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MEAN SQUARE RATE OF CONVERGENCE FOR RANDOM WALK AP-
PROXIMATION OF FORWARD-BACKWARD SDES
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Abstract

Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs
a random walk B™ from the underlying Brownian motion B by Skorohod
embedding, one can show Ls-convergence of the corresponding solutions
(Y™, Z"™) to (Y,Z). We estimate the rate of convergence in dependence of
smoothness properties, especially for a terminal condition function in C*¢.

The proof relies on an approximative representation of Z™ and uses the concept
of discretized Malliavin calculus. Moreover, we use growth and smoothness
properties of the PDE associated to the FBSDE as well as of the finite difference
equations associated to the approximating stochastic equations. We derive

these properties by probabilistic methods.

Keywords: Backward stochastic differential equations; approximation scheme;

finite difference equation; convergence rate; random walk approximation
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Secondary 60H30
1. Introduction

Let (Q,F,P) be a complete probability space carrying the standard Brownian motion B =
(Bt)t>0 and assume that (F;);>0 is the augmented natural filtration. Let (Y, Z) be the solution
of the forward-backward SDE (FBSDE)

stx—i—/ b(r,XT)dr—i—/ o(r, X, )dB,
0 0

T T
Y, = g(Xr) —i—/ for, X, Y, Z,)dr —/ Z,dB,, 0<s<T. (1)
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Let (Y™, Z™) be the solution of the FBSDE if the Brownian motion B is replaced by a scaled

random walk B" given by

[t/h]
By =vh» &, 0<t<T, (2)
i=1
where h = % and (g;)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Then (Y™, Z™)
solves the discretized FBSDE
X' =g+ / b(r, X )d[B"], + / o(r, X )dB},
(0,s] (0,s]

Yr—gxp)+ [ fnXPY, 20 (B, - / 20 BT 0<s<T.  (3)
(5,7 (s,T)

The approximation of BSDEs using random walk has been investigated by many authors, also
numerically (see, for example, [5], [25], [29], [31], [32], [33], [16]). In 2001, Briand et al. [5]
have shown weak convergence of (Y, Z™) to (Y, Z) for a Lipschitz continuous generator f and
a terminal condition in Lg. The rate of convergence of this method remained an open problem.

Bouchard and Touzi in [7] and Zhang in [11] proposed instead of random walk an approach based

on the dynamic programming equation, for which they established a rate of convergence. But this
approach involves conditional expectations. Various methods to approximate these conditional
expectations have been developed ([23], [17], [14]). Also forward methods have been introduced
to approximate (1): a branching diffusion method ([26]), a multilevel Picard approximation ([40])
and Wiener chaos expansion ([6]). Many extensions of (1) have been considered, among them
schemes for reflected BSDEs ([3], [13]), high order schemes ([10], [9]), fully-coupled BSDEs ([18],
[8]), quadratic BSDEs ([12]), BSDEs with jumps ([22]) and McKean-Vlasov BSDEs ([1], [15], [11]).

The aim of this paper is to study the rate of the Lg-approximation of (Y}, Z}") to (Y%, Z:)
when X satisfies (1). For this, we generate the random walk B™ by Skorohod embedding from
the Brownian motion B. In this case the L,-convergence of B" to B is of order hi for any p > 0.
The special case X = B has already been studied in [21], assuming a locally a-Holder continuous
terminal function g and a Lipschitz continuous generator. An estimate for the rate of convergence
was obtained which is of order h% for the Lo-norm of Y;» —Y;, and of order \/’}%—_t for the Lo-norm

of Z1" — Z,.

In the present paper, where we assume that X is a solution of the SDE in (1), rather strong
conditions on the smoothness and boundedness on f and g and also on b and o are needed. In

Theorem 3.1, the main result of the paper, we show that the convergence rate for (Y;*, Z}') to
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(Y:, Z1) in Lo is of order hilNg provided that ¢g” is locally a-Holder continuous. To the best of our
knowledge, these are the first cases a convergence rate for the approximation of forward-backward

SDEs using random walk has been obtained.

Remark 1.1. For the diffusion setting — in contrast to the case X = B — we can derive the
convergence rate for (", Z") to (Y, Z;) in Lo only under strong smoothness conditions on the
coefficients which include also that ¢” is locally a-Hélder continuous (see Assumption 2.3 below).
These requirements appear to be necessary. This becomes visible in Subsection 2.2.2 where we
introduce a discretized Malliavin weight to obtain a representation Z™ for Z™. While it holds that
Z" = Z" when X = B, in our case Z™ does not coincide with Z". However, one can show that
the difference Z{‘ — Z}' converges to 0 in Lo as n — oo using a Holder continuity property (see
(62) in Remark 4.1) for the space derivative of the generator in (3). For this Holder continuity
property to hold one needs enough smoothness in space from the solution u™ to the finite difference
equation associated to the discretized FBSDE (3). Provided that Assumption 2.3 holds we show
the smoothness properties for u™ in Proposition 4.2 applying methods known for Lévy driven

BSDEs.

The paper is organized as follows: Section 2 contains the setting, main assumptions and the
approximative representation Z™ of Z™. Our main results about the approximation rate for the
case of no generator (i.e. f = 0) and for the general case are in Section 3. One can see that in
contrast to what is known for time discretization schemes, for random walk schemes the Lipschitz
generator seems to cause more difficulties than the terminal condition: while in the case f = 0 we
need that ¢’ is locally a-Holder continuous, in the case f # 0 is this property is required for ¢”. In
Section 4 we recall some needed facts about Malliavin weights, about the regularity of solutions
to BSDEs and properties of the associated PDEs. Finally, we sketch how to prove growth and
smoothness properties of solutions to the finite difference equation associated to the discretized
FBSDE. Section 5 contains technical results which mainly arise from the fact that the construction
of the random walk by Skorohod embedding forces us to compare our processes on different 'time
lines’, one coming from the stopping times of the Skorohod embedding, and the other one is ruled

by the equidistant deterministic times due to the quadratic variation process [B™].
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2. Preliminaries

2.1. The SDE and its approximation scheme

We introduce
t t
Xi=x +/ b(s, Xs)ds +/ o(s, Xs)dBs, 0<t<T
0 0

and its discretized counterpart

k
XP=x+h) bt;, X[ —i—\/—z oty X1 g, ti=4L, j=0,..,m, (4)

j=1
where (€;)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Letting G := o(e; : 1 <
i < k) with Gy := {0,Q}, it follows that the associated discrete-time random walk (B});_ is
(Gr)}_p-adapted. Recall (2) and h = L. If we extend the sequence (X' )r>0 to a process in
continuous time by defining X" := X[* for t € [tg,tx+1), it is the solution of the forward SDE (3).
We formulate our first assumptions. Assumption 2.1 (i) will be not used explicitely for our

estimates but it is required for Theorem 4.1 below.

Assumption 2.1.

(i) b,o € 05’2([0, T] x R), in the sense that the derivatives of order k = 0,1,2 w.r.t. the space

variable are continuous and bounded on [0,T] x R,

(ii) the first and second derivatives of b and o w.r.t. the space variable are assumed to be y-Hélder
continuous (for some y € (0,1], w.r.t. the parabolic metric d((t, z), (£, 2)) = ([t—t|+|z—z|2)2)

on all compact subsets of [0,T] x R.
(iii) b,o are %—Hélder continuous in time, uniformly in space,
(iv) o(t,z) > d > 0 for all (t,x).
Assumption 2.2.

(i) g is locally Holder continuous with order o € (0, 1] and polynomially bounded (po > 0,Cy >

0) in the following sense
(@, 7) €R?, |g(x) — g(@)| < Co(1+ [ + [2[™)] — 7| (5)
(ii) The function [0,T] x R® : (t,z,y,2) — f(t,z,vy, 2) satisfies

[f(t2,y,2) = f(,2,9,2)] < Ly(VE—t+ o — 2| + |y — gl + |2 - 2. (6)
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Notice that (5) implies
l9(x)] < K1+ |z[**) = ¥(z), z€eR, (7)
for some K > 0. From the continuity of f we conclude that

Ky := sup |f(¢,0,0,0)] < oo.
0<t<T

Notation:
e 1l =l llz,e) for p> 1 and for p = 2 simply || - .

e If a is a function, C(a) represents a generic constant which depends on a and possibly also

on its derivatives.
[ ] Eo)m = E(|X0 = JJ)

o Let ¢ be a C%1([0,T] x R) function. ¢, denotes 9, ¢, the partial derivative of ¢ w.r.t. z.

2.2. The FBSDE and its approximation scheme

Recall the FBSDE (1) and its approximation (3). The backward equation in (3) can equivalently

be written in the form

n—1 n—1
Y =gXP) +h Y ftme, X2 Y2 Z0) = VR Y 2 em, 0<k<n,  (8)
m=Fk m=k

if one puts X' := X7 | Y": =Y/ and Z]' := Z for r € [ty tmy1)-

Remark 2.1. Equations (3) and (8) do not contain any orthogonal part to the random walk B™
since we are in a special case where the orthogonal part is zero. Indeed, for (ex)x=1,... » following
the Rademacher law assume (Gy, := o(eg;,4 = 1, -+, k)) as filtration, and let for the G,-measurable

random variable F'(e1,...,&,) hold the representation

F(El, ...,En) =c+ Z hm&m + N,

m=1

where (A, )yy,—; is predictable and (N, );,—; a martingale orthogonal to (B} )5 _, given by B’ =
Vh(e1 + ... + £,). By definition, orthogonality of the martingales N and B™ means that their

product is a martingale, i.e. we have

E[Nes1B?  |Ge] = Ny B?

trt1 [

and since Ny, Bf! = E[Nj11B}. |G|, this implies especially that ENg 16,41 = 0. Assume Ny is
given by N1 = H(eq,...,ex+1). Then 0 = EH (e1, ..., €k41)Ek+1 = %[H(sl, s €y L) —H (81, ooy ks

-1
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implying that Nyy; is Gg-measurable since H(eq,...,ex,1) = H(e1,...,ek, —1), and therefore the

martingale (Ny,)» _, is identically zero. (See also [5, page 3] or [34, Propositionl.7.5].)

