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MIX ⋆-AUTONOMOUS QUANTALES

AND THE CONTINUOUS WEAK ORDER

MARIA JOÃO GOUVEIA1 AND LUIGI SANTOCANALE2

Abstract. The set of permutations on a finite set can be given a lattice structure (known

as the weak Bruhat order). The lattice structure is generalized to the set of words on a

fixed alphabet Σ = { x, y, z, . . . }, where each letter has a fixed number of occurrences (these

lattices are known as multinomial lattices and, in dimension 2, as lattices of lattice paths).

By interpreting the letters x, y, z, . . . as axes, these words can be interpreted as discrete

increasing paths on a grid of a d-dimensional cube, where d = card(Σ).

We show in this paper how to extend this order to images of continuous monotone

paths from the unit interval to a d-dimensional cube. The key tool used to realize this con-

struction is the quantale L∨(I) of join-continuous functions from the unit interval to itself;

the construction relies on a few algebraic properties of this quantale: it is ⋆-autonomous

and it satisfies the mix rule.

We begin developing a structural theory of these lattices by characterizing join-irreducible

elements, and by proving these lattices are generated from their join-irreducible elements

under infinite joins.

1. Introduction

Combinatorial objects (trees, permutations, discrete paths, . . . ) are pervasive in mathe-

matics and computer science; often these combinatorial objects can be organised into some

ordered collection in such a way that the underlying order is a lattice.

Building on our previous work on lattices of binary trees (known as Tamari lattices or

associahedra) and lattices of permutations (known as weak Bruhat orders or permutohe-

dra) as well as on related constructions [21, 22, 23, 24, 6, 25, 26], we have been led to

ask whether these constructions can still be performed when the underlying combinatorial

objects are replaced with geometric ones.

More precisely we have investigated the following problem. Multinomial lattices [3]

generalize permutohedra in a natural way. Elements of a multinomial lattice are words on

a finite totally ordered alphabet Σ = { x, y, z . . . }with a fixed number of occurrences of each

letter. The order is obtained as the reflexive and transitive closure of the binary relation ≺

defined by wabu ≺ wbau, whenever a, b ∈ Σ and a < b (if we consider words with exactly

one occurrence of each letter, then we have a permutohedron). Now these words can be

given a geometrical interpretation as discrete increasing paths in some Euclidean cube of

dimension d = card(Σ), so the weak order can be thought of as a way of organising these

paths into a lattice structure. When Σ contains only two letters, then these lattices are also

known as lattices of (lattice) paths [9] and we did not hesitate in [21] to call the multinomial
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lattices “lattices of paths in higher dimensions”. The question that we raised is therefore

whether the weak order can be extended from discrete paths to continuous increasing paths.

We already presented at the conference TACL 2011 the following result, positively an-

swering this question.

Proposition. Let d ≥ 2. Images of increasing continuous paths from ~0 to ~1 in Rd can

be given the structure of a lattice; moreover, all the permutohedra and all the multinomial

lattices can be embedded into one of these lattices while respecting the dimension d.

We called this lattice the continuous weak order. The proof of this result was compli-

cated by the many computations arising from the structure of the reals and from analysis.

We recently discovered a cleaner proof of the above statement where all these compu-

tations are uniformly derived from a few algebraic properties. The algebra we need to

consider is the one of the quantale L∨(I) of join-continuous functions from the unit interval

to itself. This is a ⋆-autonomous quantale, see [2], and moreover it satisfies the mix rule,

see [7]. The construction of the continuous weak order is actually an instance of a general

construction of a lattice Ld(Q) from a ⋆-autonomous quantale Q satisfying the mix rule.

When Q = 2 (the two-element Boolean algebra) this construction yields the usual weak

Bruhat order; when Q = L∨(I), this construction yields the continuous weak order. Thus,

the step we took is actually an instance of moving to a different set of (non-commutative, in

our case) truth values, as notably suggested in [17]. What we found extremely surprising is

that many deep geometric notions (continuous monotone path, maximal chains, . . . ) might

be characterised via this simple move and using the algebra of quantales.

Let us state our first main result. Let 〈Q, 1,⊗, ⋆〉 be a ⋆-autonomous quantale (or a

residuated lattice), denote by 0 and ⊕ the dual monoidal operations. Q is not supposed

to be commutative, but we assume that it is cyclic (x⋆ = x ⊸ 0 = 0 � x, for each

x ∈ Q) and that it satisfies the MIX rule (x ⊗ y ≤ x ⊕ y, for each x, y ∈ Q). Let d ≥ 2,

[d]2 := { (i, j) | 1 ≤ i < j ≤ d } and consider the product Q[d]2 . Say that a tuple f ∈ Q[d]2

is closed if fi, j ⊗ f j,k ≤ fi,k, and that it is open if fi,k ≤ fi, j ⊕ f j,k; say that f is clopen if it is

closed and open.

Theorem. The set of clopen tuples of Q[d]2 , with the pointwise ordering, is a lattice.

The above lattice is the one we denoted Ld(Q). The second main result we aim to present

relates the algebraic setting to the analytic one:

Theorem. Clopen tuples of L∨(I)[d]2 bijectively correspond to images of monotonically

increasing continuous functions p : I −→ Id such that p(0) = ~0 and p(1) = ~1.

The results presented in this paper undoubtedly have a mathematical nature, yet our mo-

tivations for developing these ideas originate from various researches in computer science

that we recall next.

Directed homotopy [13] was developed to understand behavioural equivalence of con-

current processes. Monotonically increasing paths might be seen as behaviours of dis-

tributed processes whose local state variable can only increase. The relationship between

directed homotopies and lattice congruences (in lattices of lattice paths) was already pin-

pointed in [21]. In that paper we did not push further these ideas, mainly because the

mathematical theory of a continuous weak order was not yet available.

