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FLUID STRUCTURE SYSTEM WITH BOUNDARY CONDITIONS
INVOLVING THE PRESSURE

JEAN-JÉRÔME CASANOVA

Abstract. We study a coupled fluid–structure system involving boundary conditions
on the pressure. The fluid is described by the incompressible Navier–Stokes equations
in a 2D rectangular type domain where the upper part of the domain is described by
a damped Euler–Bernoulli beam equation. Existence and uniqueness of local strong
solutions without assumptions of smallness on the initial data is proved.

Keywords: Fluid–structure interaction, Navier–Stokes equations, beam equation, pres-
sure boundary conditions.

Mathematics Subject Classification (2010): 35Q30, 74F10, 76D03, 76D05.

1. Introduction

1.1. Setting of the problem. We study the coupling between the 2D Navier–Stokes
equations and a damped Euler–Bernoulli beam equation in a rectangular type domain,
where the beam is a part of the boundary. Let T > 0, L > 0 and consider the spatial
domain Ω in R2 defined by Ω = (0, L) × (0, 1). Let us set Γi = {0} × (0, 1) and
Γo = {L}× (0, 1) the left and right boundaries, Γs = (0, L)×{1}, Γb = (0, L)×{0} and
Γ = ∂Ω the boundary of Ω. Let η be the displacement of the beam. The function η is
defined on Γs × (0, T ) with values in (−1,+∞). Let Ωη(t) and Γη(t) be the sets defined
by

Ωη(t) = {(x, y) ∈ R2 | x ∈ (0, L), 0 < y < 1 + η(x, 1, t)},
Γη(t) = {(x, y) ∈ R2 | x ∈ (0, L), y = 1 + η(x, 1, t)}.
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Figure 1. fluid–structure system.

We also set Γi,o = Γi ∪ Γo. The space-time domains are denoted by

Σs
T = Γs × (0, T ), Σi,o

T = Γi,o × (0, T ), Σb
T = Γb × (0, T ),

Σ̃s
T =

⋃
t∈(0,T )

Γη(t) × {t}, Q̃T =
⋃

t∈(0,T )
Ωη(t) × {t}.

We study the following fluid structure system coupling the Navier–Stokes equations and
the damped Euler–Bernoulli beam equation

(1.1)

ut + (u · ∇)u− div σ(u, p) = 0, div u = 0 in Q̃T ,

u(x, y, t) = ηt(x, 1, t)e2 for (x, y, t) ∈ Σ̃s
T ,

u2 = 0 and p+ (1/2)|u|2 = 0 on Σi,o
T ,

u = 0 on Σb
T , u(0) = u0 in Ωη0

1
,[

ηtt − βηxx − γηtxx + αηxxxx
]
(x, 1, t)

= ψ[u, p, η](x, 1 + η(x, 1, t), t) for (x, t) ∈ (0, L)× (0, T ),
η(·, 1, ·) = 0 and ηx(·, 1, ·) = 0 on {0, L} × (0, T ),
η(·, 0) = η0

1 and ηt(·, 0) = η0
2 in Γs,

where u is the velocity, p the pressure, η the displacement of the beam and
σ(u, p) = −pI + ν(∇u + (∇u)T ),

ψ[u, p, η](x, y, t) = −σ(u, p)(x, y, t)(−ηx(x, 1, t)e1 + e2) · e2,

for all (x, y, t) ∈ Σ̃s
T . For a function f defined on the flat domain Γs or on (0, L) we use

the following abuse of notation : f(x) = f(x, 1) = f(x, y) for (x, y) ∈ (0, L) × R. This
notation will typically be used for f = η or f = ψ[u, p, η]. Hence the beam equation can
be written

ηtt − βηxx − γηtxx + αηxxxx = ψ[u, p, η] on Σ̃s
T .
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In the previous statement e1 = (1, 0)T , e2 = (0, 1)T , u = u1e1 + u2e2, ν > 0 is the
constant viscosity of the fluid and ψ is a force term modelling the interaction between
the fluid and the beam (see [21], [18]). The constant β ≥ 0, γ > 0 and α > 0 are
parameters relative to the structure. This system can be used to model the blood flow
through human arteries, provided that the arteries are large enough (see [18]). The
homogeneous Dirichlet boundary condition on Γb is used to simplify the presentation;
the same system with two beams can be studied in the same way.

The existence of weak solutions to system (1.1) is proved in [18]. Here we would like to
prove the existence of strong solutions for the same system. A similar system is studied
in [15] with Dirichlet inflow and outflow boundary conditions, and in [14] with periodic
inflow and outflow boundary conditions. In [15] a local in time existence of strong
solutions is proved without smallness assumptions on u0 and η0

2. The initial condition
η0

1 is not zero, but, as far as we understand, the proof in [15] is valid only if η0
1 is small

enough (see below). Since some results in [14] rely on the techniques of [15], it seems that
the global existence result of [14] is also only valid if η0

1 is small. The existence of strong
solutions to the fluid–structure system with a non-small η0

1 therefore still seems to be an
open question. The present paper brings an answer to this question, by establishing the
local-in-time existence of strong solutions without smallness conditions on u0, η0

1 and
η0

2.