One can derive an equation for Z" = (Z[Z)Z;é if one multiplies (8) by er4+1 and takes the

conditional expectation w.r.t. Gy, so that

EY (9(XP)ers1) | g
zp = A B (VROY D ftnrn, XTL YL 20 ek |, 0<E<n—1,(9)
\/ﬁ m=k+1 T "

where EY := E(:|Gy).
Remark 2.2. For n large enough, the BSDE (3) has a unique solution (Y™, Z™) (see [36, Propo-

sition 1.2]), and (Y;*

ty =

Z} )z is adapted to the filtration (Gr)i -

2.2.1. Representation for Z We will use the following representation for Z, due to Ma and Zhang
(see [30, Theorem 4.2])

T
Z, =y (g(XT)N; +/ f(s, X4, Vs, ZS)N;ds> o(t,X;), 0<t<T (10)
t

where E; := E(-|F;), and for all s € (¢,T], we have (cf. Lemma 4.1)

1 8 VX
Nt = s dB, 11
5 s—t /t o(r, X, )VX; ’ (11)

where VX = (VX)cjo,7) is the variational process i.e. it solves

VX, = 1+/ bx(r,XT)VXTdr—i-/ oo (r, X, )V X, dB,, (12)
0 0

with (Xs)seo, 7 given in (1).

Remark 2.3. In the following we will assume that ¢” exists. In such a case we have the following

representation for Z:
T
Zi =B | ¢/(Xr)VXr +/ F(s, X0, Yo, Z)Ntds | o(t, X3), 0<t<T. (13)
t

2.2.2. Approxzimation for Z™ In this section we state the discrete counterpart to (10), which, in
the general case of a forward process X, does not coincide with Z™ (given by (9)). In contrast to

the continuous-time case, where the variational process and the Malliavin derivative are connected

by VX _ DXy

X T oG XD (s < t), we can not expect equality for the corresponding expressions if we use

the discretized version of the processes (VX;); and (DsX;)s<; introduced in (15). This counterpart

Z™ to Z is a key tool in the proof of the convergence of Z" to Z. As we will see in the proof of
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Theorem 3.1, the study of || 2}, — Z;, || goes through the study of || Z] — ZAZZH and ||ZA& — Zi |-

Before defining the discretized version of (VX;); and (DsX;)s<t, we shortly introduce the

discretized Malliavin derivative and refer the reader to [4] for more information on this topic.

Definition 2.1. (Definition of T, T . _ and DI.) For any function F : {—1,1}" — R, the

m,+? m,—

mappings T, , and T, _ are defined by

m,+

T

aF(er,. o en) = Fler, .. eme1, £ €my1, - -5 En), 1<m<n.

For any £ = F(e1,...,&,), the discretized Malliavin derivative is defined by

Eléem|o((er)ieqa,... n1\{m})] T, &-T,. &
Vh 2vh

Definition 2.2. (Definition of ¢;(Ek’l).) Let ¢ be a C%1([0,T] x R) function. We denote

D& = 1<m<n. (14)

Dr(t, 1
gUoD = mil—“ ;:/ Gu(t1, 9T, . X'+ (1 =0T, _ X[ )do.
Dk th—l 0 Y
If D X{. | # 0 the second ' :=" holds as an identity.
We are now able to define the discretized version of (VX); and (DsX¢)s<t.
Definition 2.3. (Discretized processes (VX"’ ek, and (DEX] Vpck, . .ny.) For allm

in {k,...,n} we define

ti—1 ti—1 ti—1 ti—1
I=k+1 I=k+1

VXPET =14 h Y by(ty, X)) VXS T 1 VR Y oyt X[ VX T, 0<k <n,

DIXP =o(ty, X' ) +h Z bFIDEX]  +Vh Z BD(DRXT e, 0<k <n. (15)
I=k+1 I=k+1

Remark 2.4. (i) Although VX it is not equal to %, we can show that the differ-
X7

ence of these terms converges in L, (see Lemma 5.4).

(ii) With the notation introduced above, (9) rewrites to

z; = Ef (Dia9(X3) +EY <h > DZHf(th,Xfm,Yt’;,me))- (16)
m=k+1

In order to define the discrete counterpart to (10), we first define the discrete counterpart to
(Nst)se[t,:r] given in (11):

n tk,X

m7 tffn 1 ) 4 k

Nt = vh Z

m= k—i—l
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Notice that there is some constant Ko > 0 depending on b, o, T, § such that

n, 3 7%2
(BF Vg™ 2)2§m7 0<k<l<n (18)

Definition 2.4. (Discrete counterpart to (13).) Let the process Z™ = (Z” )iZy be defined by

Zp = EJ (Di19(Xp)) +Eg< Z fmer, XY 2T, )N"t’“> otk Xy,),  (19)
m=k+1

Remark 2.5. In (19) We could have used also the approximate expression EY (g(X%)N;:tk o(tks1, Xi7)),

but since we will assume that ¢” exists, we work with the correct term.

The study of the convergence Eg 220 — ZAZ}C |2 requires stronger assumptions on the coefficients

b, o, f and g.

Assumption 2.3. Assumptions 2.1 and 2.2 hold. Additionally, we assume that all first and
second derivatives w.r.t. the variables x,y, z of b(t,x), o(t, z) and f(t, z,y, z) exist and are bounded

Lipschitz functions w.r.t. these variables, uniformly in time. Moreover, ¢' satisfies (5).
Proposition 2.1. If Assumption 2.3 holds, then
Ef |20 — 231 * < Cy 1 P (2)h®,

where Egﬂz = E9(:|Xo = ), the function U is defined in (61) below, and Cy 1 depends on
b,O', fuguTa Po and 9.

Proof. According to [5, Proposition 5.1] one has the representations
Yyl =u"(tm, X{), and  Z7 =Dp qu"(tmi, X7 L), (20)

where 4" is the solution of the finite difference equation (43) with terminal condition u™(t,,x) =
g(w). Notice that by the definition of Dj}, | ; in (14) the expression Dy, ju™ (t+1, X{, ) depends

in fact on X' . Hence we can put

f( m+17X Yn Zgn) = f(thrleZ:naun(tma Xfm)vp;leun(thrlegn“))

= F"(tmy1, X{).
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From (19) and (16) we conclude that (we use E := Eg@ for ||- )
128, = Zi

n—1
E7 (h S DR St XY sz)

m=k+1

n—1
—EY (h > Fltman, XY 20 INP oty XT) ) H

m=k+1

n—1 m nstk, Xg,
h o(tir1, X )VX, k
<§ —§ E9| DR F™ (tygr, X2 DFF™ (1, X1 1 .
< P k k41 ( +1, ) ( +1 tm) (tg,Xt )
m=k+1 (=k+1 £—1

With the notation introduced in Definition 2.2 applied to F",

A, X1
o(tr, X ) VX,

to—1

U(tfan_;,l)

HDQHF (bt X0 ) = DY E™ (b1, X7 )

< |(Dpy X7 ) (Fm(ALmtD) _ praltmty)
(f xn )VXntk7 tk
F%(@,m-l—l) nooxn)_ (prxn k41 Aty tos
—i—H x (Dia Xe,) — (DY X)) e X7

= A1 + AQ.
For A; we use Definition 2.2 again and exploit the fact that

T FM(tma1, @) i= Op f (b1, @™ (ty ), DIy 0™ (g1, X4 07))

t7n+1

is locally a-Hoélder continuous according to (62). By Hlder’s inequality and Lemma 5.4 (i) and

(i),
Ay < [DP XD |l / | (b, 0T, X2+ (1= O)T,,, XD)

- Fﬁ(tm+1,19TL+Xfm =+ (1 - ﬁ)TleZlm)”‘ld’ﬂ S O(ba g, faga T,po)\if( )h%

For the estimate of A, we notice that by our assumptions the L;-norm of Fy' (Em+D) 4s bounded
by C'W2(z), so that it suffices to estimate
o(tr1, X2 )VX,
(PraXi,) — (DEXE) =
H i bm (tvat[ 1) 4
o xp ) - T X0 DEXY, DX
kA1 tm U(téan_;,l) U(tk+1,th) .
o(try1, X)) DP X VXn,tk,X;Lk 3 Dp Xi (21)
(tvat@ 1) fe U(fk+1=XtZ) 4
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The second expression on the r.h.s. of (21) is bounded by C(b,o,T,0)hz as a consequence of
Lemma 5.4 (ii)-(iii). To show that also the first expression is bounded by C(b,o,T,8)hz, we
rewrite it using (15) and get
DXt
U(tg,Xtrzil)
|<1+ oo b<lvl>h+a;4*l>\/ﬁal)>

n
1=0+1 tf’Xt/f olte, X, )

n n
lX k+1Xtm

te—1

X (U(tk-{-l,th Z Dpa Xi o, w“’“h—l—aé’““’”ﬁsﬂ)

I=k+2

l—1
- <U(tk+1aX < Z +Z)Dk+l g 1 (k+1)l)h+agk+l7l)\/ﬁal)>|

I=k+2 =.
< ’DZ—H xpr l(b;kJrl,l)h+Umk+1,l)\/ﬁgl)‘
morDpX
+ Z [ﬁ 1th LT 1th 1:| (b(x&l)h"'o';l’l)\/ﬁfl)
=1 LIV Pt
Xp [b(“)h—i—o(“\/—a (10 + 010 Ve, )H (22)
I=+1

We take the Ls-norm of (22) and apply the BDG inequality and Holder’s inequality. The second
term on the r.h.s. of (22) will be used for Gronwall’s lemma, while the first and the last one can
be bounded by C(b, 0, T)hz, by using Lemma 5.4-(iii). For the last term we also use the Lipschitz

continuity of b, and o, in space and Lemma 5.4-(i). (]

3. Main results

In order to compute the mean square distance between the solution to (1) and the solution to

(3) we construct the random walk B™ from the Brownian motion B by Skorohod embedding. Let
70:=0 and 7 :=inf{t >7_1:|B;— By_,|=Vh}, k>1. (23)

Then (B;, — By, ;)32 is a sequence of 1.i.d. random variables with

%
]P)(BTk - BTk—l = i\/ﬁ) = %a

which means that v/hey < B, — B;,_,. We will denote by E,, the conditional expectation
w.r.t. Fr,:= Gi. In this case we also use the notation A, := X for all k = 0,...,n, so that (4)
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turns into
k k
X =z + Y bty X Dh+ Y olt;,Xr, )(Br, = Br, ), 0<k<n.
j=1

j=1

Assumption 3.1. We assume that the random walk B™ in (3) is given by

[t/h]
By =Y (Br,—Br_,), 0<t<T,
k=1

where the 1, k =1, ...,n are taken from (23).
Remark 3.1. Note that for p > 0 there exists a C'(p) > 0 such that for all K =1,...,n it holds

o (tkh)F < (B|By, — By, ") 7 < C(p)(teh)¥.

