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Lo-Approximation rate of forward - backward SDEs
using random walk

Christel Geiss!, Céline Labart?, Antti Luoto®

Abstract

Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs a random walk

B™ from the underlying Brownian motion B by Skorohod embedding, one can show Lo conver-
gence of the corresponding solutions (Y, Z™) to (Y, Z). We estimate the rate of convergence in
dependence of smoothness properties, especially for a terminal condition function in C%.
The proof relies on an approximative representation of Z™ and uses the concept of discretized
Malliavin calculus. Moreover, we use growth and smoothness properties of the PDE associ-
ated to the FBSDE as well as of the finite difference equations associated to the approximating
stochastic equations. We derive these properties by stochastic methods.

Keywords : Backward stochastic differential equations, approximation scheme, finite difference
equation, convergence rate, random walk approximation

MSC codes : 60H10, 60H35, 60G50, 60H30,

1 Introduction

Let (©, F,P) be a complete probability space carrying the standard Brownian motion B = (By)i>0
and assume (F3)¢>0 is the augmented natural filtration. Let (Y, Z) be the solution of the forward-
backward SDE (FBSDE)

Xs::c—l—/ b(T,XT)dT-i-/ o(r,X,)dBy,
0 0

T T
Yszg(XTH/ f(r,Xr,Yr,Zr)dr—/ Z,dB,, 0<s<T. (1)

Let (Y™, Z") be the solution of the FBSDE if the Brownian motion B is replaced by a scaled
random walk B™ given by

[t/h]
B =vhY &,  0<t<T, (2)
=1

where h = % and (Ei)z‘zl’gw. is a sequence of i.i.d. Rademacher random variables. Then (Y, Z™)
solves the discretized FBSDE

Xg =T+ b(T, Xﬁ*)d[Bn]T + O'(T, X:L)dB;L)
(0,s] (0,s]
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VI =g(Xp) + [ fXEYE 2B, ~ [ ZrdBr 0<s<T (3)
(s,T] (s,T]

In this paper, we study the rate of the Lo-approximation of (Y}, Z}') to (Y, Z;). This extends
the results of [5] where this question was considered for the special case X = B.

The approximation of BSDEs using random walk has been investigated by many authors, also
numerically (see, for example, [2], [10], [12], [13], [14]). In 2001, Briand et al. [2] have shown weak
convergence of (Y™, Z") to (Y, Z) for a Lipschitz continuous generator f and a terminal condition
in L.

In [5], under the assumption that the forward process X is the Brownian motion itself, a
convergence rate in Ly could be obtained for a locally Hélder continuous terminal function g and
Lipschitz continuous generators. However, if X is a solution of the SDE in (1), we need rather
strong conditions on the smoothness and boundedness on f and g and also on b and . In Theorem
3.2, the main result of the paper, we show that the convergence rate for (Y;", Z{*) to (Yz, Z;) in Lo
is of order hi’$ provided that ¢” is locally a-Holder continuous.

One reason behind the strong smoothness requirements on the coefficients is that the discretized
Malliavin derivative, which describes the relation between Y™ and Z", is not compatible with
the variational equations related to Y™ and Z"™. This problem becomes visible in Subsection 2.3
where we introduce a discretized Malliavin weight to obtain a representation Z" for Z"™. While
the continuous-time representation of Z is exact, Z™ does not coincide with Z™, but the difference
converges to 0 in Lg as n — 0o. To prove our main result we also need strong smoothness properties
on the solution u™ of the difference equation associated to the discretized FBSDE (3). We sketch
the proof by applying methods known for Lévy driven BSDEs.

The paper is organized as follows: Section 2 contains the setting, main assumptions and the
approximative representation of Z". Our main results about the approximation rate for the case
of no generator (i.e. f = 0) and for the general case are in Section 3. Omne can see that in
contrast to what is known for time discretization schemes, for random walk schemes the Lipschitz
generator seems to cause more difficulties than the terminal condition: while in the case f = 0
we need that ¢’ is locally a-Holder continuous, in the case of a Lipschitz continuous generator this
property is required for g”. In Section 4 we recall some needed facts about Malliavin weights, about
the regularity of solutions to BSDEs and properties of the associated PDEs. Finally, we sketch
a proof for properties of solutions to the finite difference equation associated to the discretized
FBSDE. Section 5 contains technical results which mainly arise from the fact that the construction
of the random walk by Skorohod embedding forces us to compare our processes on different ’time
lines’, one coming from the stopping times of the Skorohod embedding and the other ruled by the
equidistant deterministic times due to the quadratic variation process [B"].

2 Preliminaries

2.1 The SDE and its numerical scheme

We introduce
t t
Xt:a:—t—/ b(sts)ds—}—/ o(s, Xs)dBs, 0<t<T
0 0

and its discretized counterpart

k k
Xtr;; =T+ hzb(t]7X7Z Z t]7Xt 8]7 t] = j%7 ]: 07"'7”7 (4)
j=1 j=1



where (g;)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Letting G :=o(g; : 1 <i <
k) with Go := {0, 9}, it follows that the associated discrete-time random walk (B )r_q is (Gr)j—o-
adapted. Recall (2) and h = L. If we extend the sequence (X{ )k>0 to a process in continuous time
by defining X" := X}’ for t € [tg,t41), it is the solution of the forward SDE (3).

Assumption 2.1.

(i) byo € 05’2([O,T] x R), in the sense that the derivatives of order k = 0,1,2 w.r.t. the space
variable are continuous and bounded on [0,T] x R,

(ii) the first and second derivatives of b and o w.r.t. the space variable are assumed to be vy-Hdélder
continuous (for some «y € (0,1], w.r.t. the parabolic metric d((z,t), (2',t)) = (|lz — 2'|*> + |t —
t'|)%) on all compact subsets of [0,T] x R.

(iii) b,o are %—Hé'lder continuous in time, uniformly in space,

(iv) o(t,x) >0 >0 for all (t,z).

Assumption 2.2.

(1) g is locally Hélder continuous with order o € (0, 1] and polynomially bounded (py > 0,Cy > 0)
in the following sense

V(z,2') € R?  |g(x) — g(2)] < Cy(1 + |2[P° + |2/ [P0) |z — 2| (5)
(ii) The function [0,T] x R3 : (t,z,y, 2) — f(t,x,y,2) satisfies
ftz,y,2)— fE, 2y, ) S Ly(Vt—t + |z — 2|+ |y — | + ]2 — &) (6)
Notice that (5) implies
l9(2)] < K1+ [a[*™) = ¥(z), z€R, (7)
for some K > 0. From the continuity of f we conclude that

Ky := sup |f(¢,0,0,0)] < ooc.
0<t<T

Notation:
o [[llp:=1"llrr) for p =1 and for p =2 simply || - .
e If a is a function, C(a) represents a generic constant which depends on a and possibly also
on its derivatives.

2.2 The FBSDE and its numerical scheme

Recall the FBSDE (1) and its approximation (3). The backward equation in (3) can equivalently
be written in the form

n—1 n—1
Y =g(XP) +h Y i, X0 Y0 Z8) = VRY D ZE emir, 0< K <n, (8)
m=k m=k

if one puts X" := Xp' , Y :=Y" and Z] := Z for r € [tm, tmy1).
For n large enough, (3) has a unique solution (Y, Z"), and (Y;", Z{Lm)fn_:lo is adapted to the

filtration (G,,)" 4 (see [15, Proposition 1.2]).



2.3 Representations for Z and 2"

We will use the representation (see Ma and Zhang [ 1, Theorem 4.2])

T
7, = E, (g’(XT)VXT +/ £(5, X, Y, ZS)NStds> o(t,X;), 0<t<T 9)
¢
where E; := E(:|F;), and for all s € (¢,T], we have (cf. Lemma 4.1)
1 s VX
N! = / " dB, 10
S os—tJy o(r, X)) VX, " (10)

where VX = (VXs)cp,1) i the variational process i.e. it solves
S S
VXs=1 +/ by (7, XT)VXTerr/ ox(r, X, ) VX, dB,,
0 0
with (Xs)sejo,m given in (1).