In discrete geometry discrete paths (that is, words on the alphabet { x, y, . . . }) are used to

approximate continuous lines. In dimension 2, Christoffel words [4] are well-established
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approximations of a straight segment from (0, 0) to some point (n,m). The lattice theo-

retic nature of this kind of approximation is apparent from the fact that Christoffel words

can equivalently be defined as images of the identity/diagonal via the right/left adjoints to

the canonical embedding of the binomial lattice L(n,m) into the lattice L∨(I). For higher

dimensions, there are multiple proposals on how to approximate a straight segment, see

for example [1, 10, 5, 19]. It is therefore tempting to give a lattice theoretic notion of ap-

proximation by replacing the binomial lattices with the multinomial lattices and the lattice

L∨(I) with the lattice L(Id). The structural theory of the lattices L(Id) already identifies

difficulties in defining such a notion of approximation. For d ≥ 3, the lattice L(Id) is no

longer the Dedekind-MacNeille completion of the sublattice of discrete paths whose steps

are on rational points—this is the colimit of the canonical embeddings of the multinomial

lattices into L(Id); defining approximations naively via right/left adjoints of these canonical

embeddings is bound to be unsatisfying. This does not necessarily mean that we should

discard lattice theory as an approach to discrete geometry; for example, we expect that no-

tions of approximation that take into consideration the degree of generation of L(Id) from

multinomial lattices will be more robust.

The paper is organized as follows. We recall in Section 2 some facts on join-continuous

(or meet-continuous) functions and adjoints. Section 3 describes the construction of the

lattice Ld(Q), for an integer d ≥ 2 a lattice and a mix ⋆-autonomous quantale Q. In

Section 4 we show that the quantale L∨(I) of continuous functions from the unit interval

to itself is a mix ⋆-autonomous quantale, thus giving rise to a lattice Ld(L∨(I)) (we shall

denote this lattice L(Id), to ease reading). In the following sections we formally instantiate

our geometrical intuitions. Section 5 introduces the crucial notion of path and discusses

its equivalent characterizations. In Section 6 we shows that paths in dimension 2 are in

bijection with elements of the quantale L∨(I). In Section 7 we argue that paths in higher

dimensions bijectively correspond to clopen tuples of the lattice L∨(I)[d]2 . In Section 8 we

discuss some structural properties of the lattices L∨(I). We add concluding remarks in the

final section.

2. Elementary facts on join-continuous functions

Throughout this paper, [d] shall denote the set { 1, . . . , d } while we let [d]2 := { (i, j) |

1 ≤ i < j ≤ d }.

Let P and Q be complete posets; a function f : P −→ Q is join-continuous (resp., meet-

continuous) if

f (
∨

X) =
∨

x∈X

f (x) , (resp., f (
∧

X) =
∧

x∈X

f (x)) , (1)

for every X ⊆ P such that
∨

X (resp.,
∧

X) exists. Recall that⊥P :=
∨

∅ (resp.,⊤P :=
∧

∅)

is the least (resp., greatest) element of P. Note that if f is join-continuous (resp., meet-

continuous) then f is monotone and f (⊥P) = ⊥Q (resp., f (⊤P) = ⊤Q). Let f be as above;

a map g : Q −→ P is left adjoint to f if g(q) ≤ p holds if and only if q ≤ f (p) holds, for

each p ∈ P and q ∈ Q; it is right adjoint to f if f (p) ≤ q is equivalent to p ≤ g(q), for each

p ∈ P and q ∈ Q. Notice that there is at most one function g that is left adjoint (resp., right

adjoint) to f ; we write this relation by g = fℓ (resp., g = fρ). Clearly, when f has a right

adjoint, then f = (gρ)ℓ, and a similar formula holds when f has a left adjoint. We shall

often use the following fact:

Lemma 1. If f : P −→ Q is monotone and P and Q are two complete posets, then the

following are equivalent:
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(1) f is join-continuous (resp., meet-continuous),

(2) f has a right adjoint (resp., left adjoint).

If f is join-continuous (resp., meet-continuous), then we have

fρ(q) =
∨

{ p ∈ P | f (p) ≤ q } ( resp., fℓ(q) =
∧

{ p ∈ P | q ≤ f (p) } ) ,

for each q ∈ Q.

Moreover, if f is surjective, then these formulas can be strengthened so to substitute inclu-

sions with equalities:

fρ(q) =
∨

{ p ∈ P | f (p) = q } ( resp., fℓ(q) =
∧

{ p ∈ P | q = f (p) } ) , (2)

for each q ∈ Q.

The set of monotone functions from P to Q can be ordered point-wise: f ≤ g if f (p) ≤

g(p), for each p ∈ P. Suppose now that f and g both have right adjoints; let us argue that

f ≤ g implies gρ ≤ fρ: for each q ∈ Q, the relation gρ(q) ≤ fρ(q) is obtained by transposing

f (gρ(q)) ≤ g(gρ(q)) ≤ q, where the inclusion g(gρ(q)) ≤ q is the counit of the adjunction.

Similarly, if f and g both have left adjoints, then f ≤ g implies gℓ ≤ fℓ.

3. Lattices from mix ⋆-autonomous quantales

A ⋆-autonomous quantale is a tuple Q = 〈Q, 1,⊗, 0,⊕, (−)⋆〉 where Q is a complete

lattice, ⊗ is a monoid operation on Q that distributes over arbitrary joins, (−)⋆ : Qop −→ Q

is an order reversing involution of Q, and (0,⊕) is a second monoid structure on Q which

is dual to (1,⊗). This means that

0 = 1⋆ and f ⊕ g = (g⋆ ⊗ f ⋆)
⋆
.

Last but not least, the following relation holds:

f ⊗ g ≤ h iff f ≤ h ⊕ g⋆ iff g ≤ f ⋆ ⊕ h .

Let us mention that we could have also defined a ⋆-autonomous quantale as a residuated

(bounded) lattice 〈Q,⊥,∨,⊤,∧, 1,⊗,⊸,�〉 such that Q is complete and comes with a

cyclic dualizing element 0. The latter condition means that, for each x ∈ Q, x ⊸ 0 = 0� x

and, letting x⋆ := x ⊸ 0, x⋆⋆ = x. This sort of algebraic structure is also called (pseudo)

⋆-autonomous lattice or involutive residuated lattice, see e.g. [18, 28, 8].

Example 1. Boolean algebras are the ⋆-autonomous quantales such that ∧ = ⊗ and ∨ = ⊕.