The upper estimate is given in Lemma 5.1. For p € [4,00) the lower estimate follows from [2,
Proposition 5.3]. We get the lower estimate for p € (0,4) by choosing 0 < § < 1 and 0 < p < py
such that % = 1?%‘9 + p%. Then it holds by the log-convexity of L, norms (see, for example [35,

Lemma 1.11.5]) that

oo IBn = Bula o CA'(txh)i
HBTJC_BtkH;ly 92 B . B . 9 2
H Tk tkal

> (Cm)mm?)

Since for t € [tg,tg41) it holds By = B,, and ||B; — By, |lp < C(p)h?, we have for any p > 0 that

1
sup |[|B" = Byl = O(h7). (24)
0<t<T

Proposition 3.1 states the convergence rate of (Y, Z,) to (Y.*,Z}) in Ly when f = 0 and

Theorem 3.1 generalizes this result for any f which satisfies Assumption 2.3.

Proposition 3.1. Let Assumptions 2.1 and 3.1 hold. If f =0 and g € C' is such that ¢’ is a
locally a-Hélder continuous function in the sense of (5), then for all 0 < v < T, we have (for

sufficiently large n) that
EoolYs — V2 < CY | U(x)*h2,  and  Bo.|Z, — Z)* < C5 1 U(x)*h%,
where C?Yi.l = C(Cy,b,0,T,po,0) and €34 = C(Cyqr,b,0,T,po,0).

Theorem 3.1. Let Assumptions 2.3 and 3.1 be satisfied. Then for allv € [0,T) and large enough

n, we have
Eo,2|Yy — Y;;n|2 + Eo,2|Zy — Zﬁlz < 03.1\1,@)2]1%/\04

with C3 1 = C(b,0, f,9,T,po,0) and U is given in (61).
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Remark 3.2. As noticed above, the filtration Gy coincides with F,,, for all K = 0,...,n. The
expectation Eg , appearing in Proposition 3.1 and in Theorem 3.1 is defined on the probability

space (Q, F,P).

Remark 3.3. In order to avoid too much notation for the dependencies of the constants, if for
example only g is mentioned and not Cy, this means that the estimate might depend also on the

bounds of the derivatives of g.

From (24) one can see that the convergence rates stated in Proposition 3.1 and Theorem 3.1
are the natural ones for this approach. The results are proved in the next two sections. In both
proofs, we will use the following remark.

Remark 3.4. Since the process (X¢):>0 is strong Markov we can express conditional expectations
with the help of an independent copy of B denoted by B, for example E, g(X%) = INEg()E;’fXT’“)
for 0 < k < n, where

=T XT T X.,. STk, Xr ~ ~
A, . =4 + Z b J? Tgk 1 )h + Z U(tjv XTjk—l k)(B":j—k - Bij—k—l)’ (25)
Jj=k+1 j=k+1

(we define 7 := 0 and 7; := inf{t > 7;_1 : |B; — E;j71| = Vh} for j > 1 and 7, := 73, + 7oy, for
n > k). In fact, to represent the conditional expectations E;, and E,, we work here with E and

the Brownian motions B’ and B”, respectively, given by
B; = Bt/\tk + E(tftk)Jr and Bg/ = Bt/\rk + B(t,q.k)Jr, t>0. (26)

3.1. Proof of Proposition 3.1: the approximation rates for the zero generator case

To shorten the notation, we use E := Eg .. Let us first deal with the error of Y. If v belongs to

[tk;tr+1) we have Y,! = Y. Then
E|Y, - Y72 < 2E|Y, — Yo + El¥i, — Y7P).
Using Theorem 4.1 we bound ||Y, — Y;, || by
CY 1 U()(v = tx)? = C(Cy,b,0,T, po, 6) ¥ (x)(v — ty)

(since @ = 1 can be chosen when g is locally Lipschitz continuous). It remains to bound

n n ~tr, Xe ~ STk, Xr
ElY,, Y = E[E,g(Xr) - E,g(XP) = EEg(X," ") — Eg(Xn )%,

P po | BTN o)

By (5) and the Cauchy-Schwarz inequality (¥; := Cy(1 + |X

tr,

|]E (_th tk,th _ X’"’,T,XT,CD) S ( )E|th,th . X’::’XT,C|2'

n

Ty CRBg(XTP < (B(W|X,
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Finally, we get by Lemma 5.2-(v) that

[N
N[

1
B, - Yo < (BE(E)” (BEZ ™ - 27 1)7 < C(Cyob,0,T,po)B(a)*hE.

Let us now deal with the error of Z. We use || Z, — Z}'|| < | Z, — Zi, || + | Z¢,, — Z{.|| and the

representation

7= o (t, XOE(g' (Xp ) VEL™)
(see Theorem 4.2), where

Xbr = o4 / b(r, X;o*)dr + / o(r, Xp*)dB, s, 27)
t t

VXET = 1+/ ba(r, X;E@)vXﬁ@dH/ 0u(r, X0")VX5%dB, 4, 0<t<s<T.
t t

For the first term we get by the assumption on g and Lemma 5.2-(i) and (iii)

120 = Zull = llo(o, Xo)E(g' (X7 ) D X™) = o (b, X B9’ (X ) VX))
< oo, Xo) = o(te, Xe)[lallE(g' (X7 ) VX ™) la
ol By (X)X — B(g' (X7 )vXE )|
o oo [B(g’ (X7 ) VX S) — By (X7 ) VX))
< C(Cy,b,0,T,po)¥(x) [h% Xy — Xy, |4+ (EEW;,X,J B XtTk,th |4a)%

1
+(EIE|VX’%X” VX“"XM) }
< C(Cyyb,0,T,po)¥(x)h?.

We compute the second term using Z7} as given in (16). Hence, with the notation from Definition

2.2,

n tr, Xt Ste, Xt ~ ~Th Xy 12
120, — ZL 1P = Elo(ty, X, )Eg' (X0 ) VX, —EDpy (X7 ™)
Tl X 2
~ _ B ED XTk; Tk
< o2 E |B(g (XX yw ity - B s(in 7)
" " (tkvth>
5Tk X.,-

¢ = Dp X TTRN 2
||U||2 E‘E tk;XPk)VX:k,th)_E( (k+1,n4+1) “k+1"™n ‘
o (tk, Xt,)

n
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We insert :I:IE(gékH’nH)VX::’th) and get by the Cauchy-Schwarz inequality that

Tl » X
~ ~ - D XTk7 Tk 2
By (X)) vk, ) — B (gl n+1>% |
) k
tk th (k+1,n+1))2 tr, Xty (2 (k+1,n4+1)|2 b X, DZJrlXTk,XTk 9
< 2E|¢'(X, ) — 9 PE|VX," 7% | + 2E|g{ JPEIVX,” s e
’ k
(28)

For the estimate of IE|V)~(::’X”“ |2 we use Lemma 5.2. Since g’ satisfies (5) we proceed with

El (ka7ka) _ g;k+1,n+l)|2
1 2
< /O (X::)th)_g/(ﬁTk+1+X::7XTk+(1_19)Tk+1 X::)XT]C) dv
T, 5T 4a 3
< /(E\I/4 { ’Xt’“th IT, ., X (o)1, A }Qdﬁ,
0

where Uy := C, (1 + |th’X'k P 4 9T, , +)(T"’X*k +(1- 19)Tk+11722::’&k [P). For EW4 and
pu . a 4o
E ‘X::)er (19Tk+1 +XT:7XT’€ + (1 - 19)Tk+1 7XT:7X k)
af | gteeXe 57Xy, |4 af | gteeXe 57Xy, 1
< 8<192 E}X e x4 (1 )2 E’X eXu e )

< (b0, T)h* + C(b,0, T)(|Xe, — X [** +h%),

we use Lemma 5.4 and Lemma 5.2-(v). For the last term in (28) we notice that

EE[g( T4 < C(Cyr b, 0, T, po) ¥ ().

By Lemma 5.2 we have EE|V X" — VAP < C(b, 0, T, p)h%, and by Lemma 5.4,
n 5Tk, Xr p
EE |V — Dipadr, ™
" (tka th>
n, 7th Dn Xn P Dn Xn Dn Xn p »
< C(p)E }vxtnt" Fo T O(p)E | A ML | < C(b,o,T,p, )%,

U(thrleZZ) U(thrlaXtZ) (tkath)

Consequently, || Z, — Z]' |2 < C(Cy,b,0,T,po, 0)¥?(x)h*.

3.2. Proof of Theorem 3.1: the approximation rates for the general case

Let uw : [0,7) x R — R be the solution of the PDE (37) associated to (1). We use the
representations Yy = u(s, X;) and Z; = o(s, X5)uy(s, X;) stated in Theorem 4.2 and define

F(s,z) = f(s,x,u(s,x),0(s,x)uy(s,x)). (29)
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From (1) and (3) we conclude

1Ye, =Yl < NEq9(Xr) = Er g(X7)|l

T n—1
B, [ f(s, Xa, Ve, Z)ds — hBry Y f(tmyr, X1,V 27
t m=k

where Proposition 3.1 provides the estimate for the terminal condition. We decompose the

generator term as follows:

Etkf(saX87YS7 Zs) - Eka(tm+17XZlm7Y;Z7 Z);nm)
== [Etkf(sa XS7}/S; ZS) - Etkf(tvatmvnm5 Ztm)] + [Eth(tm7Xtm) - ETkF(tm7XZlm)]
+[ETkF(tm5X?m) - ETkF(tmaXtm)] =+ [Eka(tvatma}/tmvztm) - Eka(tmﬂLlaX?ma}/tZa Zzlm)]

=: di(s,m) + da(m) + ds(m) + ds(m).