2.3.1 Approximation for Z"

A counterpart to (9) for Z™ does in general only exist approximatively. In particular for f # 0
stronger smoothness assumptions are required:

Assumption 2.3. Assumptions 2.1 and 2.2 hold. Additionally, we assume that all first and sec-
ond derivatives w.r.t. the variables x,y,z of b(t,x),o(t,z) and f(t,z,y,z) exist and are bounded
Lipschitz functions w.r.t. these variables, uniformly in time. Moreover, g satisfies (5).

We shortly introduce the discretized Malliavin derivative and refer the reader to [1] for more
information on this topic. We first define for any function F' : {—1,1}" — R the mappings T, +
and T, — by

Tm+F(e1,....en) = Fl(e1,....em—1,£1,6m+1, .-, En)s 1<m<n,
and for any £ = F(eq,...,&y,) the discretized Malliavin derivative
Dre.— Eléemlo(()ieqr,..apfm})] T+ & — T, —& L<m<n (1)
m ° b — — .

Vh B 2vh

In contrast to the continuous time case where VX;(VX,)™! = D X;(0(s, X5))™! (s < t), we can
not expect equality for the corresponding expressions if we use the discretized processes

m
VXPT =14k 3 by(ty, Xp B ") VX" +fz oo (b, X[ )V X0, 0 <k <m <,

ti—1 1 ti—1 1
l=k+1 = k+1
m
DX =o(t, X )+h Y bEIDRXy +Vh Z EDDEX] e, 0<k<m<n,

I=k+1 I=k+1
(12)

where for the latter we use for ¢ = b and ¢ = o the notation (if Dy X{ = # 0 the second ":=" holds
as an identity)

Dpo(t, Xi_,) !
gl = KL 20) / ot 9Ty X+ (1= 0) Ty XP_)d0. (13)
Dkth71 0
Nte, X[, DY, XD
However, we can show convergence of VX, — W in L.



Lemma 2.4. Under Assumption 2.1, and for p > 2, we have
(i) EIX] —TnsXpP < C(b,0,T,p)h%, 1<lm<n,
aexp o Do xp |
(i) E|\VX, " - ke | < oy o T, p)hE,
tm X
(tk‘+17 tk)

(iii)  E|DpXD P < C(bo,T,p), 0<k<m<n.

0<k<m<n.

9

Proof. (i) We only prove the '+’-case since the proof of the
Tm7+X[lL = Xg for | <m — 1, and for [ > m we have

—’-case is similar. By definition,

Tt Xy = X[ +b(tm,Xt”71)h+a(tm,Xt” IWh

+h Z b(ts, Ty Xi ) +Vh Z o(tj, T X7t )
Jj=m+1 j=m+1

By the properties of b and ¢ and thanks to the inequality of Burkholder-Davis-Gundy and Hélder’s
inequality we see that

E|th m+th‘
l
P
< ) (Elo(tm, X, )WVh(em — D" + WE| S (b(ts, X_,) = blty, T s X7 )|
j=m+1
P
o2
+h2E‘ Z tj,X U(tj’va‘FXtr;,l)) 2)
Jj=m+1
< C)(llolEh% + hlbslZ 5L + lloalZt0) Z EIX]_, — T+ X7, 7).
Jj=m+1
It remains to apply Gronwall’s lemma.
(ii) By the inequality of Burkholder-Davis-Gundy (BDG) and Hélder’s inequality,
nteXp DR XP [P
E‘VXtm o m < C(p, T)(\bx(tkH,XZ;)h + 04 (tpr1, X7 )Vhepi [P
7Y
p
N, X{ k+1,0) Dl?—&-lxg 1
+ h E|b tl, VX k _ b( ,
lzk;rZ )V Koy ’ o (trs1, X7}
- n,tg, X Dy Xty P
h Elo.(t;. X® WX, 77t _ gktll) “rkHLI70-1 1y
i 122 et Xy )V Xy 7 o(ter1, Xiy) )

Since by Lemma 2.4 (i) we conclude that
Eb$D — b, (ty, X7 ) + Elof ) — oy (1, X

tll

)22 < C(b,0,T, p)h?,

tl 1
and Lemma 5.2 implies that

2p
S C(b? U? T7p)7

2%

n,te, X"
E sup ‘Vth )
k+1<i<m

the assertion follows by Gronwall’s lemma.

(iii) This is an immediate consequence of (i).



We introduce a discrete counterpart to the Malliavin weight given in (10) letting

Y/ VX’n,tk,X;;c
Nn7tk = \/E tm—1 Em ’ k < f S n. (14)
ty m:ZkJrl O'(tm, thm71) ty — Tk

Notice that there is some constant Ko > 0 depending on b, o, T, é such that

Ko

" g<k<t<n, (15)
(te —tx)?

1
(BN P) <
where Ej, := E(:|Gr). We define a process 7n = (Z}’;)Z;& by

n—1
ZZILC = Ek (DZ+19(X§L’)) + Ek (h Z f(tm-i-lathma Y;:n? Ztnm)NZ:ka'(thrla XtT;LC)) ) (16)

m=k-+1
and compare it with Z" = (Z{;)Z;é given by
n—1
7 = Bx (Dipg(X0) +Be (VR Y Fltmyr, X7 Y0 27 Venga |- (17)
m=k-+1

The latter equation follows if one multiplies (8) by €41 and takes the conditional expectation w.r.t.
Gr. In (16) we could have used also the approximate expression Ek(g(X%)NgL’t’“a(tkH, X7)), but
since we will assume that ¢” exists, we work with the correct term.

Proposition 2.5. If Assumption 2.3 holds, then

Eoe|Z — Z{|* < Co50?(z)R?,
where Eo , == E(:|Xo = z) and Ca5 depends on b,o,T,py and §.
Proof. According to [2, Proposition 5.1] one has the representations

Y =u"(tm, Xy ), and Z = D%Hu”(th,Xme),

where u" is the solution of the ’discretised” PDE (32) with terminal condition u™(t,,x) = g(x).
Notice that by the definition of DJj, |, in (11) the expression Dy, u" (tm+1, X, ) depends in fact
on X' . Hence we can put

f(tm-i—ly X,?m, Y;‘Z? Ztnm) = f(tm-‘rlv lemvun(tmv lem)v Dg@+1“n(tm+1v Xz‘,nm_,_l))
Fn(tm-i-letnm)'

By Proposition 4.5 we conclude that w2 (¢,,z) and 8xD?n+1u"(tm+1,an;tﬁ’w) (as functions of x)

both satisfy (5), and by Assumption 2.3 on f we derive this property also for x +— FJ'(tm41, ). It
holds that (we use E :=Eg,)

124, = 2,

n—1
= ‘Ek(\/ﬁ Z f(tm+1,Xfm,Y;7n,me)€k+1)

m=k+1




n—1
—E, (h ST i, XY Z0 )N o (b, X ) H

m=k-+1
. - ntkv k:
. o(ter1, X5 )VXy, |
< Z m—k Z Ek[DkHF (tmt1, X7,) = DEF" (b1, X5, o(te, X3, ) H
m—kt1 l=k+1 v

With the notation introduced in (13),

n,tg, X

O'(tk+1, )VXt k
(t£7 thfl)

HDkHF (bmots X7 ) — DFF™ (b, X7 )

< (Dp X ) (FmEELmAD g (Emtl)y

n, kvX
o(thyr, X[V X, ) H
(t€7 Xt@_l)

+|Epeme (@ xz,) - px2,)
=: A+ As.

