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Abstract

We present a numerical and analytical study of doubly di�usive convection driven by horizontal thermal and solutal
gradients in square and rectangular enclosures with no-slip walls subjected to high-frequency vibration. The two vertical
walls of the enclosure are maintained at di�erent but uniform temperatures and concentrations while the horizontal walls
are assumed to be impermeable and insulating. The resulting system is described by time-averaged Boussinesq equations.
These equations possess a doubly di�usive quasi-equilibrium solution provided the thermal and solutal buoyancy forces
are equal and opposite. This solution is linearly stable up to a critical value of the stability parameter independently of
the strength and orientation of the vibration. The solutions in the neighborhood of the bifurcation point are described
analytically as a function of the strength and orientation of the vibration, and the larger amplitude states are computed
numerically using a spectral collocation method. For vertical oscillation increasing the vibration amplitude decreases the
subcriticality of the solutions and may even reverse it; the opposite occurs with horizontal vibration. c© 2001 Published
by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.
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1. Introduction

Many convective phenomena involve both heat and mass transfer. Doubly di�usive processes in
enclosures, such as those arising in geology or in chemical applications, serve as a generic model of
such systems. A review of doubly di�usive convection in these systems is given by Viskanta et al.
(1985). Recently, doubly di�usive convection in enclosures has received increased attention since it
is closely related to transfer processes in crystal growth (Wilcox, 1993).
In the present work we restrict our attention to a 
uid layer subjected to horizontal temperature

and concentration gradients with the property that the thermal and concentration buoyancy forces
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exactly balance. In this case there exists an exact equilibrium solution with zero velocity and linear
temperature and concentration pro�les, and instability is caused by the di�erence between the solutal
and thermal di�usivities, measured by the Lewis number Le. When Le = 1 the di�usive solution
is stable for all Rayleigh numbers. When Le 6= 1 there is a critical value of the Rayleigh number
at which this solution undergoes a bifurcation and above which motion is observed. The square
cavity case was previously investigated by Krishnan (1989) for Pr = 1 and Le = 3:161 whose
numerical study indicated that the onset of convection occurs at a critical thermal Rayleigh number
RaTconv =3000 (RaTconv (Le−1)=6481). Below this point the purely di�usive solution is stable. Gobin
and Bennacer (1994) have studied theoretically the case of an in�nite vertical layer with free-slip
boundary conditions and showed that the critical Rayleigh number obeys the relation RaTc (Le−1)=
6122. With no-slip boundary conditions the corresponding result is RaTc (Le−1)=17 172 (Ghorhayeb
and Mojtabi, 1997). These results indicate that the lowest value of the convective threshold reported
by Krishnan (1989) in fact corresponds to a turning point on a �nite amplitude subcritical branch
(Gobin and Bennacer, 1994). The full solution branch was constructed using Newton’s method,
combined with a continuation scheme, by Xin et al. (1998). The subcritical branch corresponds to
a clockwise cell while the supercritical branch corresponds to a three-cell solution consisting of a
large counterclockwise cell slanted across the cavity with smaller clockwise cells located in opposite
corners. Mechanisms responsible for oscillatory doubly di�usive convection have been discussed by
Chang and Lin (1993) and by Alavyoon (1994).
A possible application of interest arises in materials processing under reduced gravity conditions

when convection due to buoyancy forces is strongly reduced. In zero gravity the desired basic state
may be set up in a melt when the temperature and concentration gradients are parallel. However, any
residual gravity and in particular 
uctuations in the e�ective gravity due to orientation changes of the
vehicle and on-board activities introduce signi�cant perturbations. As a rule, the residual acceleration
�elds on board of a spacecraft are non-stationary and the measured oscillation frequencies range from
10−2 Hz to 10 or 100 Hz (Belyaev et al., 1994 and Rogers and DeLombard, 1995). Crew activity
or orbital manoeuvres give rise to time-dependent accelerations (g-jitter) with amplitudes as high as
10−4 to 10−3g and 
uctuating direction. The literature on the e�ects of g-jitter on materials processing
is quite extensive; for a recent comprehensive review the reader is referred to Nelson (1991). A
recent review by Alexander (1990) summarizes the important concerns and discusses the e�ect of
residual accelerations on heat and mass transfer in low-gravity materials experiments. Alexander et al.
(1991) also analyze low-gravity-tolerance (or Bridgman–Stockbarger) crystal growth. The e�ect of
gravity modulation on the onset of convection for unidirectional solidi�cation was considered by
Murray et al. (1991) while Wheeler et al. (1991) analyzed the high-frequency limit of this problem.
In this limit the method of averaging may be used to determine the e�ect of large-amplitude gravity
modulation on both the primary instability and its subsequent evolution. In contrast, low-frequency
(¡ 1 Hz) sinusoidal modulation has to be treated via Floquet theory.
Full Navier–Stokes simulations of the B�enard problem for a one-component 
uid in a �nite box

carried out by Birigen and Peltier (1990) agree with the stability calculations of Gresho and Sani
(1970). The e�ect of vibration on the onset of convection in a horizontally unbounded two-component

uid has also been studied. Gershuni and Zhukhovitsky (1979) computed the 
ow in an enclosed
di�erentially heated cavity at Ra = 104 for �nite frequencies and various values of the vibrational
Rayleigh number and showed that a strong resonance can take place that increases the heat 
ux by
more than a factor of two. The resonance frequency depends on both the Rayleigh number and the



amplitude of the vibration. Finally, Terrones and Chen (1993) describe the e�ect of time-dependent
sinusoidal gravity perpendicular to the boundaries on the onset of convection in a horizontal doubly
cross-di�usive 
uid layer. The topology of the neutral curves is more complex than that encountered
in constant-gravity multiply di�usive layers, leading to new types of behavior not possible in the
absence of modulation.
The averaging method, suitable for high-frequency (¿ 1 Hz) modulation, was �rst used for thermo-

vibrational convection by Simonenko and Zen’kovskaja (1966) and this is the approach adopted in
the present paper. Using the averaged equations (Gershuni and Zhukhovitsky, 1979, 1981, 1988)
performed linear stability analyses for a 
uid layer with various boundary conditions. These authors
introduced the vibrational analog of the Rayleigh number Rv to represent the strength of the vibration
source, and studied the Rayleigh–B�enard problem as a function of the vibration angle, and the
interaction between natural and thermo-vibrational convection. More recent motivation for extending
this work has been provided by the development of space experiments and the use of mechanical
vibration in industrial processes requiring control of convective motions. In addition to the stability
analysis, numerical simulations of closed cavities, either heated from below or from the side, have
also been done (Chernatynsky et al., 1995; Khallouf et al., 1995). For binary mixtures Braverman
(1987) considered the case when the thermal and solutal gradients and the vibration axis are parallel
and perpendicular to the layer; a solution describing a long wave mode was obtained. More recently,
Gershuni et al. (1997) analyzed the linear stability of a binary mixture in a plane horizontal layer
with the Soret e�ect subject to static gravity and a longitudinal high-frequency vibration, focusing
on long-wave modes. Situations involving both instability mechanisms, gravitational and vibrational,
were studied numerically for representative values of the parameters. Three types of instability can
be distinguished: monotonic cellular, monotonic long wave and oscillatory cellular. In the case
of the normal Soret e�ect only the monotonic instability takes place and thermodi�usion plays a
destabilizing role; in contrast, in the case of the anomalous Soret e�ect the vibrational instability
depends strongly on the Soret parameter. To the best of our knowledge, no papers have appeared
on the corresponding problem in enclosures.
In this paper we present an extensive discussion of the e�ect of high-frequency vibration on doubly