We prove this result for (1.1), that is to say with boundary conditions involving the
pressure. However the issue raised by a non-small η0

1 is purely a nonlinear one, whose
treatment is independent of the boundary conditions (once the proper regularity results
for the linearized system have been established). The technique developped here, based
on a novel change of variables, therefore fills the gap in [15]. The existence of strong
solutions for (1.1) relies on regularity results of the underlying Stokes system and Leray
projector. Three elements challenge this regularity here: the change of variable used to
deal with a generic η0

1, the corners of the domain, and the junctions between Dirichlet
and pressure boundary conditions. To overcome these challenges, we use symmetry
techniques and a minimal-regularity transport ofH3 functions. We note that, for smooth
domains (no corner, no minimal-regularity change of variables), the regularity result for
the Stokes system was established in [8, 9]. As a by-product of our analysis, we also
obtain the existence over an arbitrary time interval [0, T ] of strong solutions to system
(1.1), provided that the initial data u0, η0

1 and η0
2 are small enough.

Let us detail the gap mentioned above. In [15], a key estimate, obtained through inter-
polation techniques, is

(1.2) ‖η‖L∞(Σs
T ) + ‖ηx‖L∞(Σs

T ) + ‖ηxx‖L∞(Σs
T ) ≤ CT

χ ‖η‖H4,2(Σs
T ) ,

for some χ > 0 and C > 0 (see Section 3.1 for the functional spaces). If T goes to 0
the previous estimate implies that

∥∥η1
0
∥∥
L∞(Γs) = 0 and thus η1

0 = 0. A careful study of
the interpolation techniques and the Sobolev embeddings used to prove (1.2) shows that
the time dependency of the constants was omitted. The fundamental reason behind this
issue is related to the change of variables, used to fix the domain to Ω, that introduces
additional ‘geometrical’ nonlinearities. These nonlinearities are not small for small T if
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the change of variables is not the identity at T = 0. To solve this issue we rewrite the
system (1.1) in the fixed domain Ωη0

1
instead of Ω. The geometrical nonlinear terms now

involve the difference η − η0
1 which is small when T is small.

Since our technique fills the gap in [15], this means that the global-in-time existence
result of [14] for periodic boundary conditions is now genuinely established without
smallness assumption on η0

1. An interesting question is to consider if the result in [14] can
be adapted, starting from our local-in-time existence result, to obtain a global-in-time
existence of solutions with non-standard boundary conditions involving the pressure. To
do so, additional estimates should be proved to ensure that a collision between the beam
and the bottom of the fluid cavity does not occur in finite time.

Finally we would like to mention some references related to our work. The Stokes and
Navier–Stokes system with pressure boundary conditions was initially study in [12], us-
ing weak variational solutions. A first rigorous existence result for (1.1) with periodic
boundary conditions goes back to [6] where an iterative method was used to handle the
coupled system. The feedback stabilization of (1.1) with Dirichlet inflow and outflow
boundary conditions is studied in [21] and provides a semigroup approach for the lin-
earized system, based on a splitting of the pressure, that is used in the present article.
This semigroup framework was already used in [4, 5] for a linear model.

1.2. Main results. The main result of this paper is Theorem 4.3 which proves the
existence of a unique local strong solution for the fluid–structure system (1.1) without
smallness assumptions on the initial data. We also state in Theorem 4.4 the existence of
a unique strong solution on the time interval [0, T ] with T > 0 an arbitrary fixed time,
for small enough initial data. Several changes of variables are done on (1.1) and these
results are given for equivalent system (see (2.6)).

The structure of the article is as follows. In Section 2, we rewrite (1.1) in a fixed domain
and we explain ideas of the proof which consist in studying a linear system associated
with (1.1) and in using a fixed point argument. In Section 3 we eliminate the pressure
in the beam equation by expressing it in terms the velocity. We then rewrite the system
as an abstract evolution equation and we prove that the underlying operator generates
an analytic semigroup. Finally we prove the nonlinear estimates, with explicit time
dependency, in Section 4 and we conclude with a fixed point procedure. All this process
is based on the extension to non-standard boundary conditions of known result on the
Stokes equations. This is detailed in the appendix.

2. Plan of the paper

2.1. Equivalent system in a reference configuration. In order to study system
(1.1), we are going to rewrite the system in a reference configuration which can be
chosen arbitrarily. For that, throughout what follows, we choose a function η0 belonging
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to H3(Γs) ∩H2
0 (Γs), and satisfying 1 + η0(x) > 0 for all x ∈ (0, L). Set

(2.1)
Ω0 = {(x, y) ∈ R2 | x ∈ (0, L), 0 < y < 1 + η0(x)}, QT = Ω0 × (0, T ),
Γ0 = {(x, y) ∈ R2 | x ∈ (0, L), y = 1 + η0(x)}, Σ0

T = Γ0 × (0, T ),

Γd = Γ0 ∪ Γb and Σd
T = Γd × (0, T ). In order to rewrite system (1.1) in the cylindrical

domain QT for all t ∈ (0, T ) consider the following diffeomorphism

(2.2) Tη(t) :

Ωη(t) −→ Ω0,

(x, y) 7−→ (x, z) =
(
x, 1+η0(x)

1+η(x,t)y
)
.