For A; we use (13) again and exploit the fact that = — FJ'(t, z) satisfies (5). By Holder’s inequality
and Lemma 2.4 (i) and (iii),

1
A1 <[P X7 4 /O 1E (b1 0T g1 4 X+ (1= 0)Thogr X7
— F(tms1, 9T+ XJ + (1 = 0) Ty X7 )|Jadd) < C(b,0, T, po) ¥ (2)h?.

F;L,(Z,m—i—l)

For the estimate of Ay we notice that by our assumptions the Ls-norm of is bounded by

CV¥(z), so that it suffices to estimate

n,t

o(ter1, X VX, .
(t€7th,]_) 4
o(tkt1, X, ) Dy X D Xi,
U(t£7X1271) U(tk+17Xg€) 4

J(tk’-i-l) th) D?Xn n,tk,XZ; B DZ+1X571
U(tf7 th,l) b U(thrl? ch)

H(DZHX&) —(Dpx7)

(D Xi) —

(18)

4

The second expression on the r.h.s. of (18) is bounded by C'(b, o, T, 6)h% as a consequence of Lemma
2.4 (ii)-(iii). To analyze the first expression, we rewrite it by (12) and get

D X4,
U(tfv X)’Srz 1)

‘(1—1— Z Xil)b( h+ ol f&z))

I=+1 olte, Xy,

n n T n
Dy Xi, | — DX,

/-1
x <a(tk+1,X;;)+ DI 2 SN (Ol R e fm)
= k+2

( (trs1, X ( Z +Z)’Dk+1X{l‘ O D 4 oD Ve, ))‘

l=k+-2



< [Dp X7 (0FTOh + oDV hey))|

m n n

X
> Tty (£.0) (4,0
+ Mt [U(tg,X[zl) k‘+1 t[ 1 k—‘rl tl 1 (:C +Ux fgl)
> DiaXp [beE,z)h+g§e,z)¢Eel - (bggk+1,z)h+aék+1,z)\/ﬁ€l)} ‘ 19)
=011

We take the Ly-norm of (19) and apply the BDG inequality and Hoélder’s inequality. The second
term on the r.h.s. of (19) will be used for Gronwall’s lemma, while the first and the last one can

be bounded by C(b, o, T)h%, by using Lemma 2.4-(iii). For the last term we also use the Lipschitz
continuity of b, and o, in space and Lemma 2.4-(i). O

3 Main results

The following approximations will rely on the fact that the random walk B™ can be constructed
from the Brownian motion B by Skorohod embedding. Let 7y := 0 and define

Tk'—lnf{t>7’k1 | — Tk 1’—\f} k> 1.

Then (B, — B, )72 is a sequence of i.i.d. random variables with
]P)(BTk - Tk 1 if) %

which means that vhey, 4 B;, — B;,_,. In this case we also use the notation X, := X{L for all
k=0,...,n, so that (4) turns into

k
Xm:x+2b i) Z X 1 )(Bry = Bry ), 0<k<m,

and (3) holds for B™ given by

[t/R]
BZL: Z(BTk _BTk—1)7 0<t<T. (20)
k=1

We will denote by [E,, the conditional expectation w.r.t. F;, .

3.1 Approximation rates for the zero generator case
We express conditional expectatlons with the help of an independent copy of B denoted by B, for
example E,, g(X7) = Eg(XTT,’f’ ) for 0 < k < n, where

Tk7XT Tk,X‘r Tk7XT ~
Xr, =X + Z b(t;, Xt )h + Z Xrj k)(B?J k —B;]._k_l),
j=k+1 j=k+1

(we define 73, := 0 and 7; := inf{t > 7;_; : ]Bt — ij71| = \/ﬁ} for j > 1 and 7, := 7 + Tn_p for
n > k). In fact, to represent the conditional expectations E;, and E, we work here with E and
the Brownian motions B’ and B”, respectively, given by

Bé = Biny, + B(tftk)‘F and Bgl = Binr, + B(tfﬂg)“ t>0.

8



Proposition 3.1. Let Assumption 2.1 and (20) hold. If f = 0 and g € C' is such that ¢’ is a
locally a-Holder continuous function in the sense of (5), then for all 0 < v < T, we have (for
sufficiently large n) that

Eoo|V, — ¥J'* < CY, 0(@)’h?,  and  EoulZ, — Z}P < C5,0(2)h%,
where CY, = C(T,po, Cy,CY,,0,b) and C§, = C(T,py,Cy,0,b,0).

Proof. To shorten the notation, we use E := [Eq .. Let us first deal with the error of Y. If v belongs
to [tg, trq1) we have Y;' = Y. Then

E[Y, - Y'|* < 2(E[Y, - Vi, |* + E|Y, — V%),

Using Theorem 4.2 we bound ||Y, — Y}, || by C{,¥(z)(v — tk)% (since @ = 1 can be chosen when g
is locally Lipschitz continuous). Then it remains to bound

X.

ik X - X
ElYy ~Yil* = ElE,g(Xr) —Eng(XP)]* = E[Eg(X,, ") — Bg(Xr )P
By (5) and the Cauchy-Schwarz inequality (¥; := Cy(1 + |th7th Po 1 |XTk,XTk oY),

Finally, we get by Lemma 5.2-(v) that

tk )th Tk 7X7k

1
ElY;, - Y < (IEE(\I/4)) (BE[ X% — 274 1) < C(Cy, b, 0, T, po) () k2,

N

Let us now deal with the error of Z. We use || Z, — Z}|| < [|Zy — Zy, || + | Z, — Z{ || and the
representation

Zy = o(t, Xo)EB(g' (XX VXL

(see Theorem 4.3), where
~ s ~ ~ s ~ ~ ~
VXL =1+ / by (r, XE)V X dr + / oo (r, XE\WWXEdB, ;, 0<t<s<T.
t t

For the first term we get by the assumption on ¢g and Lemma 5.2-(i) and (iii)

" % = Stk X ~ 1, X
120 = Z | = llo(v. X Bl (X5 ) VRE) = ot X, B (g (R )W &) |
< lo(v, Xo) = ot X4l E(g (X3 ) VXG4
t X ~
+HollsoIE(g (X5 ) VXES) — B(g/ (X4 %)VEEY)|
Hlollool By (X5 )V X5 ) — B(g (Xt’“’Xt’f)Vth’X%)ll
1
< C(Cyb,0, T, p0) () (12 + (| Xy — Xy, [la + (BE| X — Ko e fie)
1
+ (BEIVRSS - Vi 1) ]
< C(Cg’abaa—aT7p0)\Ij($)h%-



We compute the second term using Z7, as given in (17). Hence, with the notation from (13),

e, X <t X X\ (2
1Ze, — ZL 1P = Elo(te, X, )Eg' (X, %)V, — EDR, 1 g(X707 ™)
Tk‘v‘X'rk 2
= tk,Xt tk Xt EDk+1g(‘X )
< |o|ALE|E VX, —
< oG EE(G (X, ™) ) ot Xo,)
Tk7XTk
_ 2 tk Xt St Xt = ( (k+1,n41) Phy1¥m 2
= E|E(g VX By — K _—
12 B JV X ) —B(gl iz )

We insert +E(VX, tk’Xt’“g(kH’nH)) and get by the Cauchy-Schwarz inequality that
~ Tk, X7
Dy A

~ S, X <t X ~ n 2
‘E(gl(Xt: VX _E(ga(ckﬂ’ Y o(tr, Xz, ) )‘
’ E

XX t, X X pr TN
<2E| (X, ks tk)_g(k+1n+1 |2IE\VX ks tk|2+2E| k+1n+1 QE‘V ks tk_%
ks Aty
(21)

X
For the estimate of IE|Vth’ 12 we use Lemma 5.2. Since ¢ satisfies (5) we proceed with

Blg/ (%07 %) — gle+tnt )2
< /0 g G (RN (9T B 4 (1= ) Ther A0V 9
= / (Ewy): [ ‘X:k’th — T B0 — (1= 0) Ty R0 a}%dﬁ,
where Wy i= Cp(1+ [X{ 5 Po 4 |0T)py X0 4 (1= 0) Ty, Xrt "7 o). For EW4 and
B0 — (0T o R0 + (1= ) Thr - 2707) b

Xr,

+(1- 2C“E\X““’ I - il

~ | otg,X ~ Tl Xr 4o
< 8(&2%])@: W Ty A

’)

A

C(b,a,T)h** + C(b,0,T)(| X, — Xr|** + 1*),

we use Lemma 2.4 and Lemma 5.2-(v). For the last term in (21) we notice that

EI~E|g:(ck+1’n+l) ‘4 S C(b7 07 T7 p07 Cg/)\II4($).

By Lemma 5.2 we have EE\VX;:’X% — VX::’XT’“ P <C(b,o,T, p)h%, and by Lemma 2.4,

Tk, X7
E]E VXTkv‘XTk o D’:‘L-"‘].XT’: F
(tkath)

wiXy,  DRLXE [ DpXi DpaXp [ .

< CE|vx, ™ k1T | ()R n__ n| < C(b,o,T,p,6)h%.

