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ALGEBRAIC VECTOR BUNDLES ON THE 2-SPHERE AND SMOOTH RATIONAL

VARIETIES WITH INFINITELY MANY REAL FORMS

ADRIEN DUBOULOZ, GENE FREUDENBURG, AND LUCY MOSER-JAUSLIN

In memory of Mariusz Koras

Abstract. We construct smooth rational real algebraic varieties of every dimension ≥ 4 which admit
infinitely many pairwise non-isomorphic real forms.

Introduction

A classical problem in real algebraic geometry is the classification of real forms of a given real alge-
braic variety X , that is, real algebraic varieties Y non isomorphic to X but whose complexifications YC
are isomorphic to XC as complex algebraic varieties. For example, the smooth real affine algebraic surfaces
S2 =

{

x2 + y2 + z2 = 1
}

and D =
{

uv + z2 = 1
}

in A3
R have isomorphic complexifications, an explicit iso-

morphism being simply given by the linear change of complex coordinates u = x+ iy and v = x− iy, but are
non isomorphic. This follows for instance from the fact that the set of real points of S2 is the usual euclidean
2-sphere S2 ⊂ R3 whereas the set of real points of D is not compact for the Euclidean topology.

Examples of smooth real projective varieties admitting infinitely many pairwise non-isomorphic real forms
were only found very recently successively by Lesieutre [12] in dimension ≥ 6 and by Dinh-Oguiso [4] in every
dimension ≥ 2. These are obtained as a by-product of clever constructions of smooth complex projective
algebraic varieties defined over R with discrete but non finitely generated automorphism groups containing
infinitely many conjugacy classes algebraic involutions. All their examples are non geometrically rational
and to our knowledge, the question of existence of rational real algebraic varieties, projective or not, with
infinitely many real forms was left open. Our first main result explicitly fills this gap for smooth real affine
fourfolds:

Theorem 1. The smooth rational real affine fourfold S2×A2
R has at least countably infinitely many pairwise

non-isomorphic real forms.

In contrast with the examples found by Lesieutre and Dinh-Oguiso, which rely on constructions of special
classes of complex projective varieties by techniques of birational geometry, ours are inspired by basic results
on the classification of topological vector bundles on the real sphere S2 ⊂ R3. Our construction can indeed be
interpreted as a sort of “algebraization” of the property that the complexification E ⊗R C of any topological
real vector bundle π : E → S2 of rank 2 on S2 is isomorphic, as a topological real vector bundle of rank 4,
to the trivial bundle S2 × R4. More precisely, we show that the topological real vector bundles of rank 2 on
S2, which are nothing but the underlying real vector bundles of the complex line bundles OCP1(n), n ≥ 0,

over CP1 ≃ S2, admit algebraic models in the form of algebraic vector bundles pn : Vn → S2 of rank 2 on S2

with pairwise non-isomorphic total spaces, whose complexifications pC : Vn,C → S2C are all isomorphic to the
trivial bundle S2C × A2

C.
It is worth noticing that by a result of Kambayashi [11], A2

R has no nontrivial real form. One can check
along the same lines using the fact that similarly as to Aut(A2

C), the automorphism group Aut(S2C) of S2C ≃ DC

has a structure of a free product of two subgroups amalgamated along their intersection [2, 13], that D is the
unique nontrivial real form of S2. So while A2

R and S2 both have finitely many real forms, the total spaces
of the algebraic vector bundles pn : Vn → S2 provide an infinite countable family of real forms of S2 × A2

R

which are by construction pairwise locally isomorphic over S2, but globally pairwise non-isomorphic as real
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SMOOTH RATIONAL VARIETIES WITH INFINITELY MANY REAL FORMS 2

algebraic varieties. In contrast, reminiscent of the fact that for every r ≥ 3 there exists a unique nontrivial
topological real vector bundle of rank r on S2, it turns out that the varieties Vn × Ar−2

R , n ≥ 0, give rise to
a unique class of nontrivial real form of S2 × Ar

R (see Corollary 12 below).
Our construction thus does not directly yield higher dimensional families of examples by simply taking

product with affine spaces. Nevertheless, a suitable adaptation of the technique used by Dinh-Oguiso [4],
consisting in our situation of taking products of the Vn with well-chosen real rational affine varieties of
log-general type, allows us to derive the following general existence result:

Theorem 2. For every d ≥ 4, there exist smooth rational real affine varieties of dimension d which have at
least countably infinitely many pairwise non-isomorphic real forms.

The article is organized as follows. The first section contains a short review of the classical correspondence
between quasi-projective real algebraic varieties and quasi-projective complex varieties endowed with a real
structure as well as a recollection on Euclidean topologies of real and complex algebraic varieties. Section 2 is
devoted to the construction of algebraic models of topological real vector bundles over the 2-sphere S2 ⊂ R3.
The existence of such models was known after successive works of Fossum [6] and Moore [14] and, later
on, of Swan [17], but we give a new geometric construction in the framework of complex varieties with real
structures which we find more transparent. Theorem 1 is then established in Section 3. Section 4 contains
the proof of Theorem 2 and a complement to Theorem 1 consisting of explicit formulas for the real structures
on S2C × A2

C corresponding to the real algebraic vector bundles pn : Vn → S2.

