0
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