®) ‘ v e x| PO e X T ol X | = )
Consequently, || Zy, — Z['||* < C(b, 0, T, po, Cyr, )02 (z)h53. O

10



3.2 Approximation rates for the general case

Theorem 3.2. Let Assumptions 2.3 be satisfied and B™ be given by (20). Then for all v € [0,T)
and large enough n, we have

Eoo|Yy = Yi'? + Bou|Zy — 2712 < Cy0%(z)?h2"

with 03.2 = C(ba g, fa 9, Ta Po, 6, K2, Cijgv CX,Q, 04.4)-

Proof. Let u: [0,T)xR — R be the solution of the PDE (30) associated to (1). We use Y = u(s, Xj)
and Zs = o(s, Xs)uz(s, Xs) from Theorem 4.3 and define

F(s,x):= f(s,z,u(s,x),o(s, z)uy(s,x)). (22)
We have

Ve, =Yl < [[By9(X7) — Er g(X7)||

+

Y

T n—1
E, /t F(5, Xa, Yoy Zo)ds — hEr, S F(tmyr, XY Z0 )
k m=k

where Proposition 3.1 provides the estimate for the terminal condition. We decompose the generator
term as follows:

By, f(8, Xs,Ys, Zs) — Bry f (b1, Xe, , Yio s 23 )

= [E4, f(5, X5, Y5, Zs) — Egy f(t, Xtns Yo Ztn )] + (Bt F(tms Xt,,) — By F (i, X3))]
+[ETkF(tm7Xglm) - ETkF(tvatm)] + [Emf(tma Xt'rn? }/;fm7 Ztm) - Emf(tm—kla X?ma Y;‘:an Z?m)]

=: di(s,m) + da(m) + ds(m) + dg(m).

4
+hZ!di(m)H>
i=2

and estimate the expressions on the right hand side. For the function F' defined in (22) we use
Assumption 2.3 (which implies that (5) holds for @ = 1) to derive by Theorem 4.3 and the mean
value theorem that for z1,z9 € R there exist §1,§2 € [min{z1,z2}, max{x;, z2}] such that

We use

n—1

T
Biy [ S5, X0 Yo Z)ds = By 3 fltunin, X7, Y Z3)
k

m=k

tm+1
/ dy(s,m)ds
tm

|F(t,z1) — F(t,z2)| = |f(t,x1,u(t,x1),0(t, 21)up(t,x1)) — f(E, 22, ult, x2), 0(t, x2)us(t, 22))|

3
< C(Ly,o0) (1 + i3V (&) + C(?%i?) |z — x|

|z1 — 2o

< C(T7 Lf’ g, Ci’g)(l + ‘$1’p0+1 + ‘xZ‘p0+1) -
(T —1t)2

By (6), Theorem 4.2 and Proposition 4.4 we immediately get

N|=

ldi(s,m)|| < C(Ly,b,0,T,Ci5,Caa)¥(x)h2.

11



For the estimate of do one exploits

th ‘*ntkv

Bty F(tmy Xt,,) — En F(ty, X1 ) = BF (ty, X% Z BE (t, X107 )

and then uses (23) and Lemma 5.2-(v). This gives
1

HdQ(m)H < C(Lf’CijgabvaaT’po)\I’(x)ilh'
(T —tm)2

=

For ds we start with Jensen’s inequality and continue then similarly as above to get

1 1
ds(m)|| < |1 F(tm, X2.) = F(tm, Xe,,)| < C(Ly, c53,b,0, T,po)‘lf(x)ﬁh%

and for the last term we get
1
lda(m)[| - < Lp(h> + | Xe,, = Xp |+ Ve, = Yoo I+ 12t — 22, 11)-

This implies

n—1
1
1Yy, = Yl < CW(x)hd +hLyp Y 1Yy, = YN + 120, — 221, (24)

m=k
where C' = C(Ly,CY ¢33, CY 5, Cua,b,0,T, po).

For ||Z;, — Z; || we use the representations (9), (17) and the approximation (16) as well as
Proposition 2.5. Instead of Ntr; " we will use here the notation N7 to indicate the measurability

w.r.t. the filtration (F;). It holds that

128, = Zi 128, = ZE ) + 1120, — Z3, |l

<
1799, €
< CasT ¢ ol X By X

>, X nyte, X
VX, —ED (X, )l

+||E, f(s,Xs,Ys, Z)Nieds o (ty, Xy,

tr41
n—1
_ETkh Z f(tm-i-l; X;Lm7)/tz’ Ztnm)Nﬂg;:—kU(tk-&-lv ch)
m=k+1
tr4+1 .
+’ Etk/t (5, Xs, Ys, Z5)Nds o (b, Xo, ). (25)
k
For the terminal condition Proposition 3.1 provides
= ~tk,th "tk,th ntk: tk 1 1

llo(te, Xo JEg'(X,r ™)V X, — ED} 1 9(X,, I < (C51)2¥(x)hi. (26)

We continue with the generator terms and use F' defined in (22) to decompose the difference

Et, f (5, X5, Yy, Zs) N0 (ty, Xp,) — Ery f (b1, Xp Y72 20 YN0 (Lr, X7
= Ky (5, Xs,Ys, Z) N0 (t, Xt ) — Bty f (tins Xty Vs Zo )N 0 (s X1y)
+Et, F(tm, Xe,, )N 0 (th, Xi) — By Ftm, X2 )NET 0 (41, X[
B, [[F (b, X, ) = Fltm, X0, )INET 0 (1, X )]

12



By ([ (s Xt Yis Zi) = Fllmr, X0, Y0 202 INE 0 (b1, X2
=: t1(s,m) + ta(m) + ts(m) + ta(m)

where s € [ty, tmi1). For t1 we use that By, f(tm, X1, , Ye,, Zt,, ) (N — Nf:l) =0, so that
Ht1(57 m)” < HEtkf(37 Xs, Ys, ZS)NgkU(tM th) - Etkf(tma Xtm’ thv Ztm)N;ka(tk’ th)”
+HEtk (f(tmv Xtm7 th? Ztm) - f(tmv thvy;fkv Ztk))(Nﬁk - Nfi)a(tb th)”
We rewrite the conditional expectations as before with the help of the independent copy B. Then

Et, f(s, Xs, Y, Zs)N — By, f(tm, Xty Ve s Zt,, )N

B X T 20 g, K

e Y Z ) NG
and
Etk(f(tm7Xtm7 th? Ztm) - f(tvatka Y;fkv Ztk))(Ngk - NE:T)
~ e Xt ot Xt Ate,X - -
= E[(f(tvat:l tkat:L tk7Zt:; tk) - f(tm’thYtk’Ztk))(N;k - Nzii)]

We apply the conditional Holder inequality, and from the estimates (29) and E|N%* — Nf * 12 <
C(b,o,T, 5)L we get

(s—tx)
K o
sl < ok dl t”;ﬁ 1£(5. Xo, Yor Z5) = F(bms Xor Yoo Zoo)|
S —1f)2

1

h2
+C<b7 ag, T? 5)E Hf(tma Xtm7 }/tm7 Ztm) - f(tk7th7Y%k7 Ztk)”

N

h

< C(Lf,02_2,04‘4,Hz,b,U,T,&PO)‘I’(ﬁ)m
— g

)

since for 0 <t < s < T we have by Theorem 4.2 and Proposition 4.4

NI

Hf($7XS7 Y% ZS) - f(t7Xt7}/;fa Zt)H S C(Lf7 C}LJQ’ C(4.47 ba g, Tvp())i[l(x)(s - t) . (27)

For to Lemma 5.2, Lemma 5.3, (23) and (29) yield

s ~t 7X N7 = ) 7XT < T
ol = EF (tm, K18 N (14, X0,) — B (b, B N0 (1111, X, )|
C B _ _ 1
< O GR(p(ty, X~ P, A7)
(tm —tr)?
. T X L ~ 1
BRIty R257) — F (b, X PRIV 001 X0) — N0 (b1, X))

U(z) hi
(T —tm)? (tm — t)7

S C(Lfﬂcivgabv J7T7p0767 H?)