di�usive convection in square and rectangular enclosures. We describe the results of a numerical
study of the in
uence of the direction of the vibration axis on thermosolutal convection in cavities
bounded by two vertical walls maintained at di�erent but uniform temperatures and concentrations
making equal and opposite contributions to the net buoyancy force. Since the main purpose of
conducting experiments in space lies in eliminating or signi�cantly decreasing natural convection, it
is important to understand the in
uence of any residual acceleration on the convection amplitude.
In Section 2 we summarize the mathematical model and the time-averaged form of the Boussinesq
equations. In Section 3 we show that the onset of convection is una�ected by the presence of
vibration. This is not so, however, for the nonlinear problem and we describe in Section 4 the e�ects
of vibration on the weakly nonlinear regime. In square cavities convection sets in via a transcritical
bifurcation with the subcritical branch turning towards higher Rayleigh numbers at a saddle-node
bifurcation. For larger aspect ratios the primary bifurcation may be a (subcritical) pitchfork. In either
case the subcritical solutions acquire stability at a secondary saddle-node bifurcation; the location of
this turning point is a�ected by vibration leading to the possibility of control of the onset of �nite
amplitude convection. These results are described in Section 5. The paper concludes with a brief
discussion in Section 6.



Fig. 1. Sketch of the cavity con�guration.

2. Problem description and basic equations

The system considered is two-dimensional thermosolutal convection in a container. Fig. 1 shows
the 
ow con�guration and coordinate system. The 
ow domain is (x; z) ∈ 
=[0; L]× [0; H ]. All the
physical properties are taken to be constant. The vertical walls at x = 0 and L are kept at constant
and uniform temperatures �1 and �2, respectively, and at constant and uniform concentrations c1 and
c2, with �1¿�2 and c1¿c2. The top (at z=H) and bottom (at z=0) horizontal walls are insulated.
All the boundaries are assumed rigid and the horizontal ones impermeable. The 
uid cavity with its
boundaries is subject to linear harmonic oscillations.
The binary 
uid in the cavity is considered to be Newtonian and to satisfy the Boussinesq

approximation. The Dufour and Soret e�ects are neglected. The thermophysical properties are con-
stant except for the 
uid density in the buoyancy term which depends linearly on the local temper-
ature and concentration. The equation of state has the form

�(�; c) = �ref (1− �T (�− �ref )− �C(c − cref )); (1)

where �ref =�(�ref ; cref ), �T =−1=�ref (@�=@�)c and �C=−1=�ref (@�=@c)� are, respectively, the density
at the standard temperature �ref = �2 and the standard concentration cref = c2, and the thermal and
solutal expansion coe�cients. The quantity �T is positive and, if c denotes the concentration of the
heavier component, �C is negative. As a result the thermal contribution to the buoyancy force favors
a clockwise circulation while the solutal contribution promotes counterclockwise circulation.
The presence of vibration changes the gravitational acceleration according to

g → g − b!2 sin(!t)k; (2)

where k = cos �x + sin �z is the unit vector along the vibration axis and � = (x; k) is the vibration
angle, b is the displacement amplitude and ! is the angular frequency. Using the velocity u, the
pressure p, the temperature � and the concentration c as independent variables, the system is then



described by the nondimensional primitive equations

∇:u = 0; (3)

@u
@t
+ (u:∇)u =−∇p+∇2u + (GrT�+GrCc)z + (GrTV �+GrCV c)!̂ sin(!̂t)k; (4)

@�
@t
+ (u:∇)�= 1

Pr
∇2�; (5)

@c
@t
+ (u:∇)c = 1

Sc
∇2c: (6)

These equations have been nondimensionalized with respect to the viscous di�usion time in the
horizontal using L as the lengthscale. Velocities are expressed in terms of �=L, where � is the
kinematic di�usivity, while the temperature and concentration di�erences from their reference values
�2 and c2 are nondimensionalized using �1−�2 and c1−c2, respectively. The nondimensional boundary
conditions are therefore

u = 0 on @
; (7)

�= 1; c = 1 for x = 0; ∀z; (8)

�= 0; c = 0 for x = 1; ∀z; (9)

@�
@z
=

@c
@z
= 0 for z = 0 and A; ∀x: (10)

The problem is speci�ed by seven nondimensional parameters: the thermal Grashof number GrT =
g�T (�1 − �2)L3=�2, the solutal Grashof number GrC = g�C(c1 − c2)L3=�2, the modi�ed vibrational
thermal Grashof number GrTV = b!�T (�1 − �2)L=�, the modi�ed vibrational solutal Grashof number
GrCV = b!�C(c1 − c2)L=�, the dimensionless vibration frequency !̂ = !(L2=�), the Prandtl number
Pr = �=a (a is the thermal di�usivity), the Schmidt number Sc= �=D (D is the mass di�usivity) and
the aspect ratio A= H=L. The Lewis number is de�ned to be Le = Sc=Pr. The modi�ed vibrational
Grashof numbers (thermal or solutal) are obtained by replacing g by b!2 in the Grashof number
and rescaling by the ratio between the viscous di�usive time and the vibrational time !L2=�. In the
limit of high frequency and small amplitude the e�ect of vibration is determined by the product
b! appearing in the de�nition of the modi�ed vibrational Grashof numbers GrTV and GrCV . In
the following we use the Grashof numbers as parameters of the problem, instead of the Rayleigh
numbers; these are related by the simple relation RaT =GrTPr.
In the asymptotic case of high-frequency small amplitude vibration the method of averaging can

be applied to obtain a closed system of equations for the slow evolution of the mean velocity U ,
mean temperature T , mean concentration C and mean pressure P. The method is analogous to that
employed by Schlichting (1932) to compute the boundary condition on inviscid 
ow in the bulk
due to the presence of an oscillatory viscous boundary layer, and results in the following set of



equations (Landau and Lifshitz, 1988; Gershuni and Lyubimov, 1998)

∇:U = 0; (11)

@U
@t
+ (U :∇)U =−∇P +∇2U +GrT (T + NC)z

+
1
2
Gr2TV (WT + NWc):∇(Tk −WT + N (Ck −Wc)); (12)

@T
@t
+ (U :∇)T = 1

Pr
∇2T; (13)

@C
@t
+ (U :∇)C = 1

Sc
∇2C; (14)

∇:WT = 0; curl(WT ) = curl(T k); (15)

∇:Wc = 0; curl(Wc) = curl(C k); (16)

where N ≡ GrC=GrT = GrCV =GrTV . These equations describe the evolution of the mean �elds on a
timescale much longer than the vibration period �=2�=!; the new term in Eq. (12) is the consequence
of the quadratic nonlinearity in the Navier–Stokes equation. The quantities WT and Wc represent the
solenoidal parts of the vectors Tk and Ck, respectively, and also vary slowly with time. In terms of
these quantities the 
uctuating velocity �eld u′ is given by u′ = −GrTV cos!tWT − GrCV cos!tWc.
Eqs. (15), (16) are to be solved subject to the boundary conditions (7)–(10) together with

WT :n =Wc:n = 0 on @
; (17)

where n is the unit outward normal.
The averaged equations are valid under the assumptions: (i) the frequency must be su�ciently high

(but not acoustic) that the vibration period is small compared to all the characteristic hydrodynamic
times �.min(L2=a; L2=D; L2=�), (ii) the displacement amplitude must be small in the sense that
b.min(L=�T (�1 − �2); L=�C(c1 − c2)). Simonenko (1972) proves the convergence of solutions of
the averaged system to averaged solutions of the system (3)–(6). A numerical description of this
convergence is given by Khallouf (1995), while Gershuni and Lyubimov (1998) show that the new
terms act as a vibrational body force directed opposite to the kinetic energy gradient.

