
HAL Id: hal-01838454
https://hal.science/hal-01838454v1

Submitted on 13 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical representation for rasterized planar face
complexes

Guillaume Damiand, Aldo Gonzalez-Lorenzo, Jarek Rossignac, Florent
Dupont

To cite this version:
Guillaume Damiand, Aldo Gonzalez-Lorenzo, Jarek Rossignac, Florent Dupont. Hierarchical repre-
sentation for rasterized planar face complexes. Computers and Graphics, 2018, 74, pp.161 - 170.
�10.1016/j.cag.2018.05.017�. �hal-01838454�

https://hal.science/hal-01838454v1
https://hal.archives-ouvertes.fr

Hierarchical Representation for Rasterized Planar Face Complexes

Guillaume Damianda,∗, Aldo Gonzalez-Lorenzoa, Jarek Rossignacb, Florent Duponta

aUniv Lyon, CNRS, LIRIS, UMR5205, F-69622 France
bSchool of Interactive Computing, Georgia Institute of Technology, Atlanta, USA

A R T I C L E I N F O

Article history:
Received 15 May 2018

Keywords: Planar polygonal meshes, Ir-
regular representation, Hierarchical rep-
resentation, Combinatorial maps, Com-
pact representation, Topology preserving
rasterization.

A B S T R A C T

A useful example of a Planar Face Complex (PFC) is a connected network of streets,
each modeled by a zero-thickness curve. The union of these decomposes the plane
into faces that may be topologically complex. The previously proposed rasterized
representation of the PFC (abbreviated rPFC) (1) uses a fixed resolution pixel grid,
(2) quantizes the geometry of the vertices and edges to pixel-resolution, (3) assumes
that no street is contained in a single pixel, and (4) encodes the graph connectivity
using a small and fixed number of bits per pixel by decomposing the exact topology
into per-pixel descriptors. The hierarchical (irregular) version of the rPFC (abbreviated
hPFC) proposed here improved on rPFC in several ways: (1) It uses an adaptively
constructed tree to eliminate the “no street in a pixel” constraint of the rPFC, hence
making it possible to represent exactly any PFC topology and (2) for PFCs of the
models tested, and more generally for models with relatively large empty regions, it
reduces the storage cost significantly.

1. Introduction

Consider a planar graph, G, that is embedded in the plane and
comprises a connected network of finite and possibly curved
edges and their bounding vertices. For example, each edge may
represent a street and each vertex may represent a street junc-
tion. Their union decomposes the plane into faces that may be
topologically complex. For example, G may have multi-edges
(more than one edge joining any given pair of vertices). Fur-
thermore, a face may contain, in its boundary, cracks (edges
that bound a single face), dead-ends (vertices that bound a sin-
gle edge—a crack), and loops (edges that start and end at the
same vertex). The unbounded face is called exterior. An exam-
ple is shown in Fig. 1. We use the term Planar Face Complex
(PFC) for such an arrangement.

Many applications need to represent and to traverse a PFC.
Examples include street networks in Geographic Information

∗Corresponding author
e-mail: guillaume.damiand@liris.cnrs.fr (Guillaume Damiand),

aldo.gonzalez-lorenzo@liris.cnrs.fr (Aldo Gonzalez-Lorenzo),
jarek@cc.gatech.edu (Jarek Rossignac),
florent.dupont@liris.cnrs.fr (Florent Dupont)

Author version of paper “Hierarchical Representation for Rasterized Planar
Face Complexes; Damiand G., Gonzalez-Lorenzo A., Rossignac J., Dupont
F.; Computers & Graphics (C&G), Volume 74, pages 161-170, August 2018”.
Thanks to Elsevier.

Figure 1. A Planar Face Complex (PFC), that has 21 vertices, 24 edges and
5 faces. (The portion of the external face shown here is white.) The chosen
pixel resolution is valid: It ensures that no edge lies entirely in a single
pixel. The domain, which includes all but the external face, comprises 192
pixels, of which 126 are empty. The 79 crossings (where an edge enters a
pixel) are shown as small yellow disks.

2 Hierarchical Representation for Rasterized Planar Face Complexes

System (GIS) [1], geological models [2], overlapping SVG ele-
ments [3], and multi-material structures [4].

Different solutions have been proposed to represent PFCs.
Some approaches describe the connectivity of the graph [5, 6,
7] explicitly. This may yield a high storage cost for complex
graphs. Other approaches use an image format (regular grid of
pixels) to describe a rasterized approximation of the PFC [8, 9,
10, 11], which assigns each pixel to a different face, without
attempting to capture the topology inside the shared pixels that
contains one or more edges.

The recently proposed rasterized Planar Face Complex
(rPFC) [12] unifies these approaches by defining a compact rep-
resentation of the topology of the PFC that decomposes it into
per-pixel descriptors, each using a short string of bits to encode
the topology of the intersection of the PFC with a pixel.

The rPFC model has many advantages: (1) It represents
graph connectivity exactly and hence supports exact topological
graph traversal; (2) It provides spatial indexing to both quan-
tized geometry and exact topology; (3) It can represent non-
trivial topology in a pixel (such as dangling edges, multiple ver-
tices and multiple connected components); (4) It requires only
a few bits per pixel.

However, the rPFC has a drawback: It cannot represent a
graph that has an edge that fits entirely inside a pixel. Hence,
to represent a graph with some relatively small edges, we either
must use a high-resolution grid (see Fig. 1), which increases
storage cost, or must simplify the graph by collapsing small
edges in a preprocessing step, which implies the loss of the orig-
inal topology. Furthermore, when the rPFC encoding stores a
topology descriptor for each private pixel (a pixel that lies en-
tirely in a face), the rPFC storage of large clusters of private
pixels is wasteful.

1.1. Motivation
Our overarching motivation is to reduce the storage size of

this graph, while preserving the benefits provided by the previ-
ously proposed rPFC representation, namely (1) random access
and traversal (RAT) at constant amortized time (CAT) cost and
(2) constant cost localization of the edges and vertices that in-
tersect any given pixel. We also wish to provide efficient sup-
port for distributed processing, window-stream processing, and
progressive refinements.

We believe that the above characteristics are important
for navigation, query, and maintenance applications of huge
databases of planar graphs, which may represent the geometry
and connectivity of streets, rivers, or utility networks.

Our second main motivation is to use the 2D representation
as the main tool to define 3D compact representation. This pa-
per is the first step, necessary for the definition of a compact
representation of 3D meshes.

1.2. Contribution
The high-level, novel contribution reported here is the combi-

nation of a hierarchical representation with the rPFC (per-pixel)
encoding of geometry and connectivity. In this paper, we de-
fine the hierarchical rasterized Planar Face Complex repre-
sentation (hPFC) which addresses the drawback of the previous
rPFC.

d

c

a

b

ef

Figure 2. The hPFC of the PFC shown in Fig. 1 uses only 42 pixels (6 being
labeled). Only 17 of these are empty. It has only 30 crossings.

