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A Simple Weight Recall for Semantic Segmentation:
Application to Urban Scenes

Xuhong LI, Franck DAVOINE and Yves GRANDVALET

Abstract— In many learning tasks, including semantic image
segmentation, performance can be effectively improved through
the fine-tuning of a pre-trained convolutional network, instead
of training from scratch. With fine-tuning, the underlying as-
sumption is that the pre-trained model extracts generic features,
which are at least partially relevant for solving a segmentation
task, but that would be difficult to extract from the smaller
amount of data that is available for training in urban driving
scenes segmentation. However, besides the initialization with
the pre-trained model and the early stopping, there is no
mechanism in classical fine-tuning approaches for keeping the
generic features. Even worse, the standard weight decay drives
the parameters towards the origin and affects the learned
features. In this paper, we show that a simple regularization that
uses the pre-trained model as a reference consistently improves
the performance when applied to semantic urban driving scene
segmentation. Experiments are done on the Cityscapes dataset,
with four different architectures of convolutional networks.

I. INTRODUCTION

Recent years have seen an increasing interest in driving
scene understanding and semantic image segmentation is
one of the important tools that can help to distinguish the
different objets in the surrounding neighborhood of a vehicle
as well as their complex relationships.

Image segmentation, i.e. the partitioning of an image into
sets of pixels that correspond to parts that are coherent in
terms of low-level cues such as colors, textures and smooth-
ness of boundaries, has been widely explored in the 90s.
Nowadays, semantic image segmentation, i.e. the labeling
of each pixel of an image with the category of the object
it belongs to, is still a fundamental topic, at the interface of
deep learning and computer vision. This research is of broad
interest for various applications such as autonomous driving,
human-machine interaction or medical image computing to
name a few. Contemporary deep networks used for semantic
image segmentation (FCN [1], DeepLab [2], PSPNet [3]) are
variants of networks initially proposed for image classifica-
tion (AlexNet, VGG net [4], GoogLeNet [5], ResNet [6]).
Most of them are pre-trained for a source task on a large-
scale database like ImageNet [7] and then fine-tuned on a
smaller database for a more specific target task like object
detection, or specialization like driving scene segmentation.

Some form of knowledge is believed to be extracted
by learning from large-scale databases of the source task
and this knowledge is then transferred to the target task
by initializing the network with the pre-trained parameters.
However, after fine-tuning, some of the parameters may
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be quite different from their initial values, resulting in
possible losses of general knowledge that may be relevant
for the targeted problem. In particular, during fine-tuning,
L2 regularization drives the parameters towards the origin
and thereby encourages large deviations of the parameters
from their initial values.

In order to help preserve the acquired knowledge embed-
ded in the initial network, we consider using another param-
eter regularization method during fine-tuning. We argue that
the standard L2 regularization, which drives the parameters
towards the origin, is not adequate in the framework of trans-
fer learning where the initial values provide a more sensible
reference point than the origin. This simple modification
keeps the original control of overfitting, by constraining
the effective search space around the initial solution, while
encouraging committing to the acquired knowledge. In this
paper, we investigate a variant of L2 penalties using the pre-
trained model as reference, which we name L2-SP because
the pre-trained parameters represent the starting point (-SP)
of the fine-tuning process. We show that this simple and easy
to implement method produces consistent improvement with
noticeable effects in segmentation tasks. We present com-
prehensive experiments using four different deep networks,
i.e. FCN, ResNet, and two ResNet-based networks, DeepLab
and PSPNet, pre-trained on ImageNet [7] and on COCO [8]
for two of them, and fine-tuned on Cityscapes [9].

II. RELATED WORK

In this section, we recall the existing works dedicated
to the improvements of convolutional networks for image
semantic segmentation and the existence of similar regular-
ization techniques that were previously applied in different
domains.

A. Convolutional networks for segmentation

Besides the success in image classification, convolutional
networks have also achieved impressive progress in object
detection, e.g. [10], and segmentation, e.g. [1]–[3], relying
on fine-tuning to improve the performance over training from
scratch.

