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L2-Approximation rate of forward - backward SDEs
using random walk

Christel Geiss1, Céline Labart2, Antti Luoto3

Abstract
Let (Y,Z) denote the solution to a forward-backward SDE. If one constructs a random walk

Bn from the underlying Brownian motion B by Skorohod embedding, one can show L2 conver-
gence of the corresponding solutions (Y n, Zn) to (Y,Z). We estimate the rate of convergence in
dependence of smoothness properties, especially for a terminal condition function in C2,α.
The proof relies on an approximative representation of Zn and uses the concept of discretized
Malliavin calculus. Moreover, we use growth and smoothness properties of the PDE associ-
ated to the FBSDE as well as of the finite difference equations associated to the approximating
stochastic equations. We derive these properties by stochastic methods.

Keywords : Backward stochastic differential equations, approximation scheme, finite difference
equation, convergence rate, random walk approximation

MSC codes : 60H10, 60H35, 60G50, 60H30,

1 Introduction
Let (Ω,F ,P) be a complete probability space carrying the standard Brownian motion B = (Bt)t≥0
and assume (Ft)t≥0 is the augmented natural filtration. Let (Y, Z) be the solution of the forward-
backward SDE (FBSDE)

Xs = x+
∫ s

0
b(r,Xr)dr +

∫ s

0
σ(r,Xr)dBr,

Ys = g(XT ) +
∫ T

s
f(r,Xr, Yr, Zr)dr −

∫ T

s
ZrdBr, 0 ≤ s ≤ T. (1)

Let (Y n, Zn) be the solution of the FBSDE if the Brownian motion B is replaced by a scaled
random walk Bn given by

Bn
t =
√
h

[t/h]∑
i=1

εi, 0 ≤ t ≤ T, (2)

where h = T
n and (εi)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Then (Y n, Zn)

solves the discretized FBSDE

Xn
s = x+

∫
(0,s]

b(r,Xn
r−)d[Bn]r +

∫
(0,s]

σ(r,Xn
r−)dBn

r ,
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Y n
s = g(Xn

T ) +
∫

(s,T ]
f(r,Xn

r−Y
n
r− , Z

n
r−)d[Bn]r −

∫
(s,T ]

Znr−dB
n
r , 0 ≤ s ≤ T. (3)

In this paper, we study the rate of the L2-approximation of (Y n
t , Z

n
t ) to (Yt, Zt). This extends

the results of [5] where this question was considered for the special case X = B.
The approximation of BSDEs using random walk has been investigated by many authors, also

numerically (see, for example, [2], [10], [12], [13], [14]). In 2001, Briand et al. [2] have shown weak
convergence of (Y n, Zn) to (Y, Z) for a Lipschitz continuous generator f and a terminal condition
in L2.

In [5], under the assumption that the forward process X is the Brownian motion itself, a
convergence rate in L2 could be obtained for a locally Hölder continuous terminal function g and
Lipschitz continuous generators. However, if X is a solution of the SDE in (1), we need rather
strong conditions on the smoothness and boundedness on f and g and also on b and σ. In Theorem
3.2, the main result of the paper, we show that the convergence rate for (Y n

t , Z
n
t ) to (Yt, Zt) in L2

is of order h
1
4∧

α
2 provided that g′′ is locally α-Hölder continuous.

One reason behind the strong smoothness requirements on the coefficients is that the discretized
Malliavin derivative, which describes the relation between Y n and Zn, is not compatible with
the variational equations related to Y n and Zn. This problem becomes visible in Subsection 2.3
where we introduce a discretized Malliavin weight to obtain a representation Ẑn for Zn. While
the continuous-time representation of Z is exact, Ẑn does not coincide with Zn, but the difference
converges to 0 in L2 as n→∞. To prove our main result we also need strong smoothness properties
on the solution un of the difference equation associated to the discretized FBSDE (3). We sketch
the proof by applying methods known for Lévy driven BSDEs.

The paper is organized as follows: Section 2 contains the setting, main assumptions and the
approximative representation of Zn. Our main results about the approximation rate for the case
of no generator (i.e. f = 0) and for the general case are in Section 3. One can see that in
contrast to what is known for time discretization schemes, for random walk schemes the Lipschitz
generator seems to cause more difficulties than the terminal condition: while in the case f = 0
we need that g′ is locally α-Hölder continuous, in the case of a Lipschitz continuous generator this
property is required for g′′. In Section 4 we recall some needed facts about Malliavin weights, about
the regularity of solutions to BSDEs and properties of the associated PDEs. Finally, we sketch
a proof for properties of solutions to the finite difference equation associated to the discretized
FBSDE. Section 5 contains technical results which mainly arise from the fact that the construction
of the random walk by Skorohod embedding forces us to compare our processes on different ’time
lines’, one coming from the stopping times of the Skorohod embedding and the other ruled by the
equidistant deterministic times due to the quadratic variation process [Bn].

2 Preliminaries

2.1 The SDE and its numerical scheme

We introduce

Xt = x+
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs, 0 ≤ t ≤ T

and its discretized counterpart

Xn
tk

= x+ h
k∑
j=1

b(tj , Xn
tj−1) +

√
h

k∑
j=1

σ(tj , Xn
tj−1)εj , tj := j Tn , j = 0, ..., n, (4)
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where (εi)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Letting Gk := σ(εi : 1 ≤ i ≤
k) with G0 := {∅,Ω}, it follows that the associated discrete-time random walk (Bn

tk
)nk=0 is (Gk)nk=0-

adapted. Recall (2) and h = T
n . If we extend the sequence (Xn

tk
)k≥0 to a process in continuous time

by defining Xn
t := Xn

tk
for t ∈ [tk, tk+1), it is the solution of the forward SDE (3).

Assumption 2.1.

(i) b, σ ∈ C0,2
b ([0, T ] × R), in the sense that the derivatives of order k = 0, 1, 2 w.r.t. the space

variable are continuous and bounded on [0, T ]× R,

(ii) the first and second derivatives of b and σ w.r.t. the space variable are assumed to be γ-Hölder
continuous (for some γ ∈ (0, 1], w.r.t. the parabolic metric d((x, t), (x′, t′)) = (|x− x′|2 + |t−
t′|)

1
2 ) on all compact subsets of [0, T ]× R.

(iii) b, σ are 1
2 -Hölder continuous in time, uniformly in space,

(iv) σ(t, x) ≥ δ > 0 for all (t, x).

Assumption 2.2.

(i) g is locally Hölder continuous with order α ∈ (0, 1] and polynomially bounded (p0 ≥ 0, Cg > 0)
in the following sense

∀(x, x′) ∈ R2, |g(x)− g(x′)| ≤ Cg(1 + |x|p0 + |x′|p0)|x− x′|α. (5)

(ii) The function [0, T ]× R3 : (t, x, y, z) 7→ f(t, x, y, z) satisfies

|f(t, x, y, z)− f(t′, x′, y′, z′)| ≤ Lf (
√
t− t′ + |x− x′|+ |y − y′|+ |z − z′|). (6)

Notice that (5) implies

|g(x)| ≤ K(1 + |x|p0+1) =: Ψ(x), x ∈ R, (7)

for some K > 0. From the continuity of f we conclude that

Kf := sup
0≤t≤T

|f(t, 0, 0, 0)| <∞.

Notation:

• ‖ · ‖p := ‖ · ‖Lp(P) for p ≥ 1 and for p = 2 simply ‖ · ‖.

• If a is a function, C(a) represents a generic constant which depends on a and possibly also
on its derivatives.

2.2 The FBSDE and its numerical scheme

Recall the FBSDE (1) and its approximation (3). The backward equation in (3) can equivalently
be written in the form

Y n
tk

= g(Xn
T ) + h

n−1∑
m=k

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)−

√
h
n−1∑
m=k

Zntmεm+1, 0 ≤ k ≤ n, (8)

if one puts Xn
r := Xn

tm , Y n
r := Y n

tm and Znr := Zntm for r ∈ [tm, tm+1).
For n large enough, (3) has a unique solution (Y n, Zn), and (Y n

tm , Z
n
tm)n−1

m=0 is adapted to the
filtration (Gm)n−1

m=0 (see [15, Proposition 1.2]).
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2.3 Representations for Z and Zn

We will use the representation (see Ma and Zhang [11, Theorem 4.2])

Zt = Et

(
g′(XT )∇XT +

∫ T

t
f(s,Xs, Ys, Zs)N t

sds

)
σ(t,Xt), 0 ≤ t ≤ T (9)

where Et := E(·|Ft), and for all s ∈ (t, T ], we have (cf. Lemma 4.1)

N t
s = 1

s− t

∫ s

t

∇Xr

σ(r,Xr)∇Xt
dBr, (10)

where ∇X = (∇Xs)s∈[0,T ] is the variational process i.e. it solves

∇Xs = 1 +
∫ s

0
bx(r,Xr)∇Xrdr +

∫ s

0
σx(r,Xr)∇XrdBr,

with (Xs)s∈[0,T ] given in (1).

2.3.1 Approximation for Zn

A counterpart to (9) for Zn does in general only exist approximatively. In particular for f 6= 0
stronger smoothness assumptions are required:

Assumption 2.3. Assumptions 2.1 and 2.2 hold. Additionally, we assume that all first and sec-
ond derivatives w.r.t. the variables x, y, z of b(t, x), σ(t, x) and f(t, x, y, z) exist and are bounded
Lipschitz functions w.r.t. these variables, uniformly in time. Moreover, g′′ satisfies (5).

We shortly introduce the discretized Malliavin derivative and refer the reader to [1] for more
information on this topic. We first define for any function F : {−1, 1}n → R the mappings Tm,+
and Tm,− by

Tm,±F (ε1, . . . , εn) := F (ε1, . . . , εm−1,±1, εm+1, . . . , εn), 1 ≤ m ≤ n,

and for any ξ = F (ε1, . . . , εn) the discretized Malliavin derivative

Dnmξ :=
E[ξεm|σ((εl)l∈{1,...,n}\{m})]√

h
= Tm,+ξ − Tm,−ξ

2
√
h

, 1 ≤ m ≤ n. (11)

In contrast to the continuous time case where ∇Xt(∇Xs)−1 = DsXt(σ(s,Xs))−1 (s ≤ t), we can
not expect equality for the corresponding expressions if we use the discretized processes

∇Xn,tk,x
tm = 1 + h

m∑
l=k+1

bx(tl, Xn,tk,x
tl−1

)∇Xn,tk,x
tl−1

+
√
h

m∑
l=k+1

σx(tl, Xn,tk,x
tl−1

)∇Xn,tk,x
tl−1

εl, 0 ≤ k ≤ m ≤ n,

DnkXn
tm = σ(tk, Xn

tk−1) + h
m∑

l=k+1
b(k,l)x DnkXn

tl−1 +
√
h

m∑
l=k+1

σ(k,l)
x (DnkXn

tl−1)εl, 0 < k ≤ m ≤ n,

(12)

where for the latter we use for φ = b and φ = σ the notation (if DnkXn
t`−1 6= 0 the second ′ :=′ holds

as an identity)

φ(k,l)
x :=

Dnkφ(tl, Xn
tl−1)

DnkXn
tl−1

:=
∫ 1

0
φx(tl, ϑTk,+Xn

tl−1 + (1− ϑ)Tk,−Xn
tl−1)dϑ. (13)

However, we can show convergence of ∇X
n,tk,X

n
tk

tm − Dnk+1X
n
tm

σ(tk+1,X
n
tk

) in Lp.
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Lemma 2.4. Under Assumption 2.1, and for p ≥ 2, we have

(i) E|Xn
tl
− Tm,±Xn

tl
|p ≤ C(b, σ, T, p)h

p
2 , 1 ≤ l,m ≤ n,

(ii) E
∣∣∣∣∣∇Xn,tk,X

n
tk

tm −
Dnk+1X

n
tm

σ(tk+1, X
n
tk

)

∣∣∣∣∣
p

≤ C(b, σ, T, p)h
p
2 , 0 ≤ k < m ≤ n.