The proposed hPFC is essentially a tree. Hence, our solution
includes a quadtree as a special case. At the coarsest level, it
is an rPFC, A. But some of the pixels of A, instead of contain-
ing the bit-string that encodes the local topology of the PFC,
contain an index to a refined rPFC of the portion of the PFC
inside that pixel. Such a more detailed rPFC, B, may, in turn
contain pixels which, each, refer to even finer rPFC, C, and so
on recursively.

This irregular representation allows us to remove the “no
small edge” constraint imposed by the rPFC: When an edge fits
entirely in a pixel, the pixel is subdivided.

Moreover, using an irregular (hierarchical) grid allows to re-
duce the storage cost of large clusters of private pixels.

For example, the rPFC shown in Fig. 1 uses a grid of 192
pixels and involves 79 crossings (points where an edge of G
crosses a pixel border). A coarser grid would produce an invalid
rasterization in which at least one edge is contained in a single
pixel. As shown in Fig. 2, using the irregular grid of an hPFC
solves the problem: The same PFC may be encoded as an hPFC
that uses only a total of 42 pixels and involves only 30 crossings.

1.3. Organization
The paper is organized as follows. In Sect. 2, we review the

rPFC model and discuss other relevant prior art. In Sect. 3, we
present the hPFC model and the details of the operators needed
to navigate through the PFC using its hPFC representation. In
Sect. 4 we give a compact encoding of hPFC that provides a
good time-complexity for traversal operators, while allowing
to navigate through the graph without needing to decode the
whole data-structure, but only the current pixel. In Sect. 5, we
present experimental results, comparing our new solution with
the previous regular version.

2. Prior Art

2.1. Data-Structures for Polygonal Meshes
A variety of edge-based data structures have been proposed

in order to represent polygonal meshes, such as Combinatorial

Guillaume Damiand, Aldo Gonzalez-Lorenzo, Jarek Rossignac, Florent Dupont 3

Maps, Corner Table, Doubly Connected Edge List, Half-Edge,
Surface Mesh. . . [5, 6, 13, 7, 14, 15, 16, 17, 18, 19]. They differ
in their storage cost, in the type of operators that they support,
and in the topological restrictions that they impose on the mesh.
Many are reviewed in [20, 21].

These data structures provide Random Access and Traversal
(RAT) of the meshes, often in constant time, or sometimes in
Constant Amortized Time (CAT). Their main drawback is to
use a large number of bits per element (edge, vertex), which
limits their applicability and performance for complex meshes.

Some solutions used rasterized images, where each pixel
stores the color of the region that contains its center. The image
can be compressed, for example by using RLE (Run Length En-
coding). But the digitization does not represent street networks,
removes all cracks and dead ends, and can disconnect regions.

Rasterized images were used in [22] to accelerate the render-
ing of antialiased vector graphics. That approach uses a coarse
lattice in which each cell contains a variable-length encoding
of the graphics primitives that overlap it. The proposed hPFC
extends this previous work by capturing the connectivity (inci-
dence and ordering) of the graph in a constant-length per-cell
format and hence providing support for RAT operators.

In [9, 23], a solution stores the crossing vertices between the
mesh and an inter-pixel grid, and recompute (explicitly or im-
plicitly) a simplified topology of the mesh. Such a representa-
tion can be used to accelerate Boolean operations [4]. But it
only represents an approximated topological description of the
mesh.

2.2. Compact Representations of Polygonal Meshes

Several compression schemes propose to encode local mesh
connectivity by using a few bits per element for polygon graphs
[24, 25] and for triangle meshes [26, 27, 28, 29, 30, 31, 7, 32].

Often, the connectivity information is broken into a chunk
per face, per edge, or per vertex. For example, the 2D version of
Tetstreamer [33] organizes triangle faces into topological rings
and divides connectivity information into one bit per edge (for
some edges) and one or several bits per vertex. But extensions
of this approach to more general (PFC) graphs would be chal-
lenging and the representation more expensive. More impor-
tantly, such schemes assume that the bits of the mesh encoding
is received in a specific order. This compressed format must be
decompressed first and converted into a more expensive format
that is suitable for RAT in CAT.

More recent representations offer a much low storage costs
while still supporting RAT in CAT for the most common access
and traversal operations. For example, the Zipper format is re-
stricted to triangle meshes, but uses on average only 6 bits per
triangle and can be constructed in linear space and time [34].
Such representations rely on a specific ordering of vertices. The
streamable version, Grouper [32], of this approach stores about
two vertex-references per triangle.

2.3. Hierarchical Representations of Polygonal Meshes

Many hierarchical solutions have been defined in order to re-
duce the memory space used in order to represent a mesh such
as for example quadtrees [8, 35]. [36] proposes a progressive

mesh representation, a new scheme which allows to store and
to transmit arbitrary triangle meshes. Several other hierarchi-
cal and pyramidal models were defined and used for example to
represent multiresolution terrain models [37]. In [38], a com-
pressed encoding of 3D triangular meshes is defined, based on
a hierarchy and an encoding of split operators, which allows to
encode both manifold meshes but also “triangle soups”. In [39],
a compressed random-access tree is used in order to represent
spatially coherent data. But these representations are either for
grid of pixels, or for triangle meshes.

Quadtrees were also used to represent a set of points [40, 41]
or of line-segments [42, 43, 44]. These representations do not
capture connectivity. The MX quadtree [45] does capture the
connectivity of simple polygons, but does not support junction
vertices with more than two incident edges. Hence, these pre-
viously proposed hierarchical representations cannot be used to
describe the connectivity of PFCs.

PM-quadtrees [46] allow us to represent PFCs. In that ap-
proach, the model is split recursively into chunks that are each
sufficiently simple. The three variants proposed in [46] use dif-
ferent criteria to define sufficiently simple, but, similarly to [35],
require to have no more than one vertex in any quadtree leaf.
Our solution proposed here uses a slightly less constraining cri-
terion: we allow more than one connected component per leaf,
each having at most one vertex in the leaf. This added flexibility
may reduce the need to subdivide a pixel, and hence the overall
storage cost, in situations, such as thin regions or constrictions
in a face, in which a vertex lies close to another vertex that is
not connected to it by edges in the leaf. Another difference is
the generality of our solution: we are not limited to quadtrees,
but can instead use any image size as input and any image size
for refined images. Finally, graph information in hPFC in not
only stored in leaves, like in PM-quadtrees, but also in inner
nodes. Indeed, each node of our hPFC is a rPFC that can mix
word pixels describing local part of the PFC and refined pixels
that link to refined images.

2.4. rPFC
In this section, we summarize the aspects of the rPFC def-

inition that are important to understand our contribution. We
encourage the reader to consult the original work [12] for fur-
ther details.