For a further example consider the following structure on the ordered set { −1 < 0 < 1 }:

⊗ −1 0 1

−1 −1 −1 −1

0 −1 0 1

1 −1 1 1

⊕ −1 0 1

−1 −1 −1 1

0 −1 0 1

1 1 1 1

⋆

−1 1

0 0

1 −1

Together with the lattice structure on the chain, this structure yields a ⋆-autonomous quan-

tale, known as the Sugihara monoid on the three-element chain, see e.g. [11].

We presented in [25] several ways on how to generalize the standard construction of

the permutohedron (aka the weak Bruhat order). We give here a new one. Given a ⋆-

autonomous quantale Q, we consider the product Q[d]2 :=
∏

1≤i< j≤d Q. Observe that,

as a product, Q[d]2 has itself the structure of a quantale, the structure being computed
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coordinate-wise. We shall say that a tuple f = 〈 fi, j | 1 ≤ i < j ≤ d〉 is closed (resp., open)

if

fi, j ⊗ f j,k ≤ fi,k (resp., fi,k ≤ fi, j ⊕ f j,k ) .

Clearly, closed tuples are closed under arbitrary meets and open tuples are closed under

arbitrary joins. Observe that f is closed if and only if f ⋆ = 〈( fσ( j),σ(i))
⋆ | 1 ≤ i < j ≤ d〉 is

open, where for i ∈ [d], σ(i) = d − i + 1. Thus, the correspondence sending f to f ⋆ is an

anti-isomorphism of Q[d]2 , sending closed tuples to open ones, and vice versa. We shall be

interested in tuples f ∈ Q[d]2 that are clopen, that is, they are at the same time closed and

open.

For (i, j) ∈ [d]2, a subdivision of the interval [i, j] is a sequence of the form i = ℓ0 <

ℓ1 < . . . ℓk−1 < ℓk = j with ℓi ∈ [d], for i = 1, . . . , k. We shall use S i, j for the set of

subdivisions of the interval [i, j]. As closed tuples are closed under arbitrary meets, for

each f ∈ Q[d]2 there exists a least tuple f such that f ≤ f and f is closed; this tuple is

easily computed as follows:

f i, j =
∨

i<ℓ1<...ℓk−1< j∈S i, j

fi,ℓ1 ⊗ fℓ1,ℓ2 ⊗ . . . ⊗ fℓk−1 , j .

Similarly and dually, if we set

f ◦i, j :=
∧

i<ℓ1<...ℓk−1< j∈S i, j

fi,ℓ1 ⊕ fℓ1 ,ℓ2 ⊕ . . . ⊕ fℓk−1 , j .

then f ◦ is the greatest open tuple f ◦ below f .

Proposition 1. Suppose that, for each f ∈ Q[d]2 , ( f )◦ = ( f )◦. Then, for each f ∈ Q[d]2 ,

( f ◦)◦ = ( f ◦) as well. The set of clopen tuples is then a lattice.

Proof. The first statement is a consequence of the duality sending f ∈ Q[d]2 to f ⋆ ∈ Q[d]2 .

Now the relation ( f )◦ = ( f )◦ amounts to saying that the interior of any closed f is again

closed. The other relation amounts to saying that the closure of an open is open. For a

family { fi | i ∈ I }, with each fi clopen, define then

∨

Ld(Q)

{ fi | i ∈ I } :=
∨

Q[d]2

{ fi | i ∈ I } ,
∧

Ld(Q)

{ fi | i ∈ I } := (
∧

Q[d]2

{ fi | i ∈ I })◦ ,

and remark that, by our assumptions, the expressions on the right of the equalities denote

clopen tuples. It is easily verified then these are the joins and meets, respectively, among

clopen tuples. � �

Lemma 2. Consider the following inequalities:

(α ⊕ β) ⊗ (γ ⊕ δ) ≤ α ⊕ (β ⊗ γ) ⊕ δ (3)

α ⊗ β ≤ α ⊕ β . (4)

Then (3) is valid and (4) is equivalent to 0 ≤ 1.

The inequation (4) is known as the mix rule. We say that a ⋆-autonomous quantale Q is

a mix ⋆-autonomous quantale if the mix rule holds in Q.

Theorem 1. If Q is a mix ⋆-autonomous quantale and f ∈ Q[d]2 is closed, then so is f ◦.

Consequently, the set of clopen tuples of Q[d]2 is a lattice.
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Proof. Let i, j, k ∈ [d] with i < j < k. We need to show that

f ◦i, j ⊗ f ◦j,k ≤ fi,ℓ1 ⊕ . . . ⊕ fℓn−1 ,k

whenever i < ℓ1 < . . . ℓn−1 < k ∈ S i,k. This is achieved as follows. Let u ∈ { 0, 1, . . . , n− 1 }

such that j ∈ [ℓu, ℓu+1) and put

α := fi,ℓ1 ⊕ . . . ⊕ fℓu , δ := fℓu+1
⊕ . . . ⊕ fℓn−1 ,k

β := fℓu , j γ := f j,ℓu+1
.

We let in the above definition fℓu , j := 0 when j = ℓu. Then

f ◦i, j ⊗ f ◦j,k ≤ (α ⊕ β) ⊗ (γ ⊕ δ) , by definition of f ◦
i, j and f ◦

j,k,

≤ α ⊕ (β ⊗ γ) ⊕ δ , by the inequation (3),

≤ α ⊕ fℓu,ℓu+1
⊕ δ , since f is closed,

(or, when j = ℓu, by using β = 0 ≤ 1 and γ = fℓu ,ℓu+1
)

= fi,ℓ1 ⊕ . . . ⊕ fℓn−1,k .

The last statement of the theorem is an immediate consequence of Proposition 1. � �

Definition 1. For Q a mix ⋆-autonomous quantale, Ld(Q) shall denote the lattice of clopen

tuples of Q[d]2 .

Example 2. Suppose Q = 2, the Boolean algebra with two elements 0, 1. Identify a tuple

χ ∈ 2[d]2 with the characteristic map of a subset S χ of { (i, j) | 1 ≤ i < j ≤ d }. Think of this

subset as a relation. Then χ is clopen if both S χ and its complement in { (i, j) | 1 ≤ i < j ≤

d } are transitive relations. These subsets are in bijection with permutations of the set [d],

see [6]; the lattice Ld(2) is therefore isomorphic to the well-known permutohedron, aka the

weak Bruhat order. On the other hand, if Q is the Sugihara monoid on the three-element

chain described in Example 1, then the lattice of clopen tuples is isomorphic to the lattice

of pseudo-permutations, see [16, 25].