3. Linear stability

In the following we write Rv ≡ 1
2Gr

2
TV and refer to it as the vibrational Grashof number. The

thermal Grashof number GrT will be written as Gr.

3.1. Mechanical equilibrium and its stability

We refer to states with U = 0 as a mechanical quasi-equilibrium. Such states have zero mean
velocity but the 
uctuating velocity does not necessarily vanish. In order for a quasi-equilibrium to



exist the following equations must be satis�ed:

Gr(T0 + NC0)z + Rv(WT0 + NWc0):∇(T0k −WT0 + N (C0k −Wc0)) =∇P0; (18)

�T0 = 0; (19)

�C0 = 0; (20)

∇:WT0 = 0; curlWT0 = curl(T0k); (21)

∇:Wc0 = 0; curlWc0 = curl(C0k) (22)

subject to the boundary conditions (7)–(10) and (17). Eqs. (19) and (20) and the uniqueness of
the Helmholtz decomposition lead to the solution T0 =C0 = 1− x and hence to WT0 =Wc0 . Eq. (18)
now becomes

Gr(1 + N )T0 z + Rv(1 + N )2 WT0 :∇(T0k −WT0) =∇P0: (23)

One can check that this equality holds if and only if N = −1. This assumption implies that the
contributions to the buoyancy force from the thermal and solutal gradients exactly cancel. Two
cases are of particular interest:

• Horizontal vibration. In this case k= x and WT0 =Wc0 = 0. Consequently in this case we have
a true mechanical equilibrium, i.e., the oscillatory components of the velocity also vanish.

• Vertical vibration. In this case k= z and WT0 =Wc0 =Wvert 6= 0. In this case the solution U =0
is a quasi-equilibrium.

It is convenient to rewrite equations (11)–(16) as evolution equations for two-dimensional perturba-
tions about this equilibrium state. We denote the perturbations by (U ′; P′; T ′; C ′) and introduce the
following streamfunction representations:

U ′
x =−@ ′=@z; U ′

z = @ ′=@x; (24)

W ′
Tx
=−@ ′

1=@z; W ′
Tz
= @ ′

1=@x; (25)

W ′
Cx
=−@ ′

2=@z; W ′
Cz
= @ ′

2=@x: (26)

As a result a positive streamfunction corresponds to a clockwise cell. Eliminating p′ we obtain

@
@t


� ′

T ′

C ′


=



�2 Gr @

@x −Gr @
@x

− @
@z

�
Pr 0

− @
@z 0 �

Sc






′

T ′

C ′


+


 N1( ′;  ′)

N2( ′; T ′)
N2( ′; C ′)




−Rv


N3( ′

1 − ′
2; T

′ − C ′)− N1( ′
1 − ′

2;  
′
1 − ′

2)
0
0


 (27)

� ′
1 = sin �

@T ′

@x
− cos �@T

′

@z
; (28)

� ′
2 = sin �

@C ′

@x
− cos �@C

′

@z
; (29)



where for all pairs (f; g) of real functions

N1(f;f) =
@f
@z

(
@3f
@x @z2

+
@3f
@x3

)
− @f

@x

(
@3f
@z @x2

+
@3f
@z3

)
; (30)

N2(f; g) =
@f
@z

@g
@x

− @f
@x

@g
@z

; (31)

N3(f; g) =−sin �
(
@2f
@x2

@g
@z
+

@f
@x

@2g
@x @z

− @2f
@x @z

@g
@x

− @f
@z

@2g
@x2

)

+cos �

(
@2g
@z2

@f
@x
+

@g
@z

@2f
@x @z

− @2g
@x @z

@f
@z

− @g
@x

@2f
@z2

)
: (32)

At the boundaries of the cavity the streamfunctions vanish and thus(
@ ′

@x

)
x=0;1

=
(
@ ′

@z

)
z=0; A

= ( ′)@
 = 0: (33)

T ′(x = 1; z) = C ′(x = 1; z) = T ′(x = 0; z) = C ′(x = 0; z) = 0 ∀z ∈ [0; A]; (34)

@T ′

@z
(x; z = 0; A) =

@C ′

@z
(x; z = 0; A) = 0 ∀x ∈ [0; 1]; (35)

′
1 =

′
2 = 0 along @
: (36)

Eqs. (27)–(29) with boundary conditions (33)–(36) are invariant under rotations by � about the
point ( 12 ; A=2). This rotation is described by the operator S de�ned by

S




′

T ′

C ′

′
1
′
2



(x; z) =




′

−T ′

−C ′

′
1
′
2



(1− x; A− z) (37)

and is a generalized re
ection since S2 = 1. The resulting symmetry group Z2 ≡ {I; S} plays an
important role in the bifurcation analysis described below. In particular, it is known that in the
presence of this symmetry group (Crawford and Knobloch, 1991), the conduction state can only
lose stability to states that are either symmetric or antisymmetric with respect to S. The former
occurs when the marginally stable eigenfunction is invariant under S, the latter when it breaks
invariance under S.

3.2. Analytical results

In this section we summarize a number of results that can be obtained analytically. These results
are based on a severe truncation of a Galerkin expansion but nonetheless describe correctly the
qualitative behavior of the solutions as a function of the system parameters. Precise and complete
bifurcation diagrams for speci�c parameter choices are presented in Section 5.