Consider a regular grid of pixels (which we define to be open
faces, which do not include their borders), separated by roads
(relatively open edges, which do not contain their vertices),
which meet at crossroads (vertices, each having four incident
cross-roads and four incident pixels). Each pixel P is incident
upon four roads: west, north, east and south (labeled ‘W’, ‘N’,
‘E’, and ‘S’). A pixel is stabbed (by G) when its intersection with
G is not empty. It is private (to a face) otherwise. A crossing is
an intersection point between G and a road of the grid (Fig. 1).
To simplify the rPFC construction, we bias the geometric tests
to ensure that no vertex of G lies on a road or cross-road and
that no edge of G contains a cross-road.

In our explanation, we make references to the crossings and
think of them as vertices inserted into the graph at places where
an edge crosses a road. We wish to stress that we do not actu-
ally insert these crossings. We just imagine them there so that

4 Hierarchical Representation for Rasterized Planar Face Complexes

(

Y

+ Y [(+

)

[

+
]])+

=

N

E

S

W

Figure 3. A pixel having 11 crossings (yellow disks), and their correspond-
ing symbols. The word describing the local topology inside this pixel is
“=(Y+Y[(+)[+]])+”.

we can reference them more easily in our explanations. We
use the term junction when referring to the original vertices of
G, so as to distinguish them from the crossings. In the graph
produced by these imaginary insertions of crossings, each con-
nected component of the intersection of G with a given pixel
comprises exactly zero or one junction. A component with no
junction is a stabbing: a segment of an edge of G between two
consecutive crossings. A component with a junction comprises
a set of edge segments that connect the junction to some of the
crossings on the boundary of that pixel.

The rPFC model orders crossings and crossroads around the
pixel, associates the symbol ‘+’ with each crossroad, and asso-
ciates a symbol with each crossing. It distinguishes the follow-
ing crossing types and uses a different symbol for each type:
• crossing ‘=’ leads to a dead end vertex;
• crossing ‘[’ starts a component that has no junction;
• crossing ‘]’ ends a component that has no junction;
• crossing ‘(’ starts a component connected to a junction;
• crossing ‘Y’ adds a branch to a junction;
• crossing ‘)’ ends a component connected to a junction.
The topology of a pixel, P, is encoded by the word formed

by the concatenation of the clockwise sequence of the above
symbols, starting from the lower left crossing (cf. example in
Fig. 3).

The first three ‘+’ symbols are used to separate the crossings
into four sub-lists, one per crossroad. These will be referenced
using labels: ‘W’, ‘N’, ‘E’, and ‘S’. The occurrence of the 4th ‘+’
symbol indicates the end of the word.

Assuming a valid resolution (no edge of G is contained in
a single pixel), the rPFC of G is represented by the sequence
of words listed in scanline order of the corresponding pixels.
Private (i.e., empty) pixels are identified by the word “++++”.

Random Access to the PFC uses the word associated with a
chosen pixel P to verify whether P is private, and if not, to cal-
culate the number of connected components and hence of the
number of junction vertices contained in P. Different mecha-
nisms may be used to provide direct or indirect access to the

face ID of private pixels. Vertices in P are assigned local vertex
IDs.

Traversal of the graph G of the PFC uses local identifiers
(IDs) of darts (sidewalks in the “edges are streets” metaphor
that are oriented to have the street on their left). These IDs
are assigned in clockwise order around P and grouped by road.
Simple algorithms exist for mapping (i.e., for finding the local
identifier of) a dart to the opposite dart (the sidewalk on the
other side of the street) and for mapping (the local ID with re-
spect to P of) a dart that exits a pixel P to the (the local ID
with respect to Q of) the next dart that (continues the sidewalk
past the crossing and) enters the adjacent pixel Q. One may tra-
verse the bounding loop (which is always unique since faces of
G have no hole) of sidewalks around a face by following the
sequence of next maps.

Other simple algorithms have been provided to compute the
next dart of a dart that enters P and the previous dart for both
entering and exiting darts. Finally, given the local ID of a vertex
in a pixel, one may easily compute the ID of one of the outgoing
or incoming darts, and inversely, given an outgoing or incoming
dart, one may compute the corresponding vertex ID.

The inserted crossings vertices are hidden from the applica-
tion, which operates on the darts and vertices of the original
PFC.

All these computations have cost that is proportional to the
length (symbol count) of the word associated with the pixel.

When needed, mechanisms for identifying the global ID of
the face that is on the right of a sidewalk may be provided, for
example by using a hash table and may requiring the traversal
of the bounding loop of a face.

3. hPFC

In this section, we propose a formal definition of the hPFC,
an algorithm for constructing it, and the two basic tools allow-
ing us to implement the RAT operators which are the navigation
through pixels and the crossings identification.

3.1. Definition of hPFC and Terminology

We use the term image to refer to a regular grid of n × m
pixels. Each pixel of an image stores either a word (in which
case we say that it is a word pixel) or the reference to another
image (in which case we say that it is a refined pixel and that
the referenced image is a refined image). Note that we use a
different terminology than the one proposed in [46, 47] because
our approach is not restricted to quadtrees.

An hPFC is a tree of images, having a root image I0 that has
n0 × m0 pixels.

For compactness, we assume that all refined images of an
hPFC have the same n×m pixel size. Note that the tree becomes
a quadtree [8] for n0 = m0 = 1 and for n = m = 2.

The hPFC of the PFC of Fig. 2 is shown in Fig. 4, where
n0 × m0 is set to 4 × 3 and n × m is set to 2 × 2.

Guillaume Damiand, Aldo Gonzalez-Lorenzo, Jarek Rossignac, Florent Dupont 5

depth 2

depth 1

depth 0

S

E
W

N

y

x

I 10I 9I 8I 7I 6I 5

I 1 I 2 I 3 I 4

I 0@2@1

@3

@4

@6

@5

@7−

− − @8

@9 @10

−

−

−− − − −

−− − −

−

−

+(+)+++[++]+

(++Y+)+ (+++)+

(Y+)+++

(+)+++

+(+Y+)+

+(+)++

(++)++ (+++)+++(+)+

(++)++ [++]++

+(++)+

(++)++ (++)(+)+

(++)++ [++]++ (+Y+)++

+[++]+ ++[+]+

[+]+++

(+Y+Y+)+

++=++

(+Y++)+

+(++)+

Figure 4. Tree representation of the hPFC of Fig. 2. The root image has 4 refined pixels. The tree has 3 depth layers and contains 42 word pixels (shown in
blue) and 10 refined pixels. A “—” symbol is used to mark private pixels (which are contained in a finite face or in the external one).

3.2. hPFC Construction

We briefly explain how we build a hPFC. The pixels are com-
puted recursively. We set an initial grid of m0 × n0 pixels. For
each pixel (identified by the coordinates of its diagonal), we
check that there is no edge of the PFC contained in it. If so, we
compute its word. Otherwise, we subdivide it into mr×nr equal
pixels and repeat this operation. In practice, we filter the edges
of the PFC for each pixel to avoid unnecessary computations of
intersections.