Acknowledgement. The main ideas of the present article were discussed between the authors at the occasion
of the conference “Algebraic Geometry - Mariusz Koras in memoriam” held at the IMPAN, Warsaw in May
2018. We are grateful to the organizers of the conference for giving us the opportunity to have such discussions
and to the IMPAN for its support and hospitality.

1. Preliminaries

In this article, the term k-variety will always refer to a geometrically integral quasi-projective scheme X of
finite type over a base field k of characteristic zero. A morphism of k-varieties is a morphism of k-schemes. In
the sequel, k will be equal to either R or C, and we will say that X is a real, respectively complex, algebraic
variety. To fix the notation, we let c : Spec(C) → Spec(R) be the étale double cover induced by the inclusion
R →֒ C = R[i]/(i2 + 1) and we let τ : Spec(C) → Spec(C), i 7→ −i be the usual complex conjugation.

1.1. Complex varieties with real structures. Recall [3] and [7, Exposé VIII] that étale descent for
the Galois cover c : Spec(C) → Spec(R) provides an equivalence between the category of quasi-projective
real algebraic varieties and the category of complex algebraic varieties equipped with a descent datum with
respect to c. Such a descent datum on a quasi-projective complex algebraic variety f : V → Spec(C) is in
turn uniquely determined by an isomorphism of R-schemes σ : V → V such f ◦ σ = τ ◦ f and that satisfies
the cocycle relation σ2 = idV . In other words, σ is an anti-regular involution of V , usually referred to as a
real structure on V .

For every real algebraic variety X , the complexification XC = X ×Spec(R) Spec(C) of X is canonically
endowed with a real structure σX = idX × τ . Conversely, for every complex variety f : V → Spec(C)
endowed with a real stucture σ, the “quotient” q : V → V/〈σ〉 exists in the category of schemes and the
structure morphism f : V → Spec(C) descends to a morphism f : V/〈σ〉 → Spec(R) = Spec(C)/〈τ〉 making
V/〈σ〉 into a real algebraic variety X such that V ≃ XC.

Two real structures σ and σ′ on a same complex algebraic variety f : V → Spec(C) are called equivalent
if the associated real algebraic varieties V/〈σ〉 and V/〈σ′〉 are isomorphic, which holds if and only if there
exists an automorphism of complex algebraic varieties h : V → V such that σ′ ◦ h = h ◦ σ. A real form
of a real algebraic variety X is a real algebraic variety X ′ such that the complex varieties XC and X ′

C are
isomorphic. Galois descent then provides a one-to-one correspondence between isomorphism classes of real
forms of a given real variety X and equivalence classes of real structures on its complexification XC.

1.2. Galois descent for vector bundles. Given a real algebraic variety X , étale descent for the Galois
cover c : Spec(C) → Spec(R) also provides an equivalence between the category of quasi-coherent OX -
modules and the category of pairs (F , ϕ) consisting of a quasi-coherent OXC

-module F and an isomorphism

ϕ : F
∼
→ σ∗

XF of OXC
-modules such that ϕ2 = (σ∗

Xϕ) ◦ ϕ.
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Since σX is an involution, for every quasi-coherent OXC
-module E , we have σ∗

X(σ∗
XE) ≃ E . Letting

F = E ⊕σ∗
XE , the isomorphism ϕ : F = E ⊕σ∗

XE → σ∗
XF = σ∗

XE ⊕E exchanging the two factors of the direct
sum satisfies ϕ2 = (σ∗

Xϕ) ◦ ϕ. We denote the corresponding quasi-coherent OX -module by ER.
In the sequel, we essentially use this construction in the special case where E is the locally free OXC

-
module of germs of sections of a vector bundle p : E = Spec(Sym·E∨) → XC on XC of finite rank r.
In this geometric context, the isomorphism ϕ can be interpreted as endowing the rank 2r vector bundle
ρ = p⊕ σ∗

Xp : E ⊕ σ∗
XE → XC with a lift of σX to a real structure σ̃ : E ⊕ σ∗

XE → E ⊕ σ∗
XE which is linear

on the fibers of ρ, in such a way that ρ descends to a vector bundle

pR : ER := Spec(Sym·E∨
R ) ≃ (E ⊕ σ∗

XE)/〈σ̃〉 → X ≃ XC/〈σX〉

of rank 2r on X .