Fully convolutional network (FCN) [1], based on VGG-
16 [4], is the first end-to-end convolutional network for seg-
mentation. FCN convolutionalizes the fully-connected layers,
exploits the spatial information from convolution operations
and compensates the loss of information in pooling layers
by adding skips from intermediate layers and bilinear in-
terpolations. Residual Network (ResNet) [6] is one of the
most popular architectures for image classification, and can



be lightly modified for segmentation tasks. DeepLab [2], con-
structed on ResNet, integrates dilated convolutional layers
(also called as atrous) into the standard ResNet structure,
with a fully connected Conditional Random Fields (CRFs)
as a post-processing method to improve the segmentation
performance. Besides that, DeepLab collects multi-scale
features extracted by atrous layers with different scales,
to classify pixels in consideration of pixels in a large
neighborhood. Similarly, PSPNet [3] gathers pooled feature
maps in different scales, and concatenates them with local
feature maps to combine local, global and intermediate-scale
information.

All these convolutional networks for segmentation are
fine-tuned from the pre-trained weights instead of training
from scratch. Fine-tuning is the most popular method for
transfer learning tasks, including segmentation tasks, when
using deep convolutional networks. The success of transfer
learning with convolutional networks relies on the generality
of the learned representations that have been constructed
from a large open database like ImageNet. Yosinski et al. [11]
quantified the transferability of these pieces of information in
different layers, e.g. the first layers learn general features, the
middle layers learn high-level semantic features and the last
layers learn the features that are very specific to a particular
task. That can be also noticed by the visualization of features
[12]. Overall, the learned representations can be conveyed
to related but different domains and the parameters in the
network are reusable for different tasks.

B. Parameter regularization

Parameter regularization can take different forms in deep
learning. L2 regularization has been used for a long time as a
very simple method for preventing overfitting by penalizing
the L2 norm of the parameter vector. It is the usual regular-
ization used in deep learning, including for fine-tuning.

In lifelong learning, where a series of tasks is learned
sequentially with a single model with the objective to achieve
a good performance on all tasks, and domain adaptation,
where the target task is identical to the source task and no
(or a small quantity of) target data is labeled, several works
attempt to improve the performance by using parameter
regularization approaches to preserve pre-trained parameters
from source tasks. Li et al. [13] proposed to use the outputs
of the target examples, computed by the original network
on the source task, to define a learning scheme preserving
the memory of the source tasks when training on the target
task. They also tried to preserve the pre-trained parameters
instead of the outputs of examples but without significant
effectiveness. Kirkpatrick et al. [14] developed a similar
approach with success, getting sensible improvements by
measuring the sensitivity of the parameters of the network
learned on the source data thanks to the Fisher information.
However, their regularization scheme is designed for lifelong
learning tasks and may be thought as being inadequate
for inductive transfer learning, where performance is only
measured on the target task. Rozantsev et al. [15] introduced

a parameter regularization for keeping the similarity between
the pre-trained and the fine-tuned models.

Regularization has been a means to build shrinkage es-
timators for decades. Shrinking towards zero is the most
common form of shrinkage, but shrinking towards adaptively
chosen targets has been around for some time, starting
with Stein shrinkage (see e.g. [16, chapter 5]), where it
can be related to empirical Bayes arguments. In transfer
learning, it has been used in maximum entropy models
[17] or SVM [18]–[20]. These approaches were shown to
outperform standard L2 regularization with limited labeled
data in the target task [19], [20]. These relatives differ from
the application to deep networks in several respects, the more
important one being that they consider a fixed representation,
where transfer learning aims at producing similar classifica-
tion parameters in that space, that is similar classification
rules. For deep networks, transfer aims at learning similar
representations upon which classification parameters will be
learned from scratch. Hence, even though the techniques we
discuss here are very similar regarding the analytical form
of the regularizers, they operate on very different objects.

Thus, to the best of our knowledge, we present the first
results on segmentation with convolutional networks that are
based on the L2-SP regularization term described in the
following section.

III. REGULARIZERS FOR FINE-TUNING

In this section, we detail the penalties we consider for
fine-tuning. When learning from scratch, regularization is
aimed at facilitating optimization and avoiding overfitting, by
implicitly restricting the capacity of the network, that is, the
effective size of the search space. In transfer learning, the role
of regularization is similar, but the starting point of the fine-
tuning process conveys knowledge that pertains to the source
problem (domain and task). Hence, the network capacity
has not to be restricted blindly: the pre-trained model sets
a reference that can be used to define the functional space
effectively explored during fine-tuning.

Since we are using early stopping, fine-tuning a pre-trained
model is an implicit form of inductive bias towards the initial
solution. We explore here how a coherent explicit induction
bias, encoded by a regularization term, affects the training
process. Section IV shows that this such scheme gets an edge
over the standard approaches.