For t3 we use the conditional Hélder inequality, (23), (15) and Lemma 5.2:

lts(m)ll = |[Br, [[F(tm, Xi,) = F(tm, X, )INZTE 0 (trgr, Xr ]|

C(o,R "
< COR) o Xy~ Bt X))
(tm - tk)2

13



U(z) hi
T —tn)2 (tm — ti)

S C(Lfa Cijg: ba g, T7 Po, 6)

|

The term ¢4 can be estimated as follows:
Ht4(m)H = HETk [[f(tmv Xtm7 Kﬁm? Ztm) - f(tm-l-lv thmv Ytﬁﬂ Z?m)]N;LT;Tko'(thrlv XTk)] H
C(Ly,b,0,T,0)
(b — i)

Finally, for the remaining term of the estimate of || Z;, — Z} ||, we use (27) and (29) to get

1 n n n
(h2 + |1 Xs,, = Xi I + Y2, = Y0+ 120, — 22, 1)

“Etkf(‘s?XSaY;aZS)N;k U(tkath) = ”Etk[(f(s7X871/87ZS) —f(S,th,}/tk,Ztk))N;k] O-(tkath)H

C(Lfa 051/27 04.47 ba ag, Ta Do, Kg)\l’(l')

IN

Consequently, from (25), (26), the estimates for the remaining term and for t1, ..., t4 it follows that

1 Z, = ZL| < Cos¥(x)h + (C51)7W(2)hT + C(Ly,Cly, Cra,b, 0, T, po, k2) ¥ (x)h

T
+C(LfaCgf.ga04.4,liz,b,U,T,&pO)\P(gg)h%/ _ds
tr (S — tk)§
= U(z) hi

+C(Lf’cﬁ217§7b7 g, T7p0757 H?)h Z 1
m=k+1 (T - t'm)§ (tm — tk)

[N

n—1
1

+C(Lg,b,0,T,6)h > (1Y, = YN+ 126, — 21 1) T

m=k+1 (tm - tk)2

< CO(Cas, C3)U()hEN + C(Ly, 23,CY,, Cus, kin,b, 0, T, po, 6) U ()bt
n—1
1
+C(Lg,b,0,T,8) Y. (Y, =Yl + 12, — 27 ) ———h.
m=k+1 (tm - tk)Q

Then we use (24) and the above estimate to get

1Yo, = Yl + 1120, — Zi, |

S C(CQ.EJ) C"B,Z1)\Il(aj)h%/\i + C(qu C3y,17 6421?27 02‘27 C4447 b) g, T)p07 K2, 6)‘1’(%)h
n—1
n n 1
+C(Lf,b,0',T,6) Z (||}/%TVL _Y;me + ”Ztm - Ztmu)ilh
m=k-+1 (tm - tk:)z

=

Consequently,

N

Yoo =Yl + 1 Ze, = Zip )| < Caz¥(a)h3"5.

By Theorem 4.2 it follows that

N

1Yo = Y2 < [¥e = Yall + Ve, — Y2 < C(Ciz, CL) W(a) 31,

while Proposition 4.4 implies that

1
| Zy — Z4, || < Cus¥(x)h?.
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4 Some properties of solutions to PDEs and BSDEs

4.1 Malliavin weights
We use the SDE from (1) started in (¢, z),

S S
X =g —I—/ b(r, XE*)dr +/ o(r,Xt")dB,, 0<t<s<T (28)
t ¢

and recall the Malliavin weights and their properties from [4, Subsection 1.1 and Remark 3].

Lemma 4.1. Let H : R — R be a polynomially bounded Borel function. If Assumption 2.1 holds
and XY is given by (28) then setting

G(t,z) .= EH(X5")
implies that G € C12([0,T) x R). Especially it holds for 0 <t <r < T that
0.G(r, X1") = E[H(Xz" )N | F),

where (Fl)yepr) is the augmented natural filtration of (Bﬁ’o)re[tﬂ and

1 T vxte
er(t:x) — / S dB..
T T—rJr o(s, Xﬁ’x)VXﬁ’x °

Moreover, for q € (0,00) it holds a.s.

E er(tvx) q fﬁ % S Ll and E NT’(t’x) fﬁ =0 a.s. 29
’ (T —r)? '

and we have i, i
|H(X7") = E[H(X2") | F

VT —r

10:G(r, X)) |1, ) < kg
forl<gq,p<oo with%—#é:l.

4.2 Regularity of solutions to BSDEs

The following result originates from [4, Theorem 1] where also path dependent cases were included.
We formulate it only for our Markovian setting but use IP; , since we are interested in an estimate
for all (¢,z) € [0,T) x R. A sketch of a proof of this formulation can be found in [5].

Theorem 4.2. Let Assumption 2.1 and 2.2 hold. Then for any p € [2,00) the following assertions
are true.

(i) There exists a constant C§ o > 0 such that for 0 <t < s <T and z € R,

1

Y. = Vill e, < CL¥@) ([ (= ntar)”

(ii) there exists a constant C§ 4 > 0 such that for 0 <t < s <T and z € R,
12, Z1y 00y < Ciavts) ([0 = ear)
The constants CY 5 and C§, depend on Ky, Ly, Cy, c}lfg, T,po,b,0,Kkq and p.
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4.3 Properties of the associated PDE
Theorem 4.3 ([5], Theorem 5.6). Consider the FBSDE (1) and let Assumptions 2.1 and 2.2 hold.
Then for the solution u of the associated PDE

u(t, ) + @um(t,x) +b(t, x)uz(t, ) + f(t, z,u(t,z),o(t,x)u,(t,z)) =0,
Le0,T),z R, (30)
u(T,z) =g(x), ze€R

we have

(1) Yy = u(t, X;) where u(t,z) = E, (g(XT) —i—ftT f(r, X,,,YT,ZT)dr> and |u(t,r)| < ci3¥(x)
with U given in (7).

(7i) (a) Oyu exists and is continuous in [0,T) x R
() 267 = afo, X705, X17),

(¢) Jug(t )| < <L
(Tft) =

)

(i) (a) O2u exists and is continuous in [0,T) x R,

(b) 02u(t, )| < L)

~ (T- t)l‘*
Using Assumption 2.3 we are now in the position to improve the bound on ||Zs — Zi[|1, (P, .)

given in Theorem 4.2.

Proposition 4.4. If Assumption 2.3 holds, then there exists a constant Cyyq > 0 such that for
0<t<s<Tandx € R,

1
12 = Zillpy o) < CoaWl@)(s — )3,

where Cyq depends on b, o, T,po, g, f,p,cys-

Proof. From Z'® = u,(s, X5%)o (s, X0%) and VY = dpu(s, X57) = uy(s, XL¥)VXE® we conclude

vy

t,x __ t,
Zsm_ V}(S;’xo-(s’Xsw)a 0<t<s<T.

It is well-known (see e.g. [3]) that the solution VY of the linear BSDE

T T
VY, = ¢ (X7)VX7 +/ [2(0.)VX, + [,(©,)VY, + f.(0,)VZ.dr — / VZ.dB,, 0<s<T,
(31)
can be represented as

VY,
VX

1
VX,

= 58,X 8, X o8, X r ~ 5 ~
=By (X3 VAT + / f(O3 ) VI edr |, 0<t<s<T,
S

T
— B[ (Xr)VXrT5+ [ £a(0,) VX, Tidr]
S

where O, := (r, X,,Y;, Z,) and I'* denotes the adjoint process given by

—1+/ fy(© Fsdu—i—/ f0,)5dB,, s<r<T,
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and
e — 1 4 / £, (06 Fhdr 4 / £.(BL")LdB,, t<s<T, zcR.
t t

Especially, we have

vy;tw _ Yt,x —Eld th,z Xt,xft,x T (:)tvl’ Xt’xf‘t’xd
VXtt,x—vt = [9( 7 )VXp T+t fo (O ) VX T 7“]
Then,
VY, VY . )
R A
P t,x

Since (VYs, VZ,) is the solution to the linear BSDE (31) with bounded f;, fy, f-, we have that
||VY;5”LQP(]P’,5’QC) < O(b7 o, T, p, fag) Obviously, ||X§7x_x||L2p(Pt’m) < C(b7 o,T, p)(S—t)% So it remains
to show that

< CU(z)(s —t)2.
Lp(Pt,2)

ox. o
VX

From the above relations we get for (X := X5%)

VY, VY,
VX, VX

< Hﬁ[g'@i:xwvﬁ%xsf%xs ~ g (X" VR Ty]

p

Lp(Pt,2)
dr

p

/ B[ £(O3X ) VXZNTN — £, (015 VXL dr

fx ®t T X:,zf\i,m}

+

P
= J1 + Jo + Js.