1.3. Euclidean topologies. Recall that the set X(R) of real points of a real algebraic variety X is endowed
in a natural way with the Euclidean topology, locally induced on each affine open subset by the usual Euclidean
topology on the set An

R(R) ≃ Rn. The so-constructed topology on X(R) is well-defined and independent of
the choices made [16, Lemme 1 and Proposition 2]. Similarly, the set of complex points V (C) of a complex
algebraic variety V is endowed with the Euclidean topology locally induced by that on An

C(C) ≃ Cn ≃ R2n.
If X (resp. V ) is smooth, then X(R) (resp. V (C)) can be further equipped with a natural structure of
smooth manifold locally inherited from that on Rn (resp. R2n). Every morphism h : X → Y of smooth real
algebraic varieties induces a continuous map h(R) : X(R) → Y (R) for the Euclidean topologies, which is a
diffeomorphism when f is an isomorphism. Similarly, a morphism of complex varieties h : V →W induces a
continuous map h(C) : V (C) → W (C) which is a diffeomorphism when f is an isomorphism.

If V is a smooth complex variety equipped with a real structure σ, then σ induces a smooth involu-
tion of V (C). The set V (C)σ of fixed points of σ is called the real locus of (V, σ). The quotient map
q : V → X = V/〈σ〉 restricts to a diffeomorphism between V (C)σ endowed with the induced smooth struc-
ture and the set of real points X(R) of X endowed with its smooth structure.

Let X be a smooth real algebraic variety, let p : E → XC be a vector bundle of rank r on XC and
let pR : ER → X be the vector bundle of rank 2r on X descended from the the rank 2r vector bundle
p ⊕ σ∗

Xp : E ⊕ σ∗E → XC as in §1.2. Then pR(R) : ER(R) → X(R) is a topological real vector bundle of
rank 2r on the smooth manifold X(R). On the other hand, the restriction of p(C) : E(C) → XC(C) to the

real locus XC(C)
σX of XC(C) defines through the diffeomorphism XC(C)

σX
∼
→ X(R) a topological complex

vector bundle p̃ : Ẽ → X(R) of rank r on X(R), hence, forgetting about the complex structure, a topological
real vector bundle of rank 2r.

Lemma 3. With the notation above, p̃ : Ẽ → X(R) and pR(R) : ER(R) → X(R) are isomorphic topological
real vector bundles of rank 2r on X(R).

Proof. Let σ̃ be the lift of σX to a real structure σ̃ : E ⊕ σ∗
XE → E ⊕ σ∗

XE as in §1.2. Since σX acts
trivially on the real locus XC(C)

σX ≃ X(R) of XC, the restriction of E(C) ⊕ σ∗E(C) to XC(C)
σX is equal

to Ẽ ⊕ Ẽ on which the restriction of σ̃ acts by the involution j exchanging the two factors. By construction
pR(R) : ER(R) → X(R) is isomorphic to the quotient bundle (Ẽ⊕Ẽ)/〈j〉 → X(R), and the composition of the

diagonal embedding Ẽ → Ẽ ⊕ Ẽ with the quotient morphism Ẽ ⊕ Ẽ → (Ẽ ⊕ Ẽ)/〈j〉 induces an isomorphism

of topological real vector bundle between p̃ : Ẽ → X(R) and pR(R) : ER(R) → X(R). �

2. Algebraic models of topological vector bundles on the 2-sphere

The real 2-sphere S2 =
{

(x, y, z) ∈ R3, x2 + y2 + z2 = 1
}

equipped with its usual structure of smooth

manifold induced by the standard smooth structure on R3 is diffeomorphic to set of real points Q2(R) of the
smooth projective quadric surface Q2 ⊂ P3

R = ProjR(R[X,Y, Z, T ]) defined by the equation X2 + Y 2 + Z2 −
T 2 = 0, endowed with its Euclidean topology. The complement of the hyperplane section H = {T = 0} of Q2

is isomorphic to the smooth real affine quadric surface S2 = Spec(R[x, y, z]/(x2 + y2 + z2 − 1)). The divisor
class group of Q2 is isomorphic to Z, generated by the class of H , from which it follows that the divisor class
group of S2 is trivial. Furthermore, since H is a conic without real point, the inclusion S2 →֒ Q2 induces a

diffeomorphism S2(R)
≃
→ Q2(R) ≃ S2.
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Every real algebraic vector bundle F → S2 gives rise to a topological real vector bundle of the same rank
F (R) → S2(R) on S2(R) ≃ S2. It was shown by Moore [14] (see also Fossum [6]) that every topological real
vector bundle π : E → S2 on S2 is isomorphic to one obtained in this way. In other words, every topological
real vector bundle π : E → S2 admits an algebraic model in the form of an algebraic vector bundle on S2.
Later on, Barge and Ojanguren [1] established the surprising much stronger fact that two algebraic vector
bundles on S2 are isomorphic as algebraic vector bundles if and only if their associated topological vector
bundles on S2 are isomorphic as topological vector bundles. Summing up:

Proposition 4. The map which associates to a real algebraic vector bundle p : F → S2 on S2 the topological
vector bundle p(R) : F(R) → S2(R) on S2(R) ≃ S2 induces a one-to-one correspondence between isomorphism
classes of algebraic vector bundles on S2 and isomorphism classes of topological real vector bundles on S2.