Remark 1. For a fixed integer d the definition of the lattice Ld(Q) relies only on the al-

gebraic structure of Q. This allows to say that the construction Ld(− ) is functorial: if

f : Q0 −→ Q1 is a ⋆-autonomous quantale homomorphism, then we shall have a lattice

homomorphism Ld( f ) : Ld(Q0) −→ Ld(Q1) (it might be also argued that if f is injective,

then so is Ld( f )). It also means that we can interpret the theories of the lattices Ld(Q)

in the theory of the quantale Q. For example, if the equational theory of a quantale Q is

decidable, then the equational theory of the lattice Ld(Q) is decidable as well.

4. The mix ⋆-autonomous quantale L∨(I)

In this paper I shall denote the unit interval of the reals, that is I := [0, 1]. We use L∨(I)

for the set of join-continuous functions from I to itself. Notice that a monotone function

f : I −→ I is join-continuous if and only if

f (x) =
∨

y<x, y∈I∩Q

f (y) , (5)

see Proposition 2.1, Chapter II of [12]. As the category of complete lattices and join-

continuous functions is a symmetric monoidal closed category, for every complete lattice

L the set of join-continuous functions from Q to itself is a monoid object in that category,

that is, a quantale, see [14, 20]. Thus, we have:

Lemma 3. Composition induces a quantale structure on L∨(I).
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Let now L∧(I) denote the collection of meet-continuous functions from I to itself. By

duality, we obtain:

Lemma 4. Composition induces a dual quantale structure on L∧(I).

With the next set of observations we shall see L∨(I) and L∧(I) are order isomorphic. For

a monotone function f : I −→ I, define

f ∧(x) =
∧

x<x′

f (x′) , f ∨(x) =
∨

x′<x

f (x′) .

Lemma 5. If x < y, then f ∧(x) ≤ f ∨(y).

Proof. Pick z ∈ I such that x < z < y and observe then that f ∧(x) ≤ f (z) ≤ f ∨(y). � �

Proposition 2. f ∧ is the least meet-continuous function above f and f ∨ is the greatest

join-continuous function below f . The relations f ∨∧ = f ∧ and f ∧∨ = f ∨ hold and, con-

sequently, the operations ( · )∨ : L∧(I) −→ L∨(I) and ( · )∧ : L∨(I) −→ L∧(I) are inverse order

preserving bijections.

Proof. We prove only one statement. Let us show that f ∧ is meet-continuous; to this goal,

we use equation (5):
∧

x<t

f ∧(t) =
∧

x<t

∧

t<t′

f (t′) =
∧

x<t

f (t′) = f ∧(x) .

We observe next that f ≤ f ∧, as if x < t, then f (x) ≤ f (t). This implies that if g ∈ L∧(I)

and f ∧ ≤ g, then f ≤ f ∧ ≤ g. Conversely, if g ∈ L∧(I) and f ≤ g, then

f ∧(x) =
∧

x<t

f (t) ≤
∧

x<t

g(t) = g(x) .

Let us prove the last sentence. Clearly, both maps are order preserving. Let us show that

f ∨∧ = f ∧ whenever f is order preserving. We have f ∨∧ ≤ f ∧, since f ∨ ≤ f and (−)∧ is

order preserves the pointwise ordering. For the converse inclusion, recall from the previous

lemma that if x < y, then f ∧(x) ≤ f ∨(y), so

f ∧(x) ≤
∧

x<y

f ∨(y) = f ∨∧(x) ,

for each x ∈ I. Finally, to see that (−)∧ and (−)∨ are inverse to each other, observe that of

f ∈ L∧(I), then f ∨∧ = f ∧ = f . The equality f ∧∨ = f for f ∈ L∨(I) is derived similarly.

� �

Recall that if f ∈ L∨(I) (resp., g ∈ L∧(I)), then fρ ∈ L∧(I) (resp., fℓ ∈ L∨(I)) denotes the

right adjoint of f (resp., left adjoint of g). The following relation is the key observation to

uncover the ⋆-autonomous quantale structure on L∨(I).

Lemma 6. For each f ∈ L∨(I), the relation ( fρ)
∨ = ( f ∧)ℓ holds.

Proof. Let f ∈ L∨(I); we shall argue that x ≤ f ∧(y) if and only if ( fρ)
∨(x) ≤ y, for each

x, y ∈ I.

We begin by proving that x ≤ f ∧(y) implies that ( fρ)
∨(x) ≤ y. Suppose x ≤ f ∧(y) so,

for each z with y < z, we have x ≤ f (z). Suppose that ( fρ)
∨(x) � y, thus there exists w < x

such that fρ(w) � y. Then y < fρ(w), so x ≤ f ( fρ(w)) ≤ w, contradicting w < x. Therefore,

( fρ)
∨(x) � y.

Dually, we can argue that if g ∈ L∧(I), then g∨(x) ≤ y implies x ≤ (gℓ)
∧(y). Letting

g := fρ in this statement we obtain the converse implication: ( fρ)
∨(x) ≤ y implies x ≤

(( fρ)ℓ)
∧(y) = f ∧(y). � �
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For f , g ∈ L∨(I), let us define

f ⊗ g := g ◦ f , f ⊕ g := (g∧ ◦ f ∧)
∨
, f ⋆ = ( fρ)

∨ = ( f ∧)ℓ .

Proposition 3. The tuple 〈L∨(I), id,⊗, id,⊕, (−)⋆〉 is a mix ⋆-autonomous quantale.

Proof. The correspondence (·)⋆ is order reversing as it is the composition of an order

reversing function with a monotone one; by Lemma 6, it is an involution:

f ⋆⋆ = ((( fρ)
∧)
∨

)ℓ = ( fρ)ℓ = f .