Given a pixel P, we compute its word by first finding all its
crossings. For this, we intersect the edges of the PFC with the
edges of the pixel. For each crossing, we keep the intersected
edge of the pixel, the coordinates of the intersection, and a ref-
erence to its endpoints contained inside the pixel. Then, we use
the intersected edge and the coordinates for sorting the cross-
ings, and we use the references to assign the symbols.

3.3. Navigation Through Pixels

To support constant cost moves of a random walk over the
plane and to support the implementation the graph traversal op-
erators (which are discussed in Sect. 2.4), we need to be able to
identify the adjacent pixel(s) of any given pixel.

More precisely, given a pixel P, we want to find the first pixel
Q adjacent to P in a given direction D (west, north, east or
south). If P has several adjacent pixels in direction D (case of
pixel a in Fig. 2 for west direction), Q will be the first one along
the road between P and Q, considering the reverse orientation
than D in pixel P (for pixel a, the first adjacent pixel considering
south direction, i.e. pixel b).

A pixel P is denoted by a triplet (r, i, j), with r an image, and
(i, j) the position of P in r.

Algorithm 1 allows to find Q, the first pixel adjacent to a
given pixel P in the west direction (algorithms for other direc-
tions are all similar). This is the classical algorithm for quadtree
navigation (see for example [48, 49]), slightly modified to deal
with subdivision of any size n × m.

Algorithm 1: Move a pixel to west.
Input: P: a pixel in an hPFC, that does not belong to the

first column of I0.
Output: Q: the first pixel to the west of P.

1 Q← P;
2 while Q is adjacent to the west border do
3 Q←parent(Q);

4 Q.i←Q.i − 1;
5 while Q is a refined pixel do
6 r ← address in pixel Q;
7 if Q.depth ≤ P.depth then
8 j2 ← y coordinate of pixel at depth Q.depth in the

path going from I0 to P;

9 else j2 ← 0;
10 Q← (r2, n − 1, j2);

11 return Q;

This algorithm has two main parts. First, we do a up-the-tree
ascension while the current pixel Q belongs to the west of its
image (lines 2-3). Since P does not belong to the first column
of I0, we are sure that this loop finishes. Then we can move the
pixel Q from one position in west direction (line 4).

The last main part (lines 5-10) is a classical down-the-tree
descent, while the current pixel Q is a refined pixel. During this
descent, we use either the same y coordinate than the pixel at
the same depth than Q in the path going from I0 to P (line 8),
or we go to the first pixel in the east road of Q (line 9) if such a
pixel does not exist (case when Q.depth > P.depth).

In order to be able to find the parent of pixel Q in constant
time, without storing explicitly the parent link in the tree, we
represent each pixel by a stack of triplets, describing the full
path from I0 to Q. Thanks to this stack, going up in the tree is
done directly by a pop operation, and going down by a push of
the new triplet.

Let us consider the hPFC given in Fig. 4 (that represents the

6 Hierarchical Representation for Rasterized Planar Face Complexes

S

W

N

E

a

b

c

d

Figure 5. Example of adjacent pixels with different depths:
a.depth = 2 > d.depth = 0.

S

W

N

Ea

b

c

d

e

Figure 6. Example of adjacent pixels with different depths:
a.depth = 0 < b.depth = 1.

irregular grid shown in Fig. 2) and show some examples of the
move to west algorithm.

• starting from pixel a = ((I0, 1, 0)), we first move to
west to ((I0, 0, 0)), then we go down twice to reach b =

((I0, 0, 0),(I1,1,0),(I5,1,0)) which is the first adjacent pixel
to a;

• starting from pixel c = ((I0, 1, 2),(I4,0,1),(I9,0,1)), we first
go up twice to reach ((I0, 1, 2)), then we move to west to
d = ((I0, 0, 2)) which is the first (and unique) adjacent pixel
to c;

• starting from pixel e = ((I0, 1, 2),(I4,1,1),(I10,0,1)), we
first go up once to reach ((I0, 1, 2),(I4,1,1)), then we move
to west to ((I0, 1, 2),(I4,0,1)), then we go down to f =

((I0, 1, 2),(I4,1,1),(I9,1,1)) which is the first (and unique)
adjacent pixel to e. Note in this case that we go directly to
pixel (1,1) in image I9 because we use the y coordinate of
the pixel at depth 2 in the path going from I0 to P (which
is P itself).

3.4. Crossings Identification on an hPFC

The second tool required to support the graph traversal oper-
ators is the identification of a crossing of a pixel in its adjacent
pixel. More precisely, this is the crossing problem: Given the
local ID of crossing X of a pixel P and the label of the road D
that contains it, we want: (1) to identify the unique word pixel
Q that also contains X and (2) to identify the local ID of X in
Q.

This problem is discussed in [12], but only for cases where P
and Q are word pixels of the same image.

There are three different cases:

1. P.depth = Q.depth: P and Q have the same number of
crossings, and correspondence is straightforward (cf. [12],
this is for example the case of pixels e and f in Fig. 2);

2. If P.depth > Q.depth: We count the number of crossings
C in all the pixels adjacent to Q, after P (considering the
order given by the orientation of road D in P), plus the
number of crossings after X in P. The local ID of X in Q is
the crossing number C in the road shared with P (counting
the number of crossings is done by navigating through the
pixel grids thanks to the operations introduced in the pre-
vious subsection).
An example is given in Fig. 5. Let us suppose X is the
unique crossing in the west road of pixel a (in blue in the
figure). d is the pixel adjacent to the west of a. The number
of crossings in the east road of d before a is 4 (crossings
of pixels b and c). The local ID, in d, of X is 4 in the east
road of d (thus the 5th crossing of this road because IDs
started from 0);

3. If P.depth < Q.depth: We compute N, the position of
crossing X in its road, in reverse orientation. We move
Q through the pixels adjacent to P, using the orientation of
road D in Q. We stop this loop when the number of cross-
ings, C, in road D is smaller or equal than N. In this case,
we have found pixel Q which shares crossing X with P, and
the local ID of X in Q is the crossing number N in the road
shared with P. During the loop, when C>N, N is decreased
by C.
An example is given in Fig. 6. Here, X is the 5th cross-
ing in the west road of pixel a (in blue in the figure), and
N = 6, the position of X in the west road starting from the
north. b is the first pixel adjacent to the west of a. We iter-
ate through pixels c, d, while decreasing N from 6 to 4, 2
then 1. Entering in pixel e, we have N = 1 < 3 the number
of crossings in the east road of e, thus we stop the loop.
The local ID, in e, of X is 1 in the east road of e (thus the
2nd crossing of this road).

3.5. Computational Space and Time Complexity

3.5.1. Time Complexity
The time complexity of Algo. 1 that allows us to navigate be-

tween adjacent pixels in the west direction is linear in the depth
of the tree (the same for algorithms for other roads). Indeed,
this algorithm mainly traverses the tree, possibly a first time
bottom-up and a second time top-down.