In the next paragraphs, we review briefly the classification of topological real vector bundles on S2 and
give a new construction of corresponding algebraic models in the framework of complex varieties with real
structure.

2.1. Recollection on topological real vector bundles on S2. Every topological real vector bundle on
S2 is orientable, and there exists a bijection

θ : [S1,GL+
r (R)] → Vect+r (S

2)

between the set of homotopy classes of continuous map from the circle S1 to the group GL+
r (R) of invertible

matrices of rank r with positive determinant, and the set of isomorphism classes of oriented topological
real vector bundles of rank r on S2. This bijection can be explicitly realized via the so-called clutching
construction. Namely, viewing S2 as the union of its closed lower and upper hemispheres S2

z≤0 and S2
z≥0

with common boundary ∂S2
z≤0 = ∂S2

z≥0 = {z = 0} ≃ S1, a continuous map f : S1 → GL+
r (R) determines a

real vector bundle π : Ef → S2 of rank r obtained as the quotient of S2
z≤0 × Rr ⊔ S2

z≥0 × Rr by identifying

(x, v) ∈ ∂S2
z≤0 × Rr with (x, f(x) · v) ∈ ∂S2

z≥0 × Rr. The isomorphism class of Ef depends only on the

homotopy class of f , and the bijection θ is defined by sending a clutching map f : S1 → GL+
r (R) to the

vector bundle Ef it determines (see e.g. [8, Proposition 1.11]).

Noting that GL+
r (R) retracts onto the special orthogonal group SOr, we get that Vect+1 (S

2) consists of
the trivial line bundle only, and that Vect+2 (S

2) is isomorphic to π1(SO2) ≃ Z. Identifying S1 and SO2

with the set of complex numbers α = x + iy of modulus one, a corresponding collection of clutching maps
fn : S1 → SO2 is simply given by α 7→ αn, n ∈ Z. Writing α = exp(iθ), θ ∈ R, these correspond equivalently
to the rotation matrices

M2(n) = exp(iθ)n =

(

cosnθ sinnθ
− sinnθ cosnθ

)

.

The real vector bundle corresponding to M2(n) ∈ SO2 coincides with the image of the underlying real vector
bundle of the complex line bundle OCP1(n) on CP

1 via the usual diffeomorphism CP
1 → S2 = C ∪ {∞}

mapping [z0 : z1] to z0/z1. For instance, the tangent bundle TS2 → S2 coincides with the image of underlying
real vector bundle of OCP1(2). Note that the underlying real vector bundle of OCP1(−n) endowed with the
orientation inherited from the complex structure is equal to the underlying real vector bundle of OCP1(n) but
equipped with the opposite orientation.

For every r ≥ 3, Vect+r (S
2) is isomorphic to π1(SOr) ≃ Z/2Z, a corresponding clutching map being given

by the matrix

diag((exp(iθ), Ir−2) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 Ir−2





where Ir−2 denote the (r− 2)× (r− 2) identity matrix. In other words, for every r ≥ 3, the unique nontrivial
real topological vector bundle of rank r on S2 is the direct sum of the rank 2 vector bundle πf1 : Ef1 → S2

corresponding to M2(1) and of the trivial vector bundle of rank r − 2. It also follows from this description
that Efn is either 1-stably trivial if n is even or 1-stably isomorphic to Ef1 is n is odd.

2.2. Algebraic models as vector bundles on the projective quadric. In view of the description of
isomorphism classes of topological real vector bundles on S2 recalled in §2.1, to show that every real topolog-
ical vector bundle π : E → S2 admits an algebraic model, it is enough to show that for every n ≥ 1, the real
topological vector bundle πfn : Efn → S2 corresponding to the underlying real vector bundle of the complex
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line bundle OCP1(n) on CP1 admits such a model. Models for these bundles were constructed by Moore [14]
and Swan [17] in the form of certain projective modules on the coordinate ring of the affine surface S2. The
construction we give below is in contrast of geometric nature, providing models of these bundles in the form
of restrictions to S2 of natural algebraic vector bundles on the real projective quadric Q2.

The closed embedding P1
C × P1

C → P3
C defined by

([x0 : x1][y0 : y1]) 7→ [X : Y : Z : T ] = [x0y1 + x1y0 : i(x1y0 − x0y1) : x0y0 − x1y1 : x0y0 + x1y1]

induces an isomorphism ψ : P1
C ×P1

C

≃
−→ Q2

C. The pull-back ψ∗σQ2 of the canonical real structure σQ2 on the
complexification Q2

C of Q2 is the real structure σ = s∆ ◦ (σP1
R

× σP1
R

) on P1
C × P1

C, where s∆ is the algebraic

involution which exchanges the two factors and σP1
R

is the canonical real structure on P1
C = (P1

R)C. Applying

the construction explained in §1.2 to the line bundles

pn : Ln = pr∗1OP1
C

(n) → P1
C × P1

C, n ≥ 0

on P1
C × P1

C, we obtain a collection of algebraic vector bundles pn,R : Ln,R → Q2 of rank 2 on Q2.