Since ¢’ is Lipschitz continuous and of polynomial growth, the estimate J; < C(b,0,9,T,p)¥(x)(s—
t)% follows by Holder’s inequality and the L, -boundedness for any g > 0 of all the factors, as well

as from the estimates for X;’XS —X%x and VX;’XS — V)?fp’x like in Lemma 5.2. For the T differences
we first apply the inequalities of Hélder and BDG:

q
L~ ~ ~ S ~ ~ ~ S ~ ~ 2
BIEY™ ~ B <O(Ta) (s— 0B [ 15,00 ) E % rar 1 B( [ 17,060 F Par )
~ T ~ ~ ~ ~
S [ 1O — £, (8L 1dr
T o B
AB( [ 12O T — (8T ar)

Since f, and f, are bounded we have E|T5Xs|94+E[TL*|7 < C(T, f, q). Similar to (23), since f, fy, I=
are Lipschitz continuous w.r.t. the space variables,

1£2(05%) — f2(OL) = | folr, X7 ulr, X3%0), o (r, X% Yug (r, X3X°))
— fa(r, X5 u(r, X27), 0 (r, X7 Yug (r, X17))
2,3 8,X 1 ot 1 ’Xf’XS_tha’xl
< C(T, fro,cp5) (14 | Xt ot 4 | X oot )ﬁv
—7r)2
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so that Lemma 5.2 yields

- ~ ~ X, —xz|i4|s—t|2
E\fx(@?XS)—fz(@i’x)\qSC(b,a,T,po,f,c?ﬁg,Q)(lJr!Xs\p°+1+!w\p°+1)q| 8 (T‘ )‘1 |
—7r)2

The same holds for [f,(©5%) — f,(04%)] and |f,(©3%¢) — £.(OL®)|. Applying these inequalities

and Gronwall’s Lemma, we arrive at

" . XS’ ™ b 9 l
IE[L5S —T%, < C(b,0,T,po, f, 9,y p)¥(x)|s —t|2

for p > 0.
For Jy < C(t — s) it is enough to realise that the integrand is bounded. The estimate for J3
follows similarly to that of J;. O

4.4 Properties of the solution to the finite difference equation

Proposition 4.5. Let Assumption 2.3 hold and assume that u™ is a solution of

u" (tﬂ”w :U) - hf(thrlv €L, u” (tmv 1:)3 D:—rlz—i-lun(thrl’ XZ:LZTI))
1
= §[Tm+1,+u ( m+1, lemtﬁ I) + Tm—‘rl,— ( m+1, Xgntﬁ7 )]7 m = 07 RN 17 (32)

with terminal condition u™(t,,x) = g(x). Then, for sufficiently small h, the map x +— u™(ty,x) is
C?, and u?(tm, ) and u?,(tm,z) satisfy (5) uniformly in m = 0,...,n — 1. The constants Cyn,
Cun and Cyn_ depend on the bounds of f,g,b,0 and their derivatives and on T.

Proof. Step 1. From (32), since g is C? and f,, is bounded, for sufficiently small h we conclude by
induction (backwards in time) that ul(t,,,x) exists for m = 0,...,n — 1, and that it holds
Up(tms @) = Pfo(tmst, @0 (bmy @), Dpgy ™ (b1, Xeo 7))
+hfy(tmer, T, u" (tm,x),Dm+1u (b1, X120 7) Yl (@)
A fo (s @ (s @), Dyt (b1 X)) 0 Dy (b1, X10T0)
(00 Tt U™ (b1, X00%) + O Tt~ (g, X10007)).

t7n+1 t'm+1

Similarly one can show that ul, (¢, x) exists and solves the derivative of the previous equation.

Step 2. We will use that u"(t,, z) = ¥;"""* and exploit the BSDE

tm, tm, stms tms stm, tms
ytmt g(Xn )+ f(S,X:_ m’Y'ri x}Zn )d[Bn] /(t - A mng’

t
m (tm,T] s s S

(33)

where we will drop the superscript ¢,,, z from now on. For ul(t,,,z) we will consider

O, =g ORDXE+ [ LOXE 4 [V A LB [ 0.7 (3)
o, T tom,T
Similar as in the proof of [11, Theorem 3.1] the BSDE (34) can be derived as limit of difference
quotients w.r.t. x of (33). Notice that the generator of (34) is random but has the same Lipschitz
constant and linear growth bound as f. In order to get estimates simultaneously for (33) and (34)
we show the following lemma.
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Lemma 4.6. We fiz n and assume a BSDE

Yoo = €4 [ X Yo ZodB - [ 7, 4B (3)
(tm, T (tm, T

with € = g(X'™) or € = ¢/ (XM )9, X" and Xy := XDt or Xy := 9, X% such that
f:Qx[0,T] x R® = R is measurable and satisfies

Li(le — 2| + ]y —y'| + 1z = &),
(Ky+ L) (1 + |2| + |y[ + [2]). (36)

If(w, t,z,y,2) — flw, t, 2’y 2" <
|f(wat)x7yvz)| S

Then for any p > 2,
(i) ElYt, [P+ ZE [, 1 [Ys P22 2A[B"]s < C(1 + |2|0FP), m =0,..,n

(ii) Esupy,, cocrp Yo [P < O(1+ [aPoF1P),

P
(iii) E(f(tij] |Zsfl2d[B”]8) * <O+ |z|®otDPY for some constant C' = C(T, f,g,p,po, b, o).

Proof. (i) By Itd’s formula (see [0, Theorem 4.57]) we get for p > 2

Nool? = WP p [ e NP dB b [ YN X Yo 2 )BT,

— > Y = Y P = Y Y [P = Y] (37)
SE(tm,T]

Following the proof of [3, Proposition 2] (which is carried out there in the Lévy process setting but
can be done also for martingales with jumps) we can use estimate

— > Y Y P =Y Y P2 = Yo ) < = D (Y P2(Ys = Y )?
SE(tm,T] SE(tm,T]

where 7, > 0 is computed in [17, Lemma A4]. Using our setting we have

= D Y = Y P = pY o Y P72 (Y = Y )]

SE(tm,T]
n—1
< = O IV PR (F(tegrs Xy Yo, Ze )b — Ziy, Vheg)?
k=m
= _pr h (t T] ‘Ys* ‘p_2f2(37 Xs* 9 Ys* 9 Zs* )d[Bn]S - 7}7 /( ’Ys* |p—2 ’ZS* ‘Qd[Bn}S

42 [ NP X Y 22, (B~ BI)[B.

)

Hence we get from (37)

Ye, [P < [P —p/ ]YS—!YSf P~*Z,-dB! +p/ Yoo |Y oo [P35 (s, Xy, Yo, Zy- )d[B"s

m oy

[ Y PRz PdlBY,
(tm,T]

$20 [ NP X Yo 22, (B — B )[BY..
(tm

)
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From Young’s inequality and (36) we conclude that there is a ¢/ = ¢/(p, K¢, Lf,7y,) > 0 such that
PIY = [P (s, X, Yor  Zo ) S IV P2Z0- 2 4 ¢ (U4 X [P+ Y- P)
and for vVh < m we find a ¢’ = ' (p, Ly, Kf,7p) > 0 such that

29 VAIY - P21 (5, X, Yor , Zo I Zg | S Y P21Z6 [P 4 ¢ (L4 X P Y- 7).

Then for ¢ = ¢ + ¢’ we have

N

Y, Y. [P2Z, dB" +c / 1+ [Xoo|P + Yoo [PA[B™,
(tm 7]

my

-% Yo~ [P721Z5-[d[ B (38)

(m7

By standard methods, approximating the terminal condition and the generator by bounded func-
tions, it follows that for any a > 0

2

E sup |Ys]* <oo and E(/ ZS\Qd[B”]S> < 0.
(tm.

tm <s<T'

Hence f(tmT] Y, |Y - |P72Z,-dB" has expectation zero. Taking the expectation in (38) yields
E|Ys,, [ + %"E/ Yo~ [P72|Z5-[d[B"])s < IE|€"|”+6E/ L+ X" + [Yo- Pd[B"]s. - (39)
(tm,T] (tm,T]

By Gronwall’s lemma and the polynomial growth of z +— E|{"|P, and x — E f(tm,T] 1+|X,- [Pd[B"]s,