We use

n—1

T
Etk / f(qusayvsqu)dS _hE‘rk Z f(tm-i-luXZLmuY;ZuZZlm)
ty

m=k
Z <‘ /:“ (s,m)ds +hZ|\d )

and estimate the expressions on the right hand side. For the function F defined in (29) we use

Assumption 2.3 (which implies that (5) holds for & = 1) to derive by Theorem 4.2 and the mean

value theorem that for z1, 29 € R there exist £ € [min{z1, 2}, max{x1,x2}] such that

|F(t,x1) — F(t,x2)| = |f(t,z1,ult,z1),0(t, x1)us(t, 1)) — f(t, z2, u(t, z2), o(t, T2)u.(t, 22))]
()
< C(Lf, 0') <1 + CiQ\I’(f) + (;{2—715);) |£L'1 - LL‘2|

|21 — 23]

< CO(Lg,c7,0,T)(1 + |z [Port 4 |ag|Pot?
(L4 ey T+ I PoH a2

(30)

By (6), standard estimates on (X;), Theorem 4.1-(i) and Proposition 4.1 for p = 2 we immediately
get

ldi(s,m)|| < C(Ly,CY 1, Cy1.b,0,T)U(x) bt

= C(b,0,f,9.T,po,0)%(x)h?.

For the estimate of ds one exploits

~n,t

th) EF( ijtm ko X tk)

tr,

Bty F(tm, Xt,,) = Erp F(tm, X7 ) = EF (0, X,
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and then uses (30) and Lemma 5.2-(v). This gives

lda(m)]| < C’(Lf,ci’.?’z,b,a,T,po)\IJ(:z)mhi.
For ds we start with Jensen’s inequality and continue then similarly as above to get
lds(m)| < IF (b, X2,) = F(tm, Xe, )l < O(Ly, €75, 0,0, T,po)‘l’(w)mhia
and for the last term we get
lda(m)ll < Ly(h® +|1Xe,, = X2 |+ 1Yo, = Y2 Nl + 1122, = 222 1)-
This implies
n—1
Ve = Y21 < CU@)RT + by 3 (Ve = Y + 120 = 22,1, (31)
m=k

where C' = C(Lf7 Cglv CZla 0415 6317.327 ba a, Tv pO) = C(b7 g, fv g, Ta Do, 5)

For ||Z;, — Z7. || we use the representations (13), (16) and the approximation (19) as well as

n,tg

Proposition 2.1. Instead of N, * we will use here the notation N7'™ to indicate its measurability

n

w.r.t. the filtration (F). It holds that
125, = Zull < N125 = ZE M+ 112 = 2

~ = nte, X
—EDZ_‘_lg(th rk)”

’. (32)

Co 1T (2)h3 + |o(t, X )Eg (X1 )W R 0

T
Etk f(S,XS,Y;,ZS)N‘;deO'(tk,th)

tht1

IN

.

n—1

~Erh Y flbmen, X7 Y0 20 NS o (b, X7
m=k+1

tht1
E., / F(5, Xa, Yo, Z)N ds oty X, )

tr

)

For the terminal condition Proposition 3.1 provides

tk;th Ntk;th ~"1tk1X;lk

- ~ P 2 AL 1
llo(tk, Xe, )Eg' (X, " )VX, 7 —EDp 1 9(X,, N < (C5.1)2¥(x)ha. (33)

We continue with the generator terms and use F' defined in (29) to decompose the difference
By, f(5, X5, Ye, Z)NFo(th Xo) = B f (bmar, X7, Y000 20 N TR0 (b, X))
= B f(s, X, Ve, Z)NFo (b, Xoy) = By f(bms Xes Y Ze, )N 0 (b, X )
+Ey, F(tm, X, )Nk 0 (th, Xo,) = B, F(t, X7 )N 0t X))
+Er, [[F(tm, X)) = F(tm, X4, )INZ T 0 (tig1, X[ )]
AEr, [[f (s Xt Yers Zt,,) = [lbmgr, X7 Y 20 ) INE oo (tgr, XT2))]

=: ti(s,m) + ta(m) + tz(m) + ta(m)
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where s € [tm, tim1). For t1 we use that Ey, f(tm, Xi,,Y:,, Zy, ) (N — N¥) = 0, so that

||t1(s,m)|| < ||Etkf(S7X57YS7 ZS)Nzko(tkvth) - Etkf(tvatmvnmvZtm)Nku(tkvth)H

+||]Etk (f(tmv Xt7n7 Y;fmv Ztm) - f(tmv thv Y;?kv Ztk))(NStk - Niii)o(tkv th)”
As before, we rewrite the conditional expectations with the help of the independent copy B. Then

Etkf(stsvysv Z )Ntk - Etkf(tvatmvy;fmvztm)Ntk

)_f(tmyX

Stk th Stk th

b, Xy, Ytk Xty 7}

= EB[(f(s, XN VN 7 i, )N

and

Eo, (f (tins Xt Yers Z,,) — f (s Xy, Yo, Z,)) (NP — NY*)
” te, Xt tr, Xt tr, Xt ~ ~
= E[(f(tm Xt:; iy Yk " Zk k)_f(tvatk’Ytkatk))(Ngk _NZ;)]

tm

We apply the conditional Holder inequality, and from the estimates (36) and E|N' — N/ k2 <
C(b,0,T, 6) )2 we get

kallo |l so
falollos o %, Y0 20) = Flbms Xo, Y 20,

[t1(s,m)[ <
(s —tx)?
h3
+O(b,0’, Tv 5)m ||f(tm’Xtm’}/tm7Ztm) - f(tkvXtM}/tkatk)H
h
S C(Lj,CZ 1504 15’1251)7 UvTap()a(s)\I/(‘r)ila
. (s —t5)2

since for 0 <t < s < T we have by Theorem 4.1 and Proposition 4.1 that
||f(57XSa}/SaZS)_f(thta}/taZt)” S C(Lj,CZ1,041,b,0’,T,p0)\I/($)(S—t)% (34)

For the estimate of t2 Lemma 5.2, Lemma 5.3, (30) and (36) yield

tr, Xt i STk, Xr n,T
I[ta(m)| = [EF(tm, X;2 " )N 0 (b, Xo,) — BF (b, X707 N2 0 (bgr, Xr, )|
. <O(H22 >)‘(EE<F< ) = Pt 207))2)
— Uk
Tk, X7 T3 N T T 1
(EE|F( m’X’II:l k) - F(tmaXTk)|2E|Nf:LU(tk7th) - Nn,’l ka(thrleTk)F)é

U(z) hi
(T —tm)? (tm — tr)2
For t3 we use the conditional Hélder inequality, (30), (18) and Lemma 5.2:

< C(Lf704211327l€27b7 g, T7p075)

[ts(m)ll = |[En, [[F(tm, X7,) = F(tm, Xe, )INT 0 (ter1, Xr,) ||

C(Ra, n
@(K#HF b X72,) = F(t, Xu,,) |

AN
Q
h
Iy
)
N}
ho @
-
S
~
=
e
N



18 C. Geiss, C. Labart, A. Luoto

The term t4 can be estimated as follows:

||t4(m)|| = ||]E7'k [[f(tm7Xtm7)/tm’ Ztm) - f(thrleZlmv}/tZla Zzlm)]N‘::lTkU(thrlv XT}c)] H
C(L ',b,U,T,5) 1 n n n
Lo 2 (0 4 (X, = X+ (Ve = YN+ 1120, — 2211

(tm - tk)%

Finally, for the remaining term of the estimate of || Z;, — Z}! ||, we use (34) and (36) to get

HEtkf(Sa Xs, Y, ZS)]V;EIC U(tkvth)H = ||Etk[(f(5a Xs,Ys, ZS) - f(sa th7}/tk7Ztk))N.§k] U(tkvth)H

IN

C(Lf7 CZla 0417 K2, b7 g, T7 pO)\I](x)

Consequently, from (32), (33), the estimates for the remaining term and for tq,...,t4 it follows

that
1Z, = Z2 || < Coq¥(a)h® +(C5 )2 W(x)hs + C(Ly,CY 1, Cy.1,b.0,T,po, r2) ¥ (x)h

/T ds
tr (S - tk)%
n—1

U(z) h
+C(Lys, 3% ko, b,0,T,po, 0)h
(Lyscy g2 Po,9) m:zk:ﬂ (T —ty)? (tm —ti)?

M

+C(Lf, 0117 0417 R2, bu g, T7p07 5)\Ij($)h

=

1

n n 1
+C(L.f7b7 o,T, 6)]7’ (”Y;?m _Y;me + ”Ztm _Zth) T
1 (tm — tk)2

% + C(qu 0317_327 CZlu 0417 K2, b7 g, T7 Po, 6)‘1’(1})]7/%

n

ol ]
>
+

C(Cy1,C5 ) ¥ (2)h
n—1
n n 1
+O(Lfab7 a, Ta 5) Z (||}/tm - }/th + ||Zt'm. - Zth)ilh’
m=k+1 ( m tk)2

IN

Then we use (31) and the above estimate to get

Yo = Yeell + 1120, = Z2 |

< C(Cq,C3) (@3N + C(Ly, CY 1, CY 1, Caq,c5hy b2, b,0, T, po, ) W(2)hs
n—1
n n 1
+C(Lyb 0. T.0) Y (Yo = YN + 120 = 22, ) ———h.
m=k+1 (tm - tk)

=

Consequently, summarizing the dependencies, there is a C = C(b, 0, f,g,T, po,d) such that

i

Yo, =Yl + 1120, = 20 )| < C¥(z)h"

By Theorem 4.1 (note that by Assumption 2.3 on g we have a = 1) it follows that

I

1Yy = Yl < [IYy = Yo |l + Vs, — Y2l < CY | U(2)h® + B (2)n 37
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while Proposition 4.1 implies that
120 = Zi,|| < Cy 1 W(a)h2,
and hence we have
Eo oY = V' + Boe|Zy — ZJ* < C3 0 (2)*he"

with 031 = O31(b7 g, fvgvTap075)'

4. Some properties of solutions to BSDEs and their associated PDEs

4.1. Malliavin weights

We use the SDE from (1) started in (¢, ),
Xto — gt / b(r, XE)dr + / o(r, XE7)dB,, 0<t<s<T (35)
t t

and recall the Malliavin weight and its properties from [20, Subsection 1.1 and Remark 3].