(iii) E|DnkXn
tm |

p ≤ C(b, σ, T, p), 0 ≤ k ≤ m ≤ n.

Proof. (i) We only prove the ’+’-case since the proof of the ’−’-case is similar. By definition,
Tm,+X

n
tl

= Xn
tl
for l ≤ m− 1, and for l ≥ m we have

Tm,+X
n
tl

= Xn
tm−1 + b(tm, Xn

tm−1)h+ σ(tm, Xn
tm−1)

√
h

+h
l∑

j=m+1
b(tj , Tm,+Xn

tj−1) +
√
h

l∑
j=m+1

σ(tj , Tm,+Xn
tj−1)εj .

By the properties of b and σ and thanks to the inequality of Burkholder-Davis-Gundy and Hölder’s
inequality we see that

E|Xn
tl
− Tm,+Xn

tl
|p

≤ C(p)
(
E
∣∣σ(tm, Xn

tm−1)
√
h(εm − 1)

∣∣p + hpE
∣∣∣ l∑
j=m+1

(
b(tj , Xn

tj−1)− b(tj , Tm,+Xn
tj−1)

)∣∣∣p

+ h
p
2 E
∣∣∣ l∑
j=m+1

(
σ(tj , Xn

tj−1)− σ(tj , Tm,+Xn
tj−1)

)2∣∣∣ p2 )

≤ C(p)
(
‖σ‖p∞h

p
2 + h(‖bx‖p∞t

p−1
l−m + ‖σx‖p∞t

p
2−1
l−m)

l∑
j=m+1

E|Xn
tj−1 − Tm,+X

n
tj−1 |

p
)
.

It remains to apply Gronwall’s lemma.
(ii) By the inequality of Burkholder-Davis-Gundy (BDG) and Hölder’s inequality,

E
∣∣∣∣∣∇Xn,tk,X

n
tk

tm −
Dnk+1X

n
tm

σ(tk+1, X
n
tk

)

∣∣∣∣∣
p

≤ C(p, T )
(
|bx(tk+1, X

n
tk

)h+ σx(tk+1, X
n
tk

)
√
hεk+1|p

+ h
m∑

l=k+2
E
∣∣∣∣∣bx(tl, Xn

tl−1)∇X
n,tk,X

n
tk

tl−1
− b(k+1,l)

x

Dnk+1X
n
tl−1

σ(tk+1, X
n
tk

)

∣∣∣∣∣
p

+ h
m∑

l=k+2
E
∣∣∣∣σx(tl, Xn

tl−1)∇X
n,tk,X

n
tk

tl−1
− σ(k+1,l)

x

Dnk+1X
n
tl−1

σ(tk+1, X
n
tk

)

∣∣∣∣p).
Since by Lemma 2.4 (i) we conclude that

E|b(k+1,l)
x − bx(tl, Xn

tl−1)|2p + E|σ(k+1,l)
x − σx(tl, Xn

tl−1)|2p ≤ C(b, σ, T, p)hp,

and Lemma 5.2 implies that

E sup
k+1≤l≤m

∣∣∣∇Xn,tk,X
n
tk

tl−1

∣∣∣2p ≤ C(b, σ, T, p),

the assertion follows by Gronwall’s lemma.

(iii) This is an immediate consequence of (i).
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We introduce a discrete counterpart to the Malliavin weight given in (10) letting

Nn,tk
t`

:=
√
h
∑̀

m=k+1

∇X
n,tk,X

n
tk

tm−1

σ(tm, Xn
tm−1)

εm
t` − tk

, k < ` ≤ n. (14)

Notice that there is some constant κ̂2 > 0 depending on b, σ, T, δ such that(
Ek|Nn,tk

t`
|2
) 1

2 ≤ κ̂2

(t` − tk)
1
2
, 0 ≤ k < ` ≤ n, (15)

where Ek := E(·|Gk). We define a process Ẑn = (Ẑntk)n−1
k=0 by

Ẑntk := Ek
(
Dnk+1g(Xn

T )
)

+ Ek

h n−1∑
m=k+1

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)Nn,tk

tm σ(tk+1, X
n
tk

)

 , (16)

and compare it with Zn = (Zntk)n−1
k=0 given by

Zntk = Ek
(
Dnk+1g(Xn

T )
)

+ Ek

√h n−1∑
m=k+1

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)εk+1

 . (17)

The latter equation follows if one multiplies (8) by εk+1 and takes the conditional expectation w.r.t.
Gk. In (16) we could have used also the approximate expression Ek(g(Xn

T )Nn,tk
tn σ(tk+1, X

n
tk

)), but
since we will assume that g′′ exists, we work with the correct term.

Proposition 2.5. If Assumption 2.3 holds, then

E0,x|Zntk − Ẑ
n
tk
|2 ≤ C2.5Ψ2(x)hα,

where E0,x := E(·|X0 = x) and C2.5 depends on b, σ, T, p0 and δ.

Proof. According to [2, Proposition 5.1] one has the representations

Y n
tm = un(tm, Xn

tm), and Zntm = Dnm+1u
n(tm+1, X

n
tm+1),

where un is the solution of the ’discretised’ PDE (32) with terminal condition un(tn, x) = g(x).
Notice that by the definition of Dnm+1 in (11) the expression Dnm+1u

n(tm+1, X
n
tm+1) depends in fact

on Xn
tm . Hence we can put

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm) = f(tm+1, X

n
tm , u

n(tm, Xn
tm),Dnm+1u

n(tm+1, X
n
tm+1))

=: Fn(tm+1, X
n
tm).

By Proposition 4.5 we conclude that unx(tm, x) and ∂xDnm+1u
n(tm+1, X

n,tm,x
tm+1 ) (as functions of x)

both satisfy (5), and by Assumption 2.3 on f we derive this property also for x 7→ Fnx (tm+1, x). It
holds that (we use E := E0,x)

‖Zntk − Ẑ
n
tk
‖

=
∥∥∥∥∥Ek

(
√
h

n−1∑
m=k+1

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)εk+1

)
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−Ek

h n−1∑
m=k+1

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)Nn,tk

tm σ(tk+1, X
n
tk

)

∥∥∥∥∥
≤

n−1∑
m=k+1

h

m− k

m∑
`=k+1

∥∥∥∥Ek
[
Dnk+1F

n(tm+1, X
n
tm)−Dn` Fn(tm+1, X

n
tm)

σ(tk+1, X
n
tk

)∇X
n,tk,X

n
tk

t`−1

σ(t`, Xn
t`−1

)

]∥∥∥∥.
With the notation introduced in (13),

∥∥∥∥Dnk+1F
n(tm+1, X

n
tm)−Dn` Fn(tm+1, X

n
tm)

σ(tk+1, X
n
tk

)∇X
n,tk,X

n
tk

t`−1

σ(t`, Xn
t`−1

)

∥∥∥∥
≤ ‖(Dnk+1X

n
tm)(Fn,(k+1,m+1)

x − Fn,(`,m+1)
x )‖

+
∥∥∥∥Fn,(`,m+1)

x

(
(Dnk+1X

n
tm)− (Dn`Xn

tm)
σ(tk+1, X

n
tk

)∇X
n,tk,X

n
tk

t`−1

σ(t`, Xn
t`−1

)

)∥∥∥∥
=: A1 +A2.

For A1 we use (13) again and exploit the fact that x 7→ Fnx (t, x) satisfies (5). By Hölder’s inequality
and Lemma 2.4 (i) and (iii),

A1 ≤ ‖Dnk+1X
n
tm‖4

∫ 1

0
‖Fnx (tm+1, ϑTk+1,+X

n
tm + (1− ϑ)Tk+1,−X

n
tm)

− Fnx (tm+1, ϑT`,+X
n
tm + (1− ϑ)T`,−Xn

tm)‖4dϑ ≤ C(b, σ, T, p0)Ψ(x)h
α
2 .

For the estimate of A2 we notice that by our assumptions the L4-norm of Fn,(`,m+1)
x is bounded by

CΨ(x), so that it suffices to estimate

∥∥∥∥(Dnk+1X
n
tm)− (Dn`Xn

tm)
σ(tk+1, X

n
tk

)∇X
n,tk,X

n
tk

t`−1

σ(t`, Xn
t`−1

)

∥∥∥∥
4

≤
∥∥∥∥∥(Dnk+1X

n
tm)−

σ(tk+1, X
n
tk

)Dn`Xn
tm

σ(t`, Xn
t`−1

)
Dnk+1X

n
t`−1

σ(tk+1, X
n
tk

)

∥∥∥∥∥
4

+
∥∥∥∥∥σ(tk+1, X

n
tk

)Dn`Xn
tm

σ(t`, Xn
t`−1

)

(
∇X

n,tk,X
n
tk

t`−1
−
Dnk+1X

n
t`−1

σ(tk+1, X
n
tk

)

)∥∥∥∥∥
4

. (18)

The second expression on the r.h.s. of (18) is bounded by C(b, σ, T, δ)h
1
2 as a consequence of Lemma

2.4 (ii)-(iii). To analyze the first expression, we rewrite it by (12) and get∣∣∣∣∣ Dn`Xn
tm

σ(t`, Xn
t`−1

)D
n
k+1X

n
t`−1 −D

n
k+1X

n
tm

∣∣∣∣∣
=
∣∣∣∣∣
(

1 +
m∑

l=`+1

Dn`Xn
tl−1

σ(t`, Xn
t`−1

)(b(`,l)x h+ σ(`,l)
x

√
hεl)

)

×
(
σ(tk+1, X

n
tk

) +
`−1∑
l=k+2

Dnk+1X
n
tl−1(b(k+1,l)

x h+ σ(k+1,l)
x

√
hεl)

)

−
(
σ(tk+1, X

n
tk

) +
( `−1∑
l=k+2

+
m∑
l=`

)
Dnk+1X

n
tl−1(b(k+1,l)

x h+ σ(k+1,l)
x

√
hεl)

)∣∣∣∣∣
7



≤
∣∣Dnk+1X

n
t`−1(b(k+1,`)

x h+ σ(k+1,`)
x

√
hε`)

∣∣
+
∣∣∣∣∣

m∑
l=`+1

[ Dn`Xn
tl−1

σ(t`, Xn
t`−1

)D
n
k+1X

n
t`−1 −D

n
k+1X

n
tl−1

](
b(`,l)x h+ σ(`,l)

x

√
hεl
)∣∣∣∣∣

+
∣∣∣∣∣

m∑
l=`+1

Dnk+1X
n
tl−1

[
b(`,l)x h+ σ(`,l)

x

√
hεl −

(
b(k+1,l)
x h+ σ(k+1,l)

x

√
hεl
)]∣∣∣∣∣. (19)

We take the L4-norm of (19) and apply the BDG inequality and Hölder’s inequality. The second
term on the r.h.s. of (19) will be used for Gronwall’s lemma, while the first and the last one can
be bounded by C(b, σ, T )h

1
2 , by using Lemma 2.4-(iii). For the last term we also use the Lipschitz

continuity of bx and σx in space and Lemma 2.4-(i).

3 Main results
The following approximations will rely on the fact that the random walk Bn can be constructed
from the Brownian motion B by Skorohod embedding. Let τ0 := 0 and define

τk := inf{t > τk−1 : |Bt −Bτk−1 | =
√
h}, k ≥ 1.

