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Abstract

Word Embeddings (WE) have recently im-
posed themselves as a standard for rep-
resenting word meaning in NLP. Seman-
tic similarity between word pairs has be-
come the most common evaluation bench-
mark for these representations, with vec-
tor cosine being typically used as the only
similarity metric. In this paper, we report
experiments with a rank-based metric for
WE, which performs comparably to vec-
tor cosine in similarity estimation and out-
performs it in the recently-introduced and
challenging task of outlier detection, thus
suggesting that rank-based measures can
improve clustering quality.1

1 Introduction
“All happy families resemble one another, but
each unhappy family is unhappy in its own way.”
Anna Karenina, Leo Tolstoy

Distributional Semantic Models (DSMs) have re-
ceived an increasing attention in the NLP com-
munity, as they constitute an efficient data-driven
method for creating word representations and
measuring their semantic similarity by computing
their distance in the vector space (Turney and Pan-
tel, 2010).

The most popular similarity metric in DSMs is
the vector cosine. Compared to Euclidean dis-
tances, vector cosine scores are normalized on
each dimension and hence are robust to the scaling
effect. On the other hand, one limitation of this
metric is that it regards each dimension equally,
without taking into account the fact that some di-
mensions might be more relevant for characteriz-

1Enrico Santus and Hongmin Wang equally contributed to
this work, which was started while they were both affiliated
to the Singapore University of Technology and Design.

ing the semantic content of a word. Such a lim-
itation led to the introduction of alternative met-
rics based on feature ranking, which have been re-
ported to outperform vector cosine in several sim-
ilarity tasks (Santus et al., 2016a,b).

Recently, the focus of the research on word rep-
resentations has been shifting onto the so-called
word embeddings (WE), which are dense vec-
tors obtained by means of neural network train-
ing that achieved significant improvements in sev-
eral similarity-related tasks (Mikolov et al., 2013a;
Baroni et al., 2014). Although the representation
type of the embeddings was helpful for reducing
the sparsity of traditional count vectors, their na-
ture does not sensibly differ (Levy et al., 2015).
Most research works involving WE still adopt vec-
tor cosine for similarity estimation, yet little ex-
perimentation has been done on alternative met-
rics for comparing dense representations (excep-
tions include Camacho-Collados et al. (2015)).

Some attempts to directly transfer rank-based
measures from traditional DSMs to WE have
faced difficulties (see, for example, Jebbara et al.
(2018)). In this paper, we suggest a possible
solution to this problem by adapting APSyn, a
rank-based similarity metric originally proposed
for sparse vectors (Santus et al., 2016b,a), to
low-dimensional word embeddings. This goal is
achieved by removing the parameterN (the extent
of the feature overlap to be taken into account) and
adding a smoothing parameter that is proven to be
constant under multiple settings, therefore making
the measure unsupervised.
Our experiments show performance improve-
ments both in similarity estimation and in the more
challenging outlier detection task (Camacho-
Collados and Navigli, 2016), which consists in
cluster and outlier identification.2

2Code and vectors used for the experiments are available
at https://github.com/esantus/Outlier Detection.



2 Similarity, Relatedness and
Dissimilarity: Current Issues in the
Evaluation of DSMs

A classical benchmark for DSMs is represented
by the estimation of word similarity: evaluation
datasets are built by asking human subjects to rate
the degree of semantic similarity of word pairs,
and the performance is assessed in terms of the
correlation between the average scores assigned to
the pairs by the subjects and the cosines of the cor-
responding vectors (similary estimation task).

Similarity as modeled by DSMs has been under
debate, as its definition is underspecified. It in fact
includes an ambiguity with the more generic no-
tion of semantic relatedness, which is present also
in many popular datasets (i.e. the concepts of cof-
fee and cup are certainly related, but there is very
little similarity about them), as opposed to ‘gen-
uine’ semantic similarity (i.e. the relation holding
between concepts such as coffee and tea) (Agirre
et al., 2009; Hill et al., 2015; Gladkova and Drozd,
2016). Therefore, when testing a DSM, it is im-
portant to pay attention to what type of seman-
tic relation is actually modeled by the evaluation
dataset. Moreover, researchers pointed out that
similarity estimation alone does not constitute a
strong benchmark, as the inter-annotator agree-
ment is relatively low in all datasets and the per-
formance of several automated systems is already
above the upper bound (Batchkarov et al., 2016).
As a consequence, workshops such as RepEval
have been organized with the explicit purpose of
finding alternative evaluation tasks for DSMs.