The linearized time-dependent equations are obtained by neglecting the nonlinear terms. The
resulting linear problem is independent of the vibrational Grashof number (i.e., T0=C0 andWT0=Wc0),
and the computation of the vibrational streamfunctions decouples. Solving the corresponding equa-
tions (27) gives T ′ and C ′. The vibrational part of the velocity represented by  ′

1 and  ′
2 is then

obtained from Eqs. (28) and (29). Because of the physical boundary conditions, the value of the
thermal Grashof number Gr is positive. Ghorayeb and Mojtabi (1997) showed that in the static case
the onset of convection occurs at a critical Grashof number Gr(0) given by Gr(0)|Sc − Pr| = 17172
(for A=1) and 7650 (for A=2:6). This result continues to hold in the presence of vibration. In fact
the linear stability results for the static case (without vibration) obtained by Ghorayeb and Mojtabi
(1997) and Bardan et al. (2000) are recovered for arbitrary values of A. These authors show that
the primary bifurcations are always stationary.
The linear stability problem is solved by means of a Galerkin method using the following expan-

sions:

′(x; z) =
n∑

i=0

m∑
j=0

aij sin(�x) sin(i�x) sin(�z=A) sin(j�z=A); (38)

T ′(x; z) =
n∑

i=0

m∑
j=0

bij sin(i�x) cos(j�z=A); (39)

C ′(x; z) =
n∑

i=0

m∑
j=0

cij sin(i�x) cos(j�z=A); (40)

′
1(x; z) =

n∑
i=0

m∑
j=0

dij sin(i�x) sin(j�z=A); (41)

′
2(x; z) =

n∑
i=0

m∑
j=0

eij sin(i�x) sin(j�z=A): (42)

Due to the Z2 symmetry the associated eigenmodes are either symmetric with respect to S, i.e.,
S( ′; T ′; C ′;  ′

1;  
′
2)=( 

′; T ′; C ′;  ′
1;  

′
2), or antisymmetric, i.e., S( 

′; T ′; C ′;  ′
1;  

′
2)=−( ′; T ′; C ′;  ′

1;  
′
2).

The symmetric eigenmodes contain an odd number of cells whereas the antisymmetric ones contain
an even number of cells. Eqs. (38)–(42) indicate that the contribution to the symmetric modes
comes from terms with i + j even while the contribution to the antisymmetric modes comes from
terms with i + j odd. We used the software MAPLE to �nd the values of Grc; aij; bij; cij; dij and
eij at which a bifurcation to a symmetric mode (A = 1) or an antisymmetric one (A = 2:6) occurs.
For the symbolic computations described below we use n= m= 4 for  ′, n= m= 3 for T ′ and C ′

and n= m= 2 for  ′
1 and  ′

2.
In the next section we study �rst the codimension one cases arising when Gr is increased for

A = 1 and 2:6. We use center manifold reduction (Guckenheimer and Holmes, 1983) to describe
the weakly nonlinear problem with particular attention devoted to its dependence on the vibrational
Grashof number Rv and the vibration angle �. We only consider the case Sc¿ Pr corresponding to
most binary mixtures, i.e., Le¿ 1.



4. Nonlinear analysis

4.1. Weakly nonlinear analysis

In this section we use a multiple scale analysis to reduce Eqs. (27)–(29) to a simpler form, called
a normal form, valid near onset of the primary instability, i.e., for |Gr−Gr(0)|=Gr(0).1. We expand
the perturbations in powers of a small parameter �¿ 0,

 ′ = � (1) + �2 (2) + · · · ; (43)

with similar expressions for T ′; C ′;  ′
1;  ′

2, and write
@
@t
= �

@
@t(1)

+ �2
@

@t(2)
+ · · · ; (44)

Gr = Gr(0) + �Gr(1) + �2Gr(2) + · · · : (45)

At order � we recover the linear eigenvalue problem. Since C(1) = LeT (1), the critical eigenmode
can be written in the form



(1)

T (1)

C(1)

(1)
1
(1)
2



= K(t(1))




f1(x; z)

Prf2(x; z)

Scf2(x; z)

Prf3(x; z)

Scf3(x; z)




; (46)

where the amplitude K depends on the slow time t(1) and the functions fi depend only on the
spatial variables. These functions and the corresponding critical Grashof number Gr(0) are computed
as described in Section 3.
At order �2 we obtain


�2 Gr(0) @

@x −Gr(0) @
@x

− @
@z

�
Pr 0

− @
@z 0 �

Sc






 (2)

T (2)

C(2)




=−


0 Gr(1) @

@x −Gr(1) @
@x

0 0 0

0 0 0






 (1)

T (1)

C(1)


−




N1( (1);  (1))

N2( (1); T (1))

N2( (1); C(1))


+ @

@t(1)



� (1)

T (1)

C(1)




−Rv




N1( 
(1)
1 − (1)

2 ;  (1)1 − (1)
2 )− N3( 

(1)
1 −  (1)2 ; T (1) − C(1))

0

0


 : (47)

The solvability condition for these equations now yields the evolution equation. To obtain this
equation we need the solution to the adjoint eigenvalue problem


�2 @

@z
@
@z

−Gr∗(0) @
@x

�
Pr 0

Gr∗(0) @
@x 0 �

Sc






∗

T ∗

C∗


=



0

0

0


 (48)



with identical boundary conditions. Thus Gr∗(0) = Gr(0) and


∗

T ∗

C∗


=



(Pr − Sc)f∗

1 (x; z)

Prf∗
2 (x; z)

−Scf∗
2 (x; z)


 : (49)

The solvability condition is therefore

(e + (Pr + Sc)f)
@K
@t(1)

= Gr(1)(Pr − Sc)aK + (b+ Rv(Sc− Pr)2c + (Pr + Sc)d)K2 (50)

with Gr(1) indicating the distance from onset. The coe�cients are given by the expressions

a=
∫ ∫




@f2
@x

f∗
1 dx dz; (51)

b=
∫ ∫



N1(f1; f1)f∗

1 dx dz; (52)

c =
∫ ∫



(N1(f3; f3)− N3(f3; f2))f∗

1 dx dz; (53)

d=
∫ ∫



N2(f1; f2)f∗

2 dx dz; (54)

e =
∫ ∫



�f1f∗

1 dx dz; (55)

f =
∫ ∫



f2f∗

2 dx dz; (56)

where the asterisk denotes the adjoint eigenfunctions. In the following two subsections we summarize
the results obtained analytically from the truncated Galerkin equations.

4.2. Case A= 1: The symmetric case S(f1(x; z)) = f1(x; z) .

For aspect ratio A= 1 the critical eigenmode is invariant under the symmetry S. The bifurcation
is therefore expected to be transcritical. Our symbolic computations con�rm this expectation, giving
a = −0:142, b = −159:3, c = c(�), d = 184 960, e = 41:5 and f = 126:7. Consequently, the purely
di�usive solution (K=0) is stable if and only if Gr(1)¡ 0, i.e., for Grashof numbers smaller than the
critical thermal Grashof number, while the convective solution (K 6= 0) is stable for Gr(1)¿ 0 and
unstable for Gr(1)¡ 0. Fig. 2 shows the coe�cient c as a function of the angle of vibration �. Note
that this function is �-periodic because vibration at angle � or � + � is the same. The convective
solution is given by

(x; z) ≈ � (1) = f1(x; z)
a

b+ Rv(Sc− Pr)2c + (Pr + Sc)d(Gr − Gr
(0))(Sc− Pr): (57)

In the following we refer to the branch that bifurcates supercritically (subcritically) from the quasi-
equilibrium state as the supercritical (subcritical) branch, regardless of its subsequent appearance.



Fig. 2. The function c(�) obtained using MAPLE with n= m= 4 for  and n= m= 3 for T and C.