Then (Bτk −Bτk−1)∞k=1 is a sequence of i.i.d. random variables with

P(Bτk −Bτk−1 = ±
√
h) = 1

2 ,

which means that
√
hεk

d= Bτk − Bτk−1 . In this case we also use the notation Xτk := Xn
tk

for all
k = 0, . . . , n, so that (4) turns into

Xτk = x+
k∑
j=1

b(tj ,Xτj−1)h+
k∑
j=1

σ(tj ,Xτj−1)(Bτj −Bτj−1), 0 ≤ k ≤ n,

and (3) holds for Bn given by

Bn
t =

[t/h]∑
k=1

(Bτk −Bτk−1), 0 ≤ t ≤ T. (20)

We will denote by Eτk the conditional expectation w.r.t. Fτk .

3.1 Approximation rates for the zero generator case

We express conditional expectations with the help of an independent copy of B denoted by B̃, for
example Eτkg(Xn

T ) = Ẽg(X̃ τk,Xτkτn ) for 0 ≤ k ≤ n, where

X̃ τk,Xτkτn = Xτk +
n∑

j=k+1
b(tj , X̃

τk,Xτk
τj−1 )h+

n∑
j=k+1

σ(tj , X̃
τk,Xτk
τj−1 )(B̃τ̃j−k − B̃τ̃j−k−1),

(we define τ̃k := 0 and τ̃j := inf{t > τ̃j−1 : |B̃t − B̃τ̃j−1 | =
√
h} for j ≥ 1 and τn := τk + τ̃n−k for

n ≥ k). In fact, to represent the conditional expectations Etk and Eτk we work here with Ẽ and
the Brownian motions B′ and B′′, respectively, given by

B′t = Bt∧tk + B̃(t−tk)+ and B′′t = Bt∧τk + B̃(t−τk)+ , t ≥ 0.

8



Proposition 3.1. Let Assumption 2.1 and (20) hold. If f = 0 and g ∈ C1 is such that g′ is a
locally α-Hölder continuous function in the sense of (5), then for all 0 ≤ v < T , we have (for
sufficiently large n) that

E0,x|Yv − Y n
v |2 ≤ C

y
3.1Ψ(x)2h

1
2 , and E0,x|Zv − Znv |2 ≤ Cz3.1Ψ(x)2h

α
2 ,

where Cy3.1 = C(T, p0, Cg, C
y
4.2, σ, b) and Cz3.1 = C(T, p0, Cg′ , σ, b, δ).

Proof. To shorten the notation, we use E := E0,x. Let us first deal with the error of Y . If v belongs
to [tk, tk+1) we have Y n

v = Y n
tk
. Then

E|Yv − Y n
v |2 ≤ 2(E|Yv − Ytk |

2 + E|Ytk − Y
n
tk
|2).

Using Theorem 4.2 we bound ‖Yv − Ytk‖ by C
y
4.2Ψ(x)(v − tk)

1
2 (since α = 1 can be chosen when g

is locally Lipschitz continuous). Then it remains to bound

E|Ytk − Y
n
tk
|2 = E|Etkg(XT )− Eτkg(Xn

T )|2 = E|Ẽg(X̃tk,Xtk
tn )− Ẽg(X̃ τk,Xτkτn )|2.

By (5) and the Cauchy-Schwarz inequality (Ψ1 := Cg(1 + |X̃tk,Xtk
tn |p0 + |X̃ τk,Xτkτn |p0)),

|Ẽg(X̃tk,Xtk
tn )− Ẽg(X̃ τk,Xτkτn )|2 ≤ (Ẽ(Ψ1|X̃

tk,Xtk
tn − X̃ τk,Xτkτn |))2 ≤ Ẽ(Ψ2

1)Ẽ|X̃tk,Xtk
tn − X̃ τk,Xτkτn |2.

Finally, we get by Lemma 5.2-(v) that

E|Ytk − Y
n
tk
|2 ≤

(
EẼ(Ψ4

1)
) 1

2
(
EẼ|X̃tk,Xtk

tn − X̃ τk,Xτkτn |4
) 1

2 ≤ C(Cg, b, σ, T, p0)Ψ(x)2h
1
2 .

Let us now deal with the error of Z. We use ‖Zv − Znv ‖ ≤ ‖Zv − Ztk‖ + ‖Ztk − Zntk‖ and the
representation

Zt = σ(t,Xt)Ẽ(g′(X̃t,Xt
T )∇X̃t,Xt

T )

(see Theorem 4.3), where

∇X̃t,x
s = 1 +

∫ s

t
bx(r, X̃t,x

r )∇X̃t,x
r dr +

∫ s

t
σx(r, X̃t,x

r )∇X̃t,x
r dB̃r−t, 0 ≤ t ≤ s ≤ T.

For the first term we get by the assumption on g and Lemma 5.2-(i) and (iii)

‖Zv − Ztk‖ = ‖σ(v,Xv)Ẽ(g′(X̃v,Xv
T )∇X̃v,Xv

T )− σ(tk, Xtk)Ẽ(g′(X̃tk,Xtk
T )∇X̃tk,Xtk

T )‖
≤ ‖σ(v,Xv)− σ(tk, Xtk)‖4‖Ẽ(g′(X̃v,Xv

T )∇X̃v,Xv
T )‖4

+‖σ‖∞‖Ẽ(g′(X̃v,Xv
T )∇X̃v,Xv

T )− Ẽ(g′(X̃tk,Xtk
T )∇X̃v,Xv

T )‖

+‖σ‖∞‖Ẽ(g′(X̃tk,Xtk
T )∇X̃v,Xv

T )− Ẽ(g′(X̃tk,Xtk
T )∇X̃tk,Xtk

T )‖

≤ C(Cg′ , b, σ, T, p0)Ψ(x)
[
h

1
2 + ‖Xv −Xtk‖4 +

(
EẼ|X̃v,Xv

T − X̃tk,Xtk
T |4α

) 1
4

+
(
EẼ|∇X̃v,Xv

T −∇X̃tk,Xtk
T |4

) 1
4
]

≤ C(Cg′ , b, σ, T, p0)Ψ(x)h
α
2 .
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We compute the second term using Zntk as given in (17). Hence, with the notation from (13),

‖Ztk − Z
n
tk
‖2 = E

∣∣σ(tk, Xtk)Ẽg′(X̃tk,Xtk
tn )∇X̃tk,Xtk

tn − ẼDnk+1g(X̃ τk,Xτkτn )
∣∣2

≤ ‖σ‖2∞ E

∣∣∣∣∣∣Ẽ(g′(X̃tk,Xtk
tn )∇X̃tk,Xtk

tn )−
ẼDnk+1g(X̃ τk,Xτkτn )

σ(tk, Xtk)

∣∣∣∣∣∣
2

= ‖σ‖2∞ E
∣∣∣Ẽ(g′(X̃tk,Xtk

tn )∇X̃tk,Xtk
tn )− Ẽ

(
g(k+1,n+1)
x

Dnk+1X̃
τk,Xτk
τn

σ(tk, Xtk)
)∣∣∣2.

We insert ±Ẽ(∇X̃tk,Xtk
tn g

(k+1,n+1)
x ) and get by the Cauchy-Schwarz inequality that

∣∣∣Ẽ(g′(X̃tk,Xtk
tn )∇X̃tk,Xtk

tn )− Ẽ
(
g(k+1,n+1)
x

Dnk+1X̃
τk,Xτk
τn

σ(tk, Xtk)
)∣∣∣2

≤ 2Ẽ|g′(X̃tk,Xtk
tn )− g(k+1,n+1)

x |2Ẽ|∇X̃tk,Xtk
tn |2 + 2Ẽ|g(k+1,n+1)

x |2Ẽ
∣∣∣∇X̃tk,Xtk

tn −
Dnk+1X̃

τk,Xτk
τn

σ(tk, Xtk)

∣∣∣2.
(21)

For the estimate of Ẽ|∇X̃tk,Xtk
tn |2 we use Lemma 5.2. Since g′ satisfies (5) we proceed with

Ẽ|g′(X̃tk,Xtk
tn )− g(k+1,n+1)

x |2

≤
∫ 1

0
Ẽ
∣∣∣g′(X̃tk,Xtk

tn )− g′(ϑTk+1,+X̃
τk,Xτk
τn + (1− ϑ)Tk+1,−X̃

τk,Xτk
τn )

∣∣∣2dϑ
≤

∫ 1

0
(ẼΨ4

1)
1
2
[
Ẽ
∣∣∣X̃tk,Xtk

tn − ϑTk+1,+X̃
τk,Xτk
τn − (1− ϑ)Tk+1,−X̃

τk,Xτk
τn

∣∣∣4α ] 1
2
dϑ,

where Ψ1 := Cg′(1 + |X̃tk,Xtk
tn |p0 + |ϑTk+1,+X̃

τk,Xτk
τn + (1− ϑ)Tk+1,−X̃

τk,Xτk
τn |p0). For ẼΨ4

1 and

Ẽ
∣∣∣X̃tk,Xtk

tn − (ϑTk+1,+X̃
τk,Xτk
τn + (1− ϑ)Tk+1,−X̃

τk,Xτk
τn )

∣∣∣4α
≤ 8

(
ϑ2αẼ

∣∣∣X̃tk,Xtk
tn − Tk+1,+X̃

τk,Xτk
τn

∣∣∣4α + (1− ϑ)2αẼ
∣∣∣X̃tk,Xtk

tn − Tk+1,−X̃
τk,Xτk
τn

∣∣∣4α)
≤ C(b, σ, T )h2α + C(b, σ, T )(|Xtk −Xτk |

4α + hα),

we use Lemma 2.4 and Lemma 5.2-(v). For the last term in (21) we notice that

EẼ|g(k+1,n+1)
x |4 ≤ C(b, σ, T, p0, Cg′)Ψ4(x).

By Lemma 5.2 we have EẼ|∇X̃tk,Xtk
tn −∇X̃ τk,Xτkτn |p ≤ C(b, σ, T, p)h

p
4 , and by Lemma 2.4,

EẼ

∣∣∣∣∣∣∇X̃ τk,Xτkτn −
Dnk+1X̃

τk,Xτk
τn

σ(tk, Xtk)

∣∣∣∣∣∣
p

≤ C(p)E
∣∣∣∣∣∇Xn,tk,X

n
tk

tn −
Dnk+1X

n
tn

σ(tk+1, X
n
tk

)

∣∣∣∣∣
p

+ C(p)E
∣∣∣∣∣ Dnk+1X

n
tn

σ(tk+1, X
n
tk

) −
Dnk+1X

n
tn

σ(tk, Xtk)

∣∣∣∣∣
p

≤ C(b, σ, T, p, δ)h
p
4 .

Consequently, ‖Ztk − Zntk‖
2 ≤ C(b, σ, T, p0, Cg′ , δ)Ψ2(x)h

α
2 .
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3.2 Approximation rates for the general case

Theorem 3.2. Let Assumptions 2.3 be satisfied and Bn be given by (20). Then for all v ∈ [0, T )
and large enough n, we have

E0,x|Yv − Y n
v |2 + E0,x|Zv − Znv |2 ≤ C3.2Ψ(x)2h

1
2∧α

with C3.2 = C(b, σ, f, g, T, p0, δ, κ2, c
2,3
4.3, C

y
4.2, C4.4).