To verify that

( f ⊗ g)⋆ = g⋆ ⊕ f ⋆ (6)

holds, for any f , g ∈ L∨(I), we compute as follows:

g⋆ ⊕ f ⋆ = (( f ⋆)
∧
◦ (g⋆)

∧
)
∨

= ( f ∨ρ
∧
◦ g∨ρ

∧
)
∨
= ( fρ ◦ gρ)

∨ = (g ◦ f )∨ρ = (g ◦ f )⋆ = ( f ⊗ g)⋆ .

We verify next that, for any f , g, h ∈ L∨(I),

f ⊗ g ≤ h iff f ≤ h ⊕ g⋆ . (7)

Notice that h ⊕ g⋆ = ((g⋆)
∧
◦ h∧)

∨
= (g∨ρ

∧
◦ h∧)

∨
= (gρ ◦ h∧)

∨
, so

f ≤ h ⊕ g⋆ iff f ≤ (gρ ◦ h∧)
∨
, by the equality just established,

iff f ≤ gρ ◦ h∧ , by Proposition 2,

iff g ◦ f ≤ h∧ , since g(x) ≤ h iff x ≤ gρ(y),

iff f ⊗ g = g ◦ f ≤ h∧
∨
= h , using again Proposition 2.

It is an immediate algebraic consequence of (6) and (7) that f ⊗ g ≤ h is equivalent to

g ≤ f ⋆ ⊕ h, for any f , g, h ∈ L∨(I). Namely, we have

f ⊗ g ≤ h iff f ≤ h ⊕ g⋆

iff (h ⊕ g⋆)
⋆
≤ f ⋆

iff g ⊗ h⋆ = g⋆⋆ ⊗ h⋆ ≤ f ⋆

iff g ≤ f ⋆ ⊕ h⋆⋆ = f ⋆ ⊕ h .

Finally, recall that the identity id is both join-continuous and meet-continuous and there-

fore id∧ = id. Then it is easily seen that id is both a unit for ⊗ and for ⊕. As seen in

Lemma 2, this implies that L∨(I) satisfies the mix rule. � �

5. Paths

Let in the following d ≥ 2 be a fixed integer; we shall use Id to denote the d-fold

product of I with itself. That is, Id is the usual geometric cube in dimension d. Let us

recall that Id, as a product of the poset I, has itself the structure of a poset (the order being

coordinate-wise) which, moreover, is complete.

Definition 2. A path in Id is a chain C ⊆ Id with the following properties:

(1) if X ⊆ C, then
∧

X ∈ C and
∨

X ∈ C,

(2) C is dense as an ordered set: if x, y ∈ C and x < y, then x < z < y for some z ∈ C.

8



We have given a working definition of the notion of path in Id, as a totally ordered

dense sub-complete-lattice of Id. The next theorem state the equivalence among several

properties, each of which could be taken as a definition of the notion of path.

Theorem 2. Let d ≥ 2 and let C ⊆ Id. The following conditions are then equivalent:

(1) C is a path as defined in Definition 2;

(2) C is a maximal chain of the poset Id;

(3) There exists a monotone (increasing) topologically continuous map p : I −→ Id

such that p(0) = ~0, p(1) = ~1, whose image is C.

6. Paths in dimension 2

We give next a further characterization of the notion of path, valid in dimension 2. The

principal result of this Section, Theorem 3, states that paths in dimension 2 are (up to

isomorphism) just elements of the quantale L∨(I).

For a monotone function f : I −→ I define C f ⊆ I
2 by the formula

C f :=
⋃

x∈I

{ x } × [ f ∨(x), f ∧(x)] . (8)

Notice that, by Proposition 2, C f = C f∨ = C f∧ .

Proposition 4. C f is a path in I2.

Proof. We prove first that C f , with the product ordering induced from I2, is a linear order.

To this goal, we shall argue that, for (x, y), (x′, y′) ∈ C f , we have (x, y) < (x′, y′) iff either

x < x′ or x = x′ and y < y′. That is, C f is a lexicographic product of linear orders,

whence a linear order. Let us suppose that one of these two conditions holds: a) x < x′,

b) x = x′ and y < y′. If a), then f ∧(x) ≤ f ∨(x′). Considering that y ∈ [ f ∨(x), f ∧(x)] and

y′ ∈ [ f ∨(x′), f ∧(x′)] we deduce y ≤ y′. This proves that (x, y) < (x′, y′) in the product

ordering. If b) then we also have (x, y) < (x′, y′) in the product ordering. The converse

implication, (x, y) < (x′, y′) implies x < x′ or x = x′ and y < y′, trivially holds.

We argue next that C f is closed under joins from I2. Let (xi, yi) be a collection of

elements in C f , we aim to show that (
∨

xi,
∨

yi) ∈ C f , i.e.
∨

yi ∈ [ f ∨(
∨

xi), f ∧(
∨

xi)].

Clearly, as yi ≤ f ∧(xi), then
∨

yi ≤
∨

f ∧(xi) ≤ f ∧(
∨

xi). Next, f ∨(xi) ≤ yi, whence

f ∨(
∨

xi) =
∨

f ∨(xi) ≤
∨

yi. By a dual argument, we have that (
∧

xi,
∧

yi) ∈ C f .

Finally, we show that C f is dense; to this goal let (x, y), (x′, y′) ∈ C f be such that

(x, y) < (x′, y′). If x < x′ then we can find a z with x < z < x′; of course, (z, f (z)) ∈ C f and,

but the previous characterisation of the order, (x, y) < (z, f (z)) < (x′, y′) holds. If x = x′

then y < y′ and we can find a w with y < w < y′; as w ∈ [y, y′] ⊆ [ f ∨(x), f ∧(x)], then

(x,w) ∈ C f ; clearly, we have then (x, y) < (x,w) < (x, y′) = (x′, y′). � �

For C a path in I2, define

f −C (x) :=
∧

{ y | (x, y) ∈ C } , f +C (x) :=
∨

{ y | (x, y) ∈ C } . (9)

Recall that a path C ⊆ I2 comes with bi-continuous surjective projections π1, π2 : C −→ I.

Observe that the following relations hold:

f −C = π2 ◦ (π1)ℓ , f +C = π2 ◦ (π1)ρ . (10)

9



Indeed, we have

π2((π1)ℓ(x)) = π2(
∧

{ (x′, y) ∈ C | x = x′ }) , using equation (2)

=
∧

π2({ (x′, y) ∈ C | x = x′ }) =
∧

{ y | (x, y) ∈ C } .