Lemma 4.1. Let H : R — R be a polynomially bounded Borel function. If Assumption 2.1 holds
and X" is given by (35) then setting

G(t,x) == EH(XE")
implies that G € C12([0,T) x R). Especially it holds for 0 <t < r < T that
0xGi(r, X12%) = E[H (X7 )Ny 7| ],

where (FL),cp, Is the augmented natural filtration of (BE°),.cp 11,

r(ta 1 (T vxbe
NT7(t) ) _ — / tyxs — dBS,
T—r/) o(s,Xs)VX,

and VX!* js given in (12). Moreover, for q € (0,00) there exists a kq, > 0 such that a.s.

EINFOINNFDE < oty and BN =0 s (36)
e

and we have
. |H(X7") = BIH(XZ")|Flp
q

0,G(r, X" <
I (r )||Lp(n:>) JT =1

f0r1<q,p<oow1'th1—17—|—%=1.
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4.2. Regularity of solutions to BSDEs

The following result originates from [20, Theorem 1] where also path dependent cases were
included. We formulate it only for our Markovian setting but use P, , since we are interested in

an estimate for all (¢,z) € [0,T) x R. A sketch of a proof of this formulation can be found in [21].

Theorem 4.1. Let Assumption 2.1 and 2.2 hold. Then for any p € [2,00) the following assertions

are true.

i) There exists a constant CY ; > 0 such that for 0 <t < s <T and x € R,
4.1

1
2

¥ = Vil ey < Y 1 0(2) ( [a- r)a-ldr) ,

(it) there exists a constant Cj | > 0 such that for 0 <t <s <T and z € R,

122~ Zills, @) < Ci 4 0(x) < / (T - r>a—2dr)

The constants CZ 1 and Cj | depend on (L, Ky, Cy, 6222, Kq,0,0,T,po,p), and U(x) is defined in
(7).
4.3. Properties of the associated PDE

The theorem below collects properties of the solution to the PDE associated to the FBSDE (1).
For a proof see [12, Theorem 3.2], [13] and [21, Theorem 5.4].

Theorem 4.2. Consider the FBSDE (1) and let Assumptions 2.1 and 2.2 hold. Then for the
solution u of the associated PDE

ut(t, ) + @um(t, x) + b(t, x)u. (t, ) + f(t, z,u(t, z),o(t, 2)uy (¢, x)) =0,
te0,T),z€R, (37)
uw(T,z) =g(z), z€R

we have

(i) Yy = u(t,X:) a.s., where u(t,x) = Etﬂz(g(XT)+ftTf(r,XT,YT,ZT)dr) and |u(t,x)| <
C}LQ\I/(,T) with ¥ given in (7), where 6}1.2 depends on Ly, K¢,Cy,T,po and on the bounds
and Lipschitz constants of b and o.

(i) (a) Oyu exists and is continuous in [0,T) x R,

(b) ZH% = uy(s, XE%)o (s, X57) a.s.,



Random walk approximation of FBSDEs 21

% 5V (x)
< 4.2
(¢) lua(t 2}l < <

where 0421.2 depends on Ly, Ky,Cy, T, po, k2 = kao(b,0,T,8) and on the bounds and Lipschitz
constants of b and o, and hence ci_2 = ciz(Lf, K¢, Cy,b,0,T,po,0).

(iii) (a) O2u exists and is continuous in [0,T) x R,

3 5V (x)
2 4.2
() 102u(t,2)| < 2T

where 62.2 depends on Ly, Cy, T, po, k2 = ka(b,0,T, 5),021,021 and on the bounds and
Lipschitz constants of b and o, and hence ci_2 = 01_2(Lf, K¢,Cq,b,0,T,po,9).

Using Assumption 2.3 we are now in the position to improve the bound on || Zs — Z[|z, (e, )

given in Theorem 4.1.

Proposition 4.1. If Assumption 2.3 holds, then there erists a constant Cy 1 > 0 such that for
0<t<s<Tandz € R,

125 = Ziliy o) < Caa ¥(@)(s = D,
where Cy 1 depends on ci’_32,b, o, f,9,T,po,p, and hence Cy 1 = Cy 1(b,0, f,9,T,po,p,0).

Proof. From Z%* = u,(s, XL%)o(s, X0) and VYH* = O,u(s, XH%) = ug(s, X0P)VXET we
conclude

gt _ VY )®
s VXLt

It is well-known (see e.g. [19]) that the solution VY of the linear BSDE

o(s, XE%), 0<t<s<T. (38)

? S

T T
VY, = ¢'(Xr)VXr +/ f2(©)VX, + f,(0,)VY, + f.(0,)V Z.dr — / VZ,dB,, 0<s<T,
(39)

can be represented as

VY,
VX,

T
_ / S S
—E, [g (X7)VX7D5 + / fI(GT)VXTFTdr} o%

T
- E[g’(X;va)vX;Xsf;XS +/ fx(éi’XS)VXﬁ’XSfj*XSdr}, 0<t<s<T, (40)
where ©, := (r, X,,Y,, Z,) and I'* denotes the adjoint process given by

=14 [ feuridut [ f(OTdB, s<r<T,

and

e =1 +/ fy(OL L dr +/ f(0L5T4%dB,, t<s<T,zeR
t t
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where B denotes an independent copy of B. Notice that VXtt ¥ =1, so that

vyvtt,m
VX

T
= VY = B[y (X VRGTY + / £ (O VX Ty
t

Then, by (38),

VY, VY,
X

Zs— 7, <C —
12~ im0 < 00)| | S5 - o5

1 T
IV oo (s — ) 1 X57 x|L2,,<n»t,m>1].
Lp(Pt,)

Since (VYs, VZ,) is the solution to the linear BSDE (39) with bounded f, fy, f-, we have that
HV}/:‘.HLQP(]PQ@) < C(b7 g, fvgvTap)' ObViOHSly, ||X£7m - IHLQP(IP}J) < O(baaa T,p)(S - t)% So it

remains to show that

[N

< CYU(z)(s—1t)2.

%~ vx
Ly(Pes)

VX, VX,

We intend to use (40) in the following. There is a certain degree of freedom how to connect B

and B in order to compute conditional expectations. Here, unlike in (26), we define the processes

BL = Bu/\s + BuVs - Bs and B;/ = Bu/\t + Buvt - Bt; u Z 0

VY, and VY,

as driving Brownian motions for < < T

respectively. This will especially simplify the

estimate for BT~ — I%%|7 below. From the above relations we get for (X, := X5%)

VY, VY
VX, VX,

<||B[y (X3 ) VR T - g (K VAR
)

g
t

T
| B[ru(@p v T - (6T KT ar

Ly(Pt,o ’p

E[f.(60) VX LT

‘dr
p

+

P

=J1 + Jo + Js.

Since ¢’ is Lipschitz continuous and of polynomial growth, the estimate J; < C(b, 0,9, T, p)¥(x)(s—
t)% follows by Hélder’s inequality and the L, -boundedness for any ¢ > 0 of all the factors, as
well as from the estimates for X;’Xs — X5" and VX;’XS — VX4 like in Lemma 5.2. For the T

differences we first apply the inequalities of Holder and BDG:

q

- - - S - - - S - - 2
E[T5X —TL"9 < CO(T,q) [(s—t)q_lE/t |fy(®i’XS)Fi’XS|qdr+]E</t |fz(®i’X8)I‘i’XS|2dr)

T
4B [ 15,0 — 1@ ar
q

T 2
+B( [ 1n@n - o) |
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Since f, and f. are bounded we have E|[T$X¢|9 4 E[T%*|7 < C(f,T,q). Similar to (30), since

fz, [y, f» are Lipschitz continuous w.r.t. the space variables,

[fo(05%) = fo(O8) = [ falr, X3 u(r, X27), o (r, X35 Yug (r, X2))
_fI(Tv Xﬁ)mau(’ra X;}I)vg(rv Xﬁ)w)ui(rv Xﬁ@)”
5 B XS,XS _ Xt,x|
< C C2,3 .0, ,T 1 + X,,‘?7XS po+1 + Xﬁ,z po+1 | r r ,
e L L T

so that Lemma 5.2 yields

q|Xs_33|q+|5_t|%,

E|f2(037%°) = £,(6L7)|7 < O(Ci";,b,a, £y Ty poy @) (14 [ X[Poth 4 afPott) (T —r)z
. —7r)2

The same holds for |f,(05%:) — f,(04%)| and |£.(©2%¢) — f.(©4")|. Applying these inequalities

and Gronwall’s lemma, we arrive at
s, Xs _ Tt,x ) 1
H]E[FT’X _FtT ]”P S O(Ci.gévbao.a f,g,T,po,p)\I/($)|S—t|2

for p > 0.
For Jo < C(t — s) it is enough to realise that the integrand is bounded. The estimate for J3
follows similarly to that of J;. O

4.4. Properties of the solution to the finite difference equation

Recall the definition of DZ, given in (14). By (4),

XZ::::TI =T+ hb(tm-‘rlu ‘T) + \/Ea(tm-i-h :I;)Em-i-lu (41)
so that
Ty ot (b, X7270%) = 0 (b, @+ W1, %) £ Vho (tmsr, ). (42)

While for the solution to the PDE (37) one can observe in Theorem 4.2 the well-known smoothing
property which implies that u is differentiable on [0, T') x R even though g is only Holder continuous,
in following proposition, for the solution u™ to the finite difference equation we have to require

from g the same regularity as we want for u".

Proposition 4.2. Let Assumption 2.3 hold and assume that u™ is a solution of
un(tmv .’L‘) - hf(tm-i-lv Z, un(tmv ‘T)v ,Dr7711+1un(tm+17 XZ,;ZZ@))

§[Tm+1,+un(tm+1=Xi:7ﬁTm) + Tm+1,—un(tm+17 Xn)tm@)]v m=0,...,n—1, (43)

tm+1
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with terminal condition u"(t,,x) = g(z). Then, for sufficiently small h, the map x — u"(t;,, ) is

C?, and it holds
(0" (tm, )| + [ (b, 2)] < Cunt (@), [ (b, 2)] < Cun2 ¥2(2)
and
| (tm, @) = Uiy (b, T)| < Cuns (14 2|PHT + |27 |z — 2|, (44)

uniformly in m = 0,...,n — 1. The constants Cyn1, Cyra and Cyn3 depend on the bounds of

f,9,b,0 and their derivatives and on T and pyg.