Proof. Let u : [0, T )×R→ R be the solution of the PDE (30) associated to (1). We use Ys = u(s,Xs)
and Zs = σ(s,Xs)ux(s,Xs) from Theorem 4.3 and define

F (s, x) := f(s, x, u(s, x), σ(s, x)ux(s, x)). (22)

We have

‖Ytk − Y
n
tk
‖ ≤ ‖Etkg(XT )− Eτkg(Xn

T )‖

+
∥∥∥∥∥Etk

∫ T

tk

f(s,Xs, Ys, Zs)ds− hEτk
n−1∑
m=k

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)
∥∥∥∥∥ ,

where Proposition 3.1 provides the estimate for the terminal condition. We decompose the generator
term as follows:

Etkf(s,Xs, Ys, Zs)− Eτkf(tm+1, X
n
tm , Y

n
tm , Z

n
tm)

= [Etkf(s,Xs, Ys, Zs)− Etkf(tm, Xtm , Ytm , Ztm)] + [EtkF (tm, Xtm)− EτkF (tm, Xn
tm)]

+[EτkF (tm, Xn
tm)− EτkF (tm, Xtm)] + [Eτkf(tm, Xtm , Ytm , Ztm)− Eτkf(tm+1, X

n
tm , Y

n
tm , Z

n
tm)]

=: d1(s,m) + d2(m) + d3(m) + d4(m).

We use ∥∥∥∥∥Etk
∫ T

tk

f(s,Xs, Ys, Zs)ds− hEτk
n−1∑
m=k

f(tm+1, X
n
tm , Y

n
tm , Z

n
tm)
∥∥∥∥∥

≤
n−1∑
m=k

(∥∥∥∥∫ tm+1

tm
d1(s,m)ds

∥∥∥∥+ h
4∑
i=2
‖di(m)‖

)

and estimate the expressions on the right hand side. For the function F defined in (22) we use
Assumption 2.3 (which implies that (5) holds for α = 1) to derive by Theorem 4.3 and the mean
value theorem that for x1, x2 ∈ R there exist ξ1, ξ2 ∈ [min{x1, x2},max{x1, x2}] such that

|F (t, x1)− F (t, x2)| = |f(t, x1, u(t, x1), σ(t, x1)ux(t, x1))− f(t, x2, u(t, x2), σ(t, x2)ux(t, x2))|

≤ C(Lf , σ)
(

1 + c2
4.3Ψ(ξ1) + c3

4.3Ψ(ξ2)
(T − t)

1
2

)
|x1 − x2|

≤ C(T, Lf , σ, c2,3
4.3)(1 + |x1|p0+1 + |x2|p0+1) |x1 − x2|

(T − t)
1
2
. (23)

By (6), Theorem 4.2 and Proposition 4.4 we immediately get

‖d1(s,m)‖ ≤ C(Lf , b, σ, T, Cy4.2, C4.4)Ψ(x)h
1
2 .
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For the estimate of d2 one exploits

EtkF (tm, Xtm)− EτkF (tm, Xn
tm) = ẼF (tm, X̃

tk,Xtk
tm )− ẼF (tm, X̃

n,tk,X
n
tk

tm )

and then uses (23) and Lemma 5.2-(v). This gives

‖d2(m)‖ ≤ C(Lf , c2,3
4.3, b, σ, T, p0)Ψ(x) 1

(T − tm)
1
2
h

1
4 .

For d3 we start with Jensen’s inequality and continue then similarly as above to get

‖d3(m)‖ ≤ ‖F (tm, Xn
tm)− F (tm, Xtm)‖ ≤ C(Lf , c2,3

4.3, b, σ, T, p0)Ψ(x) 1
(T − tm)

1
2
h

1
4 ,

and for the last term we get

‖d4(m)‖ ≤ Lf (h
1
2 + ‖Xtm −Xn

tm‖+ ‖Ytm − Y n
tm‖+ ‖Ztm − Zntm‖).

This implies

‖Ytk − Y
n
tk
‖ ≤ CΨ(x)h

1
4 + hLf

n−1∑
m=k

(‖Ytm − Y n
tm‖+ ‖Ztm − Zntm‖), (24)

where C = C(Lf , Cy3.1, c
2,3
4.3, C

y
4.2, C4.4, b, σ, T, p0).

For ‖Ztk − Zntk‖ we use the representations (9), (17) and the approximation (16) as well as
Proposition 2.5. Instead of Nn,tk

tn we will use here the notation Nn,τk
τn to indicate the measurability

w.r.t. the filtration (Ft). It holds that

‖Zntk − Ztk‖ ≤ ‖Zntk − Ẑ
n
tk
‖+ ‖Ztk − Ẑ

n
tk
‖

≤ C2.5Ψ(x)h
α
2 + ‖σ(tk, Xtk)Ẽg′(X̃tk,Xtk

tn )∇X̃tk,Xtk
tn − ẼDnk+1g(X̃

n,tk,X
n
tk

tn )‖

+
∥∥∥∥Etk ∫ T

tk+1
f(s,Xs, Ys, Zs)N tk

s ds σ(tk, Xtk)

−Eτkh
n−1∑

m=k+1
f(tm+1, X

n
tm , Y

n
tm , Z

n
tm)Nn,τk

τm σ(tk+1, X
n
tk

)
∥∥∥∥

+
∥∥∥∥Etk ∫ tk+1

tk

f(s,Xs, Ys, Zs)N tk
s ds σ(tk, Xtk)

∥∥∥∥. (25)

For the terminal condition Proposition 3.1 provides

‖σ(tk, Xtk)Ẽg′(X̃tk,Xtk
tn )∇X̃tk,Xtk

tn − ẼDnk+1g(X̃
n,tk,X

n
tk

tn )‖ ≤ (Cz3.1)
1
2 Ψ(x)h

1
4 . (26)

We continue with the generator terms and use F defined in (22) to decompose the difference

Etkf(s,Xs, Ys, Zs)N tk
s σ(tk, Xtk)− Eτkf(tm+1, X

n
tm , Y

n
tm , Z

n
tm)Nn,τk

τm σ(tk+1, X
n
tk

)
= Etkf(s,Xs, Ys, Zs)N tk

s σ(tk, Xtk)− Etkf(tm, Xtm , Ytm , Ztm)N tk
tmσ(tk, Xtk)

+EtkF (tm, Xtm)N tk
tmσ(tk, Xtk)− EτkF (tm, Xn

tm)Nn,τk
τm σ(tk+1, X

n
tk

)

+Eτk
[
[F (tm, Xn

tm)− F (tm, Xtm)]Nn,τk
τm σ(tk+1, X

n
tk

)
]
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+Eτk
[
[f(tm, Xtm , Ytm , Ztm)− f(tm+1, X

n
tm , Y

n
tm , Z

n
tm)]Nn,τk

τm σ(tk+1, X
n
tk

)
]

=: t1(s,m) + t2(m) + t3(m) + t4(m)

where s ∈ [tm, tm+1). For t1 we use that Etkf(tm, Xtk , Ytk , Ztk)(N tk
s −N

tk
tm) = 0, so that

‖t1(s,m)‖ ≤ ‖Etkf(s,Xs, Ys, Zs)N tk
s σ(tk, Xtk)− Etkf(tm, Xtm , Ytm , Ztm)N tk

s σ(tk, Xtk)‖
+‖Etk(f(tm, Xtm , Ytm , Ztm)− f(tm, Xtk , Ytk , Ztk))(N tk

s −N
tk
tm)σ(tk, Xtk)‖.

We rewrite the conditional expectations as before with the help of the independent copy B̃. Then

Etkf(s,Xs, Ys, Zs)N tk
s − Etkf(tm, Xtm , Ytm , Ztm)N tk

s

= Ẽ[(f(s, X̃tk,Xtk
s , Ỹ

tk,Xtk
s , Z̃

tk,Xtk
s )− f(tm, X̃

tk,Xtk
tm , Ỹ

tk,Xtk
tm , Z̃

tk,Xtk
tm ))Ñ tk

s ]

and

Etk(f(tm, Xtm , Ytm , Ztm)− f(tm, Xtk , Ytk , Ztk))(N tk
s −N

tk
tm)

= Ẽ[(f(tm, X̃
tk,Xtk
tm , Ỹ

tk,Xtk
tm , Z̃

tk,Xtk
tm )− f(tm, Xtk , Ytk , Ztk))(Ñ tk

s − Ñ
tk
tm)].

We apply the conditional Hölder inequality, and from the estimates (29) and Ẽ|Ñ tk
s − Ñ tk

tm |
2 ≤

C(b, σ, T, δ) h
(s−tk)2 we get

‖t1(s,m)‖ ≤ κ2‖σ‖∞
(s− tk)

1
2
‖f(s,Xs, Ys, Zs)− f(tm, Xtm , Ytm , Ztm)‖

+C(b, σ, T, δ) h
1
2

s− tk
‖f(tm, Xtm , Ytm , Ztm)− f(tk, Xtk , Ytk , Ztk)‖

≤ C(Lf , Cy4.2, C4.4, κ2, b, σ, T, δ, p0)Ψ(x) h
1
2

(s− tk)
1
2
,

since for 0 ≤ t < s ≤ T we have by Theorem 4.2 and Proposition 4.4

‖f(s,Xs, Ys, Zs)− f(t,Xt, Yt, Zt)‖ ≤ C(Lf , Cy4.2, C4.4, b, σ, T, p0)Ψ(x)(s− t)
1
2 . (27)

For t2 Lemma 5.2, Lemma 5.3, (23) and (29) yield

‖t2(m)‖ = ‖ẼF (tm, X̃
tk,Xtk
tm )Ñ tk

tmσ(tk, Xtk)− ẼF (tm, X̃
τk,Xτk
τm )Ñn,τk

τm σ(tk+1,Xτk)‖

≤ C(σ, κ2)
(tm − tk)

1
2

(
EẼ(F (tm, X̃

tk,Xtk
tm )− F (tm, X̃

τk,Xτk
τm ))2

) 1
2

+(EẼ|F (tm, X̃
τk,Xτk
τm )− F (tm,Xτk)|2Ẽ|Ñ tk

tmσ(tk, Xtk)− Ñn,τk
τm σ(tk+1,Xτk)|2)

1
2

≤ C(Lf , c2,3
4.3, b, σ, T, p0, δ, κ2) Ψ(x)

(T − tm)
1
2

h
1
4

(tm − tk)
1
2
.

For t3 we use the conditional Hölder inequality, (23), (15) and Lemma 5.2:

‖t3(m)‖ =
∥∥Eτk [[F (tm, Xn

tm)− F (tm, Xtm)]Nn,τk
τm σ(tk+1,Xτk)

]∥∥
≤ C(σ, κ̂2)

(tm − tk)
1
2

∥∥F (tm, Xn
tm)− F (tm, Xtm)

∥∥
13



≤ C(Lf , c2,3
4.3, b, σ, T, p0, δ)

Ψ(x)
(T − tm)

1
2

h
1
4

(tm − tk)
1
2
.

The term t4 can be estimated as follows:

‖t4(m)‖ =
∥∥Eτk [[f(tm, Xtm , Ytm , Ztm)− f(tm+1, X

n
tm , Y

n
tm , Z

n
tm)]Nn,τk

τm σ(tk+1,Xτk)
]∥∥

≤ C(Lf , b, σ, T, δ)
(tm − tk)

1
2

(h
1
2 + ‖Xtm −Xn

tm‖+ ‖Ytm − Y n
tm‖+ ‖Ztm − Zntm‖).

Finally, for the remaining term of the estimate of ‖Ztk − Zntk‖, we use (27) and (29) to get∥∥∥Etkf(s,Xs, Ys, Zs)N tk
s σ(tk, Xtk)

∥∥∥ = ‖Etk [(f(s,Xs, Ys, Zs)− f(s,Xtk , Ytk , Ztk))N tk
s ]σ(tk, Xtk)‖

≤ C(Lf , Cy4.2, C4.4, b, σ, T, p0, κ2)Ψ(x).