Let w ∈ Rn be the parameter vector containing all the
network parameters that are to be adapted to the target task.
The regularized objective function J̃ that is to be optimized
is the sum of the standard objective function J and the
regularizer Ω(w). In our experiments, J is the negative
log-likelihood, so that the criterion J̃ could be interpreted
in terms of maximum a posteriori estimation, where the
regularizer Ω(w) would act as the log prior of w. More
generally, the minimizer of J̃ is a trade-off between the data-
fitting term and the regularization term.

L2 penalty: Our baseline penalty for transfer learning
is the usual L2 penalty, also known as weight decay, since



it drives the weights of the network to zero:

Ω(w) =
α

2
‖w‖22 , (1)

where α is the regularization parameter setting the strength
of the penalty and ‖·‖p is the p-norm of a vector.

L2-SP penalty: Let w0 be the parameter vector of
the model pre-trained on the source problem, acting as the
starting point (-SP) in fine-tuning. Using this initial vector
as the reference in the L2 penalty, we get:

Ω(w) =
α

2

∥∥w −w0
∥∥2

2
. (2)

Typically, the transfer to a target task requires slight modifi-
cations of the network architecture used for the source task,
such as on the last layer used for predicting the outputs.
Then, there is no one-to-one mapping between w and w0,
and we use two penalties: one for the part of the target
network that shares the architecture of the source network,
denoted wS , the other one for the novel part, denoted wS̄ .
The compound penalty then becomes:

Ω(w) =
α

2

∥∥wS −w0
S
∥∥2

2
+
β

2
‖wS̄‖

2
2 . (3)

We have tested several different forms of regularization
approaches on classification tasks [21] and conclude that for
target tasks, L2-SP is the most efficient among those reg-
ularization approaches that preserve the learned knowledge
from source domains (at par with a more complex penalty
based on Fisher information). In this article, we prove that
on segmentation tasks L2-SP also behaves better than the
standard L2 that is currently used.

IV. EXPERIMENTS

We evaluate the L2 and L2-SP penalties on Cityscapes [9]
with several different networks. L2-SP can be applied to all
layers except new layers, and parameters in new layers are
regularized by L2 penalty as described in Section III.

A. Databases and networks

Source Databases: ImageNet [7] and Microsoft COCO
[8] are used as sources. Both of them are large-scale
databases: ImageNet for image classification; Microsoft
COCO for object detection and semantic image segmen-
tation. Pre-training on ImageNet can largely increase the
performance for most transfer learning tasks, moreover pre-
training on ImageNet and then on COCO can further raise
percentages in segmentation performance. In our experi-
ments, we compare L2-SP with the standard L2 regulariza-
tion approach using these two pre-training schemes.

Target Database: Cityscapes [9] is a database of real-
world urban driving scenes for segmentation. The database
splits 5000 finely labeled images into a training set (2975
images), validation set (500 images) and test set (1525
images). The ground truth of test set is not available on
public so in our experiments we train our networks on the
training set and evaluate the performance on the validation
set. Meanwhile, we have also submitted some of our results
on the Cityscapes benchmark to evaluate our method on the

TABLE I: Mean IoU scores on Cityscapes. The second column
recalls the results obtained in previous works and the two last
columns show our results with L2 and L2-SP fine-tuning. Note that
the initial models for DeepLab-COCO and PSPNet-COCO are pre-
trained on ImageNet and then on Microsoft COCO, the other four
are only pre-trained on ImageNet. The reported mIoU scores are
on the Cityscapes validation set, except for the two scores marked
(test set) that have been computed on the Cityscapes test set.

L2 in [2], [3], [9] L2 L2-SP
FCN 65.3 (test set) 66.9 67.9
ResNet-101 66.6 68.1 68.7
DeepLab — 68.6 70.4
DeepLab-COCO 70.4 72.0 73.2
PSPNet 76.0 (test set) 75.1 76.1
PSPNet-COCO — 78.0 79.0

test set. Cityscapes has 20000 additional images with coarse
annotations but in this paper, we did not use them.

Convolutional Networks for Semantic Image Segmen-
tation: FCN [1] is one of the most classical structures for
segmentation. Deeplab [2] and PSPNet [3] stayed for some
time on the top of the Cityscapes benchmark and are two
favored structures. Unfortunately, we do not have enough
GPU resources to perfectly reproduce the performance of
PSPNet, as explained in the training details. Nonetheless, our
experimental work here focuses on four quite diverse struc-
tures of networks, FCN, the standard ResNet-101, DeepLab,
and PSPNet for demonstrating the consistency of L2-SP.