A recent proposal is the challenging outlier
detection task (Camacho-Collados and Navigli,
2016; Blair et al., 2016), which consists in the
recognition of cluster membership, as well as of a
relative degree of semantic dissimilarity. The task
is described as follows: given a group of words,
identify the outlier, namely the word that does not
belong to the group (i.e. the one that is less simi-
lar to the others). On top of its potential applica-
tions (e.g. ontology learning), detecting outliers in
clusters is a goal that poses a more strict quality
requirement on the distributional representations
compared to tests based simply on pairwise com-
parisons, as it is required that similar words group
into semantically meaningful clusters. Clearly, the
task involves the identification of discriminative
semantic dimensions, which could set the clus-
ter members apart from non-members. Outliers

are not necessarily unrelated to the other words:
rather, they have a lower degree of similarity with
respect to some prominent property of the cluster
(e.g. the case of Los Angeles Lakers as an out-
lier in a cluster of football teams). In our view, a
similarity metric has to exploit such discriminative
dimensions to form cohesive clusters.

3 A Rank-Based Metric for Embeddings

We use cosine as a baseline and we test an adapta-
tion of a rank-based measure to the dense features
of the word embeddings.

Vector cosine computes the correlation between
all the vector dimensions, independently of their
relevance for a given word pair or for a seman-
tic cluster, and this could be a limitation for dis-
cerning different degrees of dissimilarity. The al-
ternative rank-based measure is based on the hy-
pothesis that similarity consists of sharing many
relevant features, whereas dissimilarity can be de-
scribed as either the non-sharing of relevant fea-
tures or the sharing of non-relevant features (San-
tus et al., 2014, 2016b).

This hypothesis could turn out to be very help-
ful for a task like the outlier detection, where
prominent features might be the key to improve
clustering quality: semantic dimensions that are
shared by many of the cluster elements should be
weighted more, as they are likely to be useful for
setting the outliers apart. In fact, a cohesive clus-
ter should be mostly characterized by the same
‘salient’ dimensions, and thus, basing word com-
parisons on such dimensions should lead to more
reliable estimates of cluster membership.

In our contribution, we propose to adapt
APSyn, a metric originally proposed by San-
tus et al. (2016a,b), to dense word embeddings
representations.3 APSyn was shown to perform
well on both synonymy detection and similarity
estimation tasks, and it was recently adapted to
achieve state-of-the-art results in thematic fit esti-
mation (Santus et al., 2017). The original APSyn
formula is shown in equation 1.

APSyn(wx, wy) =

i=N∑
i=0

1

AV G(rsx(fi), rssy (fi))
(1)

For every feature fi in the intersection between
the top N features of two vectors wx and wy, we

3The number of dimensions in word embeddings is in the
scale of hundreds, and thus the dimensionality is way lower
than in the original DSMs used by Santus and colleagues.



add the inverse of the average rank of such fea-
ture, rsx(fx) and rsy(fy), in the two decreasingly
value-sorted vectors sx and sy (in traditional vec-
tors, often the parameter N ≥ 1000, but in WE
N = |f |). APSyn scores low if the features of
the two vectors are inversely ranked and high if
they are similarly ranked.
APSyn maps the average feature ranks to a

non-linear function, emphasizing the contribution
of top-ranked features. Its direct application to
dense embeddings would shrink too much the con-
tribution of lower ranks (see Figure 1), with the
score mostly affected by the top ∼ 25 features.
While this is reasonable for the traditional vectors
derived from co-occurrence counts, where thou-
sands of smaller contributions can still affect the
final score, dense vectors need a smoother curve.
While preserving the idea of the non-linear weight
allocation across the average feature ranks during
the summation, we modify the original APSyn
formula by taking the exponential of the feature
ranks to a power of a constant value ranging be-
tween 0 and 1 (excluded), as shown in equation 2,
such that now the number of ranks contributing
to the final score is widen to all features (see the
smoother curve of APSynPower in Figure 1).
We name this variant APSynPower or, shortly,
APSynP .

APSynP (wx, wy) =

i=|f |∑
i=0

1

AV G(rsx(fi)
p, rsy (fi)

p)

(2)

The power p added toAPSynP formula is a train-
able parameter. We trained it on the similarity
subset of WordSim dataset, obtaining the optimal
value of p = 0.1, which has been successfully
used in all evaluations, under all settings (i.e. em-
bedding types and training corpora). Such reg-
ularity allows us to consider p = 0.1 as a con-
stant, therefore dropping p. Since in WE we can
drop also the parameter N by defining N = |f |,
APSynP can be not parametrized at all.