Consequently, from (25), (26), the estimates for the remaining term and for t1, ..., t4 it follows that

‖Ztk − Z
n
tk
‖ ≤ C2.5Ψ(x)h

α
2 + (Cz3.1)

1
2 Ψ(x)h

1
4 + C(Lf , Cy4.2, C4.4, b, σ, T, p0, κ2)Ψ(x)h

+C(Lf , Cy4.2, C4.4, κ2, b, σ, T, δ, p0)Ψ(x)h
1
2

∫ T

tk

ds

(s− tk)
1
2

+C(Lf , c2,3
4.3, b, σ, T, p0, δ, κ2)h

n−1∑
m=k+1

Ψ(x)
(T − tm)

1
2

h
1
4

(tm − tk)
1
2

+C(Lf , b, σ, T, δ)h
n−1∑

m=k+1
(‖Ytm − Y n

tm‖+ ‖Ztm − Zntm‖)
1

(tm − tk)
1
2

≤ C(C2.5, C
z
3.1)Ψ(x)h

α
2 ∧

1
4 + C(Lf , c2,3

4.3, C
y
4.2, C4.4, κ2, b, σ, T, p0, δ)Ψ(x)h

1
4

+C(Lf , b, σ, T, δ)
n−1∑

m=k+1
(‖Ytm − Y n

tm‖+ ‖Ztm − Zntm‖)
1

(tm − tk)
1
2
h.

Then we use (24) and the above estimate to get

‖Ytk − Y
n
tk
‖+ ‖Ztk − Z

n
tk
‖

≤ C(C2.5, C
z
3.1)Ψ(x)h

α
2 ∧

1
4 + C(Lf , Cy3.1, c

2,3
4.3, C

y
4.2, C4.4, b, σ, T, p0, κ2, δ)Ψ(x)h

1
4

+C(Lf , b, σ, T, δ)
n−1∑

m=k+1
(‖Ytm − Y n

tm‖+ ‖Ztm − Zntm‖)
1

(tm − tk)
1
2
h.

Consequently,

‖Ytk − Y
n
tk
‖+ ‖Ztk − Z

n
tk
‖ ≤ C3.2Ψ(x)h

α
2 ∧

1
4 .

By Theorem 4.2 it follows that

‖Yv − Y n
v ‖ ≤ ‖Yv − Ytk‖+ ‖Ytk − Y

n
tk
‖ ≤ C(C3.2, C

y
4.2)Ψ(x)h

α
2 ∧

1
4 ,

while Proposition 4.4 implies that

‖Zv − Ztk‖ ≤ C4.4Ψ(x)h
1
2 .
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4 Some properties of solutions to PDEs and BSDEs

4.1 Malliavin weights

We use the SDE from (1) started in (t, x),

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +
∫ s

t
σ(r,Xt,x

r )dBr, 0 ≤ t ≤ s ≤ T (28)

and recall the Malliavin weights and their properties from [4, Subsection 1.1 and Remark 3].

Lemma 4.1. Let H : R → R be a polynomially bounded Borel function. If Assumption 2.1 holds
and Xt,x is given by (28) then setting

G(t, x) := EH(Xt,x
T )

implies that G ∈ C1,2([0, T )× R). Especially it holds for 0 ≤ t ≤ r < T that

∂xG(r,Xt,x
r ) = E[H(Xt,x

T )N r,(t,x)
T |F tr],

where (F tr)r∈[t,T ] is the augmented natural filtration of (Bt,0
r )r∈[t,T ] and

N
r,(t,x)
T = 1

T − r

∫ T

r

∇Xt,x
s

σ(s,Xt,x
s )∇Xt,x

r

dBs.

Moreover, for q ∈ (0,∞) it holds a.s.

(E[|N r,(t,x)
T |q|F tr])

1
q ≤ κq

(T − r)
1
2

and E[N r,(t,x)
T |F tr] = 0 a.s. (29)

and we have
‖∂xG(r,Xt,x

r )‖Lp(P) ≤ κq
‖H(Xt,x

T )− E[H(Xt,x
T )|F tr]‖p√

T − r
for 1 < q, p <∞ with 1

p + 1
q = 1.

4.2 Regularity of solutions to BSDEs

The following result originates from [4, Theorem 1] where also path dependent cases were included.
We formulate it only for our Markovian setting but use Pt,x since we are interested in an estimate
for all (t, x) ∈ [0, T )× R. A sketch of a proof of this formulation can be found in [5].

Theorem 4.2. Let Assumption 2.1 and 2.2 hold. Then for any p ∈ [2,∞) the following assertions
are true.

(i) There exists a constant Cy4.2 > 0 such that for 0 ≤ t < s ≤ T and x ∈ R,

‖Ys − Yt‖Lp(Pt,x) ≤ C
y
4.2Ψ(x)

(∫ s

t
(T − r)α−1dr

) 1
2
,

(ii) there exists a constant Cz4.2 > 0 such that for 0 ≤ t < s < T and x ∈ R,

‖Zs − Zt‖Lp(Pt,x) ≤ Cz4.2Ψ(x)
(∫ s

t
(T − r)α−2dr

) 1
2
.

The constants Cy4.2 and Cz4.2 depend on Kf , Lf , Cg, c
1,2
4.3, T, p0, b, σ, κq and p.
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4.3 Properties of the associated PDE

Theorem 4.3 ([5], Theorem 5.6). Consider the FBSDE (1) and let Assumptions 2.1 and 2.2 hold.
Then for the solution u of the associated PDE

ut(t, x) + σ2(t,x)
2 uxx(t, x) + b(t, x)ux(t, x) + f(t, x, u(t, x), σ(t, x)ux(t, x)) = 0,

t ∈ [0, T ), x ∈ R,
u(T, x) = g(x), x ∈ R

(30)

we have

(i) Yt = u(t,Xt) where u(t, x) = Et,x
(
g(XT ) +

∫ T
t f(r,Xr, Yr, Zr)dr

)
and |u(t, x)| ≤ c1

4.3Ψ(x)
with Ψ given in (7).

(ii) (a) ∂xu exists and is continuous in [0, T )× R,
(b) Zt,xs = ux(s,Xt,x

s )σ(s,Xt,x
s ),

(c) |ux(t, x)| ≤ c2
4.3Ψ(x)

(T−t)
1−α

2
.

(iii) (a) ∂2
xu exists and is continuous in [0, T )× R,

(b) |∂2
xu(t, x)| ≤ c3

4.3Ψ(x)
(T−t)1−α2

.

Using Assumption 2.3 we are now in the position to improve the bound on ‖Zs − Zt‖Lp(Pt,x)
given in Theorem 4.2.

Proposition 4.4. If Assumption 2.3 holds, then there exists a constant C4.4 > 0 such that for
0 ≤ t < s ≤ T and x ∈ R,

‖Zs − Zt‖Lp(Pt,x) ≤ C4.4Ψ(x)(s− t)
1
2 ,

where C4.4 depends on b, σ, T, p0, g, f, p, c
2,3
4.3.

Proof. From Zt,xs = ux(s,Xt,x
s )σ(s,Xt,x

s ) and ∇Y t,x
s = ∂xu(s,Xt,x

s ) = ux(s,Xt,x
s )∇Xt,x

s we conclude

Zt,xs = ∇Y
t,x
s

∇Xt,x
s

σ(s,Xt,x
s ), 0 ≤ t ≤ s ≤ T.

It is well-known (see e.g. [3]) that the solution ∇Y of the linear BSDE

∇Ys = g′(XT )∇XT +
∫ T

s
fx(Θr)∇Xr + fy(Θr)∇Yr + fz(Θr)∇Zrdr −

∫ T

s
∇ZrdBr, 0 ≤ s ≤ T,

(31)

can be represented as

∇Ys
∇Xs

= Es
[
g′(XT )∇XTΓsT +

∫ T

s
fx(Θr)∇XrΓsrdr

] 1
∇Xs

= Ẽ
[
g′(X̃s,Xs

T )∇X̃s,Xs
T Γ̃s,XsT +

∫ T

s
fx(Θ̃s,Xs

r )∇X̃s,Xs
r Γ̃s,Xsr dr

]
, 0 ≤ t ≤ s ≤ T,

where Θr := (r,Xr, Yr, Zr) and Γs denotes the adjoint process given by

Γsr = 1 +
∫ r

s
fy(Θu)Γsudu+

∫ r

s
fz(Θu)ΓsudBu, s ≤ r ≤ T,
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and
Γ̃t,xs = 1 +

∫ s

t
fy(Θ̃t,x

r )Γ̃t,xr dr +
∫ s

t
fz(Θ̃t,x

r )Γ̃t,xr dB̃r, t ≤ s ≤ T, x ∈ R.

Especially, we have

∇Y t,x
t

∇Xt,x
t

= ∇Y t,x
t = Ẽ

[
g′(X̃t,x

T )∇X̃t,x
T Γ̃t,xT +

∫ T

t
fx(Θ̃t,x

r )∇X̃t,x
r Γ̃t,xr dr

]
.

Then,

‖Zs − Zt‖Lp(Pt,x) ≤ C(σ)
[∥∥∥∥∇Ys∇Xs

− ∇Yt
∇Xt

∥∥∥∥
Lp(Pt,x)

+ ‖∇Yt‖L2p(Pt,x)[(s− t)
1
2 + ‖Xt,x

s − x‖L2p(Pt,x)]
]
.

Since (∇Ys,∇Zs) is the solution to the linear BSDE (31) with bounded fx, fy, fz, we have that
‖∇Yt‖L2p(Pt,x) ≤ C(b, σ, T, p, f, g). Obviously, ‖Xt,x

s −x‖L2p(Pt,x) ≤ C(b, σ, T, p)(s−t)
1
2 . So it remains

to show that ∥∥∥∥∇Ys∇Xs
− ∇Yt
∇Xt

∥∥∥∥
Lp(Pt,x)

≤ CΨ(x)(s− t)
1
2 .

From the above relations we get for (Xs := Xt,x
s )∥∥∥∥∇Ys∇Xs

− ∇Yt
∇Xt

∥∥∥∥
Lp(Pt,x)

≤
∥∥∥Ẽ[g′(X̃s,Xs

T )∇X̃s,Xs
T Γ̃s,XsT − g′(X̃t,x

T )∇X̃t,x
T Γ̃t,xT

]∥∥∥
p

+
∫ s

t

∥∥∥Ẽ[fx(Θ̃t,x
r )∇X̃t,x

r Γ̃t,xr
]∥∥∥
p
dr

+
∥∥∥∥∥
∫ T

s
Ẽ
[
fx(Θ̃s,Xs

r )∇X̃s,Xs
r Γ̃s,Xsr − fx(Θ̃t,x

r )∇X̃t,x
r Γ̃t,xr

]
dr

∥∥∥∥∥
p

=: J1 + J2 + J3.