The supercritical branch is initially stable, while the subcritical one is initially unstable. Subsequent
saddle-node and=or Hopf bifurcations may change these stability properties.
For Pr = 1, Sc = 11 and Rv = 0 we �nd that the convective branch has a very small slope in the

( ( 12 ;
1
2 );Gr) plane, of the order of 10

−6. This result can be con�rmed by direct numerical simulation.
Since the numerical solution of the linear problem shows that f1¿ 0 at x= z= 1

2 whenever Le¿ 1,
while the solution of the adjoint problem implies that a¡ 0, d¿ 0 and b¡ 0 with Pr+Sc¿−b=d (≈
10−3), it follows that on the stable supercritical branch  ( 12 ;

1
2 )¡ 0 and hence that the corresponding


ow is counterclockwise. This is because when Le¿ 1 heat di�uses faster than concentration and
consequently the direction of motion is determined by the concentration gradients. At the left of the
cavity these carry heavier 
uid from the top to the bottom producing a counterclockwise cell. As the
strength of the vibration increases this picture gradually changes because of the � dependence of c.
If �=0 or 1:4 (mod �) the coe�cient c vanishes and the resulting bifurcation diagram is independent
of the vibration strength.
If 0¡�¡ 1:4 (mod �) c¿ 0 and the slope decreases (in magnitude) as Rv increases. Finally, if

1:4¡�¡ � (mod �) c¡ 0 and the magnitude of the slope instead increases with Rv and the slope
becomes vertical at

Rv =−b+ (Pr + Sc)d
(Sc− Pr)2c ¿ 0: (58)

At this point the perturbation expansion breaks down and a di�erent scaling must be employed. This
scaling brings in a cubic term in the amplitude K , indicating that at degeneracy the bifurcation is a
pitchfork. The unfolding of this degeneracy is correctly described by including a small quadratic term
in K as in Eq. (50). Golubitsky and Schae�er (1985) discuss additional phenomena described by the
universal unfolding of the pitchfork. In the present problem these require relaxing the requirement
N =−1.
Although for A=1 the mode truncation used predicts that Gr(0)(Sc−Pr)=19 040 (compared with

the exact value Gr(0)(Sc− Pr) = 17 172) the analytical calculation captures correctly the qualitative
dependence of the solutions on the system parameters. Numerically accurate bifurcation diagrams
for vertical vibration and Le = 11; 51 can be found in Section 5.2.2.



4.3. Case A= 2:6: The antisymmetric case S(f1(x; z)) =−f1(x; z) .

When A= 2:6 the critical eigenmode is antisymmetric

S( ′(x; z; t(1))) ≡  ′(1− x; A− z; t(1)) =− ′(x; z; t(1)) (59)

and we now expect a nondegenerate pitchfork bifurcation. Our symbolic calculations con�rm that
b= c= d= 0 for all values of m and n. Thus Gr(1) = 0 (K 6= 0). Consequently, K does not depend
on t(1).
In order to obtain the �rst nonzero Gr(i) for i= {1; 2; 3; : : : ; n}, we solve the order �2 problem for
(2), T (2) and C(2). The solution takes the form



(2)

T (2)

C(2)

(2)
1
(2)
2



= K2(t(2))




g1(x; z;Pr; Sc; �; Rv)

g2(x; z;Pr; Sc; �; Rv)

g3(x; z;Pr; Sc; �; Rv)

g4(x; z;Pr; Sc; �; Rv)

g5(x; z;Pr; Sc; �; Rv)




: (60)

At order �3, we obtain

�2 Gr(0) @

@x −Gr(0) @
@x

− @
@z

�
Pr 0

− @
@z 0 �

Sc






 (3)

T (3)

C(3)




=−



0 Gr(2) @

@x −Gr(2) @
@x

0 0 0

0 0 0






 (2)

T (2)

C(2)


−




N1( (1);  (2))

N2( (1); T (2))

N2( (1); C(2))


−




N1( (2);  (1))

N2( (2); T (1))

N2( (2); C(1))




−Rv


N1( 

(1)
1 −  (1)2 ;  (2)1 − (2)

2 )− N3( 
(1)
1 −  (1)2 ; T (2) − C(2))

0
0




−Rv


N1( 

(2)
1 −  (2)2 ;  (1)1 − (1)

2 )− N3( 
(2)
1 − (2)

2 ; T (1) − C(1))
0
0


+ @

@t(2)



� (1)

T (1)

C(1)


 : (61)

The solvability condition now yields

(ep + (Pr + Sc)fp)
@K
@t(2)

= apGr
(2)(Sc− Pr)K − gp(Pr; Sc; �; Rv)K3; (62)

where ap ≈ 7:41, ep ≈ 2380, fp ≈ 8845 and gp ≡ gp(Pr; Sc; �; Rv).
In the static case (Rv = 0) the pitchfork bifurcation is subcritical (gp ¡ 0) for any value of Pr

and Sc, and the emerging solutions are unstable. However, as � and Rv vary the pitchfork can be
transformed into a supercritical one and the convective solutions stabilized at small amplitude. This



Fig. 3. Contour plot of gp(Pr; Sc; �; Rv) obtained using MAPLE with n = m = 4 for  and n = m = 3 for T and C for
Pr = 1 and (a) Sc = 11, (b) Sc = 51. For 1:4¡�¡ 3:1, gp is initially negative but becomes positive as Rv increases.

solution is given by

2 ≈ �2 (1)
2

=
apf21

gp(Pr; Sc; �; Rv)
(Gr − Gr(0))(Sc− Pr): (63)

Fig. 3 shows a contour plot of gp as a function of both � and Rv when Pr = 1 and (a) Sc = 11, (b)
Sc=51, again obtained from the truncated Galerkin expansion. This function describes correctly the
functional dependence of the solution on the system parameters.



5. Numerical results

5.1. Numerical method

The system of equations (11)–(16) was solved numerically using a spectral method (Canuto et
al., 1987). The method used is based on the projection di�usion algorithm developed for solving
the 2D–3D unsteady incompressible Navier–Stokes equations (Khallouf, 1995). Temporal integration
consists of a semi-implicit second-order �nite di�erence approximation. The linear (viscous) terms are
treated implicitly using a second-order backward Euler scheme, while a second-order explicit Adams–
Bashforth scheme is employed for the nonlinear (advective) parts. When applied to an advection–
di�usion equation such as

@f
@t
+U :∇f = ��f (64)

the method leads to
3
2f

n+1 − 2fn + 1
2f

n−1

�t
= ��fn+1 − 2(U :∇f)n − (U :∇f)n−1: (65)

This equation can be written in the form of the Helmholtz equation

(�− h)fn+1 = s; (66)

where h=3=2��t is the Helmholtz constant and s is a scalar quantity containing all the terms known
at time tn = n�t (n is the time level and �t is the time step). The temporal integration therefore
transforms the system into a Helmholtz problem arising from the advection–di�usion equations (13)
and (14) coupled to the Poisson problems (15) and (16) with appropriate boundary conditions. The
latter are solved using the Uzawa (or Poisson-like) formulation of Azaiez et al. (1994). The Navier–
Stokes equations (11)–(12) are transformed into a generalized Stokes problem and solved by the
projection–di�usion method of Khallouf (1995). All the subproblems obtained are either Helmholtz or
Poisson-like operators. A high-accuracy spectral method, namely one utilizing Legendre collocation
points, is used in the spatial discretization of the Helmholtz and Poisson-like operators. Successive
diagonalization is implemented to invert these operators. We mention that the Stokes and Darcy–
Euler solvers are direct and guarantee an accurate spectral solution with divergence-free solenoidal
�elds over the entire domain, including the boundaries. For the calculations discussed in this paper
a grid with 15 × 15 mesh points in the (x; z) domain su�ces to describe accurately the 
ow for
Le = 11. We selected a 25× 25 grid for our calculations at Le = 11 and 35× 35 at Le = 51.