The variable z can be written under the form z = y

1 + η̃
with η̃ = η−η0

1+η0 . We introduce
the new unknowns

û(x, z, t) = u(T −1
η(t)(x, z), t) and p̂(x, z, t) = p(T −1

η(t)(x, z), t),

and we set û0(x, z) = u0(T −1
η0

1
(x, z)). With this change of variables,

p(x, 1 + η(x, t), t) = p̂(x, 1 + η0(x, t), t) and û(x, 1 + η(x, t), t) = u(x, 1 + η0(x, t), t),
for all (x, t) ∈ (0, L)× (0, T ). The system satisfied by (û, p̂, η) is

(2.3)

ût − ν∆û +∇p̂ = G(û, p̂, η), div û = div w(û, η) in QT ,
û = ηte2 on Σ0

T ,

û2 = 0 and p̂+ (1/2)|û|2 = 0 on Σi,o
T ,

û = 0 on Σb
T , û(0) = û0 on Ω0,

ηtt − βηxx − γηtxx + αηxxxx = p̂+ Ψ(û, η) on Σ0
T ,

η = 0 and ηx = 0 on {0, L} × (0, T ),
η(0) = η0

1 and ηt(0) = η0
2 in Γs,

with

G(û, p̂, η) = −η̃ût +
[
zη̃t + νz

(
η̃2
x

1 + η̃
− η̃xx

)]
ûz

+ ν

[
−2zη̃xûxz + η̃ûxx + z2η̃2

x − η̃
1 + η̃

ûzz

]
+ z(η̃xp̂z − η̃p̂x)e1 − (1 + η̃)û1ûx + (zη̃xû1 − û2)ûz,

w[û, η] = −η̃û1e1 + zη̃xû1e2,

and
Ψ(û, η) = ν

(
ηx

1 + η̃
û1,z + ηxû2,x −

zη̃xηx − 2
1 + η̃

û2,z

)
.

In Section 5, in order to prove the existence of solution to system (2.6), derived from
system (2.3) by a change of variables, we assume that η0

1 is equal to η0. In that special
case, the function η̃ is equal to 0 at time t = 0 which implies that Tη(0) is the identity.
We also obtain that w(û, η) is equal to 0 at time t = 0. But up to Section 5 and in the
appendix, η0 is chosen a priori, and not necessarily equal to η0

1.
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2.2. Final system and linearisation. In order to come back to a divergence free
system consider the function u defined by u = û−w(û, η). Set

(2.4) M(u, η) =


u1

1 + η̃
zη̃x

1 + η̃
u1 + u2

 and N(u, η) =


−η̃u1
1 + η̃
zη̃xu1
1 + η̃

 .

The function û can be expressed in terms of u as follows

û = M(u, η) = u +N(u, η).

To simplify the notation, we drop out the hat over p. Thus the system satisfied by
(u, p̂, η) = (u, p, η) is

(2.5)

ut − div σ(u, p) = F(u, p, η), div u = 0 in QT ,
u = ηte2 −w(M(u, η), η) on Σ0

T ,

u2 = −w2(M(u, η), η) and p+ (1/2)|u + w(M(u, η), η)|2 = 0 on Σi,o
T ,

u = −w(M(u, η), η) on Σb
T , u(0) = û0 −w(M(u, η), η)(0) in Ω0,

ηtt − βηxx − γηtxx + αηxxxx = p+ Ψ(M(u, η), η) on Σ0
T ,

η = 0 and ηx = 0 on {0, L} × (0, T ),
η(0) = η0

1 and ηt(0) = η0
2 in Γs,

with F(u, p, η) = G(M(u, η), p, η)− ∂tN(u, η) + ν∆N(u, η).

Recall that w(û, η) = −η̃û1e1 + zη̃xû1e2. Since û1 = 0 on Σd
T and η̃ = η̃x = 0 on

{0, L} × (0, T ), we have w(û, η) = 0 on ∂Ω0 × (0, T ). System (2.5) becomes

(2.6)

ut − div σ(u, p) = F(u, p, η), div u = 0 in QT ,
u = ηte2 on Σ0

T ,

u2 = 0 and p+ (1/2)|u|2 = 0 on Σi,o
T ,

u = 0 on Σb
T , u(0) = u0 in Ω0,

ηtt − βηxx − γηtxx + αηxxxx = p+H(u, η) on Σ0
T ,

η = 0 and ηx = 0 on {0, L} × (0, T ),
η(0) = η0

1 and ηt(0) = η0
2 in Γs,

with H(u, η) = Ψ(M(u, η), η) and u0 = û0 −w(û, η)(0).
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In order to solve the system (2.6) with a fixed point argument, consider the following
linear system

(2.7)

ut − div σ(u, p) = f, div u = 0 in QT ,
u = ηte2 on Σ0

T ,

u2 = 0 and p = Θ on Σi,o
T ,

u = 0 on Σb
T , u(0) = u0 on Ω0,[

ηtt − βηxx − γηtxx + αηxxxx
]
(x, t)

= p(x, 1 + η0(x, t), t) + h for (x, t) ∈ (0, L)× (0, T ),
η = 0 and ηx = 0 on {0, L} × (0, T ),
η(0) = η0

1 and ηt(0) = η0
2 in Γs,

with f ∈ L2(0, T ;L2(Ω0)), h ∈ L2(0, T ;L2(Γs)) and Θ ∈ L2(0, T ;H1/2(Γi,o)).

3. Linear system

Recall that Ω0 is given by (2.1) with a fixed η0 ∈ H3(Γs)∩H2
0 (Γs) such that 1+η0(x) > 0

for all x ∈ (0, L).

3.1. Function spaces. To deal with the mixed boundary condition for the Stokes sys-
tem

(3.1)
− ν∆u +∇p = f, div u = 0 in Ω0,

u = 0 on Γd, u2 = 0 and p = 0 on Γi,o,

introduce the space

V0
n,Γd

(Ω0) = {v ∈ L2(Ω0) | div v = 0 in Ω0,v · n = 0 on Γd},

and the orthogonal decomposition of L2(Ω0) = L2(Ω0,R2)

L2(Ω0) = V0
n,Γd

(Ω0)⊕ grad H1
Γi,o

(Ω0),

where H1
Γi,o

(Ω0) = {u ∈ H1(Ω0) | u = 0 on Γi,o}. Let Π : L2(Ω0) → V0
n,Γd

(Ω0) be the
so-called Leray projector associated with this decomposition. If u belongs to L2(Ω0) then
Πu = u−∇pu −∇qu where pu and qu are solutions to the following elliptic equations

(3.2)
pu ∈ H1

0 (Ω0), ∆pu = div u ∈ H−1(Ω0),

qu ∈ H1
Γi,o

(Ω0), ∆qu = 0, ∂qu
∂n = (u−∇pu) · n on Γd, qu = 0 on Γi,o.