Since g′ is Lipschitz continuous and of polynomial growth, the estimate J1 ≤ C(b, σ, g, T, p)Ψ(x)(s−
t)

1
2 follows by Hölder’s inequality and the Lq -boundedness for any q > 0 of all the factors, as well

as from the estimates for X̃s,Xs
T −X̃t,x

T and ∇X̃s,Xs
T −∇X̃t,x

T like in Lemma 5.2. For the Γ differences
we first apply the inequalities of Hölder and BDG:

Ẽ|Γ̃s,XsT − Γ̃t,xT |
q ≤ C(T, q) (s− t)q−1Ẽ

∫ s

t
|fy(Θ̃s,Xs

r )Γ̃s,Xsr |qdr + Ẽ
(∫ s

t
|fz(Θ̃s,Xs

r )Γ̃s,Xsr |2dr
) q

2

+Ẽ
∫ T

s
|fy(Θ̃s,Xs

r )Γ̃s,Xsr − fy(Θ̃t,x
r )Γ̃t,xr |qdr

+Ẽ
(∫ T

s
|fz(Θ̃s,Xs

r )Γ̃s,Xsr − fz(Θ̃t,x
r )Γ̃t,xr |2dr

) q
2

Since fy and fz are bounded we have Ẽ|Γ̃s,Xsr |q+Ẽ|Γ̃t,xr |q ≤ C(T, f, q). Similar to (23), since fx, fy, fz
are Lipschitz continuous w.r.t. the space variables,

|fx(Θ̃s,Xs
r )− fx(Θ̃t,x

r )| = |fx(r, X̃s,Xs
r , u(r, X̃s,Xs

r ), σ(r, X̃s,Xs
r )ux(r, X̃s,Xs

r ))
−fx(r, X̃t,x

r , u(r, X̃t,x
r ), σ(r, X̃t,x

r )ux(r, X̃t,x
r ))|

≤ C(T, f, σ, c2,3
4.3)(1 + |X̃s,Xs

r |p0+1 + |X̃t,x
r |p0+1) |X̃

s,Xs
r − X̃t,x

r |
(T − r)

1
2

,
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so that Lemma 5.2 yields

Ẽ|fx(Θ̃s,Xs
r )− fx(Θ̃t,x

r )|q ≤ C(b, σ, T, p0, f, c
2,3
4.3, q)(1 + |Xs|p0+1 + |x|p0+1)q |Xs − x|q + |s− t|

q
2

(T − r)
1
2

.

The same holds for |fy(Θ̃s,Xs
r ) − fy(Θ̃t,x

r )| and |fz(Θ̃s,Xs
r ) − fz(Θ̃t,x

r )|. Applying these inequalities
and Gronwall’s Lemma, we arrive at

‖Ẽ[Γ̃s,XsT − Γ̃t,xT ]‖p ≤ C(b, σ, T, p0, f, g, c
2,3
4.3, p)Ψ(x)|s− t|

1
2

for p > 0.
For J2 ≤ C(t − s) it is enough to realise that the integrand is bounded. The estimate for J3

follows similarly to that of J1.

4.4 Properties of the solution to the finite difference equation

Proposition 4.5. Let Assumption 2.3 hold and assume that un is a solution of

un(tm, x)− hf(tm+1, x, u
n(tm, x),Dnm+1u

n(tm+1, X
n,tm,x
tm+1 ))

= 1
2[Tm+1,+u

n(tm+1, X
n,tm,x
tm+1 ) + Tm+1,−u

n(tm+1, X
n,tm,x
tm+1 )], m = 0, . . . , n− 1, (32)

with terminal condition un(tn, x) = g(x). Then, for sufficiently small h, the map x 7→ un(tm, x) is
C2, and unx(tm, x) and unxx(tm, x) satisfy (5) uniformly in m = 0, . . . , n − 1. The constants Cun,
Cunx and Cunxx depend on the bounds of f, g, b, σ and their derivatives and on T .

Proof. Step 1. From (32), since g is C2 and fy is bounded, for sufficiently small h we conclude by
induction (backwards in time) that unx(tm, x) exists for m = 0, ..., n− 1, and that it holds

unx(tm, x) = hfx(tm+1, x, u
n(tm, x),Dnm+1u

n(tm+1, X
n,tm,x
tm+1 ))

+hfy(tm+1, x, u
n(tm, x),Dnm+1u

n(tm+1, X
n,tm,x
tm+1 ))unx(tm, x)

+hfz(tm+1, x, u
n(tm, x),Dnm+1u

n(tm+1, X
n,tm,x
tm+1 ))∂xDnm+1u

n(tm+1, X
n,tm,x
tm+1 )

+1
2(∂xTm+1,+u

n(tm+1, X
n,tm,x
tm+1 ) + ∂xTm+1,−u

n(tm+1, X
n,tm,x
tm+1 )).

Similarly one can show that unxx(tm, x) exists and solves the derivative of the previous equation.

Step 2. We will use that un(tm, x) = Y n,tm,x
tm and exploit the BSDE

Y n,tm,x
tm = g(Xn,tm,x

T ) +
∫

(tm,T ]
f(s,Xn,tm,x

s− , Y n,tm,x
s− , Zn,tm,xs− )d[Bn]s −

∫
(tm,T ]

Zn,tm,xs− dBn
s ,

(33)

where we will drop the superscript tm, x from now on. For unx(tm, x) we will consider

∂xY
n
tm = g′(Xn

T )∂xXn
T +

∫
(tm,T ]

fx∂xX
n
s− + fy∂xY

n
s− + fz∂xZ

n
s−d[Bn]s −

∫
(tm,T ]

∂xZ
n
s−dB

n
s . (34)

Similar as in the proof of [11, Theorem 3.1] the BSDE (34) can be derived as limit of difference
quotients w.r.t. x of (33). Notice that the generator of (34) is random but has the same Lipschitz
constant and linear growth bound as f. In order to get estimates simultaneously for (33) and (34)
we show the following lemma.
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Lemma 4.6. We fix n and assume a BSDE

Ytm = ξn +
∫

(tm,T ]
f(s,Xs− ,Ys− ,Zs−)d[Bn]s −

∫
(tm,T ]

Zs−dB
n
s , (35)

with ξn = g(Xn,tm,x
T ) or ξn = g′(Xn,tm,x

T )∂xXn,tm,x
T and Xs := Xn,tm,x

s or Xs := ∂xX
n,tm,x
s such that

f : Ω× [0, T ]× R3 → R is measurable and satisfies

|f(ω, t, x, y, z)− f(ω, t, x′, y′, z′)| ≤ Lf (|x− x′|+ |y − y′|+ |z − z′|),
|f(ω, t, x, y, z)| ≤ (Kf + Lf )(1 + |x|+ |y|+ |z|). (36)

Then for any p ≥ 2,

(i) E|Ytm |p + γp
4 E

∫
(tm,T ] |Ys− |p−2|Zs− |2d[Bn]s ≤ C(1 + |x|(p0+1)p), m = 0, .., n

(ii) E suptm<s≤T |Ys− |
p ≤ C(1 + |x|(p0+1)p),

(iii) E
( ∫

(tm,T ] |Zs− |2d[Bn]s
) p

2 ≤ C(1 + |x|(p0+1)p) for some constant C = C(T, f, g, p, p0, b, σ).

Proof. (i) By Itô’s formula (see [6, Theorem 4.57]) we get for p ≥ 2

|Ytm |p = |ξn|p − p
∫

(tm,T ]
Ys− |Ys− |p−2Zs−dBn

s + p

∫
(tm,T ]

Ys− |Ys− |p−2f(s,Xs− ,Ys− ,Zs−)d[Bn]s

−
∑

s∈(tm,T ]
[|Ys|p − |Ys− |p − pYs− |Ys− |p−2(Ys − Ys−)]. (37)

Following the proof of [8, Proposition 2] (which is carried out there in the Lévy process setting but
can be done also for martingales with jumps) we can use estimate

−
∑

s∈(tm,T ]
[|Ys|p − |Ys− |p − pYs− |Ys− |p−2(Ys − Ys−)] ≤ −γp

∑
s∈(tm,T ]

|Ys− |p−2(Ys − Ys−)2

where γp > 0 is computed in [17, Lemma A4]. Using our setting we have

−
∑

s∈(tm,T ]
[|Ys|p − |Ys− |p − pYs− |Ys− |p−2(Ys − Ys−)]

≤ −γp
n−1∑
k=m
|Ytk |p−2(f(tk+1,Xtk ,Ytk ,Ztk)h− Ztk

√
hεk+1)2

= −γp h
∫

(tm,T ]
|Ys− |p−2f2(s,Xs− ,Ys− ,Zs−)d[Bn]s − γp

∫
(tm,T ]

|Ys− |p−2|Zs− |2d[Bn]s

+2γp
∫

(tm,T ]
|Ys− |p−2f(s,Xs− ,Ys− ,Zs−)Zs−(Bn

s −Bn
s−)d[Bn]s.

Hence we get from (37)

|Ytm |p ≤ |ξn|p − p
∫

(tm,T ]
Ys− |Ys− |p−2Zs−dBn

s + p

∫
(tm,T ]

Ys− |Ys− |p−2f(s,Xs− ,Ys− ,Zs−)d[Bn]s

−γp
∫

(tm,T ]
|Ys− |p−2|Zs− |2d[Bn]s

+2γp
∫

(tm,T ]
|Ys− |p−2f(s,Xs− ,Ys− ,Zs−)Zs−(Bn

s −Bn
s−)d[Bn]s.
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From Young’s inequality and (36) we conclude that there is a c′ = c′(p,Kf , Lf , γp) > 0 such that

p|Ys− |p−1 |f(s,Xs− ,Ys− ,Zs−)| ≤ γp
4 |Ys− |

p−2|Zs− |2 + c′(1 + |Xs− |p + |Ys− |p)

and for
√
h < 1

8(Lf+Kf ) we find a c′′ = c′′(p, Lf ,Kf , γp) > 0 such that

2γp
√
h|Ys− |p−2|f(s,Xs− ,Ys− ,Zs−)||Zs− | ≤

γp
4 |Ys− |

p−2|Zs− |2 + c′′ (1 + |Xs− |p + |Ys− |p).

Then for c = c′ + c′′ we have

|Ytm |p ≤ |ξn|p − p
∫

(tm,T ]
Ys− |Ys− |p−2Zs−dBn

s + c

∫
(tm,T ]

1 + |Xs− |p + |Ys− |pd[Bn]s

−γp
2

∫
(tm,T ]

|Ys− |p−2|Zs− |2d[Bn]s. (38)

By standard methods, approximating the terminal condition and the generator by bounded func-
tions, it follows that for any a > 0

E sup
tm≤s≤T

|Ys|a <∞ and E
(∫

(tm,T ]
|Zs− |2d[Bn]s

)a
2

<∞.

Hence
∫

(tm,T ] Ys− |Ys− |p−2Zs−dBn
s has expectation zero. Taking the expectation in (38) yields

E|Ytm |p + γp
2 E

∫
(tm,T ]

|Ys− |p−2|Zs− |2d[Bn]s ≤ E|ξn|p + cE
∫

(tm,T ]
1 + |Xs− |p + |Ys− |pd[Bn]s. (39)

By Gronwall’s lemma and the polynomial growth of x 7→ E|ξn|p, and x 7→ E
∫

(tm,T ] 1+ |Xs− |pd[Bn]s,

‖Ytm‖p ≤ C(T, f, g, p, p0, b, σ)(1 + |x|p0+1), m = 0, ..., n,

and inserting this into (39) yields

(
E
∫

(tm,T ]
|Ys− |p−2|Zs− |2d[Bn]s

) 1
p ≤ c(T, f, g, p, p0, b, σ)(1 + |x|p0+1), m = 0, ..., n− 1.

(ii) By the inequality of BDG and Young’s inequality we derive from (38) that

E sup
tk<s≤T

|Ys− |p

≤ E|ξn|p + C(p)E
(∫

(tk,T ]
|Ys− |2p−2|Zs− |2d[Bn]s

) 1
2

+ cE
∫

(tk,T ]
1 + |Xs− |p + |Ys− |pd[Bn]s

≤ E|ξn|p + cE
∫

(tk,T ]
1 + |Xs− |pd[Bn]s + C(p)E

 sup
tk<s≤T

|Ys− |
p
2

(∫
(tk,T ]

|Ys− |p−2|Zs− |2d[Bn]s

) 1
2


+cE
∫

(tk,T ]
|Ys− |pd[Bn]s

≤ E|ξn|p + cE
∫

(tk,T ]
1 + |Xs− |pd[Bn]s + C(p)E

∫
(tk,T ]

|Ys− |p−2|Zs− |2d[Bn]s

+E sup
tk<s≤T

|Ys− |p(1
4 + c(T − tk)).
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We assume that h is sufficiently small so that we find a tk with c(T − tk) < 1
4 . We rearrange the

inequality to have E suptk<s≤T |Ys− |
p on the l.h.s., and from (i) we conclude that

E sup
tk<s≤T

|Ys− |p ≤ 2E|ξn|p + 2cE
∫

(tk,T ]
1 + |Xs− |pd[Bn]s + 2C(p)E

∫
(tk,T ]

|Ys− |p−2|Zs− |2d[Bn]s

≤ C(T, f, g, p, p0, b, σ)(1 + |x|(p0+1)p).