5.2. Numerical results

For the numerical study, we chose Sc=11 and Pr=1 in order to investigate a case in which there
is a substantial di�erence between the thermal and solutal disturbances. Some results for Le = 51
are also described. We consider two particular geometries, a square cavity (A=1) and a rectangular
cavity with A = 2:6. We begin with zero-gravity results, i.e., with thermo-vibrational convection,
followed by a discussion of the interaction between vibrational and static gravity driven convection.



Fig. 4. Graph of  ( 12 ;
1
2 ) versus � (degrees) for �nite amplitude solutions in zero gravity (Gr = 0) and di�erent values of

Rv when Le = 11, Pr = 1. The solid points denote the calculated values. Resolution is 25× 25.

5.2.1. Zero gravity results for A= 1
For the square cavity the theoretical critical Grashof number is given by Gr(0)(Sc− Pr) = 17 172,

i.e., Gr(0) =1717. The corresponding instability is a steady one (see Sections 2 and 3). When Gr=0
the system is controlled by the vibration angle � and the vibration amplitude Rv. Computations were
done for 0¡Rv¡ 50 000 for � between �

2 to − �
2 .

The �rst set of computations was performed with initial data for the di�usive solution and con-
�rmed the stability of the equilibrium or quasi-equilibrium solutions predicted by linear theory. For
Le¿ 1 larger amplitude solutions evolved either to this state or to thermo-vibrational convection
consisting of a clockwise one-cell 
ow, depending on � and Rv. The results are summarized in
Fig. 4 for selected values of Rv (0¡Rv¡ 50 000). The �gure shows that the range of angles for
which a convective solution exists diminishes with decreasing Rv and vanishes at Rvc = 2610, ob-
tained for �=16◦. Note that, at high values of Rv, the 
ow amplitude passes through a maximum for
negative angles. Additional numerical simulations showed that for �¿�c = 73

◦ convective motion
is suppressed regardless of the value of Rv. For comparison, for a horizontally vibrating cavity the
critical vibrational Rayleigh number is Rv = 2860 whereas the conductive solution is unconditionally
stable when vibrated vertically. With two-dimensional steady 
ow, the streamlines correspond to lines
of constant streamfunction and a single contour map gives a complete portrayal of the 
ow �eld.
Fig. 5 shows that the 
ow consists of a clockwise rotating single cell. In all three �elds (velocity,
temperature and concentration) the resulting thermo-vibrational 
ow resembles natural convection.

5.2.2. Interaction between vibration and gravity driven convection for A= 1
In view of the weakly nonlinear results of Section 4 we now turn to three representative cases

(� = 0; � = �
4 and � = �

2 ) illustrating the di�erent types of interaction between vibration and static



Fig. 5. Streamlines, isotherms and isoconcentration lines in zero gravity for Rv = 5000 and horizontal vibration (Le = 11,
Pr = 1, A= 1). Resolution is 25× 25.

gravity driven convection. We are particularly interested in the location of the turning point on the
subcritical convective branch.
Horizontal vibration (�=0): When the vibration is along the static gradient (Fig. 6) the supercrit-

ical regime branches from the pure di�usive state at Gr(Sc−Pr)=17 161 (for comparison the value
obtained by linear stability analysis is 17 172). The numerical calculation con�rms that the onset
of the supercritical branch is independent of Rv and that, near the bifurcation point, the slope of
the supercritical branch is also independent of Rv. On the supercritical branch the streamfunction is
negative in the center of the cavity and the 
ow therefore consists (Fig. 7) of a dominant counter-
clockwise rotating cell with two identical recirculations in the upper right and lower left corners. The
calculation also con�rms the relation T ′=LeC ′ between the thermal and concentration perturbations
in the neighborhood of the bifurcation point. Note that the streamfunction has point symmetry while
the thermal and solutal perturbations are antisymmetric (Fig. 7). Such a solution is invariant under
the symmetry S as predicted by the linear stability analysis. The subcritical regime extends down
to much lower convective thresholds (Gr = 676 for Rv = 0) as reported by Ghorayeb and Mojtabi
(1997) and terminates in a saddle-node bifurcation on the �nite amplitude branch. As Rv increases,
the value of Gr at this turning point decreases continuously and in zero gravity motion can exist for
all values of Rv¿ 2860, in agreement with Fig. 4. The 
ow structure is qualitatively as shown in
Fig. 5, i.e., it consists of a single clockwise roll. Fig. 6 shows that near Gr ≈ 1230 the convection
amplitude is almost independent of the vibration strength. It is worth mentioning that the super-
critical solution is obtained easily only if initial data with (nearly) the right symmetry properties are
prescribed; otherwise the solution evolves towards the subcritical solution which appears to have a
much larger domain of attraction.
Direct simulations of the system (3)–(6) have also been carried out. The solution of the Navier–

Stokes equation with a time-dependent force per unit volume requires a substantially longer com-
putation time in comparison with the mean-
ow equations and the same resolution requirements.
The results of the latter calculations are recovered for all f̂=2�!̂¿ 200 Hz (f/1 Hz for water at
20◦C and L= 1 cm). The value f̂

∗ ≈ 200 corresponds to the limit of the validity of the mean �eld
treatment for our problem. Of course, as shown in Fig. 8 all of the variables now depend on time
but their mean values over the vibration period are independent of the frequency whenever f̂¿ f̂

∗
.



Fig. 6. Bifurcation diagram in the  ( 12 ;
1
2 ) − Gr plane for horizontal vibration and di�erent values of Rv when Le = 11,

Pr=1. The saddle-node bifurcation moves from Gr=676 (for Rv=0) to Gr=0 (for Rv=2860). The inset is an enlargement
of the supercritical branch for di�erent values of Rv. The vibration strength (Rv) does not a�ect the transcritical branch
in the neighborhood of the primary bifurcation. Resolution is 25× 25.

In this example, the value of the mean Nusselt number Nu is 1.1775 for f̂=100; 1:1758 for f̂=300
and 1.1756 for f̂=500, i.e., Nu varies by less than 0:5% over this range of frequencies. For slower
oscillations resonance phenomena may occur but these are beyond the scope of the present work.
Vibration at �= �

4 : For vibration at 45
◦ the supercritical branch is present for Gr¿ 1715 and its

slope decreases (in magnitude) with increasing Rv (Fig. 9), as predicted by the weakly nonlinear
analysis. In the limiting case Rv → ∞, the supercritical branch becomes a purely di�usive one.
The subcritical branch behaves in much the same way as in the previous case. On this branch, the
streamfunction is positive in the center of the cavity and the 
ow regime resembles that in Fig. 5,
but with the vibration-independent solution moved to Gr ≈ 676. Note that this value corresponds
to the turning point on the subcritical branch in the absence of vibration. In zero gravity (Gr = 0)
thermo-vibrational convection can be produced for Rv¿ 5400.
Vertical vibration (�= �

2 ): For vertical vibration the numerical results also con�rm that the value
of the critical Grashof number (Gr =1715 when Le=11) is independent of the vibrational Rayleigh
number (see Fig. 10). The motion on the supercritical branch is a three-cell 
ow with the dominant
cell being counterclockwise. The isolines of the temperature and concentration are almost parallel
and vertical, and are consistent with the relation T ′ = LeC ′ found in weakly nonlinear theory. As
Rv increases the slope of the transcritical branch becomes steeper and steeper and for Rv¿ 13 000 it



Fig. 7. Streamlines, and lines of constant temperature and concentration perturbations for Gr = 2000 and Rv = 10 000 and
horizontal vibration (Le = 11, Pr = 1, A= 1). Resolution is 25× 25.