Hth”p S C(Tv f7gap7p07b7 U)(l + ’x|p0+1), m = O, ceey 1,

and inserting this into (39) yields
1
(E/ Y- P22, PAB") < (T, £ g.p.po, b o) (L + [P ), m=0,.n - 1.
(tm,T)

(ii) By the inequality of BDG and Young’s inequality we derive from (38) that

E sup [Y,-|P
tp<s<T
2
< EIE"P +C()E ( / |Ys-|2p—2|zs-|2d[3”]s> FeB [ 1 X Y PdBT,
(tk, tk,
%
< BEP+E [ 14X PAB) + CRIE | sup |Ys’5</ |Ys|p2|zsrzd[3"]s>]
(tk,T) tp<s<T (tg,T)
B [ Y, (B,

(tva]

<

B+ B [ 1+ X, P+ COIE [ NP2z PdlBY),
(tx,T) (tx,T)

+E sup [Yo- [P(3+ (T —ty)).
tp<s<T
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We assume that h is sufficiently small so that we find a tj, with ¢(T — t;) < 7. We rearrange the
inequality to have Esup;, . <7 |Ys-|? on the Lh.s., and from (i) we conclude that

E sup [V, < 2BEP+2E [ 14X, P +2CE [ Y, Pz, B,
tp<s<T (T (kT
< C(T,f,9,p,p0,b,0)(1 + [2] FDP).

Now we may repeat the above step for Esup;, . <, [Ys-|P with c(ty, — t7) < % and " = Yp
replaced by Yy, , and continue doing so until we eventually get assertion (ii).
(iii) We proceed from (35),

sup ‘/ Z,-dB?
k<e<n ' J(te,T]

so that by (36) and the inequalities of BDG and Holder we have that

D
B, 2 Pel")’

< CO)(EIEPHE swp [Yol) +Clo Ly KE( [
k<t<n (t

o

Com(ler s s Yol 4| [ fs X Yo 2o )dIBY,
k<t<n (t3,T]

k>

p
L X[ 4 Y- d[B"]s>
1]

+C(pa Lvaf)(T_tk)%E (/(t |Zs—|2d[Bn]s>2 .

k7T]

ya
2

Hence for C(p, Ly, K;)(T — t;)2 < § we derive from assertion (ii) that

P
E(/ |Zs*|2d[3"]s) * < O(T, f.9,p. o, b,o)(1+ |z|PotDP),
(tle]

Step 3 Applying Lemma 4.6 to (33) and (34) we see that for all m =0, ...,n we have

[ (s )| = Vet < (B(YE)2)2 < e(T, £,9,p0,b,0) (1 + 2]+

and
[0 (b, )| < (B(D, Y™ )2)3 < o(T, £, g, po, b, o) (1 + o).

Our next aim is to show that ul, (tm, ) satisfies (5). We first show that u?, (¢, ) has polyno-
mial growth. We introduce the BSDE which describes ul,(tm, ) and denote for simplicity

f(t,x1,z0,23) := f(t,z,y,2) and D% := 91929 with a:= (iy,%s,73)

17273

and consider
Y = ¢"(X7)(0:X7)* + ¢'(X7)02 X7

+ S (D) (s KT Y, 20 ) (0, X ) (0, ) (0, 20 (B,
(tmT] ef0,1,2)8
i1+ig+iz=2

¥ S (D) (s, X0 Y, 20 ) (@2X T @2V ) (0220 Y dl BT,
(tm.T) ac{0,1}3
i1+ig+iz=1
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— / 927" dB". (40)
(tm.T]

We denote the generator of this BSDE by f and notice that it is of the structure

A

flw, t,z,y,2) = folw,t) + fi(w,t)z + folw, t)y + f3(w,t)z.

with f1, f2, f3 bounded and E([; 7y fo(s7)d[B"]s)? < co. We put
En i (XD (0. X0 + g/ (XP)O2X.

Denoting the solution by (Y, Z) we get for C(f3)(T — tp) < 3 that

~ 1 A
BN, P+ 5B [ (2 PdBn),

(tm,T]

N 2 ~ ~
< CBEPrE([  WGOMB) FE [ R PaBT) )

ms

Now we derive the polynomial growth of E|¢"[2 from the properties of ¢’ and ¢”, and that of

E(ft,. 1 [ folw, s)|d[B, B"],)? from the previous steps. Indeed, Esup,, <7 |0, X" [P having poly-
nomial growth is well-known under our conditions, for Esup; _s<7[0,Y," [P we have shown this

2
in Lemma 4.6-(ii), and for E(f(tij] |axZ;g|2d[B”]s) we use Lemma 4.6-(iii). Then Gronwall’s

Lemma implies polynomial growth of \?E;’ix = Uz (tm, T).

Finally, to show that ul,(tm,x) satisfies (5), one uses (40) and derives an inequality as in
(41) but now for the difference 8%3@:;’%@ — agytjfm@. Here one needs to exploit that moments of
XnYyn 7" 0, X", 0,Y™ and 92X ™ satisfy (5) (with a = 1) (which easily follows by the mean value
theorem if one uses the representation of the processes Y™ and Z" by the help of u™) and one also
needs that

b

E(/ 0,27 — 9, 2T 2d[BM )" < C(1+ [aPP + [2PP0)|w — 2, p>2.
(b, T]

The latter estimate one gets similarly as that in Lemma 4.6-(iii) if one considers the BSDE for the
difference 9, Y, — 9,Y,""™" instead of (34) itself. The result follows then from the estimate of
E|mtm:t — £mtm¥|2 and Gronwall’s lemma. O

5 Technical results and estimates

In this section we collect some facts which are needed for the proofs of our results. We start with
properties of the stopping times used to construct a random walk.

Lemma 5.1 (Lemma A.1 [5]). For all0 <k <m <mn andp >0, it holds for h = % that
(i) Bty = kh,
(ii) Eln[P < C(p)h?,

(iii) B| By, — By, [ < C(p)E|mi — tlP < C(p)(teh)*.

The next lemma lists some estimates concerning the diffusion X and its discretisation.
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Lemma 5.2. Under Assumption 2.1 on b and o it holds for p > 2 that there exists a constant
C =0C(b,o,T,p) >0 such that

(i) BIX7Y = X3 < C(ly — P + s —t]2), z,y€R, s,t€0,T),

tr, ¢ P
(ii) Esupﬂ/\tm<r<7‘l+1/\tm |Xt,}:+r_Xt:ant [P<Chi, 0<k<n,0<l<n—k—-1,0<m<n—k,

(iii) BIVX5Y — VXL P < C(ly— P+ |s — t]2), z,y€R,s,tel0,T]
(iv) Esupycic,, [VXLHTT<C, 0<k<n, 0<m<n-—Fk,

(U) I~E|X::ftm B X‘::fﬂ'm|p < C(|.13 - y|p + hg)? 0< k =n, 0<m<n-— k?

(vi) E|VXM, — VAL P <Oz —yP+hi), 0<k<n 0<m<n-—k

Te+Tm

Proof. (i): This estimate is well-known.
(ii): For the stochastic integral we use the inequality of BDG and then, since b and o are bounded,
we get by Lemma 5.1 (ii) that
E sup X _ Xler P
B A <P <1 A ‘ t+r tk‘i’Tl/\tm‘
< CONIEEN = 7l + o |&E i = 7]2) < C(b,0,T, p) b,
(iii): This can be easily seen because the process (VX;¥),¢[s 1) solves a linear SDE with bounded
coefficients.
(iv): The process solves (44). The estimate follows from the inequality of BDG and Gronwall’s
Lemma.

(v): Recall that

)Egcffm _chift’y _y+/ tk+7“ Xntk’y)d[Bn,Bn]r-i- o (tk—i—’l" X”tk’y)dB"

and
tm tm
X = +/ bty + 7, X{EL) d7’+/0 oty + 7. X5 0,)dB,.