4 Evaluation Settings

4.1 Embeddings
For our experiments, we used two popular word
embeddings architectures: the Skip-Gram with
negative sampling (Mikolov et al., 2013a,b) and
the GloVe vectors (Pennington et al., 2014) (stan-
dard hyperparameter settings: 300 dimensions,

Figure 1: Comparison of weight per feature rank
inAPSyn andAPSynP (p = 0.1) across feature
ranks ranging from 1 to 300.

context size of 10 and negative sampling).4

For comparison with Camacho-Collados and
Navigli (2016) on outlier detection, we used the
same training corpora: the UMBC (Han et al.,
2013) and the English Wikipedia.5

4.2 Datasets
As for the similarity estimation task, we eval-
uate the Spearman correlation between system-
generated scores and human judgments. We
used three popular benchmark datasets: WordSim-
353 (Finkelstein et al., 2001), MEN (Bruni et al.,
2014) and SimLex-999 (Hill et al., 2015). It is im-
portant to point out that SimLex-999 is the only
one specifically built for targeting genuine seman-
tic similarity, while the others tend to mix similar-
ity and relatedness scores.

As for outlier detection, we evaluate our DSMs
on the 8-8-8 dataset (Camacho-Collados and Nav-
igli, 2016). The dataset consists of eight clusters,
each one with a different topic and consisting in
turn of eight lexical items belonging to the clus-
ter and eight outliers (with four degrees of relat-
edness to the cluster members: C1, C2, C3, C4).
In total, the dataset includes 64 sets of 8 words
+ 1 outlier for the evaluation. For each word w
of a cluster W of n words, the authors defined a
compactness score c(w) corresponding to the av-
erage of all pairwise similarities of the words in
W \ {w}. On the basis of the compactness score,
they proposed two evaluation metrics: Outlier Po-
sition (OP) and Outlier Detection (OD). Given a
set W of n + 1 words, OP is the rank of the out-
lier wn + 1 according to the compactness score.
Ideally, the rank of the outlier should be n, mean-

4We also performed experiments with CBOW embed-
dings (Mikolov et al., 2013b), but results were irregular and
inconsistent. We leave therefore their analysis to future work.

5Dump of Nov. 2014, approx. 1.7 billion words.



Skip-Gram GloVe
WordSim-353 MEN Simlex-999 WordSim-353 MEN Simlex-999

Cosine 0.736 0.758 0.364 0.511 0.640 0.311
APSyn 0.599 0.643 0.343 0.356 0.393 0.174
APSynP 0.710 0.737 0.369 0.607 0.670 0.335

Table 1: Similarity Estimation, Spearman Correlation by Setting. Embeddings trained on Wikipedia.

Skip-Gram GloVe
UMBC Wiki UMBC Wiki

OPP Acc. OPP Acc. OPP Acc. OPP Acc.
CC − Cos 92.6 64.1 93.8 70.3 81.6 40.6 91.8 56.3

Pairwise
APSyn 93.0 67.2 94.0 68.8 78.7 40.6 89.3 53.1
APSynP 94.0 68.8 94.5 73.4 81.8 42.2 92.8 61.0

Prototype
PT − Cos 93.4 65.6 93.8 68.8 80.3 40.6 90.6 54.7
APSyn 92.6 70.3 91.0 62.5 81.6 40.6 88.7 54.7
APSynP 94.0 70.3 94.9 73.4 82.2 43.8 92.0 60.9

Table 2: Outlier Detection, Performance by Setting. CC-Cos refers to Camacho-Collados and Navigli
(2016)’s pairwise method, while PT-Cos refers to the prototype-based one. In bold, best scores per
method; in bold and underlined, best scores per corpus-embedding combination.

ing that it has the lowest average similarity with
the other cluster elements. The second metric,
Outlier Detection (OD), is indeed defined as 1 iff
OP (wn + 1) = n, 0 otherwise. Finally, the per-
formance on a dataset composed of |D| sets of
words was estimated in terms of Outlier Position
Percentage (OPP , Eq. 3) and Accuracy (Eq. 4):

OPP =

∑
W∈D

OP (W )
|W |−1

D
× 100 (3)

Accuracy =

∑
W∈D OD(W )

D
× 100 (4)

4.3 Pairwise and Prototype Approaches to
Outlier Detection

While for the similarity task scores are always cal-
culated pairwise, for spotting the outlier two dif-
ferent methods were tested: the pairwise compar-
isons and the cluster prototype.

In the first case, we reimplemented the method
of Camacho-Collados and Navigli (2016): (i)
compute the average similarity score of each word
with the other words in the cluster; (ii) pick as the
outlier the word with the lowest average score. An
alternative consists in creating a cluster prototype:
(i) for a cluster of N words, we create N prototype
vectors by excluding each time one of the words
and averaging the vectors of the other ones; (ii)
we pick as the outlier the word with the lowest

similarity score with the prototype built out of the
vectors of the other words in the cluster.