Through this paper the functions with vector values are written with a bold typography.
For example H2(Ω0) = H2(Ω0,R2). As the boundary Γ0 is not C2,1 it is not clear
that the operator Π preserves the H2-regularity. However, with extra conditions on u,
this can be proved. Using the notations in [16, Theorem 11.7] we introduce the space
H

3/2
00 (Γ0) = [H1

0 (Γ0), H2
0 (Γ0)]1/2. The following lemma is proved in the appendix.
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Lemma 3.1. Let u be in H2(Ω0) satisfying div u = 0, u = 0 on Γb and u = ge2 on Γ0

with g ∈ H3/2
00 (Γ0). Then Πu belongs to H2(Ω0).

The energy space associated with (3.1) is

V = {u ∈ H1(Ω0) | div u = 0 in Ω0, u = 0 on Γd, u2 = 0 on Γi,o}.

The regularity result for (3.1) stated in Theorem 5.4 in the appendix allows us to intro-
duce the Stokes operator A defined in V0

n,Γd
(Ω0) by

D(A) = H2(Ω0) ∩ V,

and for all u ∈ D(A), Au = νΠ∆u. We also use the notations

Vs(Ω0) = {u ∈ Hs(Ω0) | div u = 0}, Vs
n,Γd

(Ω0) = V0
n,Γd

(Ω0) ∩Hs(Ω0),

for s ≥ 0. For the Dirichlet boundary condition on Γ0 set

L2(Γ0) = {0} × L2(Γ0), H3/2
00 (Γ0) = {0} ×H3/2

00 (Γ0),
Hs(Γ0) = {0} ×Hs(Γ0), Hs0(Γ0) = {0} ×Hs

0(Γ0) for s ≥ 0.

For s ≥ 0, the dual space of Hs(Γ0) with L2(Γ0) as pivot space is denoted by (Hs(Γ0))′.
Let D ∈ L(H3/2

00 (Γ0),H2(Ω0)) be the operator defined by Dg = w where (w, p) is the
solution to

− ν∆w +∇p = 0, div w = 0 in Ω0,

w = g on Γ0, w = 0 on Γb, w2 = 0 and p = 0 on Γi,o.

given by Theorem 5.4. Using a weak regularity result (Theorem 5.7) and interpolation
techniques (see [16, Theorem 12.6] and [16, Remark 12.6]), D can be extended as a
bounded linear operator in L(L2(Γ0),H1/2(Ω0)).

For space-time dependent functions we use the notations introduced in [17]:

L2(QT ) = L2(0, T ;L2(Ω0)), Hp,q(QT ) = L2(0, T ;Hp(Ω0)) ∩Hq(0, T ;L2(Ω0)), p, q ≥ 0,
L2(Σs

T ) = L2(0, T ;L2(Γs)), Hp,q(Σs
T ) = L2(0, T ;Hp(Γs)) ∩Hq(0, T ;L2(Γs)), p, q ≥ 0.

3.2. Semigroup formulation of the linear system. We want to prove existence and
regularity results for the coupled linear system (2.7). Let R ∈ L(H1/2(Γi,o), H1(Ω))
be a lifting operator. Classically we transform (2.7) into a system with homogeneous
boundary conditions (for the pressure) by looking for a solution to (2.7) under the form
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(u, p, η) = (u, p1, η) + (0,R(Θ), 0) with (u, p1, η) solution to

(3.3)

ut − div σ(u, p1) = f−∇R(Θ), div u = 0 in QT ,
u = ηte2 for Σ0

T ,

u2 = 0 and p1 = 0 on Σi,o
T ,

u = 0 on Σb
T , u(0) = u0 in Ω0,[

ηtt − βηxx − γηtxx + αηxxxx
]
(x, t)

=
[
p1 +R(Θ)

]
(x, 1 + η0(x, t), t) + h for (x, t) ∈ (0, L)× (0, T ),

η = 0 and ηx = 0 on {0, L} × (0, T ),
η(0) = η0

1 and ηt(0) = η0
2 in Γs.

Set F = f − ∇R(Θ). As the boundary Γ0 may not be flat and the beam equation is
written on Γs consider the transport operator U ∈ L(L2(Γ0), L2(Γs)) defined by

(Ug)(x, 1) = g(x, 1 + η0(x)) for all g ∈ L2(Γ0).
We can easily verify that U is an isomorphism from L2(Γ0) to L2(Γs), and that

(U−1g̃)(x, 1 + η0(x)) = g̃(x, 1) for all g̃ ∈ L2(Γs).
Moreover U−1 = U∗, if L2(Γ0) and L2(Γs) are equipped with the inner products

(f, g)L2(Γ0) =
(
f(·, 1 + η0(·))g(·, 1 + η0(·))

)
L2(0,L) ,

and(
f̃ , g̃

)
L2(Γs)

=
(
f̃(·, 1)g̃(·, 1)

)
L2(0,L)

.