Fig. 8. The Nusselt number Nu as a function of the dimensionless time t for f̂ = 100 (solid line), f̂ = 300 (dotted
line) and f̂ = 500 (long-dashed line), computed from the primitive equations for Pr = 1, Le = 11, A= 1, Gr = 2000 and
Rv = 2000. Resolution is 33× 33.

changes sign. In this regime there is a stable small amplitude supercritical branch with  ¿ 0 which
soon loses stability at a saddle-node bifurcation at which the branch turns around towards smaller
Gr joining the original stable small amplitude  ¿ 0 subcritical branch at a second saddle-node
bifurcation. This behavior can be established by analyzing the degenerate transcritical bifurcation
in which the coe�cient of the quadratic term vanishes, as described in Section 4.2. This second
¿ 0 branch in turn loses stability at a further saddle-node bifurcation at the right where it turns

to the left and joins the large amplitude subcritical branch (see Fig. 10); the saddle-node on the
large amplitude subcritical branch moves towards higher Grashof numbers with increasing vibrational
Rayleigh number. For Gr = 1600 and Rv = 50 000, the values of the Nusselt number Nu and the



Fig. 9. Bifurcation diagram in the  ( 12 ;
1
2 ) − Gr plane for vibration at � = �

4 and di�erent values of Rv when Le = 11,
Pr = 1. The inset is an enlargement of the transcritical branch of solutions for di�erent values of Rv. The slope of this
supercritical branch decreases (in modulus) as Rv increases. Resolution is 25× 25.

corresponding dimensionless number describing the solute 
ux (the Sherwood number Sh) on the
lower  ¿ 0 branch are, respectively, 1:004 and 1:397; note that these do not satisfy the expected
relation Nu− 1= Le2(Sh− 1), see Bardan et al. (2000). The corresponding 
ow structure is shown
in Fig. 11. A �nite amplitude  ¡ 0 branch is also present and plotted for Rv = 20 000 in the
enlargement. In contrast, the 
ow on the large amplitude branch consists of a clockwise single cell

ow. The critical Grashof number at which a �nite amplitude solution �rst appears depends on Rv
and decreases gradually with increasing Rv, becoming zero when Rv exceeds 50 000. In this case a
�nite amplitude vibration-driven state coexists with a stable conduction state in zero gravity.
We have examined one additional (and more realistic) value of the Lewis number. For Le =

51, corresponding to oxygen in water, the critical Grashof number is 343. The primary bifurcation
remains transcritical and the e�ect of vibration is qualitatively similar to that at Le = 11. However,
the bifurcation diagram for vertical vibration shown in Fig. 12 reveals the presence of a new feature.
The transcritical branch for Rv = 2000 consists of a three-cell supercritical branch with a counter-
clockwise central cell; there is also a subcritical solution branch consisting of a small but �nite
amplitude three-cell 
ow with a clockwise central cell. Once again we presume that this branch is
connected to the transcritical bifurcation via an unstable subcritical branch. The branch itself loses
stability with increasing Gr at a saddle-node bifurcation providing a connection to the large ampli-
tude single clockwise cell states via another unstable segment of the subcritical branch. It is along



Fig. 10. Bifurcation diagram in the  ( 12 ;
1
2 ) − Gr plane for vertical vibration and di�erent values of Rv when Le = 11,

Pr = 1. The saddle-node bifurcation moves from Gr = 676 (for Rv = 0) to Gr = 1620 (for Rv = 20 000). The inset is
an enlargement of the supercritical branch for di�erent values of Rv. The slope of this transcritical branch increases (in
modulus) as Rv increases and the branch becomes subcritical for Rv ¿ 13 000. At Rv = 20 000 there are as many as
four stable branches for Gr¿Gr(0), three at small amplitude and a fourth large amplitude branch, separated by unstable
branches. For Rv = 50 000 stable convection is possible even when Gr = 0. Resolution is 25× 25.

Fig. 11. Lines of constant streamfunction, temperature and concentration perturbations for Gr = 1600, Rv = 50 000 and
vertical vibration (Le = 11, Pr = 1, A= 1). Resolution is 25× 25.



Fig. 12. Bifurcation diagram in the  ( 12 ;
1
2 ) − Gr plane for vertical vibration and di�erent values of Rv when Le = 51,

Pr = 1, for comparison with Fig. 10. Resolution is 35× 35.

this unstable segment that the form of the solution gradually changes from the three cell state to the
single cell state as the central clockwise cell grows and the counterclockwise corner cells shrink.
Such a transition must occur since the single cell state cannot connect to the three cell states present
on either side of the transcritical bifurcation. As a result there is now an interval of Grashof num-
bers with three stable coexisting solutions. It is also noteworthy that for Rv¿ 2600 the transcritical
branch again changes direction (see Fig. 12), generating an additional wiggle in the  ¿ 0 branch,
i.e., there are now three stable segments on the  ¿ 0 branch instead of two. At the same time
the  ¡ 0 branch develops a subcritical segment. As a result the small amplitude  ¡ 0 solutions
become unstable although they once again acquire stability at a secondary saddle-node bifurcation.
Altogether there are now four stable solution segments (cf. Fig. 12 for Rv = 5000). Once again
these results follow from the unfolding of the degenerate transcritical bifurcation. Our numerical
simulations indicate that the value of Rv at which this change takes place is inversely proportional
to Le when the Prandtl number remains �xed. Fig. 13 shows the development of solutal boundary
layers on the large amplitude  ¿ 0 branch with increasing Le, as well as the constant concentration
core produced by the expulsion of concentration gradients from the convective cell that occurs at
these amplitudes.



Fig. 13. Streamlines, isotherms and isoconcentrations for Rv =5000, Gr=850 and vertical vibration when Le=51, Pr =1.
Resolution is 35× 35.

Fig. 14. Bifurcation diagram in the Nu–Gr plane for horizontal vibration and di�erent values of Rv when Le=11, Pr = 1,
A= 2:6, and Rv = 0 (solid line), Rv = 2000 (dotted line) and Rv = 4000 (long-dashed line). Resolution is 33× 33.