To compare the stochastic integrals of the previous two equations we use the relation

) m 1
t b b »
/(Ot oltn o X )aBy = / o (thsrst, X)L 5 (r)dB,

We define an ’increasing’ map i(r) := t;11 for (¢;,¢;41] and a ’decreasing’ map d(r) := t; for (¢;, t;41]
and split the differences as follows using Assumption 2.1-(iii) for the coefficient b

i vty |P
E‘ tk: +im th +tm ’

_ [tm R _
< Op) (Jo ol + B [ = i)+ 10k = Kb+ ) — kil Pr)

_ ftm _
C(p)E| o(te +r, X} )dBr P

tim AN Tm

(p)E| 0 (thsir1s Xiy o)z, 7, (1) d B[P
tim ATm l 0
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_ tmATm m—1 5
p)E| /0 oty +r, Xi85) = D o(terisn, X055, (1) d B[P, (42)
=0

We estimate the terms on the r.h.s as follows: by standard estimates for SDEs with bounded
coefficients one has

P
2

- tm ~
IE/O = i(r)[E + [ XIS — XI5, Pdr < C(b,o, T, p)ht.

By the BDG inequality, the fact that ¢ is bounded and Lemma 5.1 we conclude that

p

n,tg,
Z o (tpsir1, X tw y)l(fhml](?“)dBr

tm ATm 1=0

E —|—IE

tm
/ oty + 7, X;0.)dB,
t

mATm

< C(0,p)||o B ElFim — tm|? < C(o,p)(tmh).

Finally, by the BDG inequality

p

tm ATm ' m—1 y
kT n,tl,
‘/ oty +r, th-i-r 2 : o (trtir1, X tk+z )l(ﬁflﬂ](r)dBT
=0

R 22 koYY |2 %
S (/ Z ‘O- tk + T th:l-’l’) (tk+l+1’th7+l7 )‘ 1(‘7‘[,‘7’[+1](T)d,r>
~ Ti+1N\tm ;
= E( 2 /”/\t i1 =t 2 + 17— |2+ (X80 — X(00 0, P
TIN\lm
|th7 _Xn tk,y|pd
tr+7 At it r
- 1 N .
< C T (hg max (E|7 — 1]P)2 max (E su Xter _ fte 2p\ 2
> (Ja b, ) + 1§l<)7(n( ‘Tl l| ) + 0§l<)7(n( %l/\tmgrgg—l+1/\tm’ tp+r tk+TlAtm| )

m—1
" lg,x tkvy = =
+E Z |th+Tl/\tm - th (Tl+1 - Tl))-
1=0
; = = s tk, \tksY ;
Moreover, since 7;41 — 7; is independent from \thJrTlAtm X3P we get by Lemma 5.1-(i)

m—1

i i, i

E Z Xt:Jrn/\tm chﬁ y’p(TlH —7)
=0

m—1
~ o o
= E ‘Xt:Jrn/\tm - Xtij YIP(tip1 — 1)
=0
~ tk, N , i,
< o(Tp)(E /O X — X0 [Pdr+ max < EIX) G, Xt 7).

Using Lemma 5.1 one concludes that E|X:k#n P f:;t P < C(b,o,T,p)h. Then (42) combined
with the above estimates implies that

BIX{Ef, — K0 < oo ) (ol B [ 1)~ X ). a9

Then Gronwall’s Lemma yields

p
B[ X, — XY [P < Ob,o,T,p)(|z — ylP + hi).
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Notice that if we use the relation (43) for k = 0 we get
E|X,, — X' |P = E| X" — X2 < C(b,0,T, p)hf.

(vi): We have

VXL = 1+ o] bt + 7, X[V )V XY d[ B, BT,
+ /( Ny }Ug;(tk +r, XV XY B (44)
and
VXL =1+ Otm by (t + 7, Xy 0 ) VX dr + / " ot + 1, X0 ) VX dB, (45)

We may proceed similarly as in (v) but this time the coefficients are not bounded but have linear
growth. Here one uses that the integrands are bounded in any L,(PP). O

Finally, we estimate the difference between the continuous-time Malliavin weight and its dis-
crete-time counterpart.

Lemma 5.3. Under Assumption 2.1 it holds that

’th — XT}CP + h%
(tm — t)?

E|N o(ty, Xt,) — N2 0 (tgg1, X )|? < C(b,0,6,T) , m=k+1,..,n

Proof. For NZ'™ and Nj* given by (10) and (14), respectively, we introduce the notation

St 1 tm—k ~ SN TE 1 Tm—k
Ni*o(ty, Xy,) =: 7/ ay+sdBs and Nz ™o(tgyq, Xn) = —— Tk+SdB
m—k JO tmn—k Jo
with
. ~tk7th U(tk7 th) Tk:’XTk U(tk+17 XTk)
Atyts = vth+5 tk7th and a‘rk"'s : Z V. Te+To—1 NTk,XTk SE€(To—1,Te]"

o (trte, X 15,1 )
By the inequality of BDG,

(tm — e EIN 0 (b1, X1,) — N2 (b, )P

7

[0 tm— k]m(TZ 177-6}

~ tm—k ~ ‘mek
< CE‘/O aty+sdBs —/0 aZys
~ m—kNTm—k 2 ~ &) 2
< CE/O (aty+s — az, 1) ds‘f‘E/O 5, 4517 ptn] (8)dS
n
+E 0 (a7k+5) 1(tm7k77:mfk}(8)ds
m—k B A % _ L
< C Z ( Sup |atk+8 - a2k+’?z| > (E|7:€ - 7‘:€—1|2)§
=1

4 | T 4 : " 2,2
+ sup fag, 15" +E max ‘a7k+re| (Eltm—k — Tm—k|")2-
se[o ton—k] 1<e<m
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The assertion follows then from Lemma 5.1 and from the estimates

E sup lat, +s — a?}d_ﬁj4 <C(b,0,T,0)(| Xy, — ch|4 + h) (46)
S€[0,tm —k]N[Fe—1,7]
E sup fagys|' +E max ol |* < 2|00 (47)

s€ [Ovtmfk]

So it remains to show these inequalities. We put

Ktk e U(tk‘7 th) and Rnﬂ—k L 0<tk‘+17 X7k>
t+s tk,th Tk""%f—l T "’Tky-)(‘rk

oty + s, X, 0 *) o (tite, X vz, )

and notice that by Assumption 2.1 both expressions are bounded by ||o||cd 1. To show (46) let us
split at,+s — a7, 45, in the following way:

tk’Xt tkyXi tk:7Xt g
n . k k k k
atk+5 - a7k+7:g - tk+S(Vth Vth+tg,1) Vth+tg 1(Ktk+s Ktk+t[,1)
tr tk:rth NTanTk TkvXTk tr -1, Th
Ktk-‘rt[ 1(vth+tg 1 VXTk-f—i'g_l) + VX Te+To— 1(Ktk+tg 1 K’T'k-‘r"f'g_l)'
Then
~ tk,ka tk,th 4
E ) sup | tk+s(VXt Vththg,l)‘
SE[Tr_1 Nty — ko, Te Nt — 1]
< lolli R VX VXN A< O(b 0, T, 0)h
< olls sup ‘ tre+s trtto_ | (b, 0, )

SE[%Z_lAtm_kﬂ:[/\tm_k}

since one can show similarly to Lemma 5.2-(ii) that
= St X £, X
E sup VX, o0 = VX k[P < Cb,o, T, 6)h.
SE[Fe—1 N bk, Te N — 1]

g, X1,

Notice that VX, and V??TT:L’XT’“ solve the linear SDEs (45) and (44), respectively. Therefore,

N tk,Xt =~ 5Tk Xr
E kIP < T E X7 TRIP < T, p). 4
SE[(S)};’S—I@] ‘V tets ’ C(b 7 p> and Ogrl%aw}z(—k ’V To+Tk ’ = C(b’ o ,p) ( 8)
We get
. t X -t
E - tsup . |v :-y-t;lil(Ktk—i-s Kt:+tef1)’4
SE[Tr—1A\bm—ksTe Nt — k]
th, X 1 th, X thy X 1
< C(o,8)(EIVX, Lyt )7 (E sup (fte = sI* + [ Xy ks = Xp 20t [F)2

SE[%g_l/\tm_k,’?g/\tm_k]

< C(b,0,6,T)h.

For the third term Lemma 5.2-(vi) implies that

1k "tk:th ~Tk7XTk
E|Ktk+tg (VX St - VA

Tr+To—1

)< Cb,o,T)||o)| 2674 (| X, — Xr|* + h).

The last term we estimate similarly to the second one,

B[V (Kl — K27 DI
< Clo,O)(EIVATE [8)3(|Xy, — X o + BT — XE0E [9)
< CO(b,o,T,0)(| Xy, — Xr, |t + h).
To see (47) use the estimates (48). O
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