In order to express the pressure p1 in terms of Πu and η we introduce the Neumann-to-
Dirichlet operator Ns ∈ L(L2(Γ0)) defined by Ns,0(g) = π|Γ0 where g ∈ L2(Γ0) and π is
the solution to

∆π = 0 in Ω0,

π = 0 on Γi,o,
∂π

∂n = g(1 + (η0)2)−1/2 on Γ0 and ∂π

∂n = 0 on Γb.

As in [21, Lemma 3.1], Ns,0 is a non-negative symmetric and compact operator in L2(Γ0).
Hence, as U ∈ isom(L2(Γ0), L2(Γs)) and U−1 = U∗, the operator Ns = UNs,0 U−1 is a
non-negative symmetric and compact operator in L2(Γs). Consequently, the operator
(IL2(Γs) +Ns) is an automorphism in L2(Γs).

We also define the operator N0 ∈ L(H−1/2(Γd), L2(Γs)) by N0(v) = U (ρ|Γ0) for all
v ∈ H−1/2(Γd), where ρ is the solution to

∆ρ = 0 in Ω0,

ρ = 0 on Γi,o and ∂ρ

∂n = v on Γd.

Finally set Ds(ηt) = D(U−1ηte2). The following lemma is similar to [21, Lemma 3.1]
and is a direct application of Theorem 5.10 in the appendix.
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Lemma 3.2. A pair (u, p1) ∈ H2,1(QT ) × L2(0, T ;H1(Ω0)) obeys the fluid equations
of (3.3) if and only if

Πu′ = AΠu + (−A)ΠDs(ηt) + ΠF, u(0) = u0,

(I −Π)u = (I −Π)Ds(ηt), p1 = ρ− qt + pF ,

where

• q ∈ H1(0, T ;H1(Ω0)) is the solution to

∆q = 0 in QT , ρ = 0 on Σi,o
T ,

∂q

∂n = U−1ηte2 · n on Σ0
T ,

∂q

∂n = 0 on Σb
T .

• ρ ∈ L2(0, T ;H1(Ω0)) is the solution to

∆ρ = 0 in QT , ρ = 0 on Σi,o
T ,

∂ρ

∂n = ν∆Πu · n on Σd
T .

• pF ∈ L2(0, T ;H1(Ω0)) is given by the identity (I −Π)F = ∇pF .

Using Lemma 3.2 the pressure in the beam equation can be decomposed as follows
p1 = νN0(∆Πu · n)− ∂tNs(ηt) + U(pF |Γ0). Hence the beam equation becomes

(IL2(Γs) +Ns)ηtt − βηxx − γηtxx + αηxxxx = νN0(∆Πu · n) + U
[
(pF +R(Θ))|Γ0

]
+ h.

The system (3.3) can be rewritten in terms of (Πu, η, ηt) = (Πu, η1, η2) as

(3.4)


d

dt


Πu
η1

η2

 = A


Πu
η1

η2

+ F,

(I −Π)u = (I −Π)Ds(ηt),

where A is the unbounded operator in

H = V0
n,Γd

(Ω0)×H2
0 (Γs)× L2(Γs),

with domain

D(A) = {(Πu, η1, η2) ∈ V2
n,Γd

(Ω0)×(H4(Γs)∩H2
0 (Γs))×H2

0 (Γs) | Πu−ΠDs(η2) ∈ D(A)},

defined by

(3.5) A =

I 0 0
0 I 0
0 0 (I +Ns)−1

 A 0 (−A)ΠDs

0 0 I
νN0(∆(·) · n) β∆s − α∆2

s δ∆s

 ,
with ∆s = ∂xx and

F =

 ΠF
0

(I +Ns)−1(U
[
(pF +R(Θ))|Γ0

]
+ h)

 .
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3.3. Analyticity of A. Let (Aα,β,D(Aα,β)) be the unbounded operator in L2(Γs) de-
fined by D(Aα,β) = H4(Γs) ∩H2

0 (Γs) and for all η ∈ D(Aα,β), Aα,βη = βηxx − αηxxxx.
The operator Aα,β is self-adjoint and is an isomorphism from D(Aα,β) to L2(Γs). The
space H will be equipped with the inner product

〈(u, η1, η2), (v, ζ1, ζ2)〉H = 〈u,v〉V0
n,Γd

(Ω0) + 〈η1, ζ1〉H2
0 (Γs) + 〈η2, ζ2〉L2(Γs),

with V0
n,Γd

(Ω0) endowed with the natural scalar product of L2(Ω0) and

〈η1, ζ1〉H2
0 (Γs) =

∫
Γs

(−Aα,β)1/2η1(−Aα,β)1/2ζ1 =
∫

Γs

(βη1,xζ1,x + αη1,xxζ1,xx).

This scalar product on H2
0 (Ω0) is used to simplify calculations involving the operator

Aα,β. The unbounded operator relative to the beam (As,D(As)) in

Hs = H2
0 (Γs)× L2(Γs),

is defined by D(As) = (H4(Γs) ∩H2
0 (Γs))×H2

0 (Γs) and As =
(

0 I
Aα,β δ∆s

)
.

Theorem 3.1. The operator (A,D(A)) is the infinitesimal generator of an analytic
semigroup on H.

Proof. The idea of the proof is to split the operator A in two parts. The principal part
of A will be the infinitesimal generator of an analytic semigroup on H and the rest will
be a perturbation bounded with respect to the principal part. Set Ks = (I +Ns)−1− I.
The operator A can be written

A = A1 +A2,

with

A1 =

A 0 (−A)ΠDs

0 0 I
0 Aα,β δ∆s

 ,
and

A2 =

 0 0 0
0 0 0

ν(I +Ns)−1N0(∆(·) · n) KsAα,β δKs∆s

 .
According to [19, Section 3.2, Theorem 2.1], the result is a direct consequence of Theorem
3.2 and 3.3. �

Theorem 3.2. The operator (A1,D(A1) = D(A)) is the infinitesimal generator of an
analytic semigroup on H.