Lemma 5. For every n ≥ 0, the following hold:
a) The complexification pn,C : (Ln,R)C → P1

C × P1
C is isomorphic to pr∗1OP1

C

(n)⊕ pr∗2OP1
C

(n),

b) The topological vector bundle pn,R(R) : Ln,R(R) → Q2 (R) = S(R) is isomorphic to πfn : Efn → S2.

Proof. By construction, (Ln,R)C is isomorphic to Ln ⊕ σ∗Ln. Assertion a) then follows from the the identity

σ∗(pr∗1OP1
C

(n)) = (σP1
R

× σP1
R

)∗(s∗∆(pr
∗
1OP1

C

(n))) ≃ pr∗2(σ
∗
P1
R

(OP1
C

(n)))

and the fact that σ∗
P1
R

(OP1
C

(n)) ≃ OP1
C

(n) as line bundles on P1
C.

The map ξ = (id × σP2
R

) ◦ ∆ : P1
C → P1

C × P1
C, where ∆ denotes the diagonal embedding, induces a

diffeomorphism between P1
C(C) = CP

1 ≃ S2 and the real locus of P1
C × P1

C endowed with the real structure
σ. Assertion b) then follows from Lemma 3 and the identity

ξ∗(Ln)(C) = ((id× σP2
R

) ◦∆)∗(pr∗1OP1
C

(n))(C) ≃ OCP1(n)

which holds by construction of Ln. �

Remark 6. Via the isomorphism ψ : P1
C × P1

C

≃
→ Q2

C, the line bundle Ln = pr∗1OP1
C

(n) coincides with

the line bundle on Q2
C associated to the Cartier divisor nC, where C is the irreducible and reduced curve

{X+ iY = T −Z = 0} on Q2
C. The Γ(S2,OS2)-module of global sections Γ(S2, Ln,R) of the restriction of Ln,R

to S2 = Q2 \{T = 0} then coincides with the invertible Γ(S2C,OS2
C

)-module pn = (x+ iy, 1−z)n ⊂ Γ(S2C,OS2
C

),

viewed as a projective Γ(S2,OS2)-module of rank 2 via the inclusion Γ(S2,OS2) →֒ Γ(S2C,OS2
C

). We thus

recover geometrically the construction given by Swan in [17].
Note also that since the inverse image of Q2

C \ S2C by ψ is the irreducible curve Γ = {x0y0 + x1y1 = 0}
of type (1, 1) in the divisor class group of P1

C × P1
C, the restriction of (Ln,R)C ≃ pr∗1OP1

C

(n) ⊕ pr∗2OP1
C

(n) to

P1
C × P1

C \ Γ ≃ S2C is isomorphic to that of pr∗1OP1
C

(n) ⊕ pr∗1OP1
C

(−n) ≃ Ln ⊕ L∨
n , where L∨

n denotes the dual

of Ln.

3. Real forms of the trivial bundle S2 × A2
R

Notation 7. For every n ≥ 0, we let qn : Vn → S2 be the restriction to S2 ⊂ Q2 of the rank 2 vector bundle
pn,R : Ln,R → Q2 constructed in §2.2.

3.1. Proof of Theorem 1. The following proposition implies Theorem 1:

Proposition 8. The real algebraic varieties Vn, n ≥ 0, are pairwise non isomorphic real forms of V0 =
S2 × A2

R.

The proof is a combination of Lemma 9 and Lemma 10 below which show that the real algebraic varieties
Vn, n ≥ 0, are pairwise non isomorphic with isomorphic complexifications Vn,C ≃ S2C × A2

C.

By construction, the rank 2 vector bundles pn,R : Ln,R → Q2, n ≥ 0, on Q2 have pairwise non-isomorphic
complexifications (Ln,R)C ≃ pr∗1OP1

C

(n) ⊕ pr∗2OP1
C

(n) → P1
C × P1

C. The next lemma shows in contrast that

their restrictions to S2 ⊂ Q2 all have isomorphic complexifications:
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Lemma 9. For every n ≥ 0, the complexification qn,C : Vn,C → S2C of qn : Vn → S2 is isomorphic to the
trivial vector bundle pr1 : S2C × A2

C → S2C.