B. Training details

All images in Cityscapes are color images. All training
examples are pre-processed as follows: we subtract the mean
activity computed over the training set from each channel,
then we adopt random blur, random mirror and random
crop for data augmentation. The network parameters are
regularized using the two techniques as described in Section
III. We have also separated all weights to wS and wS̄ for L2,
using α and β respectively as regularization hyperparameters.
According to experiments in [21], we tried {10−2, 10−3,
10−4} for α and {10−3, 10−4} for β. Regarding testing,
we compute the mean intersection-over-union metric (mIoU)
score [9] over 19 classes in Cityscapes and we do not
make use of further post-processing methods to improve the
performance. Stochastic gradient descent with momentum
0.9 is used for optimization. We set the learning rate as
large as possible, provided the loss can decrease in the
first iterations. For FCN, we do not decrease the learning
rate as suggested in [1]. For ResNet based networks, we
use the polynomial learning rate policy as in [2], [3]. The
batch size is 2 and image crops have the size of 800×800
except for PSPNet. In order to stabilize the statistics of
batch normalization layers, for PSPNet, we use 16 examples
in a mini-batch with image crops of 624×624 pixels. All
experiments are performed with Tensorflow [22].

C. Results

We reproduce the experiments of [2], [3], [9] that use
the standard L2 fine-tuning, and compare with L2-SP fine-



Fig. 1: Comparisons of L2-SP and L2 on three images from the Cityscapes validation set. The first column shows the original image
above its ground truth segmentation (overlayed colors encode semantic classes [9], the black color is not included in any evaluation and
is treated as void). Columns 2 – 5 present four different networks: FCN, DeepLab-COCO, PSPNet, PSPNet-COCO. On the first line,
segmentation results with L2, and on the second line with L2-SP. Pixels that are correctly classified keep their ground truth color. Pixels
that are incorrectly classified are set to white (a 100% accuracy segmentation result should not contain any white pixel).

Ground Truth FCN DeepLab-COCO PSPNet PSPNet-COCO

L2

L2-SP

L2

L2-SP

L2

L2-SP

tuning, all other setup parameters being unchanged. The
results, computed on the validation set of Cityscapes, are
reported in Table I. PSPNet is the only network we could
not perfectly reproduce because we had to use smaller input
images compared to [3], due to our limited computational
ressources. We readily observe that fine-tuning with L2-SP in
place of L2 consistently improves the performance in mean
IoU score, for all networks. Several examples are shown in
Figure 1. The three images displayed in Figure 1 belong
to the validation set. They were chosen so as to display
the dissimilarity between the two regularization approaches
for the best performing model. More precisely, they have
large difference in mean IoU score between PSPNet-COCO-
L2 and PSPNet-COCO-L2-SP. We also include the seg-
mentations obtained for three other models for comparison
purposes.

Table II show the per-class results and we can see that
fine-tuning with L2-SP maintains the scores in easy classes
like road, building, vegetation, sky etc, but also improves
the performance in those difficult but important classes, like
people and vehicles. Some image details centered on certain
objects are shown in Figure 2. Images in Figure 2 are chosen
in the same way as Figure 1.

Table I and II report the results evaluated on the validation
set. Table III shows the results on the test set. The numerical
results in Table III have been submitted to the Cityscapes
evaluation server, and will be made public on the official
website.

D. Analysis and discussion
1) Theoretical insights: Analytical analyses are very dif-

ficult in the deep learning framework. Under some (highly)
simplifying assumptions, the effect of L2 regularization can
be analyzed by doing a quadratic approximation of the
objective function around the optimum [23, Section 7.1.1].
This analysis shows that L2 regularization rescales the pa-
rameters along the directions defined by the eigenvectors of
the Hessian matrix. This scaling is equal to λi/(λi + α) for
the i-th eigenvector of eigenvalue λi. A similar analysis can
be used for the L2-SP regularization.