Proof. The proof follows the techniques used in [21, Theorem 3.5]. The first part is to
prove that the semigroup A1 is strongly continuous. This property, established using
regularity results on the unsteady Stokes equations, is proved in the appendix (Lemma
5.3).
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The next step is to estimate the resolvent of A1. Using a perturbation argument to
ensure the existence of the resolvent, we have, at least for Re(λ) > 0,

(λI −A1)−1 =
(

(λI −A)−1 (0 (λI −A)−1(−A)ΠDs)(λI −As)−1

0 (λI −As)−1

)
,

where (λI −As)−1 is given by

(λI −As)−1 =
(
V−1(λI − δ∆s) V−1

V−1Aα,β λV−1

)
,

with V = λ2I−λδ∆s−Aα,β. From [11] we know that there exists a ∈ R and π
2 < θ0 < π

such that for all λ in Sa,θ0 = {λ ∈ C | λ 6= a, |arg(λ− a)| < θ0}∥∥∥(λI −As)−1
∥∥∥
L(Hs)

≤ Cs
|λ− a|

.

The Stokes operatorA is the infinitesimal generator of an analytic semigroup onV0
n,Γd

(Ω0)
and the proof of Theorem 5.5 gives the existence of π2 < θ1 < π such that for all λ ∈ S0,θ1∥∥∥(λI −A)−1

∥∥∥
L(V0

n,Γd
(Ω0))

≤ CA
|λ|

.

Choose a′ > a and θ′ = min(θ0, θ1). For all λ ∈ Sa′,θ′ and all (f,Φ) ∈ V0
n,Γd

(Ω0)×Hs we
have

(λI −A1)−1
(
f
Φ

)
=
(

(λI −A)−1f + (λI −A)−1(−A)ΠDs((λI −As)−1Φ)2
(λI −As)−1Φ

)
.

Remark that (λI − A)−1(−A)ΠDs = ΠDs − λ(λI − A)−1ΠDs. Using the previous
estimates for the resolvent of A and As and the continuity of the operator ΠDs we
obtain∥∥∥∥(λI −A1)−1

(
f
Φ

)∥∥∥∥
V0

n,Γd
(Ω0)

≤ CA
|λ− a′|

‖f‖V0
n,Γd

(Ω0) + CΠDsCs
|λ− a′|

‖Φ‖Hs
+ CACΠDsCs
|λ− a′|

‖Φ‖Hs
+ Cs
|λ− a′|

‖Φ‖Hs
.

Hence there exists a constant C > 0 such that∥∥∥(λI −A1)−1
∥∥∥
L(H)

≤ C

|λ− a′|
,

for all λ ∈ Sa′,θ′ and A1 is the infinitesimal generator of an analytic semigroup on H. �

Theorem 3.3. The operator (A2,D(A2) = D(A)) is A1-bounded with relative bound
zero.

Proof. We proceed as in [21]. Split the operator A2 in three parts A2 = A2,1+A2,2+A2,3
with

A2,1 =

 0 0 0
0 0 0

ν(I +Ns)−1N0(∆(·) · n) 0 0

 ,
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A2,2 =

0 0 0
0 0 0
0 KsAα,β 0

 , A2,3 =

0 0 0
0 0 0
0 0 δKs∆s

 .
The following lemma is an adaptation of [21, Proposition 3.3].

Lemma 3.3. The norm

(Πu, η1, η2) 7→ ‖(Πu, η1, η2)‖H + ‖AΠu + (−A)ΠDsη2‖V0
n,Γd

(Ω0) + ‖As(η1, η2)‖Hs
,

is a norm on D(A) which is equivalent to the norm

(Πu, η1, η2) 7→ ‖Πu‖V2
n,Γd

(Ω0) + ‖η1‖H4(Γs) + ‖η2‖H2
0 (Γs) .

For A2,2 and A2,3 we can use [21, Lemma 3.9] and [21, Lemma 3.10] to prove that there
exists 0 < θ1 < 1 and 0 < θ2 < 1 such that A2,2 (respectively A2,3) is bounded from
D((−A1)θ1) (respectively from D((−A1)θ2)) into H. Hence, according to [19, Section
3.2, Corollary 2.4], the operators A2,2 and A2,3 are A1-bounded with relative bound
zero. It remains to prove that A2,1 is A1-bounded with relative bound zero.

Lemma 3.4. For all ε > 0 there exists a constant Cε such that

(3.6) ‖N0(∆u · n)‖L2(Γs) ≤ ε ‖u‖V2
n,Γd

(Ω0) + Cε ‖u‖V0
n,Γd

(Ω0) ,

for all u ∈ V2
n,Γd

(Ω0).