5 Results and Discussion

Table 1 summarizes the correlations for the sim-
ilarity task. APSynP outperforms both vector
cosine and APSyn in all the datasets described
in 4.2 when GloVe embeddings are used. The
advantage is statistically significant over the co-
sine on the MEN dataset (p < 0.05) and over
APSyn on all datasets (p < 0.01).6 With Skip-
Gram embeddings, APSynP performs compara-
bly to vector cosine for relatedness, dominant in
WordSim and MEN, while retaining a significant
advantage overAPSyn on the same datasets (p <
0.05). It also performs slightly better than co-
sine in SimLex-999, and this complies with previ-
ous findings of Santus et al. (2016a), who showed
that APSyn performs better on genuine similar-
ity datasets. Apparently, the top-ranked vector
dimensions (those contributing more to APSyn
scores) are more often shared by similar words,
than by simply related ones.

Table 2 shows the results for the outlier detec-
tion task. The line CC-Cos contains the scores
by Camacho-Collados and Navigli (2016) as a
baseline. The models are divided into pair-
wise comparison and cluster prototype (see Sec-
tion 4.3).

As it can be easily noticed by looking at the bold

6p-values computed with Fisher’s r-to-z transformation.



line, APSynP outperforms the baselines in all
settings for both Skip-Gram and GloVe, obtaining
higher accuracies and OPPs. Not only APSynP
is better at identifying the outlier, but when it is
not able to do so, its error is minimum (e.g. the
outlier is eventually the second ranked candidate).
The best accuracy (73.4 vs. SOA of 70.3) and the
best OPP (94.9 vs. SOA of 93.8) are both obtained
by APSynP with the prototype approach, using
the Skip-Gram trained on Wikipedia. We also
tested the significance of the accuracy improve-
ments with the χ2 test but, also given the small
size of the 8-8-8 dataset, the result was negative.

Finally, we observe that the two approaches de-
scribed in 4.3 do not lead to sensitively different
results. The major factors of difference can be
found instead in the embeddings (with Skip-Gram
outperforming Glove) and in the training corpus
(the smaller Wikipedia, 1.7B words, outperforms
the bigger UMBC, 3B words).

5.1 Error Analysis

In Table 3, we report the 5 outliers that were
most difficult to detect by APSynP . Most of
them are related to the German Car Manufactur-
ers topic, which was ambiguous and populated by
rare terms. All outliers in the Months and in the
South American countries clusters (except for the
two South-American cities Rio de Janeiro and Bo-
gotá) are successfully identified under all experi-
mental settings. Finally, the reader can notice that
most errors belong to C1 and C2, which are the
most challenging classes in the dataset, as these
outliers are either very related or very similar to
other cluster members.

Cluster Outlier Class
GCM Bridgestone C1
AJC Mary C1
GCM Michael Schumacher C3
SSP Moon C1
GCM Samsung C2
BC dolphin C2
ITC software C3
BC dog C1
GCM Michelin C1
ITC Adidas C2

Table 3: Outlier Detection: Top 10 common errors
across settings and their difficulty class (i.e. C1,
C2, C3 and C4). (GCM: German Car Manufac-
turers; AJC: Apostles of Jesus Christ; SSP: Solar
System Planets; BC: Big Cats; ITC: IT Compa-
nies).

6 Conclusions

We have introduced APSynP , an adaptation of
the rank-based similarity measure APSyn (San-
tus et al., 2016a,b) for word embeddings. This
adaptation introduces a power parameter p, which
is shown to be constant in multiple tasks (i.e.
p = 0.1). The stability of this parameter, to-
gether with the possibility of dropping the pa-
rameter N of APSyn when using WE by setting
N = |f |, makes the measure unsupervised. We
have tested it on the tasks of similarity estima-
tion and outlier detection, obtaining similar or bet-
ter performances than vector cosine and the orig-
inal APSyn. APSynP performs more consis-
tently on SimLex-999, showing a preference for
genuine similarity, as already noticed by Santus
et al. (2016a). We also introduced a new approach
to the outlier detection task, based on a cluster
prototype. The prototype method is competitive
and computationally less expensive than pairwise
comparisons.

We leave to future work a systematic compari-
son of APSynP and other rank-based measures.
Pilot tests have shown that other rank-based met-
rics (e.g. Spearman’s Rho) also outperform vector
cosine in multiple settings and tasks.
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