The other expression for f + is derived similarly. In particular, the expressions in (10) show

that f − ∈ L∨(I) and f + ∈ L∧(I).

Lemma 7. We have

f −C = ( f +C )
∨
, f +C = ( f −C )

∧
, and C = C f+

C
= C f−

C
.

Proof. Let us firstly argue that (x, y) ∈ C if and only if f −
C

(x) ≤ y ≤ f +
C

(y). The direction

from left to right is obvious. Conversely, it is easily verified that if f −
C

(x) ≤ y ≤ f +
C

(y), then

the pair (x, y) is comparable with all the elements of C; then, since C is a maximal chain,

necessarily (x, y) ∈ C.

Therefore, let us argue that f +
C
= ( f −

C
)∧; we do this by showing that f +

C
is the least

meet-continuous function above f −
C

. We have f −
C

(x) ≤ f +
C

(x) for each x ∈ I since the fiber

sets π−1
1

(x) = { (x′, y) ∈ C | x′ = x } are non empty. Suppose now that f −
C
≤ g ∈ L∧(I). In

order to prove that f +
C
≤ g it will be enough to prove that f +

C
(x) ≤ g(x′) whenever x < x′.

Observe that if x < x′ then f +
C

(x) ≤ f −
C

(x′): this is because if (x, y), (x′, y′) ∈ C, then x < x′

and C a chain imply y ≤ y′. We deduce therefore f +
C

(x) ≤ f −
C

(x′) ≤ g(x′). The relation

f −
C
= ( f +

C
)∨ is proved similarly. � �

Lemma 8. Let f : I −→ I be monotone and consider the path C f . Then f ∨ = f −
C f

and

f ∧ = f +
C f

.

Proof. For a monotone f : I −→ I define f ′ : I −→ C f by f ′ := 〈idI, f 〉, so f = π2 ◦ f ′.

Recall that f −
C f
= π2 ◦ (π1)ℓ. Therefore, in order to prove the relation f ∨ = f −

C f
= π2 ◦ (π1)ℓ

it shall be enough to prove that 〈id, f ∨〉 is left adjoint to the first projection (that is, we

prove that 〈id, f ∨〉 = (π1)ℓ, from which it follows that f ∨ = π1 ◦ 〈id, f ∨〉 = π2 ◦ (π1)ℓ).

This amounts to verify that, for x ∈ I and (x′, y) ∈ C f we have x ≤ π1(x′, y) if and only if

(x, f ∨(x)) ≤ (x′, y). To achieve this goal, the only non trivial observation is that if x ≤ x′,

then f ∨(x) ≤ f ∨(x′) ≤ y. The relation f ∧ = π2 ◦ (π1)ρ is proved similarly. � �

Theorem 3. There is a bijective correspondence between the following data:

(1) paths in I2,

(2) join-continuous functions in L∨(I),

(3) meet-continuous functions in L∧(I).

Proof. According to Lemmas 7 and 8, the correspondence sending a path C to f −
C
∈ L∨(I)

has the mapping sending f to C f as an inverse. Similarly, the correspondence C 7→ f +
C
∈

L∧(I) has f 7→ C f as inverse. � �

7. Paths in higher dimensions

We show in this Section that paths in dimension d, as defined in Section 5, are in bijec-

tive correspondence with clopen tuples of L∨(I)[d]2 , as defined in Section 3; therefore, as

established in that Section, there is a lattice Ld(L∨(I)) whose underlying set can be identi-

fied with the set of paths in dimension d.

Let f ∈ L∨(I)[d]2 , so f = { fi, j | 1 ≤ i < j ≤ d }. We define then, for 1 ≤ i < j ≤ d,

f j,i := ( fi, j )⋆ = (( fi, j)ρ)
∨ .
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Moreover, for i ∈ [d], we let fi,i := id.

Definition 3. We say that a tuple f ∈ L∨(I)[d]2 is compatible if f j,k ◦ fi, j ≤ fi,k, for each

triple of elements i, j, k ∈ [d].

Lemma 9. A tuple is compatible if and only if it is clopen.

Proof. For i < j < k, compatibility yields fi, j ⊗ f j,k ≤ fi,k (closedness) and fk, j ⊗ f j,i ≤ fk,i
which in turn is equivalent to fi,k ≤ fi, j ⊕ f j,k (openness).

Conversely, suppose that f is clopen. Say that the pattern (i jk) is satisfied by f if

fi, j ⊗ fi, j ≤ fi,k. If card({ i, j, k }) ≤ 2, then f satisfies the pattern (i jk) if i = j or j = k,

since then fi, j = id or f j,k = id. If i = k, then fi, j ⊗ f j,i ≤ id is equivalent to fi, j ≤ id ⊕ fi, j.

Suppose therefore that card({ i, j, k }) = 3.

By assumption, f satisfies (i jk) and (k ji) whenever i < j < k. Then it is possible

to argue that all the patterns on the set { i, j, k } are satisfied by observing that if (i jk) is

satisfied, then ( jki) is satisfied as well: from fi, j ⊗ f j,k ≤ fi,k, derive fi, j ≤ fi,k ⊕ fk, j and then

f j,k ⊗ fk,i ≤ f j,i. � �

Remark 2. Let f ∈ L∨(I)[d]2 and suppose that, for some i, j, k ∈ [d], with i < j < k,

fi,k = fi,k ◦ fi, j. That is, we have fi,k = fi, j ⊗ f j,k and, using the mix rule, we derive

fi,k ≤ fi, j ⊕ f j,k. Dually, a relation of the form f ∧
i,k
= f ∧

j,k
◦ f ∧

i, j is equivalent to fi,k = fi, j ⊕ f j,k

and implies fi, j ⊗ f j,k ≤ fi,k.

Remark 3. Lemma 9 shows that a clopen tuple of L∨(I)[d]2 can be extended in a unique way

to a skew enrichment of the set [n] over L∨(I), see [17, 27]. Dually, a clopen tuple gives

rise to a unique skew metric on the set [n] with values in L∨(I). For a skew enrichment (or

metric) we mean, here, that the law f j,i = f ⋆
i, j holds; this law, which replaces the more usual

requirement that a metric is symmetric, has been considered e.g. in [15].