Proof. Step 1. From (43), since g is C? and f, is bounded, for sufficiently small h we conclude

by induction (backwards in time) that u? (¢, ) exists for m = 0,...,n — 1, and that it holds

ul(tm, ) = hfy(tmyr, 2, 0" (b, x), Dy u" (b1 Xfm’i’;w))
+hfy(tm+1a z, un(tma I)a D:;Hu"(tmﬂ, th,,’ltﬁ’x)) ug(tm, I)

+hfz (tm+17 xz, u™ (tma I)a ID;L%Llun(thrlv Xn,tm,m)) 81Dz+lun(tm+lv Xn,tm,x)

tma1 tm+1

+% (azT un(thrl’ Xnytmﬁz) + aﬂﬂTm+1,—un(tm+1v Xnﬁtmym)) ’

m+1,4 tm41 tm41
Similarly one can show that ul (¢, x) exists and solves the derivative of the previous equation.
Step 2. As stated in the proof of Proposition 2.1, the finite difference equation (43) is the

associated equation to (8) in the sense that we have the representations (20). We will use that

U™ (L, ) = Y, and exploit the BSDE

tm

Yn,tm,z _ g(X;,tm,z) +/ f(S,Xsn;tm’z,}/;itm’z,Z:;tm’z)d[Bn]s
(tm T

- / ZrtmrqBn, (45)
(tm,T)
where we will drop the superscript ¢,,,z from now on. For u}(t,,,x) we will consider
VYr = 0,Y = ¢(X})0. X} —|—/ [o0: X0 + f,05Y0 + .0, Z7 d[B"]s
(tm,T)
- / 0.2 dB". (46)
(tm.,T]

Similarly as in the proof of [30, Theorem 3.1] the BSDE (46) can be derived from (45) as a limit
of difference quotients w.r.t. . Notice that the generator of (46) is random but has the same
Lipschitz constant and linear growth bound as f. Assumption 2.3 allows us to find a py > 0 and
a K > 0 such that

l9(2)| +1g'(2)] + 1g" ()] < K1+ [a[*") = ¥(a).
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In order to get estimates simultaneously for (45) and (46) we show the following lemma.

Lemma 4.2. We fix n and assume a BSDE

Yy, = &7 —|—/ f(s,Xs—,Ys—,Zs_)d[B"]s — / Z,_dB}, m<k<n, (47)
(tx,T] (tx,T]

with €% = g(X'™) or €* = ¢/ (XP"™ )0, Xt " and X, := XMt or X, = 9, X% such

that f: Q x [0,T] x R® — R is measurable and satisfies

|f(wa tv z,Y, Z) - f(wv ta I/a y/a Z/)|

IN

Li(le = 2| + |y —¢/| + |2 = &),
flw tz,y,2)] < (Kp+ L)+ [z + [y| + |2]). (48)
Then for any p > 2,

() EYe, [P+ FE [, o IYs—[P72|Zs_|?d[B"]s < C¥P(x), for k=m,..,n and some "y, >0,

(ii) ]ESUPtm<ng [Ys—|P < CWP(z),

(NS}

(i) E( J,, 1|2 PaiBn.) < cor(a),
for some constant C = C(b, 0, f,9,T,p, po)-

Proof. (i) By It&’s formula (see [24, Theorem 4.57]) we get for p > 2

Nl = 1€P b [ VNP ZedB by [ Y Y X Yo Zi B,
(tva] (tva]
- Z [IYslP = Yo P = stf|st|p_2(Ys =Y (49)
SE(tk,T]
Following the proof of [27, Proposition 2] (which is carried out there in the Lévy process setting

but can be done also for martingales with jumps, like B™) we can use the estimate

- Z [Ysl? = [You P = DY s Yo [P72(Ys = Y )] < —p Z Yo P72(Ys = Yoo )?
SE(tk,T] SE(tk,T]

where «y, > 0 is computed in [38, Lemma A4]. Since

Ytg+1 - Ytg+1— = f(tf+17 xtg7 Ytgu Ztg)h - Ztg \/Egé-i-l
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we have

— ) Y = Ve P = pY Y PTA(Y s = Yoo )]
SE(ty,T]

n—1 9
S —Tp Z |Ytg |p—2 (f(tf-‘rl ) th ) Ytg ) Ztg)h - Zt[ \/EEZJ,-l)
=k
= b [N PR X Y By [ Y Pz P,
(tx,T] (tx,T)

by [ MR X Yo 2 )20 (B — BB,
(tx,T]
Hence we get from (49)

Yo Yo P22 dB 4+ p / Yo Yl P2 (s X, You s Zo )d[B"]s
(ty,T]

Yol? < (P —p /

(tx,T]

[ Ne P e P,
(tva]
+27,,/ Yoo [P72 (s, Xs—, Yoo, Zy—)Zs— (BY — B )d[B"s.
(tk;T]
From Young’s inequality and (48) we conclude that there is a ¢ = ¢/(p, K¢, L¢,7p) > 0 such that
PIY e [P R(8, X, Yo, Za ) S Y [P2|Zo P+ ¢ (14 [Xo [P+ Yo |P),

and for vh < m we find a ¢’ = ¢"(p, Ly, K¢,7p) > 0 such that

2Yp \/E|Ys—|p_2 f(s,Xs—, Yo, Zs)[|Zs—| < lple—lp_2 |Zs—|2 + (1 + [Xs— [P+ [Ys—[P).
Then for ¢ = ¢ + ¢” we have
Vol < P -p [ NN PR zedBr e [ L X NP,
(tx,T] (t

k1]

-7 Yo P21 Zs- [Pd[B"]s. (50)
(tx,T]

By standard methods, approximating the terminal condition and the generator by bounded
functions, it follows that for any a > 0

a
2

E sup [Y4|* <oo and IE/ |Z,_[?d[B"]s | < oo.
(tfmT]

tp<s<T

Hence f(tk,T] Y_|Ys_|P72Z,_dB™ has expectation zero. Taking the expectation in (50) yields

E[Yy, [P + %PIE/

(tk,

|YS,|p*2|ZS,|2d[B"]S <E|£"]P + CE/ 1+ | Xs— P 4+ |Ys—|Pd[B"]s. (51)
T] (tx,T]
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Since E|¢™|P and E f(tk)T] 1+ |Xs—|Pd[B"]s are polynomially bounded in 2, Gronwall’s lemma gives
IYe,llp < C0, 0, f,9, T, p,p0) (1 + [P *), k=m, ...,
and inserting this into (51) yields
(5 [, el 12 PAEL)” < COo S0 T )06, k==L
tk,
(i) From (50) we derive by the inequality of BDG and Young’s inequality that for ¢, <t < T

E sup [Y,_|P

te<s<T
%
< E¢"P + C()E / Yo PP 22, PdIB™. |+ CE / Lt X [P+ [Yao PdlB"
(tg,T) (tr,T]
3
< E"P+ B / 14 X [Pd[B"]s + CO)E | sup |Ya_|% (/ |Ys_|“|zs_|2d[B"]s>
(tx,T) t<s<T (tx,T)
+eE / IY,_[Pd[B"],
(tva]
T / 1+ [Xo_ PP[B"). + C(P)E / Yo P2z, Pd[B,
(tr, T (tr,T]
+E sup |Yo_[P(3 4 (T — tr)).
tr<s<T

We assume that h is sufficiently small so that we find a ¢ with ¢(T' — ;) < i. We rearrange the

inequality to have Esup;, . .<7 [Ys— | on the Lh.s., and from (i) we conclude that

E sup [Y_|P
te<s<T

IN

R4 268 [ 14X, Pl 200 [ Yo PRz, PR,
(tva] (tk;T]

< O(baaa fagaTvpapo)(1+ |$|(;D0+1)P)'

Now we may repeat the above step for Esup,, o<y, [Ys—|P with c(tx —t;) < § and £" = Yp
replaced by Y, , and continue doing so until we eventually get assertion (ii).

(iil) We proceed from (47),

p P
/ Z,-dB} §C<p>(|£"|P+ sup (Yol + ( / (5, X Yom  Zo )| d[B", ) )
(te,T] k<t<n (t1,T]

so that by (48) and the inequalities of BDG and Hoélder we have that

sup
k<t<n

P

o f 2]

p
< CO(EEPHE sup Vo) + O L KB [ 1 o+ Ve fd[B7),
k<t<n (t

T

r
2

ty,T]

+C(p, Ly, Kp)(T — ) °E </( IZslzd[B”]s>
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Hence for C(p, Ly, K¢)(T —t)% < 3 we derive from assertion (ii) and from the growth properties
of the other terms that

]E(/ |ZS*|2d[Bn]5)§ < O(baaa fagaTvpapo)(1+ |$|(;D0+1)P). (52)
(tva]
Repeating this procedure eventually yields (iii). O

Step 3. Applying Lemma 4.2 to (45) and (46) we see that for all m =0, ...,n we have

[ (b, )| = Y| = (B(Y5")%)% < C(b, o, f,9, T, po) (1 + | )

m

and
Wl (tm, )| = (B0, Y, ")2)% < C(b,0, f,9,T,po)(1 + |a[ro ™). (53)

Our next aim is to show that u?, (¢, x) is locally Lipschitz in . We first show that w2 (tm, x)
has polynomial growth. We introduce the BSDE which describes ul, (¢, ) and denote for

simplicity

f(t,xy, x0,23) == f(t,z,y,2) and D%:= 9929

L0205 with  a = (iy,12,13)

and consider

Y = " (XP) (0. X7)? + ¢ (X} X7

t’VYL
FL Y D XY 0, XI ) @) (0, 2 B,
(t

m T a€{0,1,2}3
i1+i2+i3=2

+/ > (D) (s, XIL Y, 20 ) (02X D) (03Y ) (9227 ) d[ B,
T e0,13°
i1+i2+iz3=1

- / 027" dB". (54)
(tm,T]