The complexity of the operator that computes the local cross-
ing number of a given crossing in its adjacent pixel (given in
the previous subsection), is linear in the depth of the tree plus
the maximal number of crossings in the pixel (indeed, the time
complexity of the navigation between crossings inside a same
pixel is linear in the number or crossings in the pixel).

With these two operators, it is possible to define the previous,
next and opposite operators by using the technique explained in
[12] and summarized in Sect. 2.4. The idea is to follow the
stabbings of an edge to a junction. The complexity of these
operators is thus linear in the maximum number of stabbings in
an edge times depth of the tree.

Guillaume Damiand, Aldo Gonzalez-Lorenzo, Jarek Rossignac, Florent Dupont 7

I 10I 9I 8I 7I 6I 5

I 4I 3I 2I 1

I 0

Level 0

Level 1

Level 2

p5 p6 p7 p8 p9 p10 p11 p12

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

p1 p2 p3 p4p1 p2 p3 p4p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

p1 p2 p3 p4

−(++Y+)+ (+++)+ +(+Y+)+ (+Y+Y+)+ (Y+)+++ +(+)++ (+Y+Y+)+

++(+)+ − (++)++ (+++)+ − − (++)++ (++)(+)+−

− − − − − − − − −−−(++)++ [++]++ +[++]+ +(++)+ +(+)++ +(++)+ (++)++ [++]++ +[++]+ ++[+]+ (+Y+)++ [+]+++

@1 @2 @3 @4

@5 @6 @7 @8 @9 @100110 0001 0000 1000

0000000000000000 0000 0000

1 0 1 0 0 0 1 0 0 1 0 0

++=++

(+Y++)+

Figure 7. Compact encoding of the hPFC shown in Fig. 4. In level 0, the code of each pixel starts with a bit to differentiate refined and word pixels (in
green), and each pixel is encoded by the same number of bits (both refined and word pixels). In other levels, these mask-bits are grouped at the beginning
of each image. Different record sizes are used to encode word and refined pixels.

We assume that the depth of the tree, the maximal number
of crossings per pixel and the number of stabbings per edge are
small comparing to the number of edges, and thus can be con-
sidered as constants. This assumption is verified in our exper-
iments and makes sense in general, even though pathological
models could be designed to invalidate it. With these assump-
tions, the complexity of the three operators previous, next and
opposite is constant.

3.5.2. Computational Space Complexity
The space complexity of hPFC is given by the number of

pixels times the (constant) storage size of one pixel. The size of
a refined pixel is the size used to store the address of the refined
image, while the size of a word pixel is given by the encoding
of its word. This size is set to be large enough to contain the
largest encoding of a pixel. It may be large if the graph contains
a vertex with a huge valence (count of incident edges).

4. Compact Encoding of hPFC

In this section, we propose a compact encoding of hPFC. The
key point of our solution is to use a small amount of memory
space, while allowing to navigate through an hPFC by decoding
locally the traversed pixel (we do not need to decode the full
model, contrary to several compressed encoding).

4.1. Main Principle and Notation

rPFCs are encoded level by level of the tree. The first level,
numbered 0, contains only I0, the root of the tree, while other
levels, between 1 and d (for depth) can contain several rPFCs.
For example, the hPFC of Fig. 4 has 3 levels.

We use our own made memory manager that can allocate an
arbitrary number of contiguous bits in memory, segment it into
contiguous k-bit records, and support writing and reading k-bit
integers in and out of these records using the integer index of a
record.

All images at depth l are stored in a contiguous pool.
Let sl denote the size (measured in bits) of the memory pool

allocated to store all of the images at depth l.

Let nl
r denote the number of refined pixels at depth l, and let

nl
w denote the number of word pixels at depth l.

Let kl
w denote the number of bits required to store words at

level l, i.e. the number of bits to encode the longest word in this
level, and let kl

@ denote the number of bits required to store the
rPFC addresses for refined pixels at level l.

4.2. Data Structure for the Root Image I0

The information associated with each pixel of the root image
is stored using a fixed representation that allocates the same
number of bits to each pixel. For each pixel, P, the first bit
indicates whether P is a word pixel or a refined pixel. The re-
maining max(k0

@, k
0
w) bits encode either the address of the rPFC

in level 1 (for refined pixels) or the word (for word pixels) (cf.
example in Fig. 7).

Hence, we have a direct access to any pixel (i, j) and can com-
pute its memory address in the pool from k0

@, k0
w and the dimen-

sions n0 and m0 of I0.
The main advantage of this encoding is the direct access to

any pixel. Its main drawback is that some more memory space
is wasted due to the use of the same number of bits for word and
refined pixels. But this loss is negligible because the number of
pixels in I0 is usually very small comparing to the number of
pixels in refined images (cf. Sect. 5).

4.3. Data Structure for Refined Images

The representation of the pool of a refined (non zero) level d
stores the words of all its images in a contiguous (compacted)
array.

The encoding of each refined image I starts by a bit mask
(one bit per pixel of I) that identifies the type of each pixel
(word or refined). Following this mask, each pixel P of I is
encoded: the word of P for word pixel and the address of the
refined image for refined pixels. Contrary to I0, we use here an
irregular encoding: word pixels are encoded by kd

w bits while
refined pixels use kd

@ (cf. example in Fig. 7).
The key advantage of this encoding is to use less memory

than the representation used for the root image (no memory
space is lost to align the encoding of the two types of pixels).

8 Hierarchical Representation for Rasterized Planar Face Complexes

Figure 8. One of the Delaunay triangulations used with 500 vertices, and a detail of it.

Its main drawback is the cost of computing the location of one
pixel: we need to decode first the bit mask for all pixels before
P in order to compute the address of P in the current image.
But the overhead is small because the size of refined images is
usually very small (often 2 × 2 in our experiments, cf. Sect. 5).

4.4. Computing Sizes and In-Pool-Locations of Arrays

The numbers nl
r, of refined pixels per level, nl

w, of word pixels
per level, and kl

w, of bits to store the maximal word per level can
all be computed for each level of the tree, during the building
or the loading of an hPFC.

The number of bits needed to store rPFC addresses per level,
kl

@, and the size of each level, sl, can be computed recursively
(top-down) by using nl

r, nl
w and kl

w.
First, there is no refined pixel at the last level of the tree,

and thus nd
r = 0 and kd

@ = 0. We can thus directly compute
sd = nd

w × kd
w.

Then, each number of bits kl
@ can be computed directly

thanks to sl+1. For each rPFC address at level l, we need to be
able to address any position in the memory pool at level l + 1.
Thus kl

@ = dlog2(sl+1)e. We can compute sl = nl
w×kl

w +nl
@×kl

@,
and thus compute kl

@ and sl for each level.

4.5. Illustration

Figure 7 shows an illustration of our compact encoding for
the hPFC previously given in Fig. 4.

The first level has 12 pixels since the size of I0 is 4 × 3; 4 of
them being refined pixels having their encoding starting by 1.