Proof. Since the Picard group of S2 is equal to its divisor class group which is trivial, the determinant det(Vn)
of Vn is isomorphic to the trivial line bundle on S2. This implies in turn that det(Vn,C) is the trivial line
bundle on S2C, a fact which also follows more concretely from the observation made in Remark 6 that Vn,C is
isomorphic to the direct sum of a line bundle and its dual. Since by a general result of Murthy [15], every
algebraic vector bundle of rank 2 on S2C splits a trivial factor, hence is isomorphic to the direct sum of its
determinant and a trivial line bundle, we conclude that for every n ≥ 0, Vn,C is isomorphic to the trivial vector
bundle of rank 2 on S2C (see §4.1 below for the construction of explicit isomorphisms Vn,C ≃ S2C × A2

C). �

By § 2.1 and Lemma 5, the algebraic vectors bundles qn : Vn → S2, n ≥ 0, are pairwise non-isomorphic as
vector bundles over S2. The following result then implies the stronger fact that their total spaces are pairwise
non isomorphic as abstract algebraic varieties:

Lemma 10. The total spaces of two algebraic vector bundles q : V → S2 and q′ : V ′ → S2 are isomorphic as
abstract real algebraic varieties if and only if q : V → S2 and q′ : V ′ → S2 are isomorphic as vector bundles.

Proof. Let Ψ : V → V ′ be an isomorphism of abstract real algebraic varieties. First note that every morphism
f : A1

R → S2 is constant. Indeed, otherwise, since S2 is affine hence does not contain complete curves, f would

extend to a nonconstant morphism f : P1
R → Q2 mapping the real point P1

R\A
1
R to a point of Q2\S2. But this

is impossible since the latter is a conic without real point. The restriction of q′ ◦Ψ : V → V ′ to every fiber of
q over a real point of S2 is thus constant. Since the set of points s of S2 such that dim((q′ ◦Ψ)(q−1(s))) = 0
is closed in S2 and S2(R) is Zariski dense in S2, it follows that q′ ◦ Ψ is constant on the fibers of q, hence
descends to a unique automorphism ψ of S2 such that q′ ◦Ψ = ψ ◦ q. This implies in turn that Ψ induces an
isomorphism Ψ̃ : V → Ṽ = ψ∗V ′ of schemes over S2. Now it follows from [5, Lemma 1.3] that p : V → S2 and

p̃ = p′ ◦ Ψ̃ : Ṽ → S2 are isomorphic as algebraic vector bundles over S2. Let us briefly recall the argument
for the sake of completeness: since V and Ṽ are vector bundles, their relative tangent bundles TV/S2 and

TṼ /S2 are isomorphic to p∗V and p̃∗Ṽ respectively. Letting α : S2 → V be any section of p, the composition

α̃ = Ψ̃ ◦ α is a section of p̃, and the relative differential dΨ̃/S2 : TV/S2 → Ψ̃∗TṼ /S2 of Ψ̃ over S2 then induces

an isomorphism

α∗dΨ̃/S2 : V ≃ α∗TV/S2
≃
−→ α∗Ψ̃∗TṼ /S2 = α̃∗TṼ /S2 ≃ Ṽ

of algebraic vector bundles over S2. To complete the proof, it thus remains to show that ψ∗V ′ is isomorphic
to V ′ as algebraic vector bundles over S2. By virtue of Proposition 4, it suffices to show that the pull-back
of V ′(R) by the induced diffeomorphism ψ(R) of S2(R) ≃ S2 is isomorphic to V ′(R) as a topological real
vector bundle. Since the mapping class group of S2 is isomorphic to Z/2Z, ψ(R)∗V ′(R) is either isomorphic
to V ′(R) if ψ(R) is orientation preserving, or to V ′(R) but endowed with the opposite orientation otherwise.
So in each case ψ(R)∗V ′(R) ≃ V ′(R) and the assertion follows. �

Remark 11. In the special case of the rank 2 vector bundles qn : Vn → S2, n ≥ 0, it is well-known that the
associated real topological fourfolds Vn(R) ≃ OCP1(n) are actually even pairwise non-homeomorphic. This
can be seen by comparing their respective first homology groups at infinity H∞

1 (OCP1(n);Z), defined as the
limit over exhaustions of OCP1(n) by compact subsets Ki of the homology groups H1(OCP1(n) \Ki;Z). Since
OCP1(n) is homeomorphic to the complement in the Hirzebruch surface βn : Fn = P(OCP1(−n)⊕OCP1) → CP

1

of a section H0,n of βn with self-intersection −n, which is unique if n 6= 0, it follows by excision that
H∞

1 (OCP1(n);Z) is isomorphic to the first homology group of a pointed tubular neighborhood T∗(H0,n) in
Fn, i.e. a tubular neighborhood of H0;n in Fn with H0;n removed from it. We conclude that

H∞
1 (OCP1(n);Z) ≃ H1(T∗(H0,n);Z) ≃ Z/ degNH0,n/Fn

Z ≃ Z/nZ

where NH0,n/Fn
≃ OCP1(−n) denotes the normal bundle of H0,n in Fn.