Now we may repeat the above step for E supt`<s≤tk |Ys− |
p with c(tk − t`) < 1

4 and ξn = YT
replaced by Ytk , and continue doing so until we eventually get assertion (ii).
(iii) We proceed from (35),

sup
k≤`≤n

∣∣∣ ∫
(t`,T ]

Zs−dBn
s

∣∣∣p ≤ C(p)
(
|ξn|p + sup

k≤`≤n
|Yt` |p +

∣∣∣ ∫
(tk,T ]

f(s,Xs− ,Ys− ,Zs−)d[Bn]s
∣∣∣p),

so that by (36) and the inequalities of BDG and Hölder we have that

E
( ∫

(tk,T ]
|Zs− |2d[Bn]s

) p
2

≤ C(p)
(
E|ξn|p + E sup

k≤`≤n
|Yt` |p

)
+ C(p, Lf ,Kf )E

(∫
(tk,T ]

1 + |Xs− |+ |Ys− |d[Bn]s

)p

+C(p, Lf ,Kf )(T − tk)
p
2 E
(∫

(tk,T ]
|Zs− |2d[Bn]s

) p
2

.

Hence for C(p, Lf ,Kf )(T − tk)
p
2 < 1

2 we derive from assertion (ii) that

E
( ∫

(tk,T ]
|Zs− |2d[Bn]s

) p
2 ≤ C(T, f, g, p, p0, b, σ)(1 + |x|(p0+1)p).

Step 3 Applying Lemma 4.6 to (33) and (34) we see that for all m = 0, ..., n we have

|un(tm, x)| = |Y n,tm,x
tm | ≤ (E(Y n,tm,x

tm )2)
1
2 ≤ c(T, f, g, p0, b, σ)(1 + |x|p0+1)

and
|unx(tm, x)| ≤ (E(∂xY n,tm,x

tm )2)
1
2 ≤ c(T, f, g, p0, b, σ)(1 + |x|p0+1).

Our next aim is to show that unxx(tm, x) satisfies (5). We first show that unxx(tm, x) has polyno-
mial growth. We introduce the BSDE which describes unxx(tm, x) and denote for simplicity

f(t, x1, x2, x3) := f(t, x, y, z) and Da := ∂i1x1∂
i2
x2∂

i3
x3 with a := (i1, i2, i3)

and consider

∂2
xY

n
tm = g′′(Xn

T )(∂xXn
T )2 + g′(Xn

T )∂2
xX

n
T

+
∫

(tm,T ]

∑
a∈{0,1,2}3

i1+i2+i3=2

(Daf)(s,Xn
s− , Y

n
s− , Z

n
s−)(∂xXn

s−)i1(∂xY n
s−)i2(∂xZns−)i3d[Bn]s

+
∫

(tm,T ]

∑
a∈{0,1}3

i1+i2+i3=1

(Daf)(s,Xn
s− , Y

n
s− , Z

n
s−)(∂2

xX
n
s−)i1(∂2

xY
n
s−)i2(∂2

xZ
n
s−)i3d[Bn]s
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−
∫

(tm,T ]
∂2
xZ

n
s−dB

n
s . (40)

We denote the generator of this BSDE by f̂ and notice that it is of the structure

f̂(ω, t, x, y, z) = f0(ω, t) + f1(ω, t)x+ f2(ω, t)y + f3(ω, t)z.

with f1, f2, f3 bounded and E(
∫

(tm,T ] f0(s−)d[Bn]s)p <∞. We put

ξ̂n := g′′(Xn
T )(∂xXn

T )2 + g′(Xn
T )∂2

xX
n
T .

Denoting the solution by (Ŷ, Ẑ) we get for C(f3)(T − tm) ≤ 1
2 that

E|Ŷtm |2 + 1
2E
∫

(tm,T ]
|Ẑs− |2d[Bn]s

≤ C

[
E|ξ̂n|2 + E

( ∫
(tm,T ]

|f0(s−)|d[Bn]s
)2

+ E
∫

(tm,T ]
|X̂s− |2 + |Ŷs− |2d[Bn]s

]
. (41)

Now we derive the polynomial growth of E|ξ̂n|2 from the properties of g′ and g′′, and that of
E(
∫

(tm,T ] |f0(ω, s)|d[Bn, Bn]s)2 from the previous steps. Indeed, E suptm<s≤T |∂xX
n
s− |

p having poly-
nomial growth is well-known under our conditions, for E suptm<s≤T |∂xY

n
s− |

p we have shown this

in Lemma 4.6-(ii), and for E
( ∫

(tm,T ] |∂xZns− |
2d[Bn]s

)2
we use Lemma 4.6-(iii). Then Gronwall’s

Lemma implies polynomial growth of Ŷtm,xtm = uxx(tm, x).

Finally, to show that unxx(tm, x) satisfies (5), one uses (40) and derives an inequality as in
(41) but now for the difference ∂2

xY
n,tm,x
tm − ∂2

xY
n,tm,x̄
tm . Here one needs to exploit that moments of

Xn, Y n, Zn, ∂xX
n, ∂xY

n and ∂2
xX

n satisfy (5) (with α = 1) (which easily follows by the mean value
theorem if one uses the representation of the processes Y n and Zn by the help of un) and one also
needs that

E
( ∫

(tm,T ]
|∂xZn,tm,xs− − ∂xZn,tm,x̄s− |2d[Bn]s

) p
2 ≤ C(1 + |x|p p0 + |x̄|p p0)|x− x̄|p, p ≥ 2.

The latter estimate one gets similarly as that in Lemma 4.6-(iii) if one considers the BSDE for the
difference ∂xY n,tm,x

tm − ∂xY n,tm,x̄
tm instead of (34) itself. The result follows then from the estimate of

E|ξ̂n,tm,x − ξ̂n,tm,x̄|2 and Gronwall’s lemma.

5 Technical results and estimates
In this section we collect some facts which are needed for the proofs of our results. We start with
properties of the stopping times used to construct a random walk.

Lemma 5.1 (Lemma A.1 [5]). For all 0 ≤ k ≤ m ≤ n and p > 0, it holds for h = T
n that

(i) Eτk = kh,

(ii) E|τ1|p ≤ C(p)hp,

(iii) E|Bτk −Btk |2p ≤ C(p)E|τk − tk|p ≤ C(p)(tkh)
p
2 .

The next lemma lists some estimates concerning the diffusion X and its discretisation.
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Lemma 5.2. Under Assumption 2.1 on b and σ it holds for p ≥ 2 that there exists a constant
C = C(b, σ, T, p) > 0 such that

(i) E
∣∣Xs,y

T −X
t,x
T

∣∣p ≤ C(|y − x|p + |s− t|
p
2 ), x, y ∈ R, s, t ∈ [0, T ],

(ii) Ẽ supτ̃l∧tm≤r≤τ̃l+1∧tm |X̃
tk,x
tk+r−X̃

tk,x
tk+τ̃l∧tm |

p ≤ Ch
p
4 , 0 ≤ k ≤ n, 0 ≤ l ≤ n−k−1, 0 ≤ m ≤ n−k,

(iii) E|∇Xs,y
T −∇X

t,x
T |p ≤ C(|y − x|p + |s− t|

p
2 ), x, y ∈ R, s, t ∈ [0, T ],

(iv) E sup0≤l≤m
∣∣∇Xn,tk,x

tk+tl
∣∣p ≤ C, 0 ≤ k ≤ n, 0 ≤ m ≤ n− k,

(v) Ẽ
∣∣X̃tk,x

tk+tm − X̃
τk,y
τk+τ̃m

∣∣p ≤ C(|x− y|p + h
p
4 ), 0 ≤ k ≤ n, 0 ≤ m ≤ n− k,

(vi) Ẽ|∇X̃tk,x
tk+tm −∇X̃

τk,y
τk+τ̃m |

p ≤ C(|x− y|p + h
p
4 ), 0 ≤ k ≤ n, 0 ≤ m ≤ n− k.

Proof. (i): This estimate is well-known.
(ii): For the stochastic integral we use the inequality of BDG and then, since b and σ are bounded,
we get by Lemma 5.1 (ii) that

Ẽ sup
τ̃l∧tm≤r≤τ̃l+1∧tm

|X̃tk,x
tk+r − X̃

tk,x
tk+τ̃l∧tm |

p

≤ C(p)(‖b‖p∞Ẽ|τ̃l+1 − τ̃l|p + ‖σ‖p∞E|τ̃l+1 − τ̃l|
p
2 ) ≤ C(b, σ, T, p)h

p
2 .

(iii): This can be easily seen because the process (∇Xs,y
r )r∈[s,T ] solves a linear SDE with bounded

coefficients.
(iv): The process solves (44). The estimate follows from the inequality of BDG and Gronwall’s
Lemma.
(v): Recall that

X̃ τk,yτk+τ̃m = X̃n,tk,y
tk+tm = y +

∫
(0,tm]

b(tk + r, X̃n,tk,y
tk+r−)d[B̃n, B̃n]r +

∫
(0,tm]

σ(tk + r, X̃n,tk,y
tk+r−)dB̃n

r

and
X̃tk,x
tk+tm = x+

∫ tm

0
b(tk + r, X̃tk,x

tk+r)dr +
∫ tm

0
σ(tk + r, X̃tk,y

tk+r)dB̃r.

To compare the stochastic integrals of the previous two equations we use the relation

∫
(0,tm]

σ(tk + r, X̃n,tk,y
tk+r−)dB̃n

r =
∫ ∞

0

m−1∑
l=0

σ(tk+l+1, X̃
n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r.

We define an ’increasing’ map i(r) := tl+1 for (tl, tl+1] and a ’decreasing’ map d(r) := tl for (tl, tl+1]
and split the differences as follows using Assumption 2.1-(iii) for the coefficient b

Ẽ
∣∣X̃tk,x

tk+tm − X̃
n,tk,y
tk+tm

∣∣p
≤ C(b, p)

(
|x− y|p + Ẽ

∫ tm

0
|r − i(r)|

p
2 + |X̃tk,x

tk+r − X̃
tk,x
tk+d(r)|

p + |X̃tk,x
tk+d(r) − X̃

n,tk,y
tk+d(r)|

pdr

)
+C(p)Ẽ|

∫ tm

tm∧τ̃m
σ(tk + r, X̃tk,x

tk+r)dB̃r|p

+C(p)Ẽ|
∫ τ̃m

tm∧τ̃m

m−1∑
l=0

σ(tk+l+1, X̃
n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r|p
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+C(p)Ẽ|
∫ tm∧τ̃m

0
σ(tk + r, X̃tk,x

tk+r)−
m−1∑
l=0

σ(tk+l+1, X̃
n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r|p. (42)

We estimate the terms on the r.h.s as follows: by standard estimates for SDEs with bounded
coefficients one has

Ẽ
∫ tm

0
|r − i(r)|

p
2 + |X̃tk,x

tk+r − X̃
tk,x
tk+d(r)|

pdr ≤ C(b, σ, T, p)h
p
2 .