The size of all refined images is 2 × 2, the encoding of each
image starts by 4 bits that describe the type of all of its pixels.

The length of the maximal word in Level 2 is 7 and thus
k2

w = 16 (1 bit per ‘+’, 4 bits per other symbol). The number of
bits used to store Level 2 is thus s2 = 6 × (4 × 16 + 4) = 408
bits (there are 6 images, each one with 4 pixels, each pixel uses
16 bits plus the 4 bits mask).

The length of the maximal word in Level 1 is 8 and thus
k1

w = 20. k1
@ = 9 in order to address any position in Level 2.

The number of bits used to store Level 1 is thus s1 = 4×4 + 6×

vertices 0.5K 1K 2K 4K
edges 1,205 2,405 4,805 9,605
faces 703 1,403 2,804 5,605

Table 1. Average number of edges and faces in each batch of Delaunay
triangulations.

9 + 10 × 20 = 270 bits (there are 4 images, 6 refined pixels and
20 word pixels).

Similarly for Level 0, we have k0
w = 20, k0

@ = 9, s0 =

12 × (20 + 1) = 252 bits (there are 12 pixels, each one en-
coded with 20 bits whatever their type, plus one bit for the type
of the pixel).

5. Experiments

In [12], four different architectures were introduced to rep-
resent the words in a rPFC. The first version (V1) explicitly
encodes the words using a fixed prefix code and puts them in a
matrix with constant size entries. The other three versions con-
catenate the encoding of words in each row and store them in
an array using different optimizations for the private pixels.

In this section we compare the hPFC against the first version
of the rPFC using synthetic and real data sets. For the sake of
simplicity, we set m0 = n0 and mr = nr.

5.1. Delaunay Triangulations
Our first data set consists of series of five random Delaunay

triangulations with 500, 1,000, 2,000 and 4,000 vertices, from
which we randomly removed 20% of the edges to increase ir-
regularity. One of these triangulations is depicted in Fig. 8.
More information about their number of cells is described in
Table 1.

In our first experiment, we report results for different values
for m0 and mr. We have considered only the five Delaunay tri-
angulations with 4,000 vertices and we have computed hPFCs
with m0 in {1,2,4,8,16,32,64,125,256} and mr in {2,4,8,16}. Fig-
ure 9 shows the results. Memory space grows with both mr and

Guillaume Damiand, Aldo Gonzalez-Lorenzo, Jarek Rossignac, Florent Dupont 9

 10

 100

 1000

 10000

1x1
2x2

4x4
8x8

16x16

32x32

64x64

128x128

256x256

M
e

m
o

ry
 s

p
a

c
e

 (
k
ilo

b
y
te

s
,

lo
g

 s
c
a

le
)

Nb. of pixels in I0 for 4000 vertices (log scale)

2x2
4x4
8x8

16x16

Figure 9. Memory comparison between hPFCs with different parameters.

m0. Indeed, setting a large m0 or mr produces unnecessary small
pixels, many of which are empty. For these inputs, we conclude
that mr must be 2 and m0 must not be greater than 64.

Note that the oscillations in this graphic are produced by the
combined effect of m0 and mr on the size of the largest pixels.
To illustrate this, consider the curve for mr = 16. The rPFCs
with m0 = 1 and m1 = 16 are the same and thus occupy the same
memory space. The memory space grows because when we
refine the initial pixel grid, we multiply the number of pixels.
On the other side, by refining further we end up avoiding later
subdivision and thus the memory space decreases.

In our second experiment we process the twenty Delaunay
triangulations and compare the memory space used by the rPFC
and the hPFC. The grid size of the rPFCs is computed for each
triangulation so that no edge fits inside a pixel. For the hPFCs,
we fix (m0,mr)=(64,2). The results are given in Fig. 10. For the
20 Delaunay triangulations, on average, hPFC is 1352, 1078,
4910 and 3620 times more compact than the rPFC (for 0.5K,
1K, 2K and 4K vertices, resp.). The reason for this is that a
single short edge in a mesh forces the rPFC to use a large num-
ber of pixels. The rPFCs of the triangulations with 4,000 ver-
tices contain in average more than 39.9 million pixels, 99.4%
of them being private, while the hPFCs have only 10,292 pix-
els, and only 2.7% of them are private. Thus, even with the
overhead for storing the hierarchical structure of the hPFC, it is
3,000 times more compact than the rPFC. In this experiment,
the depth of the tree is between 5 and 8, the maximum length
of words is between 24 and 30, and the average number of stab-
bings per edge is between 1.2 and 1.3.

To complement the previous experiment, we now compare
the time complexity of the hPFC and the rPFC. For each tri-
angulation, we traverse all its half-edges with a depth-breadth
search. Figure 11 shows the results. It is clear that the hPFC
is much faster than the rPFC. For the triangulations with 4,000
vertices, the rPFC traverses in average 151.03 pixels per edge of
the PFC, while the hPFC traverses only 8.33 (word and refined)
pixels.

We conclude that the hPFC is more efficient both in memory
space and time than the rPFC for these triangulations. Note,

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 500 1000 2000 4000

M
e

m
o

ry
 s

p
a

c
e

 (
k
ilo

b
y
te

s
,

lo
g

 s
c
a

le
)

Nb. of vertices (log scale)

rPFC
hPFC

Figure 10. Memory comparison between the rPFC and the hPFC for the
synthetic data set.

 0.001

 0.01

 0.1

 1

 500 1000 2000 4000

T
im

e
 (

s
e

c
o

n
d

s
,

lo
g

 s
c
a

le
)

Nb. of vertices (log scale)

rPFC
hPFC

Figure 11. Time comparison between the rPFC and the hPFC for the syn-
thetic data set.

10 Hierarchical Representation for Rasterized Planar Face Complexes

however, that we were able to represent all these meshes with
the rPFC, which is not the case for the following experiments.

5.2. GIS models

Our real data set consists of spatial databases of
eight countries (Australia, Brazil, Canada, China, Ger-
many, France, United Kingdom and Russia) available at
http://www.gadm.org/. They are in shapefile format, a pop-
ular geospatial vector data format for geographic information
system (GIS) softwares. The PFC of Australia is shown in
Fig. 12.

Note that, unlike in the previous data set, these PFCs con-
tain very short edges and thus the rPFC needs a huge number
of pixels. Therefore, we have created five simplified versions of
these meshes for comparing the hPFC with the rPFC. The sim-
plified meshes are made so that they can fit in rPFCs with m0 in
{1,024, 2,048, 4,096, 8,192, 16,384}. Table 2 describes the av-
erage number of cells in each batch of simplified meshes. The
original meshes, which contain on average 1,407,761 vertices,
could only be represented with the hPFC. In this experiment,
for the hPFCs that represent the original meshes, the depth of
the tree is between 10 and 16, the maximum length of words
is between 12 and 24, and the average number of stabbings per
edge is between 0.3 and 0.5.