We denote the generator of this BSDE by f and notice that it is of the structure

f(wv 1, 2,y, Z) = fO(wa t) + fl(wv t).I + fQ(W, t)y + f3(wa t)Z
Here fo(w,t) denotes the integrand of the first integral on the r.h.s of (54), and from the previous
results one concludes that E( [, 7, [fo(s—)|d[B"]s)? < co. The functions f1(t) = (D100 £)(t, ) =
(02 f)(t,-) as well as fao(t) = (O f)(t,-) and f3(t) = (0.f)(¢,-) are bounded by our assumptions.
We put

£ = g"(X7) (0. X7)* + ¢ (X7) 07 X T
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Denoting the solution by (Y, Z) we get for C(f3)(T — tp) < 1 that

. 1 .
BV 458 [ 2P,

SC[}E|£"|2 —HE(/(

tm,

2 ~ ~
fols)dB™.) +E [ P VP (55)
7] (tm,T]

Now we derive the polynomial growth E|£"|2 < C'¥2(z) from the properties of ¢’ and g” and
from the fact that Esup, .7 |82X2[? is bounded for j = 1,2 under our assumptions. Then the

estimate
2
s=)|d[B™s) < CUx
B( [ 10GoB) < v

can be derived from Lemma 4.2(ii)-(iii), so that Gronwall’s lemma implies

V] = ft (t, )] < CU (@), (56)

tm

Finally, to show (44), one uses (54) and derives an inequality as in (55) but now for the difference
5%3/;72%’1 _ 835/;77:757)1@'

Before proving it, let us state the following lemma.

Lemma 4.3. Let Assumption 2.3 hold. We have

s—

S\ r
(Esup |z — Z"’t""zlp> < O(¥(x)? +¥(@))|z — 2|, p=2, (57)

E(/@ a2 = B PA(B) < O ) + W@ - ol p22 (69)

4
2

E ( / |a§z:jm@|2d[3"]5> < CU*P(z), p>2, (59)
(tm,T]

for some constant C = C(b, 0, f,9,T,p, po)-
Proof of Lemma 4.3. (57): Introduce G(tgi1,) = ’D’klﬂu"(tkH,X&’i’;’w). Using relations
(41)—(42) and the bounds (53) and (56) for u” and u?,, respectively, one obtains

|G (trt1, @) = Gltrsr, @) < O(L+ [P0 4 |22t D) |z — 7|, 2.7 €R,

uniformly in tx41. Since ch’tm’”” = D”Hu"(tkH,Xt’:i’;’") = G(tk+1,n) where n = X&’tm’w, the

previous bound yields

|ch,tm,m _ ZZ:tm,i| < C(l + |ch,tm,m|2(po+1) + |Xg€7tm,i|2(p0+1))|XZ::tm,:lf _ Xn,tm,a’c|

ty
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uniformly for each t,, <t < T. Inequality (57) then follows by applying the Cauchy-Schwarz
inequality and standard L,-estimates for the process X".

(58): This can be shown similarly as Lemma 4.2-(iii) considering the BSDE for the difference
O Y1t — 9,Y '™ instead of (46) itself.

(59): This one gets repeating again the proof of Lemma 4.2-(iii) but now for the BSDE (54). O

By our assumptions we have
E[gmtm® — &mtm T2 < O(U2(z) + W2(2) (1 + [af® + 2|z — 2>,

where we use |z — Z|2 < C(1 + |z|? + |Z|?)]z — Z|**. The term |z — Z|? appears for example in the

estimate of (9, X"™")2 — (9, X/ )2, To see that

E(/(t

we check the terms with the highest polynomial growth. For example, we have to deal with terms

_ 2 _ 2
like E( [y, gy 1200 = 2070, 2050 2d[B7),) and B [, 105 2000 20, 2007 [2d[ B, )
We bound the first term by using (52) and (57)

) = i s ldBT) S OO+ WO@) L ol + o —

ms

t tm,T t 2
B( [ jzpter o gzt o,z P B
(tm,T]

1
2

i, 4
< @suplzrtem - 2t (B[ jazrterpaen.))
s (tm, T
< C(PHz) + () |z — 22T (2).
We bound the second term by using (52) and (58)
t b 2
B[l o,z P,
(tm,T]

= CE/ 0.2 P 410, 20 P B / 002020 = 0, 20 Pd (B,
(tm,T (tm,T]

< (V@) + WA (@)(V () + (@) | — 2
< C(WO() + UO(@) (22 + a2l — o
< CWO() + U@+ [ + [ — 2,

While all the other terms can be easily estimated using the results we have obtained already,
for
~ 2
B([ I em)= i )22 B ) < COU @)+ U Ha)) (1ol fo—a
(tm, T
we need the bound (59).

The result follows then from Gronwall’s lemma.
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Remark 4.1. Under Assumption 2.3 we conclude that by Proposition 4.2 there exists a constant

C = C(b7 g, f797T,p,p0) > 0 SU.Ch that

[u" (tm, 2) —u"(tm, @) < C(1+¥(z)+¥(2))z -2,
D 1" (tmy, Xeo 707") = Dt (b, X000 <0 C(L+ 0P (@) + 03(@) |2 — 2,
W (b 7) — w3 (b, 7)< C(L+ ¥ (@) + U*(2))]o — 7],
102D, 1" (b1, X07TT) = 0Dy (b, X0 <0 C(L 4 W (2) + $(2)) |2 — 2,
02D} 1t (g1, X00T)) <0 C(L+ 0 (2)), (60)
uniformly in m = 0,1,...,n — 1, where
U(z) =1+ [z|PoFE, (61)

In addition, for 9, F™ (tyt1, @) := Op f (b1, 2, U (b, ), DIy 10" (b1, X127m)) we have

+1
100 F" (tm+1,2) = 0 F" (tm41,7)| < C(L+ ¥ (2) + ¥(2))]o — 7| (62)

uniformly inm = 0,1,...,n—1. The latter inequality follows from the assumption that the partial
derivatives of f are bounded and Lipschitz continuous w.r.t. the spatial variables, from estimates
proved in Proposition 4.2 and from those stated in (60) above.

From the calculations it can be seen that in general Assumption 2.3 can not be weakened if one

needs 0, F™(tm+1,x) to be locally a-Hélder continuous.

5. Technical results and estimates

In this section we collect some facts which are needed for the proofs of our results. We start

with properties of the stopping times used to construct a random walk.

Lemma 5.1. (Proposition 11.1 [39], Lemma A.1 [21].) For all0 < k < m < n and p > 0, it holds
for h =L and 7, defined in (23) that

(i) Ery = kh,
(i) E|ri|P < C(p)h?
(iii) E|B, — By, | < C(p)E|7; — ti|P < C(p)(tih)%.

The next lemma lists some estimates concerning the diffusion X defined by (27) and its

discretization (25), where we assume that B and B are connected as in (26).
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Lemma 5.2. Under Assumption 2.1 on b and o it holds for p > 2 that there exists a constant

C =C(b,0,T,p) > 0 such that
(i) E|X3¥ = X3"|" < Cly —alP +|s — t|%), z,y €R, s,t€[0,T],

) T Sk, St P
(i) Esupz a¢,, <r<#jiAtm X = X o, P <Cha, 0<k<n,0<I<n—-k-1,0<m<

n—k,
(iii) E|VX3Y — VXL P < O(ly — x| + |s — t|2), z,y €R, s,t€[0,T],

(iv) Esupg<icm }VXZC’i’“t’lz}p <O, 0<k<n 0<m<n-—k,

(v) B|Xpes, =A% [P <C(lz—ylP +h%), 0<k<n,0<m<n—F,

(vi) E[VX5f — VXL P<C(lz—ylP+h%), 0<k<n 0<m<n-—k

Tke+Tm

Proof. (i): This estimate is well-known.

(ii): For the stochastic integral we use the inequality of BDG and then, since b and ¢ are bounded,

we get by Lemma 5.1 (ii) that

tr,T vlk,T p
E- sup [ X — X ae |
TNt Sr<Ti1Atm

< CO)IbIZEFr — 7P + |olBElfi — 71l ) < C(b,0, T, p) h%.

(iii): This can be easily seen because the process (VX;¥),¢c[s 1] solves the linear SDE (12) with

bounded coefficients.

(iv): The process solves (64). The estimate follows from the inequality of BDG and Gronwall’s

lemma.

(v): Recall that from (4) and (25) we have

X, = Xl =y + /( B+ XL )AIB", B /( ot XE 2B,
0,tm 0,tm

and Xf:ftm is given by
_ tom ~ tom _ ~
Xtt:ftm =z + / bty + r, Xtt:fr)dr + / oty +r, Xf:fr)dBT.
0 0
To compare the stochastic integrals of the previous two equations we use the relation

oo m—1

/( RICSER T / S ot XI5, ()
0,tm 0 =0
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We define an ’increasing’ map i(r) := t;41 for r in (¢;,%4+1] and a ’decreasing’ map d(r) := t; for

(t1,t;4+1] and split the differences as follows (using Assumption 2.1-(iii) for the coefficient b)

p

tr,x otk
E}Xt:-i-t _th-i-ktg
tm
~ » th, tr, tk, AT
< C(b,p) (|$ —yl? +E/o r—i(r)|2 + | X{8 — th+d P+ |th+d(r) Xt il |pd7”)
tm

C(p)E| oty +r, X;{)dB, P

tm ATm

]E|/t Z o (thrigr, X5 )z, 2, (r)d B, P

/\Tml 0

o AT, B m—1 - -
C(P)E|/O otk + 7 Xi0) = D otk XL 1z, 7, (r)dBe [P (63)
=0

We estimate the terms on the r.h.s as follows: by standard estimates for SDEs with bounded

coefficients one has that
tm
E —i(r)|® + | X[RE = X{t, |Pdr < C(b, 0, T, p)h®
|T Z(T)| +| tp+r tr+d(r) | > ( ) 0, 7p) .
0

By the BDG inequality, the fact that o is bounded and Lemma 5.1 we conclude that

tm m—1 P
E / (tk + th-i-r)dB + E Z tk+l+1a th+l )1(T1>71+1] (T)dBT
tom ATm tm ATm 1=0

< C(0, P ol|BElTm — tm| ¥ < Clo,p)(tmh) 5.