We recall that J(w) is the unregularized objective func-
tion, and J̃(w) = J(w) + α

∥∥w −w0
∥∥2

2
is the regularized

objective function. Let w∗ = argminwJ(w) and w̃ =
argminwJ̃ be their respective minima. The quadratic ap-
proximation of J(w∗) gives

H(w̃ −w∗) + α(w̃ −w0) = 0 , (4)

where H is the Hessian matrix of J w.r.t. w, evaluated at
w∗. Since H is positive semidefinite, it can be decomposed
as H = QΛQT . Applying the decomposition to Equation
(4), we obtain the following relationship between w̃ and w∗:

QT w̃ = (Λ +αI)−1ΛQTw∗+α(Λ +αI)−1QTw0 . (5)

We can see that with L2-SP regularization, in the direction
defined by the i-th eigenvector of H, w̃ is a convex combi-
nation of w∗ and w0 in that direction since λi/(λi +α) and



TABLE II: IoU scores for each object class of the Cityscapes Validation set. *-COCO means that the model is first pre-trained on
ImageNet and then on Microsoft COCO.

road sidew. build. wall fence pole t.light t.sign veg. ter. sky pers. rider car truck bus train m.bike bike mIoU
FCN.L2 97.1 79.1 89.2 36.6 48.7 51.9 57.5 69.5 90.7 58.1 92.4 75.1 51.5 91.8 46.8 69.5 48.3 47.5 70.5 66.9
FCN.L2 -SP 97.1 79.0 89.4 42.8 49.4 55.0 59.9 71.1 90.8 56.8 90.6 75.3 51.0 92.2 49.1 70.2 50.6 48.6 71.3 67.9
ResNet-101.L2 97.4 79.9 90.3 44.8 48.7 52.8 58.9 68.6 91.3 58.5 92.7 76.4 52.0 92.3 49.0 66.1 48.9 52.4 72.6 68.1
ResNet-101.L2 -SP 97.5 80.7 90.6 45.4 50.2 54.0 61.9 70.8 91.4 58.8 93.2 77.0 52.8 92.7 49.9 66.4 45.8 53.9 73.3 68.7
DeepLab.L2 97.3 79.7 90.3 49.0 50.4 51.8 55.1 66.2 90.8 57.9 93.1 75.3 51.2 92.1 52.7 70.8 56.4 53.4 70.2 68.6
DeepLab.L2 -SP 97.4 80.2 90.7 48.7 52.5 53.4 58.4 68.2 91.0 59.0 93.5 76.3 54.0 92.5 58.4 74.5 62.7 53.4 71.5 70.3
DeepLab-COCO.L2 97.6 81.5 90.9 46.8 50.4 54.4 61.2 71.6 91.2 59.7 93.4 78.0 56.5 93.3 67.8 81.3 62.8 56.5 73.0 72.0
DeepLab-COCO.L2 -SP 97.6 81.2 90.9 48.0 51.4 54.2 60.8 70.9 91.2 60.3 93.3 78.3 57.5 93.6 71.9 84.1 72.4 59.3 73.5 73.2
PSPNet.L2 98.0 84.0 92.0 46.3 57.8 64.0 71.0 78.1 92.3 64.2 94.6 81.7 61.7 94.8 68.7 80.3 54.2 65.0 77.6 75.1
PSPNet.L2 -SP 97.9 83.4 91.8 50.5 55.2 61.9 68.3 76.8 92.3 65.0 94.3 80.7 61.7 94.8 74.6 84.2 70.1 65.6 76.7 76.1
PSPNet-COCO.L2 98.2 85.3 92.4 46.2 58.7 65.8 72.7 80.5 92.4 64.8 94.7 83.7 64.0 95.5 81.3 87.2 71.7 67.8 78.8 78.0
PSPNet-COCO.L2 -SP 98.2 85.5 92.5 52.0 61.5 65.2 72.1 80.0 92.6 65.6 94.7 83.9 65.8 95.5 82.6 89.0 78.9 67.2 78.7 79.0

TABLE III: IoU scores for each object class of the Cityscapes Test set. *-COCO means that the model is first pre-trained on ImageNet
and then on Microsoft COCO.