For every n ≥ 0, the real algebraic variety Vn × A1
R is the total space of an algebraic vector bundle

qn ◦ pr1 : Vn × A1
R → S2 of rank 3 on S2. By combining the classification of topological real vector bundles

on S2 given in §2.1 with Proposition 4 and Lemma 10, we obtain the following generalization of Hochster’s
counter-example to the Zariski Cancellation Problem [9] which, in our notation, corresponds to the case of
the vector bundle p2 : V2 → S2, isomorphic to the tangent bundle TS2 → S2 of S2.
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Corollary 12. The real algebraic variety Vn × A1
R is isomorphic to V0 × A1

R if n is even or to V1 × A1
R if n

is odd. As a consequence, the real algebraic varieties V2p (resp. V2p+1), p ≥ 0, form a family of pairwise non
isomorphic rational factorial real algebraic varieties with isomorphic cylinders V2p ×A1

R (resp. V2p+1 × A1
R).

4. Examples and applications

4.1. Explicit family of non-equivalent real structures on S2C×A2
C. By Lemma 9, the complexifications

qn,C : Vn,C → S2C of the rank 2 vector bundles qn : Vn → S2, n ≥ 0, are all isomorphic to the trivial vector
bundle pr1 : S2C × A2

C → S2C. In fact, we have the following more explicit description:

Proposition 13. For n ≥ 1, let Pn, Qn ∈ R[z] ⊂ Γ(S2C,OS2
C

) be any polynomials such that

(1 + z)nPn(z) + (1− z)nQn(z) = 1.

Then the following hold:
a) The composition of the canonical product real structure Σ0 = σS2×σA2

R

on S2C×A2
C with the automorphism

of the trivial bundle S2C × A2
C defined by the matrix

An =

(

(x− iy)n(Pn +Qn) (1− z)n − (1 + z)n

−(1 + z)nP 2
n + (1 − z)nQ2

n −(x+ iy)n(Pn +Qn)

)

∈ GL2(Γ(S
2
C,OS2

C

))

defines a real structure Σn on S2C × A2
C.

b) There exists an isomorphism Θn : Vn,C
≃
−→ S2C × A2

C of vector bundles over S2C such that Σn ◦ Θn =
Θn ◦ σVn

, where σVn
denotes the canonical real structure on Vn,C.

Proof. The fact that An defines an automorphism jn of the trivial bundle S2C × A2
C such that (jn ◦ Σ0)

2 =
idS2

C
×A2

C

follows from a direct calculation. To construct the isomorphism Θn, we recall from Remark 6 that

the vector bundle qn,C : Vn,C → S2C is isomorphic to the direct sum of the line bundle En → S2C associated
to the locally free sheaf OS2

C

(nC), where C = {x+ iy = 1− z = 0} and of the line bundle σ∗
S2
En associated

to the locally free sheaf OS2
C

(nσ−1
S2

(C)), where σ−1
S2

(C) = {x− iy = 1− z = 0}. The canonical real structure

σVn
on Vn,C coincides via this isomorphism with the natural lift of σS2 to a real structure σ̃n on En ⊕ σ∗

S2
En

defined in §1.2.
The surface S2C is covered by the σS2 -invariant principal affine open subsets U± = S2C \ {1± z 6= 0}. By

definition of C and σ−1
S2

(C), we have C ∩ U− = σ−1
S2

(C) ∩ U− = ∅, whereas C ∩ U+ and σ−1
S2

(C) ∩ U+ are
principal divisors due to the relation (1− z) = (1 + z)−1(x− iy)(x + iy) which holds in the coordinate ring
of U+. The choice of local equations {1, x+ iy} and {1− z, (1 + z)−1(x− iy)} for C and σ−1

S2
(C) on U− and

U+ induces local trivializations

γn,± : En ⊕ σ∗
S2
En|U±1

≃
−→ U± × Spec(C[tn,±, t

′
n,±])

for which the isomorphism ψn = γn,+ ◦ γ−1
n,−|U+∩U−

is given by the matrix

Dn =

(

(x+ iy)
n

0

0 (x+ iy)
−n

)

∈ SL2(Γ(U+ ∩ U−,OS2
C

)).

A direct calculation using the relation (1 + z)nPn(z) + (1− z)nQn(z) = 1 then shows that Dn =M−1
n,+Mn,−,

where

Mn,+ =

( (

x−iy
1+z

)n

(1 + z)n

−Pn (x+ iy)nQn

)

and Mn,− =

(

(1− z)n
(

x−iy
1−z

)n

−(x+ iy)nPn Qn

)

are elements of SL2(Γ(U+,OS2
C

)) and SL2(Γ(U−,OS2
C

)) respectively. It follows that the local trivilizations

Mn,± ◦ γn,± : En ⊕ σ∗
S2En|U±

≃
−→ U± × A2

C

glue to global one Θn : En ⊕ σ∗
S2
En

≃
→ S2C × A2

C.
With our choice of local generators, the images of the restrictions of the real structure σ̃n under the local

trivializations γn,± are given locally on the open cover {U±} by the composition of σS2 × σA2
R

|U±1×A2
C

with

the involutions of the trivial bundles U± × A2
C with respective matrices

Jn,± =

(

0 (1± z)−n

(1± z)
n

0

)