Figure 13 shows the average memory space and time for the
simplified and the exact meshes. Regarding the memory space
cost, the hPFC still outperforms the rPFC. The hPFC is 9, 17,
34, 75 and 188 times more compact than the rPFC (for the sim-
plified meshes). For the exact (non simplified) GIS meshes, the
rPFC would require 1,079 millions of pixels in average, while
the hPFC only has 1.5 million (41.4% of private).

Regarding the time complexity, the roles are inverted. For the
least simplified meshes, the rPFC traverses only 3.79 pixels per
edge and the hPFC, 5.34. The GIS models have much shorter
edges than the Delaunay triangulations, and thus, the overhead
for navigating through the levels of the hPFC ends up making it
3.5 times slower.

Note that we could not compute the rPFCs for the original
meshes because of the excessive number of pixels necessary.

We conclude that the hPFC is more compact than the rPFC,
and it is necessary for representing real data sets with exact
topology. Also, we conjecture that its time complexity depends
on the ratio between the minimum and the mean length of the
edges of the PFC.

6. Conclusion and Future Works

The hPFC hierarchical representation of Planar Face Com-
plexes that is proposed here uses a fixed-resolution pixel-grid,
quantizes the geometry of the vertices and edges to pixel-
resolution, and encodes graph connectivity by small number
of bits per pixel. It improves the previously proposed rPFC,
which requires that no edge be contained in a single pixel, by
constructing a tree of rPFCs. This hierarchical, quadtree-like
model, makes it possible to represent exactly any PFC topology
and reduces storage cost significantly.

In future work, we plan to propose different compact repre-
sentations for hPFC. We will explore different techniques that
combine the principle of hPFC or of rPFC with more compact
encodings or compression of the words, of the masks, and of
the addresses. Indeed, there are numerous options for such im-
provements, and results of comparisons depend heavily on the
nature of the PFC.

We would like to study if rPFC and hPFC can be used to
represent non planar graphs, for example to describe a street
network having bridges and tunnels. In some configurations,
it maybe possible to represent a non-planar graph by a planar
graph by inserting vertices, but support of traversal operators
on such extensions is more challenging.

Lastly, we are working on the extension of rPFC and hPFC
in 3D.

Acknowledgements

This project received funding from the European Unions
Horizon 2020 Research and Innovation program under the
Marie Sklodowska-Curie (grant 659526).

References

[1] Schmidt, A, Lafarge, F, Brenner, C, Rottensteiner, F, Heipke, C. Forest
point processes for the automatic extraction of networks in raster data.
ISPRS Journal of Photogrammetry and Remote Sensing 2017;126:38 –
55.

[2] Castanié, L, Lévy, B, Bosquet, F. VolumeExplorer: Roaming large
volumes to couple visualization and data processing for oil and gas ex-
ploration. In: IEEE Visualization conference proceedings. 2005,.

[3] Dalstein, B, Ronfard, R, van de Panne, M. Vector graphics complexes.
ACM Trans Graph 2014;33(4):133:1–133:12.

[4] Kwok, TH, Chen, Y, Wang, CC. Geometric analysis and computation
using layered depth-normal images for three-dimensional microfabrica-
tion. In: Baldacchini, T, editor. Three-Dimensional Microfabrication
Using Two-photon Polymerization. Micro and Nano Technologies; Ox-
ford: William Andrew Publishing. ISBN 978-0-323-35321-2; 2016, p.
119–147.

[5] Baumgart, BG. Winged-edge polyhedron representation. Tech. Rep.;
Stanford; 1972.

[6] Mäntylä, M. An Introduction to Solid Modeling. Computer Science
Press; 1988.

[7] Alumbaugh, TJ, Jiao, X. Compact array-based mesh data structures. In:
Proc. of 14th Int. Meshing Roundtable (IMR). 2005, p. 485–503.

[8] Samet, H. Connected component labeling using quadtrees. J ACM
1981;28(3):487–501.

[9] Benouamer, MO, Michelucci, D. Bridging the gap between CSG and
Brep via a triple ray representation. In: Proceedings of the Fourth ACM
Symposium on Solid Modeling and Applications. SMA ’97; New York,
NY, USA: ACM. ISBN 0-89791-946-7; 1997, p. 68–79.

[10] Szymczak, A, Rossignac, J, King, D. Piecewise regular meshes: Con-
struction and compression. Graphical Models 2002;64(3):183–198.

[11] Ju, T, Losasso, F, Schaefer, S, Warren, J. Dual contouring of Hermite
data. ACM Trans Graph 2002;21(3):339–346.

[12] Damiand, G, Rossignac, J. Rasterized planar face complex. Computer-
Aided Design (CAD) 2017;90:146–156.

[13] Lienhardt, P. N-Dimensional generalized combinatorial maps and cellu-
lar quasi-manifolds. Inte J of Computational Geometry and Applications
1994;4(3):275–324.

[14] Dobkin, DP, Laszlo, MJ. Primitives for the manipulation of three-
dimensional subdivisions. In: Proceedings of the Third Annual Sympo-
sium on Computational Geometry. SCG ’87; New York, NY, USA: ACM.
ISBN 0-89791-231-4; 1987, p. 86–99.

[15] Castelli Aleardi, L, Devillers, O, Schaeffer, G. Succinct representations
of planar maps. Theor Comput Sci 2008;408(2-3):174–187.

http://www.gadm.org/

Guillaume Damiand, Aldo Gonzalez-Lorenzo, Jarek Rossignac, Florent Dupont 11

Figure 12. One of the GIS mesh used (Australia), and a detail of it.

m0 1,024 2,048 4,096 8,192 16,384
vertices 84,083 150,143 248,144 380,719 562,380 1,407,761
edges 90,707 160,008 262,055 397,685 580,635 1,429,188
faces 7,743 11,952 17,522 22,806 26,858 31,421

Table 2. Average number of vertices, edges and faces in each batch of simplified GIS models and the exact GIS models.

 1000

 10000

 100000

 1x10
6

 1x10
7

 66815 208959 503658 1.40662x10
6

M
e

m
o

ry
 s

p
a

c
e

 (
k
ilo

b
y
te

s
,

lo
g

 s
c
a

le
)

Nb. of vertices (log scale)

rPFC
hPFC

 0.01

 0.1

 1

 10

 66815 208959 503658 1.40662x10
6

T
im

e
 (

s
e

c
o

n
d

s
,

lo
g

 s
c
a

le
)

Nb. of vertices (log scale)

rPFC
hPFC

Figure 13. Memory and time comparison between the rPFC and the hPFC
for the GIS data set.

[16] Kallmann, M, Thalmann, D. Star-vertices: a compact representation
for planar meshes with adjacency information. Journal of Graphics Tools
2002;6:7–18.

[17] Kettner, L. Using generic programming for designing a data structure for
polyhedral surfaces. Comp Geometry 1999;13:65–90.

[18] Snoeyink, J, Speckmann, B. Tripod: a minimalist data structure for
embedded triangulations. In: Workshop on Comput. Graph Theory and
Combinatorics. 1999,.