If C ⊆ Id is a path, then we shall use πi : C −→ I to denote the projection onto the i-th

coordinate. Then πi, j := 〈πi, π j〉 : C −→ I × I.

Definition 4. For a path C in Id, let us define v(C) ∈ L∨(I)[d]2 by the formula:

v(C)i, j := π j ◦ (πi)ℓ , (i, j) ∈ [d]2. (11)

Remark 4. An explicit formula for v(C)i, j(x) is as follows:

v(C)i, j(x) =
∧

{ π j(y) ∈ C | πi(y) = x } . (12)

Let Ci, j be the image of C via the projection πi, j. Then Ci, j is a path, since it is the image

of a bi-continuous function from I to I × I. Some simple diagram chasing (or the formula

in (12)) shows that v(C)i, j = f −
Ci, j

as defined in (9).

Definition 5. For a compatible f ∈ L∨(I)[d]2 , define

C f := { (x1, . . . , xd) | fi, j(xi) ≤ x j, for all i, j ∈ [d] } .

Remark 5. Notice that the condition fi, j(x) ≤ y is equivalent (by definition of fi, j or f j,i) to

the condition x ≤ f ∧
j,i(y). Thus, there are in principle many different ways to define C f ; in

particular, when d = 2 (so any tuple L∨(I)[d]2 is compatible), the definition given above is

equivalent to the one given in (8).

Proposition 5. C f is a path.

The proposition is an immediate consequence of the following Lemmas 10, 11 and 13.
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Lemma 10. C f is a total order.

Proof. Let x, y ∈ C f and suppose that x � y, so there exists i ∈ [d] such that xi � yi.

W.l.o.g. we can suppose that i = 1, so y1 < x1 and then, for i > 1, we have f ∧
1,i

(y1) ≤ f1,i(x1),

whence yi ≤ f ∧
1,i(y1) ≤ f1,i(x1) ≤ x1. This shows that y < x. � �

Lemma 11. C f is closed under arbitrary meets and joins.

Proof. Let { xℓ | ℓ ∈ I } be a family of tuples in C f . For all i, j ∈ [d] and ℓ ∈ I, we have

fi, j(
∧

ℓ∈I xℓ
i
) ≤ fi, j(xℓ

i
) ≤ xℓ

j
, and therefore fi, j(

∧

ℓ∈I xℓ
i
) ≤
∧

ℓ∈I xℓ
j
. Since meets in Id are

computed coordinate-wise, this shows that C f is closed under arbitrary meets. Similarly,

fi, j(xℓ
i
) ≤
∨

ℓ∈I xℓ
j

and

fi, j(
∨

ℓ∈I

xℓi ) =
∨

ℓ∈I

fi, j(xℓi ) ≤
∨

ℓ∈I

xℓj ,

so C f is also closed under arbitrary joins. � �

Lemma 12. Let f ∈ L∨(I)[d]2 be compatible. Let i0 ∈ [d] and x0 ∈ I; define x ∈ Id by

setting xi := fi0 ,i(x0) for each i ∈ [d]. Then x ∈ C f and x =
∧

{ y ∈ C f | πi0(y) = x0 }.

Proof. Since f is compatible, fi, j ◦ fi0,i ≤ fi0 , j, for each i, j ∈ [d], so

fi, j(xi) = fi, j( fi0,i(x0)) ≤ fi0 , j(x0) = x j .

Therefore, x ∈ C f . Observe that since fi0 ,i0 = id, we have xi0 = x0 and x so defined is such

that πi0(x) = x0. On the other hand, if y ∈ C f and x0 ≤ πi0 (y) = yi0 , then xi = fi,i0 (x0) ≤

fi,i0 (yi0 ) ≤ yi, for all i ∈ [d]. Thus x =
∧

{ y ∈ C f | πi0(y) = x0 }. � �

Lemma 13. C f is dense.

Proof. Let x, y ∈ C f and suppose that x < y, so there exists i0 ∈ [d] such that xi0 < yi0 .

Pick z0 ∈ I such that xi0 < z0 < yi0 and define z ∈ C f as in Lemma 12, zi := fi0 ,i(z0), for

all i ∈ [d]. We claim that xi ≤ zi ≤ yi, for each i ∈ [d]. From this and xi0 < zi0 < y0 it

follows that x < z < y. Indeed, we have zi = fi0,i(z0) ≤ fi0 ,i(yi0) ≤ yi. Moreover, xi0 < z0

implies f ∧
i0,i

(xi0 ) ≤ fi0 ,i(z0); by Remark 5, we have xi ≤ f ∧
i0 ,i

(xi0 ). Therefore, we also have

xi ≤ f ∧
i0,i

(xi0 ) ≤ fi0,i(z0) = zi. � �

Lemma 14. If f ∈ L∨(I)[d]2 is compatible, then v(C f ) = f .

Proof. By Lemma 12, the correspondence sending x to ( fi,1(x), . . . , fd,1(x)) is left adjoint

to the projection πi : C f −→ I. In turn, this gives that v(C f )i, j(x) = π j((πi)ℓ(x)) = fi, j(x), for

any i, j ∈ [d]. It follows that v(C f ) = f . � �

Lemma 15. For C a path in Id, we have Cv(C) = C.

Proof. Let us show that C ⊆ Cv(C). Let c ∈ C; notice that for each i, j ∈ [d], we have

v(C)i, j(ci) = π j((πi)ℓ(ci)) = π j((πi)ℓ(πi(c)) ≤ π j(c) = c j ,

so c ∈ Cv(C). For the converse inclusion, notice that C ⊆ Cv(C) implies C = Cv(C), since

every path is a maximal chain. � �

Putting together Lemmas 14 and 15 we obtain:

Theorem 4. The correspondences, sending a path C in Id to the tuple v(C), and a compat-

ible tuple f to the path C f , are inverse bijections.
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8. Structure of the lattices L(Id)

As final remarks, we present and discuss some structural properties of the lattices L(Id).