.
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A direct computation then confirms that the local real structures given by the compositions

Mn,± ◦ Jn,±(σS2 × σA2
R

|U±1
) ◦M−1

n,±|U±×A2
C

glue to a global one on S2C × A2
C equal to Σn, for which we have by construction Θn ◦ σ̃n = Σn ◦Θn. �

Example 14. For n = 1 and 2, one can choose for instance P1 = Q1 = 1/2, P2 = (2−z)/4 and Q2 = (2+z)/4
to obtain respectively

A1 =

(

x− iy −2z
− 1

2z −x− iy

)

and A2 =

(

(x− iy)
2 −4z

1
4z(z

2 − 2) −(x+ iy)2

)

.

Corollary 15. With the notation of Proposition 13, the following hold:
a) The real structures Σn, n ≥ 0 on S2C × A2

C are pairwise non-equivalent,
b) The real structure Σn × σA1

R

on S2C × A3
C is equivalent to Σ0 × σA1

R

= σS2 × σA3
R

if n is even and to
Σ1 × σA1

R

if n is odd.

Proof. The first assertion follows from Proposition 8 and Proposition 13 since by construction S2C × A2
C

endowed with the real structure Σn corresponds to the algebraic vector bundle qn : Vn → S2. Since the
variety (S2C ×A2

C)×A1
C endowed with the real structure Σn × σA1

R

corresponds in turn to the algebraic vector

bundle Vn × A1
R on S2, the second assertion follows from Corollary 12. �

Example 16. Corresponding to the classical fact that the tangent bundle TS2 → S2 is 1-stably trivial, the
real structure Σ2×σA1

R

, defined as the composition of the automorphism ĵ2 of S2C ×A3
C defined by the matrix

Â2 =

(

A2 0
0 1

)

∈ GL3(Γ(S
2
C,OS2

C

)),

where A2 is the matrix in Example 14 with the canonical real structure Σ0 × σA1
R

, is equivalent to Σ0 × σA1
R

.

By definition, this amounts to the identity ψ ◦ (Σ2 × σA1
R

) = (Σ0 × σA1
R

) ◦ ψ for some automorphism ψ of the

trivial bundle S2C × A3
C. Rewriting this identity in the form

(ĵ2 × id) = ψ−1 ◦ (Σ0 × σA1
R

) ◦ ψ ◦ (Σ0 × σA1
R

)−1,

we see that it holds for instance for the automorphism ψ defined by the following matrix

C =





1
2y(x+ iy) + i

4z
2 iz x

− 1
2x(x + iy)− 1

4z
2 z y

1
4z(y − ix) −(y + ix) z



 ∈ GL3(Γ(S
2
C,OS2

C

)).

Indeed, a direct computation shows that (Σ0 × σA1
R

) ◦ ψ ◦ (Σ0 × σA1
R

)−1 is defined by the matrix

C =





1
2y(x− iy)− i

4z
2 −iz x

− 1
2x(x − iy)− 1

4z
2 z y

1
4z(y + ix) −(y − ix) z



 ∈ GL3(Γ(S
2
C,OS2

C

))

and that Â2 = C−1 · C.

4.2. Proof of Theorem 2.

Lemma 17. For every n ≥ 1, there exists a smooth rational real affine variety X of dimension n such that
X(R) 6= ∅ and such that XC is a of log-general type, with trivial automorphism group Aut(XC).

Proof. Indeed, it suffices to take for X the complement in Pn
R of smooth real hypersurface of degree d > n+1

(non-connected in the case n = 1). �

Theorem 2 is then a consequence of the following more precise result:

Proposition 18. Let X be a smooth rational real affine variety X as in Lemma 17. Then the rational real
affine variety S2 × A2

R ×X has at least countably infinitely many pairwise distinct real forms.
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Proof. With the notation 7, it suffices to check that the varieties Vn ×X , n ≥ 0, are pairwise non isomorphic
since their complexifications are all isomorphic to S2C×A2

C×XC by Lemma 9. So suppose given an isomorphism
of abstract real algebraic varieties h : Vn × X → Vm × X for some n,m ≥ 0. The complexification hC of
h is then an automorphism of S2C × A2

C × XC. Since S2C × A2
C is A1-ruled whereas XC is of log-general

type by hypothesis, it follows from Iitaka-Fujita strong cancellation theorem [10] that there exists a unique
automorphism ξ of XC such that prXC

◦ hC = ξ ◦ prXC
. By hypothesis, ξ = idXC

and so, we conclude that h
is actually an isomorphism of schemes over X . Since X(R) 6= ∅, the restriction of h over any real point x of

X is then an isomorphism of real algebraic varieties Vn
∼
→ Vm, which implies that m = n by Lemma 10. �
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