By the BDG inequality, the fact that σ is bounded and Lemma 5.1 we conclude that

Ẽ
∣∣∣∣ ∫ tm

tm∧τ̃m
σ(tk + r, X̃tk,x

tk+r)dB̃r
∣∣∣∣p + Ẽ

∣∣∣∣ ∫ τ̃m

tm∧τ̃m

m−1∑
l=0

σ(tk+l+1, X̃
n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r
∣∣∣∣p

≤ C(σ, p)‖σ‖p∞Ẽ|τ̃m − tm|
p
2 ≤ C(σ, p)(tmh)

p
4 .

Finally, by the BDG inequality

Ẽ
∣∣∣∣ ∫ tm∧τ̃m

0
σ(tk + r, X̃tk,x

tk+r)−
m−1∑
l=0

σ(tk+l+1, X̃
n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r
∣∣∣∣p

≤ C(p)Ẽ
(∫ tm

0

m−1∑
l=0
|σ(tk + r, X̃tk,x

tk+r)− σ(tk+l+1, X̃
n,tk,y
tk+l

)|21(τ̃l,τ̃l+1](r)dr
) p

2

≤ C(σ, p)Ẽ
(m−1∑

l=0

∫ τ̃l+1∧tm

τ̃l∧tm
|τ̃l+1 − tl+1|

p
2 + |τ̃l − tl+1|

p
2 + |X̃tk,x

tk+r − X̃
tk,x
tk+τ̃l∧tm |

p

+|X̃tk,x
tk+τ̃l∧tm − X̃

n,tk,y
tk+l

|pdr
)

≤ C(σ, p, T )
(
h
p
2 + max

1≤l<m
(Ẽ|τ̃l − tl|p)

1
2 + max

0≤l<m
(Ẽ sup

τ̃l∧tm≤r≤τ̃l+1∧tm
|X̃tk,x

tk+r − X̃
tk,x
tk+τ̃l∧tm |

2p)
1
2

+Ẽ
m−1∑
l=0
|X̃tk,x

tk+τ̃l∧tm − X̃
n,tk,y
tk+l

|p(τ̃l+1 − τ̃l)
)
.

Moreover, since τ̃l+1 − τ̃l is independent from |X̃tk,x
tk+τ̃l∧tm − X̃

n,tk,y
tk+tl |

p we get by Lemma 5.1-(i)

Ẽ
m−1∑
l=0
|X̃tk,x

tk+τ̃l∧tm − X̃
n,tk,y
tk+l

|p(τ̃l+1 − τ̃l)

= Ẽ
m−1∑
l=0
|X̃tk,x

tk+τ̃l∧tm − X̃
n,tk,y
tk+l

|p(tl+1 − tl)

≤ C(T, p)
(
Ẽ
∫ tm

0
|X̃tk,x

tk+d(r) − X̃
n,tk,y
tk+d(r)|

pdr + max
0≤l<m

Ẽ|X̃tk,x
tk+τ̃l∧tm − X̃

tk,x
tk+tl |

p
)
.

Using Lemma 5.1 one concludes that Ẽ|X̃tk,x
tk+τ̃l∧tm − X̃

tk,x
tk+tl |

p ≤ C(b, σ, T, p)h
p
4 . Then (42) combined

with the above estimates implies that

Ẽ
∣∣X̃tk,x

tk+tm − X̃
n,tk,y
tk+tm

∣∣p ≤ C(b, σ, T, p)
(
|x− y|p + h

p
4 + Ẽ

∫ tm

0
|X̃tk,x

tk+d(r) − X̃
n,tk,y
tk+d(r)|

pdr
)
. (43)

Then Gronwall’s Lemma yields

Ẽ
∣∣X̃tk,x

tk+tm − X̃
n,tk,y
tk+tm

∣∣p ≤ C(b, σ, T, p)(|x− y|p + h
p
4 ).
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Notice that if we use the relation (43) for k = 0 we get

E|Xtm −Xn
tm |

p = Ẽ
∣∣X̃0,x

tm − X̃
n,0,x
tm

∣∣p ≤ C(b, σ, T, p)h
p
4 .

(vi): We have

∇X̃n,tk,y
tk+tm = 1 +

∫
(0,tm]

bx(tk + r,Xn,tk,y
tk+r−)∇X̃n,tk,y

tk+r−d[B̃n, B̃n]r

+
∫

(0,tm]
σx(tk + r, X̃n,tk,y

tk+r−)∇X̃n,tk,y
tk+r−dB̃

n
r (44)

and

∇X̃tk,x
tk+tm = 1 +

∫ tm

0
bx(tk + r, X̃tk,x

tk+r)∇X̃
tk,x
tk+rdr +

∫ tm

0
σx(tk + r, X̃tk,x

tk+r)∇X̃
tk,x
tk+rdB̃r. (45)

We may proceed similarly as in (v) but this time the coefficients are not bounded but have linear
growth. Here one uses that the integrands are bounded in any Lp(P).

Finally, we estimate the difference between the continuous-time Malliavin weight and its dis-
crete-time counterpart.

Lemma 5.3. Under Assumption 2.1 it holds that

Ẽ|Ñ tk
tmσ(tk, Xtk)− Ñn,τk

τ̃m σ(tk+1,Xτk)|2 ≤ C(b, σ, δ, T ) |Xtk −Xτk |2 + h
1
2

(tm − tk)
3
2

, m = k + 1, ..., n.

Proof. For Nn,τk
τ̃m and N tk

tm given by (10) and (14), respectively, we introduce the notation

Ñ tk
tmσ(tk, Xtk) =: 1

tm−k

∫ tm−k

0
atk+sdB̃s and Ñn,τk

τ̃m σ(tk+1,Xτk) =: 1
tm−k

∫ τ̃m−k

0
anτk+sdB̃s

with

atk+s := ∇X̃tk,Xtk
tk+s

σ(tk, Xtk)
σ(tk+s, X̃tk,Xtk

tk+s )
and anτk+s :=

m−k∑
`=1
∇X̃ τk,Xτkτk+τ̃`−1

σ(tk+1,Xτk)
σ(tk+`, X̃

τk,Xτk
τk+τ̃`−1

)
1s∈(τ̃`−1,τ̃`].

By the inequality of BDG,

(tm − tk)2Ẽ|Ñ tk
tmσ(tk, Xtk)− Ñn,τk

τ̃m σ(tk+1,Xτk)|2

≤ CẼ
∣∣∣ ∫ tm−k

0
atk+sdB̃s −

∫ τ̃m−k

0
anτk+sdB̃s

∣∣∣2
≤ CẼ

∫ tm−k∧τ̃m−k

0
(atk+s − anτk+s)2ds+ Ẽ

∫ ∞
0

a2
tk+s1(τ̃m−k,tm−k](s)ds

+Ẽ
∫ ∞

0
(anτk+s)21(tm−k,τ̃m−k](s)ds

≤ C
m−k∑
`=1

(
Ẽ sup
s∈[0,tm−k]∩(τ̃`−1,τ̃`]

∣∣atk+s − anτk+τ̃`
∣∣4) 1

2

(Ẽ|τ̃` − τ̃`−1|2)
1
2

+
(
Ẽ sup
s∈[0,tm−k]

|atk+s|4 + Ẽ max
1≤`≤m−k

|anτk+τ̃` |
4
) 1

2

(Ẽ|tm−k − τ̃m−k|2)
1
2 .
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The assertion follows then from Lemma 5.1 and from the estimates

Ẽ sup
s∈[0,tm−k]∩[τ̃`−1,τ̃`]

|atk+s − anτk+τ̃` |
4 ≤ C(b, σ, T, δ)(|Xtk −X

n
tk
|4 + h) (46)

Ẽ sup
s∈[0,tm−k]

|atk+s|4 + Ẽ max
1≤`≤m−k

|anτk+τ̃` |
4 ≤ 2‖σ‖4∞δ−4. (47)

So it remains to show these inequalities. We put

K̃tk
tk+s := σ(tk, Xtk)

σ(tk + s, X̃
tk,Xtk
tk+s )

and K̃n,τk
τk+τ̃`−1

:= σ(tk+1,Xτk)
σ(tk+`, X̃

τk,Xτk
τk+τ̃`−1

)

and notice that by Assumption 2.1 both expressions are bounded by ‖σ‖∞δ−1. To show (46) let us
split atk+s − anτk+τ̃` in the following way:

atk+s − anτk+τ̃` = K̃tk
tk+s(∇X̃

tk,Xtk
tk+s −∇X̃

tk,Xtk
tk+t`−1

) +∇X̃tk,Xtk
tk+t`−1

(K̃tk
tk+s − K̃

tk
tk+t`−1

)

+ K̃tk
tk+t`−1

(∇X̃tk,Xtk
tk+t`−1

−∇X̃ τk,Xτkτk+τ̃`−1
) +∇X̃ τk,Xτkτk+τ̃`−1

(K̃tk
tk+t`−1

− K̃n,τk
τk+τ̃`−1

).

Then

Ẽ sup
s∈[τ̃`−1∧tm−k,τ̃`∧tm−k]

|K̃tk
tk+s(∇X̃

tk,Xtk
tk+s −∇X̃

tk,Xtk
tk+t`−1

)|4

≤ ‖σ‖4∞δ−4Ẽ sup
s∈[τ̃`−1∧tm−k,τ̃`∧tm−k]

|∇X̃tk,Xtk
tk+s −∇X̃

tk,Xtk
tk+t`−1

|4 ≤ C(b, σ, T, δ)h

since one can show similarly to Lemma 5.2-(ii) that

Ẽ sup
s∈[τ̃`−1∧tm−k,τ̃`∧tm−k]

|∇X̃tk,Xtk
tk+s −∇X̃

tk,Xtk
tk+t`−1

|4 ≤ C(b, σ, T, δ)h.

Notice that∇X̃tk,Xtk
t and∇X̃ τk,Xτkτm solve the linear SDEs (45) and (44), respectively. Therefore,

Ẽ sup
s∈[0,tm−k]

|∇X̃tk,Xtk
tk+s |p ≤ C(b, σ, T, p) and Ẽ max

0≤`≤m−k
|∇X̃ τk,Xτkτ̃`+τk |

p ≤ C(b, σ, T, p). (48)

We get

Ẽ sup
s∈[τ̃`−1∧tm−k,τ̃`∧tm−k]

|∇X̃tk,Xtk
tk+t`−1

(K̃tk
tk+s − K̃

tk
tk+t`−1

)|4

≤ C(σ, δ)(Ẽ|∇X̃tk,Xtk
tk+t`−1

|8)
1
2 (Ẽ sup

s∈[τ̃`−1∧tm−k,τ̃`∧tm−k]
(|t` − s|4 + |X̃tk,Xtk

tk+s − X̃
tk,Xtk
tk+t` |

8)
1
2

≤ C(b, σ, δ, T )h.

For the third term Lemma 5.2-(vi) implies that

Ẽ|K̃tk
tk+t`−1

(∇X̃tk,Xtk
tk+t`−1

−∇X̃ τk,Xτkτk+τ̃`−1
)|4 ≤ C(b, σ, T )‖σ‖4∞δ−4(|Xtk −Xτk |

4 + h).

The last term we estimate similarly to the second one,

Ẽ|∇X̃ τk,Xτkτk+τ̃`−1
(K̃tk

tk+t`−1
− K̃n,τk

τk+τ̃`−1
)|4

≤ C(σ, δ)(Ẽ|∇X̃ τk,Xτkτk+τ̃`−1
|8)

1
2 (|Xtk −Xτk |

8 + Ẽ|X τk,Xτkτk+τ̃`−1
− X̃tk,Xtk

tk+t`−1
|8)

1
2

≤ C(b, σ, T, δ)(|Xtk −Xτk |
4 + h).

To see (47) use the estimates (48).
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