Recall that an element p of a lattice L is join-prime if, for any finite family { xi | i ∈ I },

p ≤
∨

i∈I xi implies p ≤ xi, for some i ∈ I. A completely join-prime element is defined

similarly, by considering arbitrary families in place of finite ones. An element p of a lattice

L is join-irreducible if, for any finite family { xi | i ∈ I }, p =
∨

i∈I xi implies p = xi,

for some i ∈ I; completely join-irreducible elements are defined similarly, by considering

arbitrary families. If p is join-prime, then it is also join-irreducible, and the two notions

coincide on distributive lattices.

Join-prime elements of L∨(I). We begin by describing the join-prime elements of L∨(I); this

lattice being distributive, join-prime and join-irreducible elements coincide. For x, y ∈ I,

let us put

ex,y(t) :=















0 , 0 ≤ t ≤ x ,

y , x < t ,
Ex,y(t) :=



























0 , 0 ≤ t < x ,

y , x ≤ t < 1 ,

1 , t = 1 .

so ex,y ∈ L∨(I), Ex,y ∈ L∧(I) and Ex,y = e∧x,y. We call a function of the form ex,y a one step

function. Notice that if x = 1 or y = 0, then ex,y is the constant function that takes 0 as

its unique value; said otherwise, ex,y = ⊥. We say that ex,y is a prime one step function if

x < 1 and 0 < y; we say that ex,y is rational if x, y ∈ I ∩ Q.

Proposition 6. Prime one step functions are exactly the join-prime elements of L∨(I).

There are no completely join-prime elements in L∨(I). Yet we have:

Proposition 7. Every element of L∨(I) is a join of rational one step functions.

Meet-irreducible elements are easily characterized using duality; they belong to the

join-semilattice generated by the join-prime elements. Using duality, the following propo-

sition is derived.

Proposition 8. L∨(I) is the Dedekind-MacNeille completion of the sublattice generated by

the rational one step functions.

Join-irreducible elements of L(Id). Let now d ≥ 3 be fixed. The lattice L(Id) is no more dis-

tributive; we characterize therefore its join-irreducible elements. We associate to a vector

p ∈ Id the tuple ep ∈ L∨(I)[d]2 defined as follows:

ep := 〈 epi ,p j
| (i, j) ∈ [d]2 〉 .

Proposition 9. The elements of the form ep ∈ L∨(I)[d]2 are clopen and they are exactly the

join-irreducible elements of L(Id) (whenever ep , ⊥). Every element of L(Id) is the join of

the join-irreducible elements below it.

As before L(Id) is the Dedekind-MacNeille completion of its sublattice generated by the

join-irreducible elements. Yet, it is no longer true that every element of L(Id) is a join of

elements of the form ep with all the pi rational and therefore L(Id) is not the Dedekind-

MacNeille completion of its sublattice generated by this kind of elements.

Let us explain the significance of the previous observations. For each vector v ∈ Nd

there is an embedding ιv of the multinomial lattice L(v) (see [3, 25]) into L(Id),
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L(v) L(Id)ιv

ℓv

ρv

as in the diagram on the right, where ℓv and ρv are, respec-

tively, the left and right adjoint to ιv. These embeddings form

a directed diagram whose colomit can be identified with the

sublattice of L(Id) generated by the elements ep with all the

pi, i ∈ [d], rational. The fact L(Id) is not the Dedekind-

MacNeille completion of this sublattice means that, while we can still define approxi-

mations of elements of L(Id) in the multinomial lattices via adjoints, these approximations

do not converge to what they are meant to approximate. For example, we could define

apprv( f ) := ℓv( f ) and yet have
∨

v∈Nd ιv(apprv( f )) < f . On the other hand, it is possible

to prove that every meet-irreducible element is an infinite join of join-irreducible elements

arising from a rational point. Therefore we can state:

Proposition 10. Every element of L(Id) is a meet of joins (and a join of meets) of elements

in the sublattice of L(Id) generated by the ep such that pi is rational for each i ∈ [d].

Whether the last proposition is the key to use the lattices L(Id) as well as the multinomial

lattices for higher dimensional approximations in discrete geometry is an open problem

that we shall tackle in future research.

9. Conclusions

In this paper we have shown how to extend the lattice structure on a set of discrete paths

(known as a multinomial lattice, or weak Bruhat order, if the words coding these paths are

permutations) to a lattice structure on the set of (images of) continuous paths from I, the

unit interval of the reals, to the cube Id, for some d ≥ 2.

By studying the structure of these lattices, called here L(Id), we have been able to iden-

tify an intrinsic difficulty in defining discrete approximations of lines in dimensions d ≥ 3

(a problem that motivated us to develop this research). This stems from the fact that L(Id)

is no longer (when d ≥ 3) generated by its sublattice of discrete paths as a Dedekind-

Macneille completion. Proposition 10 exactly describes how the lattice L(Id) is generated

from discrete paths and might be the key to use the lattices L(Id) as well as the multino-

mial lattices for defining higher dimensional approximations of lines. We shall tackle this

problem in future research.

As a byproduct, our paper also pinpoints that various generalizations of permutohedra

crucially rely on the algebraic (but also logical) notion of mix ⋆-autonomous quantale. Ev-

ery such quantale yields an infinite family of lattices indexed by positive integers. While

the definition of these lattices becomes straightforward by means of the algebra, it turns out

that the elements of these lattices are (as far as observed up to now) in bijective correspon-

dence either with interesting combinatorial objects (permutations, pseudo-permutations) or

with geometric ones (continuous paths, as seen in this paper). These intriguing correspon-

dences suggest the existence of a deep connection between combinatorics/geometry and

logic. Future research shall unravel these phenomena. A first step, already under way for

the Sugihara monoids on a chain, shall systematically identify the combinatorial objects

arising from a given mix ⋆-autonomous quantale Q.
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[26] L. Santocanale and F. Wehrung. The equational theory of the weak order on finite symmetric groups. To

appear in the Journal of the European Mathematical Society, June 2018.

[27] I. Stubbe. An introduction to quantaloid-enriched categories. Fuzzy Sets and Systems, 256:95 – 116, 2014.

[28] C. Tsinakis and A. M. Wille. Minimal varieties of involutive residuated lattices. Studia Logica, 83(1):407–

423, Jun 2006.

15