5.2.3. Interaction between gravity and vibration driven convection when A= 2:6
In this section we brie
y summarize the corresponding results for A = 2:6. In this case the pri-

mary instability leads to an antisymmetric eigenmode and the bifurcation is therefore a pitchfork.
The resulting bifurcation diagram for horizontal vibration (� = 0) is shown in Fig. 14. As already
mentioned the pitchfork for Rv = 0 is subcritical. The initially unstable convection branch acquires
stability at a saddle-node bifurcation at which the branch turns towards increasing Gr. The �gure
shows that the location of this saddle-node bifurcation moves towards smaller Gr as Rv increases and



Fig. 15. Streamlines, isotherms and isoconcentrations for horizontal vibration and Rv = 4000 when Le = 11, Pr = 1 and
A= 2:6. Resolution is 33× 33.

that for su�ciently large Rv stable �nite amplitude convection coexists with the (stable) conduction
state even in zero gravity (Gr = 0). This is so for the case illustrated in Fig. 15; this �gure shows
the streamlines, isotherms and isoconcentration lines for Rv = 4000 and several values of Gr on the
subcritical branch. For small values of Gr the 
ow consists of three cells of which the central one
is counterclockwise while the two stronger outer cells are clockwise. By Gr = 400 the central cell
has shrunk to nothing and for larger values of Gr the 
ow consists of a single large clockwise cell
�lling the entire cavity. Note that these solutions are all symmetric with respect to the symmetry



Fig. 16. Bifurcation diagram in the Nu–Gr plane for vertical vibration and di�erent values of Rv when Le = 11, Pr = 1,
A = 2:6, and Rv = 0 (solid line), Rv = 1000 (dotted line), Rv = 2000 (dashed line) and Rv = 5000 (long-dashed line).
Resolution is 33× 33.

operation S. Such solutions cannot be connected to the original pitchfork bifurcation. Consequently,
a symmetry-breaking bifurcation must occur along the solution branch as this is followed to smaller
and smaller amplitudes, and it is these states that develop into the antisymmetric states born in the
primary pitchfork bifurcation. In the present case these states are unstable.
For vertical vibration (�= �

2 ) the situation is markedly di�erent. In this case, as shown in Fig. 16,
increasing Rv decreases the subcriticality of the pitchfork; for su�ciently large Rv this bifurcation
becomes supercritical and stable solutions can be found arbitrarily close to onset of the primary
instability. Fig. 17 shows the evolution of the 
ow with decreasing Gr when Rv = 5000. At large
Gr the 
ow is again symmetric and consists of two strong cells both of which are clockwise. As
Gr decreases these two cells merge into a single clockwise cell, leaving weaker counterclockwise
cells in the top right and bottom left corners, but the overall symmetry with respect to S remains.
However, as Gr decreases further, this symmetry is lost; we show the resulting solution at Gr=795.
By Gr = 770 the solution is very weak but almost entirely antisymmetric; this solution connects to
the pitchfork bifurcation which for these parameter values occurs at Gr = 765.

6. Conclusion

We have described a theoretical and numerical study of doubly di�usive convection in square and
rectangular cavities in the special case permitting the existence of an equilibrium or quasi-equilibrium



Fig. 17. Streamlines, isotherms and isoconcentrations for Rv=5000 and vertical vibration when Le=11, Pr=1, A=2:6 and
Gr = 1680. For Gr = 770, Gr = 795 and Gr = 910 the contours of constant streamfunction, temperature and concentration
perturbations are shown instead. Resolution is 33× 33.



state. We explored the e�ects of rapid vibration on this system as a function of both strength and
direction. A close agreement between the theoretical and numerical results was found. In zero gravity
convective motion appears in a square cavity with Le = 11 for a suitably chosen vibration axis
whenever the vibration strength exceeds Rv = 2610. The range of orientations for which instability
occurs increases with Rv, with an upper limit set by � = 73◦; for larger angles the conduction
solution (i.e., the equilibrium state) is unconditionally stable. The interaction between static gravity
and vibration-driven convection is similar to that found for the static case. When A=1 the primary
bifurcation is transcritical and when � = 0 and � = �

4 leads to a stable supercritical branch and
a stable �nite amplitude subcritical branch. In contrast for vertical vibration there may be several
subcritical branches connected by unstable solutions, provided the vibrational Rayleigh number is
su�ciently high. On the small amplitude supercritical branch both horizontal and vertical vibration
increases the strength of convective motion, while the opposite is the case when �= �

4 . In all cases
su�ciently high Rv leads to bistability between the conduction state and vibration-driven convection
in zero gravity. When A = 2:6 horizontal vibration is very e�ective in driving thermo-vibrational
convection; in contrast vertical vibration suppresses thermo-vibrational convection e�ectively, and
substantial buoyancy forces are required to sustain 
uid motion. This observation suggests a possible
protocol that could be used to control convective motion induced by stray gravitational �elds or DC
accelerations.
The reason di�erent vibration directions have such di�erent e�ect can be understood by consider-

ing the direction of the e�ective “vibration force” due to the oscillation of the cavity. This force is
described by the new term on the right side of the Navier–Stokes equation (12) and represents the
tendency of the 
uid to 
ow (on average) along gradients of density inhomogeneities (cf. Gershuni
and Lyubimov, 1998). This 
ow is in addition to the doubly di�usive 
ows present in the absence
of vibration. When N =−1 this force is proportional to Gr(∇T −∇C); since for typical parameter
values the concentration gradients in the stationary 
ow are stronger than those in the tempera-
ture the direction of the vibrational force is determined primarily by the former. For example, the
isoconcentration contours shown in Fig. 13 for vertical vibration indicate that the overall vibration
force in the left half of the cavity is towards to the lower left and conversely in the right half of
the cavity. Thus the vibration-induced 
ow is counterclockwise and hence opposite to the doubly
di�usive 
ow. As a consequence, increasing Rv reduces the overall circulation and the saddle-node
bifurcation on the subcritical branch therefore moves towards higher values of Gr. This conclusion
agrees with the results shown in Fig. 12. A similar conclusion holds for the 
ow shown in Fig. 17 at
Gr=1680 and explains why the pitchfork bifurcation for A=2:6 becomes supercritical for su�ciently
large values of Rv. The vibration-induced counterclockwise circulation weakens with decreasing Gr,
however, and close to the primary pitchfork bifurcation the linear relation T ′ = LeC ′ indicates that
the direction of the vibration-induced 
ow is determined instead by the temperature �eld. However,
the vibration-induced 
ow remains in the same direction as the doubly di�usive 
ow. Similarly, an
examination of the contours of constant concentration for horizontal vibration (Fig. 15) shows that
at Gr = 100 the vibration-induced circulation will be clockwise at the top and bottom of the cavity
and counterclockwise in the center. It follows that in this case the vibration-induced 
ow is in the
same direction as the overall 
ow and hence that increasing Rv can only strengthen the observed
circulation. As a result the saddle-node bifurcation on the subcritical branch moves towards lower
values of the Grashof number as Rv increases, as found in Fig. 14. In this case thermo-vibrational
convection can be driven even under zero gravity conditions.



In certain cases we have seen that the direction of the transcritical bifurcation changes with
increasing Rv, producing a wiggle in the subcritical branch and increasing the multistability of the
system. It appears likely that each time the transcritical bifurcation changes direction an additional
wiggle is introduced on the subcritical branch, resulting ultimately in a steady-state branch with a
large number of left–right oscillations as in the related problem studied by Tsitverblit (1995).
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