road sidew. build. wall fence pole t.light t.sign veg. ter. sky pers. rider car truck bus train m.bike bike mIoU
DeepLab-COCO.L2 97.9 81.1 90.6 42.0 45.8 53.1 61.3 68.0 91.8 68.6 94.1 80.2 58.3 93.8 54.4 64.3 59.6 58.9 69.2 70.2
DeepLab-COCO.L2 -SP 97.9 81.2 90.6 42.8 47.2 53.1 60.8 67.9 91.8 68.7 94.2 80.5 59.9 94.0 56.4 66.1 61.9 60.2 69.6 70.8
PSPNet.L2 98.4 84.6 92.1 45.6 53.1 63.2 71.2 75.3 93.0 71.5 95.1 84.1 65.9 95.0 61.0 74.3 62.8 64.0 73.9 74.9
PSPNet.L2 -SP 98.3 83.8 92.0 50.7 53.5 61.0 68.5 73.5 92.9 71.5 94.9 83.3 65.8 95.0 66.2 73.9 66.3 63.0 72.8 75.1
PSPNet-COCO.L2 98.5 85.5 92.7 53.5 57.5 65.7 74.2 77.9 93.4 73.1 95.4 86.0 69.4 95.7 59.2 73.5 63.6 69.7 76.2 76.9
PSPNet-COCO.L2 -SP 98.5 85.0 92.7 53.3 58.0 64.4 73.0 77.3 93.4 72.2 95.3 85.7 69.2 95.5 63.7 73.6 69.9 68.9 75.8 77.1

Fig. 2: Comparisons of L2-SP and L2: zoom on some object classes like rider, person, and different kinds of vehicles. Images are from
the validation set and pixels are colored in the same way as in Figure 1.

Ground Truth FCN DeepLab-COCO PSPNet PSPNet-COCO

L2

L2-SP

L2

L2-SP

L2

L2-SP

α/(λi+α) sum to 1. w̃ of the regularized objective function
with L2-SP is a compromise between w∗ and w0, precisely
an affine combination along the directions of eigenvectors of
the Hessian matrix of the unregularized objective function.

This contrasts with L2 that leads to a compromise between
w∗ and the origin. Clearly, searching a solution around
the pre-trained parameter vector is intuitively much more
appealing, since it is the actual motivation for using the pre-

trained parameters as the starting point of the fine-tuning
process. Hence, the regularization procedures resulting in the
compromise with the pre-trained parameter encode a penalty
that is coherent with the original motivation.

2) Coherent motivation from shrinkage estimation: Using
L2-SP instead of L2 can also be motivated by an analogy
with shrinkage estimation see e.g. [16, chapter 5]. Although
it is known that shrinking toward any reference is better than



raw fitting, it is also known that shrinking towards a value
that is close to the “true parameters” is more effective. The
notion of “true parameter” is not applicable to deep networks,
but the connection with Stein shrinking effect may be inspir-
ing by surveying the literature considering shrinkage towards
other references, such as linear subspaces. In particular, it is
likely that manifolds of parameters defined from the pre-
trained network would provide a better reference than the
single parameter value provided by the pre-trained network.

3) Computational efficiency: L2-SP penalty introduces no
extra parameters, and only increases slightly the computa-
tional burden, by less than 1% of the number of floating
point operations of ResNet-101. At little computational cost,
we can thus obtain 1∼2% improvements in mIoU score, and
no additional cost is experienced at test time.

4) Proportion of new parameters: Most layers of the
network used for segmentation were pre-trained on a clas-
sification task, but for solving the segmentation tasks, some
changes in the network are necessary. All the networks evalu-
ated in this paper require new layers and thereby new param-
eters for solving the Cityscapes segmentation task. However,
the ratio of new parameters is quite different among the
four networks: FCN has less than 0.1% new parameters,
ResNet-101 has 0.1%, DeepLab 3.4% and PSPNet 37.5%.
Since new parameters are penalized with L2, the proportion
of new parameters reduces the relative effect of L2-SP.
This is visible with PSPNet: the scores of several classes
are degraded despite one percent improvement in average.
As for PSPNet-COCO, only five classes are moderately
degraded. We argue that most new parameters in the PSPNet
model were trained on Microsoft COCO and can be used as
reference when training on Cityscapes, so the effect of L2-
SP remains. Note that DeepLab models are different from
PSPNet in architecture, and training on COCO does not
reduce the proportion of new parameters. So when using the
two DeepLab models, the trends of L2-SP, compared with
L2, are both positive.

V. CONCLUSION

In this paper, we described and tested a variant of the L2

penalty, L2-SP, that uses pre-trained model parameters as
a reference to encode an explicit bias towards the solution
learned on a source task. The L2-SP penalty has been already
used for other purposes but we demonstrate here its relevance
in segmentation tasks with different deep convolutional net-
works, through an evaluation on the Cityscapes database.
This penalty is very simple to implement and quite more
effective than the standard L2 penalty that is currently used
in fine-tuning. We also provide theoretical hints motivating
L2-SP by the effective hypothesis space explored during
optimization and shrinkage estimation. We recommend this
simple L2-SP scheme as the legitimate baseline fine-tuning
strategy for segmentation tasks.
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