[19] Sieger, D, Botsch, M. Design, implementation, and evaluation of the
surface mesh data structure. In: Quadros, WR, editor. Proceedings of
the 20th International Meshing Roundtable. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN 978-3-642-24734-7; 2012, p. 533–550.

[20] Botsch, M, Kobbelt, L, Pauly, M, Alliez, P, Lévy, B. Polygon Mesh
Processing. AK Peters; 2010.

[21] Damiand, G, Lienhardt, P. Combinatorial Maps: Efficient Data Struc-
tures for Computer Graphics and Image Processing. A K Peters/CRC
Press; 2014.

[22] Nehab, D, Hoppe, H. Random-access rendering of general vector graph-
ics. ACM Trans Graph 2008;27(5):135:1–135:10.

[23] Shade, J, Gortler, S, He, Lw, Szeliski, R. Layered depth images. In:
Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’98; New York, NY, USA: ACM.
ISBN 0-89791-999-8; 1998, p. 231–242.

[24] Blelloch, GE, Farzan, A. Succinct representations of separable graphs.
In: CPM. 2010, p. 138–150.

[25] Blandford, DK, Blelloch, GE, Cardoze, DE, Kadow, C. Compact
representations of simplicial meshes in two and three dimensions. Int
Journal on Comp Geometry and Applications 2005;15(1):3–24.

[26] Campagna, S, Kobbelt, L, Seidel, HP. Direct edges - a scalable repre-
sentation for triangle meshes. Journal of Graphics tools 1999;3(4):1–12.

[27] Castelli Aleardi, L, Devillers, O, Mebarki, A. Catalog-based representa-
tion of 2D triangulations. Int J Comput Geometry Appl 2011;21(4):393–
402.

[28] Castelli Aleardi, L, Devillers, O. Explicit array-based compact data
structures for triangulations. In: Proc. 22th Ann. Internat. Sympos. Algo-
rithms Comput.; vol. 7074 of LNCS. 2011, p. 312–322.

[29] Gurung, T, Laney, DE, Lindstrom, P, Rossignac, J. SQuad:
Compact representation for triangle meshes. Comput Graph Forum
2011;30(2):355–364.

[30] Gurung, T, Luffel, M, Lindstrom, P, Rossignac, J. LR: Compact connec-
tivity representation for triangle meshes. ACM Transactions on Graphics
(TOG) 2011;30(4):67:1–67:8.

12 Hierarchical Representation for Rasterized Planar Face Complexes

[31] Yamanaka, K, Nakano, SI. A compact encoding of plane triangulations
with efficient query supports. Inf Process Lett 2010;110(18-19):803–809.

[32] Luffel, M, Gurung, T, Lindstrom, P, Rossignac, J. Grouper: A com-
pact, streamable triangle mesh data structure. Visualization and Computer
Graphics, IEEE Transactions on 2014;20(1):84–98.

[33] Bischoff, U, Rossignac, J. TetStreamer: compressed back-to-front trans-
mission of Delaunay tetrahedra meshes. In: Data Compression Confer-
ence. 2005, p. 93–102.

[34] Gurung, T, Luffel, M, Lindstrom, P, Rossignac, J. Zipper: A compact
connectivity data structure for triangle meshes. Computer-Aided Design
2013;45(2):262–269.

[35] Ayala, D, Brunet, P, Juan, R, Navazo, I. Object representation by
means of nonminimal division quadtrees and octrees. ACM Trans Graph
1985;4(1):41–59.

[36] Hoppe, H. Progressive meshes. In: Proceedings of the 23rd Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH
’96; New York, NY, USA: ACM. ISBN 0-89791-746-4; 1996, p. 99–108.

[37] De Floriani, L, Marzano, P, Puppo, E. Multiresolution models for
topographic surface description. The Visual Computer 1996;12(7):317–
345.

[38] Gandoin, PM, Devillers, O. Progressive lossless compression of arbi-
trary simplicial complexes. ACM Trans Graph 2002;21(3):372–379.

[39] Lefebvre, S, Hoppe, H. Compressed random-access trees for spatially
coherent data. In: Proceedings of the 18th Eurographics Conference
on Rendering Techniques. EGSR’07; Aire-la-Ville, Switzerland, Switzer-
land: Eurographics Association. ISBN 978-3-905673-52-4; 2007, p. 339–
349.

[40] Finkel, RA, Bentley, JL. Quad trees a data structure for retrieval on
composite keys. Acta Inf 1974;4(1):1–9.

[41] Orenstein, JA. Multidimensional tries used for associative searching.
Information Processing Letters 1982;14(4):150–157.

[42] Shneier, M. Two hierarchical linear feature representations: Edge pyra-
mids and edge quadtrees. Computer Graphics and Image Processing
1981;17(3):211–224.

[43] Tamminen, M, Sulonen, R. The excell method for efficient geometric
access to data. In: Proceedings of the 19th Design Automation Confer-
ence. DAC ’82; Piscataway, NJ, USA: IEEE Press. ISBN 0-89791-020-6;
1982, p. 345–351.

[44] Webber, RE, Samet, H. On encoding boundaries with quadtrees. IEEE
Transactions on Pattern Analysis & Machine Intelligence 1984;6:365–
369.

[45] Hunter, GM, Steiglitz, K. Operations on images using quad trees. IEEE
Trans Pattern Anal Mach Intell 1979;1(2):145–153.

[46] Samet, H, Webber, RE. Storing a collection of polygons using quadtrees.
ACM Trans Graph 1985;4(3):182–222.

[47] Samet, H. Foundations of Multidimensional and Metric Data Struc-
tures (The Morgan Kaufmann Series in Computer Graphics and Geomet-
ric Modeling). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.; 2005. ISBN 0123694469.

[48] Gargantini, I. An effective way to represent quadtrees. Commun ACM
1982;25(12):905–910.

[49] Samet, H. An overview of quadtrees, octrees, and related hierarchical
data structures. In: Earnshaw, RA, editor. Theoretical Foundations of
Computer Graphics and CAD. Berlin, Heidelberg: Springer Berlin Hei-
delberg. ISBN 978-3-642-83539-1; 1988, p. 51–68.

	Introduction
	Motivation
	Contribution
	Organization

	Prior Art
	Data-Structures for Polygonal Meshes
	Compact Representations of Polygonal Meshes
	Hierarchical Representations of Polygonal Meshes
	rPFC

	hPFC
	Definition of hPFC and Terminology
	hPFC Construction
	Navigation Through Pixels
	Crossings Identification on an hPFC
	Computational Space and Time Complexity
	Time Complexity
	Computational Space Complexity

	Compact Encoding of hPFC
	Main Principle and Notation
	Data Structure for the Root Image I0
	Data Structure for Refined Images
	Computing Sizes and In-Pool-Locations of Arrays
	Illustration

	Experiments
	Delaunay Triangulations
	GIS models

	Conclusion and Future Works