Proof. Using the transposition method, a density argument (as in Theorem 5.6 and
Theorem 5.7) and interpolation, the operator N0 can be defined as a continuous operator
from H−1(Γs) into L2(Γs). We prove the lemma by contradiction. Assume that there
exists a sequence uk ∈ V2

n,Γd
(Ω0) such that

‖N0(∆uk · n)‖L2(Γs) = 1, ‖uk‖V0
n,Γd

(Ω0) −→ 0, ‖uk‖V2
n,Γd

(Ω0) ≤M,

withM > 0 a fixed constant. By reflexivity of the space V2
n,Γd

(Ω0), up to a subsequence,
there exists u ∈ V2

n,Γd
(Ω0) such that uk ⇀ u inV2

n,Γd
(Ω0). Since ‖uk‖V0

n,Γd
(Ω0) −→ 0, we

obtain u = 0. Then ∆uk ·n⇀ 0 in H−1/2(Γs) and the compact embedding of H−1/2(Γs)
into H−1(Γs) ensures that ∆uk ·n −→ 0 in H−1(Γs). Finally the continuity of N0 implies
that N0(∆uk · n) −→ 0 in L2(Γs) which contradicts ‖N0(∆uk · n)‖L2(Γs) = 1. �
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We come back to the proof that A2,1 is A1-bounded. Using the estimate (3.6) and the
norm equivalence of Lemma 3.3 it follows that for all (Πu, η1, η2) ∈ D(A1)∥∥∥∥∥∥A2,1

Πu
η1
η2

∥∥∥∥∥∥
H

≤ ε ‖Πu‖V2
n,Γd

(Ω0) + Cε ‖Πu‖V0
n,Γd

(Ω0)

≤ ε(‖Πu‖V2
n,Γd

(Ω0) + ‖η1‖H4(Γs) + ‖η2‖H2
0 (Γs)) + Cε ‖Πu‖V0

n,Γd
(Ω0)

≤ C1ε

∥∥∥∥∥∥A1

Πu
η1
η2

∥∥∥∥∥∥
H

+ C2,ε

∥∥∥∥∥∥
Πu
η1
η2

∥∥∥∥∥∥
H

.

This concludes the proof that A2 is A1-bounded with relative bound zero. �

3.4. Regularity results. We have seen that the system (3.3) can be rewritten

(3.7)


d

dt


Πu
η1

η2

 = A


Πu
η1

η2

+ F,


Πu(0)
η1(0)
η2(0)

 =


Πu0

η0
1
η0

2

 ,
(I −Π)u = (I −Π)Ds(η2).

We remark that there is no condition on (I − Π)u0. As in [21], in order to satisfy the
equality (I − Π)u = (I − Π)Ds(η2) at time t = 0, we introduce a subspace of initial
conditions belonging to V1(Ω0)×Hs and satisfying a compatibility condition

Hcc = {(u0, η0
1, η

0
2) ∈ V1(Ω0)×Hs | (I −Π)u0 = (I −Π)Ds(η0

2)}.
To obtain maximal regularity results, introduce the space [D(A),H]1/2 given by

[D(A),H]1/2 = {(Πu, η1, η2) ∈ V1
n,Γd

(Ω0)× (H3(Γs) ∩H2
0 (Γs))×H1

0 (Γs) |
Πu−ΠDs(η2) ∈ V }.

It is equipped with the norm

(Πu, η1, η2) 7−→
(
‖Πu‖2H1(Ω0) + ‖η1‖2H3(Γs) + ‖η2‖2H1(Γs)

)1/2
.

If the initial condition (Πu0, η0
1, η

0
2) belongs to [D(A),H]1/2, and if the compatibility

condition (I −Π)u0 = (I −Π)Ds(η0
2) is satisfied, then (u0, η0

1, η
0
2) belongs to

X (Ω0) = {(u0, η0
1, η

0
2) ∈ Hcc | (Πu0, η0

1, η
0
2) ∈ [D(A),H]1/2}.

The space X (Ω0) is equipped with the norm

x0 = (u0, η0
1, η

0
2) 7−→

∥∥∥x0
∥∥∥
X (Ω0)

=
(∥∥∥Πu0

∥∥∥2

H1(Ω0)
+
∥∥∥η0

1

∥∥∥2

H3(Γs)
+
∥∥∥η0

2

∥∥∥2

H1(Γs)

)1/2
.

We notice that the above mapping is indeed a norm since (I −Π)u0 = (I −Π)Ds(η0
2) if

x0 = (u0, η0
1, η

0
2) ∈ X (Ω0). Defining WT by

WT = L2(QT )× L2(0, T ;H1/2(Γi,o))× L2(0, T ;L2(Γs)),
we obtain the main theorem of this section.
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Theorem 3.4. For all (u0, η0
1, η

0
2) in X (Ω0) and (f,Θ, h) in WT , system (2.7) admits

a unique solution (u, p, η) ∈ H2,1(QT ) × L2(0, T ;H1(Ω0)) × H4,2(Σs
T ). This solution

satisfies

(3.8)
‖u‖H2,1(QT ) + ‖η‖H4,2(Σs

T ) + ‖p‖L2(0,T ;H1(Ω0))

≤ CL(
∥∥∥(u0, η0

1, η
0
2)
∥∥∥
X (Ω0)

+ ‖(f,Θ, h)‖WT
).

Proof. According to [7, Part II, Section 1.3, Theorem 3.1] there exists a unique solution
(u, η1, η2) to (3.7) and the following estimate holds

‖Πu‖H2,1(QT ) + ‖(η1, η2)‖L2(0,T ;D(As))∩H1(0,T ;Hs)

≤ C(
∥∥∥(Πu0, η0

1, η
0
2)
∥∥∥

[D(A),H]1/2
+ ‖F‖L2(0,T ;H))

‖(I −Π)u‖L2(0,T ;H2(Ω0)) + ‖(I −Π)u‖H1(0,T ;H1/2(Ω0))

≤ C ‖(η1, η2)‖L2(0,T ;D(As))∩H1(0,T ;Hs) ,

with the estimate on (I − Π)u coming from the properties of the operator Ds and the
identity (I −Π)u = (I −Π)η2. Estimate (3.8) follows by writing F explicitly. �

Remark 3.1. Let T0 be a fixed time with T < T0. The constant CL in the previous
statement can be chosen independent of T for all T < T0. If we extend all the nonho-
mogeneous terms on [T, T0] by 0 (still denoted by (f,Θ, h)) the previous result implies
that there exists a unique solution ( ◦u, ◦p, ◦η) of (2.7) and the following estimate holds∥∥∥ ◦u∥∥∥

H2,1(QT0 )
+
∥∥∥◦η∥∥∥

H4,2(Σs
T0

)
+
∥∥∥◦p∥∥∥

L2(0,T0;H1(Ω0))

≤ CL(T0)(
∥∥∥(u0, η0

1, η
0
2)
∥∥∥
X (Ω0)

+ ‖(f,Θ, h)‖WT0
).