Finally, by the BDG inequality

p

tm ANTm m—1
tr,x n,te,Y
/ oty +r, th+r E o(tpyir1, X tk+l )1(7”—1,7”—L+1] (r)dB;
0
1=0

E

4
2

~ t"n — ~
< E(/ Z |0' tk; + 7, X::fr) — O'(tk_i_l_i_l,X&’i’;»y)|21(7-lﬂ:l+l](T)d’r)
_ m—1 Tl+1/\t - T
: C(U,p)E< by / [Trer = treal o+ 17— o | B+ X0 - X0 1P
1=0 TINtm
t t

+|Xt:fn/\tm tiﬁ y|pd7")
< Clo,T (h% fE o P i E Xtor e 2p\ 4
< Clo,Top)(h2 + max (Elf —4[")? + max ( th;:;gmmml terr = Xegtaaa )

t n,t
‘HE Z |Xt:+zn/\t th+)l€ y|p(Tl+1 - Tl))
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. ~ ~ .. tr,T vtk Y 1
Moreover, since 7141 — 7; is independent from |th+7mtm XV |P we get by Lemma 5.1-(i)
m—1
" E LT Ntk Y| p
]E |'th+7~'l/\t 'th+1 | (Tl+1 - Tl)
1=0

m—1

. § : tg,x n,tk,Y |p _

- ]E th+Tl/\t7n th+l | (tl+1 tl)
=0

tm
- th, n,tk, vik,x
< C(T,p) (E/o |th+d _Xt +kdy )|pdr+01<na<x E|Xt +F Atm Xt:+tl|p>'

Using Lemma 5.1-(iii) one concludes similarly as in the proof of (ii) that E|X::—)i-n/\tm Xf:ftl [P <

C(b,o,T,p)h%. Then (63) combined with the above estimates implies that
tm ~
E[Xi, — Xt < Clo, Tm)(lw —yl? + Rt +E/0 Xt — Xty |Pdr).
Then Gronwall’s lemma yields
B X, — Xt ] < €0, Top) (o - yl” + h¥).

(vi): We have

VXY = 14 /@t Baltn 1 XV LA B,
+ ooty + 1, X[V )V XY dBY (64)
(0,tm]

and
-~ t’VTL -~ tm - ~
VXE =1+ / ba(t + 1, X0V X0 dr + / ou(tr + 7, X0 ) VX0 dB,. (65)
0 0
We may proceed similarly as in (v) but this time the coefficients are not bounded but have linear
growth. Here one uses that the integrands are bounded in any L,(P). d

Finally, we estimate the difference between the continuous-time Malliavin weight and its dis-

crete-time counterpart.

Lemma 5.3. Let B and B be connected via (26). Under Assumption 2.1 it holds that

|th - X7k|2 + h%
(tm _tk)%

E|N{* o(te, Xi,) = N2 o (thgr, Xr, )|* < C(b,0, T, 6) ., m=k+1,..,n

Proof. For N'™ and N{* given by (11) and (17), respectively, we introduce the notation

tm—k 5 5 1 Tm—k
/ atkﬂst and N;:LTICO'(tkle, XTk) =: 7 / TkJrSdB
0 m—k Jo

N 1
N* o(t, Xi,) =

m—k
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tr, Xt U(tk7Xt ) Tk7XT U(tk-'rluXT )
Otyts = Vth : Xt:,ka and aTk'i‘S ) Z v Tk+7—lkl X ¢
(tk+8 tp+ ) (tk""é’ Tk"l"’:é—l)

By the inequality of BDG,

(tm — te)*EING: o (b, Xo,) = N2 0 (thg1, X, )|2

Tm

- m—k - Tm—k
= E’ athrSdBS —/ Tk-‘rSdB
0 0
tim—k A Tm—k %}
n 2
= E/ (atk‘f‘s - Tk"l‘S) dS+E/ atk"l‘sl(":m—katm—k](s)ds
0

+IE/O (@2 4 ) (7] (8)ds

m—k 4 %

~ S~ ~ 1
Z ( sup |a’tk+5 - a?ﬁﬁ‘ ) (El7e — 7ea[?)?
(=1

SE[0,tm —k]N(Te—1,7Te]

IN

Nl=

~ ~ ~ ~ 1
+(E sup |atk+8|4 +E max |a’Tk+Tg|4 (E|tm—k¢ - Tm—k|2)2-
€[0,tm—s] lstsm

The assertion follows then from Lemma 5.1 and from the estimates

E sup |a’tk+s —a
SE[0,tm—k]N[Te—1,7¢]

|4 < O(ba g, Tv 5)(|th - XZZ |4 + h)

n
Tk+Te

E sup Jagssl' +E max Jaf o |" <2foL67"

Tr+Te
SE[0,tm k] l=t<

So it remains to show these inequalities. We put

Tt L U(tkvth) n,T, L
Kt:+s = b, Xty and KTkJrkTe 1
oty +s th+s )

U(thrlv XTk)
STk X
oltire A1)
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~‘rk,XTk 156(7~'l—117~'l]'

(66)

(67)

and notice that by Assumption 2.1 both expressions are bounded by || ||scd~t. To show (66) let

us split a¢, 45 —a in the following way:

n ~
Tk+Te

n otk e, Xy L, Xy b, Xty ooty tr
Atp+s = Qr 47, _Kthrs(VthJrs Vththe 1) +Vth+t[ 1(Ktk+s Kthrt@ 1)
th ctes Xt o pTh Xy, DTk X7, t _ n,Tk
Ktk-‘rte 1(Vth+tef1 VXTk+7:l—1)+VX Tr+To— 1(Ktk+te 1 K7k+7~'l—1 ’
Then
- b, Xy, te, Xt 14
E } sup |Ktk+s(Vth Vth+tg,1)|
Se[TeflAtnlfk;T@/\twnfk]
4 c—47 T, Xty U, Xty 14
< olledT°E sup |Vth Vth+t < Cb,0,T,0)h

SE[Te—1 A bk, TeAbm—k
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since one can show similarly to Lemma 5.2-(ii) that
= b, Xt tr, Xt
VX, % = VX5 |1 < O, 0,T,6)h.

E sup ti+ts
SE[Fe—1 A\ tm— ko, Te Nt — 1]
Notice that Vf(fk " and VA Y7k Solve the linear SDEs (65) and (64), respectively. There-
fore,
E sup |VX ttkfit’“ [P <C(b,o,T,p) and E max |VX ;ifk [P <C(b,o,T,p). (68)
SE[0,tm—1] <t<m—k
For the second term we get
E VX (K — K 4
B sup B | tk"t‘té—l( tr+s tette— 1)|
56[7'271/\tmfk TeNbpm — k]
X = X b, X =
i, )3 E sup (Ite = 5| + X0 = X0 )2

< Clo,8)(EBIVX

SG[‘T’@,l/\tmfkqfl/\twnfk]
< C(b,0,T,5)h.

For the third term Lemma 5.2-(vi) implies that

Sth, Xt STk, Xy
E|Ktt]]:+tg 1(VXt:+tgﬁ1 - VXT:+f[’il)|4 <C(b0,T)

oI5~ (| Xe, — X [ + ).

The last term we estimate similarly to the second one

Tk, X t
E|V T:+T;kl(Kt:+t£ 1 K;’}kchl 1)|4
T XT 1 T X.,. tr,X 1
< (o, 5)(E|V T:-‘r‘l’g 1 )2(|th - Tk|8+E| T:—"-T[ 1 t:+t;k1| )2

< C(bu o, T, 5)(|th - XTk |4 + h)

O

To see (67) use the estimates (68).
We close this section with estimates concerning the effect of T, , and the discretized Malliavin

derivative D} (see Definition 2.1) on X™.

Lemma 5.4. Under Assumption 2.1, and for p > 2, we have
(i) EXP-T, X!P<C(boTpht, 1<lm<n,
.. nte, X3 Dy XY, b »

ii E|VX b ——= m | < C(b,o,T,p)hz, 0<k<m<n.
( ) tm U(tk+1,X&) — ( p)

(iii)  EDpX{ |P <C(b,o,T,p), 0<k<m<n.

Proof. (i) By definition, T', , X{* = X} for [ <m — 1, and for [ > m we have

DR+ o(tm Xt"mfl)\/ﬁ

l
+h Y bt T, X ) +Vh Z oty T, X7 )ej
j=m-+1 j=m-+1

XP o= XD A b, XP

T, .
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By the properties of b and ¢ and thanks to the inequality of Burkholder-Davis-Gundy and Holder’s

inequality we see that

EX{ =T, . X5

p
C(p) (Elo(tm, X2, )VR(1 £ )| —+WE‘§: bty X71_,) = bt T, L X7 ,))|

Jj=m+1
pal
)

l
-1 n n
< C)(llo2h? + R0 B + louliti ) Y- EIXE, — T, X7 7).
j=m+1

l
+h%E‘ Z (J(tj,Xgil) (t T Xt 1))2
j=m+1

It remains to apply Gronwall’s lemma.

(ii) By the inequality of Burkholder-Davis-Gundy (BDG) and Holder’s inequality,

wiexy, DR Xp, | : ; ’
E|VX,' — sl < C(p, T) ( [ba (b1, X7 + 0 (tisr, Xit ) Vherpa |
o(try1, X{1)
nik’X;l DZ-F].X?
hp t , VX ko bgk+17l)7ll
l;2 l tl 1) ti—1 O—(tk-‘rl?'th)
P m n,ty, X Dk+1Xt :
e Blo (0. x7 WX gkt TR )
l§2 ( l t_ 1) ti—1 (tk+17X )

Since by Lemma 5.4 (i) we conclude that

Elbgﬂ-‘rl,l) b (t xn

ti—1

)P+ EloH — oy (4, X[ )P < C(b, 0, T, p)h?,

and Lemma 5.2 implies that

note, X, 2p

E sup ’VXMl
k+1<i<m

S C(b7 U? T’p)7
the assertion follows by Gronwall’s lemma.

(iii) This is an immediate consequence of (i).
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