The uniqueness yields (u, p, η) = ( ◦u, ◦p, ◦η) on [0, T ] and the constant CL in Theorem 3.4
can be taken as CL = CL(T0).

4. Nonlinear coupled system

Throughout this section, excepted for Theorem 4.4 which is stated in a rectangular
domain, Ω0 is given by (2.1) for any fixed η0 ∈ H3(Γs)∩H2

0 (Γs) such that 1 + η0(x) > 0
for all x ∈ (0, L). We prove the existence of strong solutions for the complete nonlinear
system (2.6). Let T0 > 0 be a given time, fixed for this section. Let X̃ (Ω0) be the affine
subspace of X (Ω0) defined by

X̃ (Ω0) = {(u0, η0
1, η

0
2) ∈ X (Ω0) | η0

1 = η0},
that is, the space where the initial data of the beam η1

0 and the geometric η0 are equal.
For T > 0, set
YT = {(u, p, η) ∈ H2,1(QT )× L2(0, T ;H1(Ω0))×H4,2(Σs

T ) |

u = 0 on Σb
T , u = ηte2 on Σ0

T , u2 = 0 on Σi,o
T , (u(0), η(0), ηt(0)) ∈ X̃ (Ω0)}.
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The usual norm on H2,1(QT )× L2(0, T ;H1(Ω0))×H4,2(Σs
T ) is denoted by ‖·‖YT

.

4.1. Estimates. For every x0 = (u0, η0
1, η

0
2) ∈ X̃ (Ω0), R > 0, µ > 0 and T > 0, define

the ball
B(x0, R, µ, T ) = {(u, p, η) ∈ YT | (u(0), η(0), ηt(0)) = x0, ‖(u, p, η)‖YT

≤ R,∥∥(1 + η)−1∥∥
L∞(Σs

T ) ≤ 2µ}.

For a given x0 = (u0, η0
1, η

0
2) ∈ X̃ (Ω0), Theorem 3.4 ensures the existence of R > 0

and µ > 0 such that B(x0, R, µ, T ) is non empty for T > 0 small enough (such a triple
(R,µ, T ) is explicitly chosen in the beginning of the proof of Theorem 4.2).

Throughout this section, C(T0, R, µ, ‖x0‖X (Ω0)) denotes a constant, depending on T0,
R > 0, µ > 0, ‖x0‖X (Ω0) which may vary from one statement to another, but which is
independent of T .

The following lemmas are used to estimate the nonlinear terms (see Theorem 4.1).

Lemma 4.1. There exists a constant C0 depending on T0 such that, for all 0 < T < T0
and all u ∈ H2,1(QT ) satisfying u(0) = 0, the following estimate holds

‖u‖L∞(0,T ;H1(Ω0)) + ‖u‖L4(0,T ;L∞(Ω0)) ≤ C0 ‖u‖H2,1(QT ) .

Moreover for all v ∈ H4,2(Σs
T ) satisfying v(0) = 0 the following estimate holds

‖v‖L∞(0,T ;H3(Γs)) ≤ C0 ‖v‖H4,2(Σs
T ) .

If in addition vt(0) = 0, then

‖vt‖L∞(0,T ;H1(Γs)) + ‖vt‖L2(0,T ;H2(Γs)) ≤ C0 ‖v‖H4,2(Σs
T ) .

Proof. These estimates come from interpolation results (see [17]). The only thing to
prove is that the continuity constants can be made independent of T . Let u be the
function defined by u = 0 on [T − T0, 0] and u = u on [0, T ]. As u(0) = 0, the function
u is still in H2,1(QT ) and, using interpolation estimates, we have

‖u‖L∞(T−T0,T ;H1(Ω0)) ≤ C(T0) ‖u‖L2(T−T0,T ;H2(Ω0))∩H1(T−T0,T ;L2(Ω0)) .

This implies that ‖u‖L∞(0,T ;H1(Ω0)) ≤ C0 ‖u‖H2,1(QT ) with C0 = C(T0). The other
estimates follow from the same argument. �

Lemma 4.2. Let x0 belong to X̃ (Ω0), R > 0, and µ > 0. There exists a constant
C(T0, R, µ, ‖x0‖X (Ω0)) > 0 such that, for all 0 < T < T0 and all (u, p, η) in B(x0, R, µ, T ),
the following estimates hold

‖u‖L∞(0,T ;H1(Ω0)) + ‖u‖L4(0,T ;L∞(Ω0)) + ‖ηt‖L∞(0,T ;H1(Γs))

+ ‖ηt‖L2(0,T ;H2(Γs)) + ‖ηxx‖L∞(0,T ;H1(Γs)) ≤ C(T0, R, µ, ‖x0‖X (Ω0)).
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Proof. Let ( ◦u, ◦η, ◦p) be the solution to (2.7) on the time interval [0, T0] with right-hand
side 0 and the initial condition (u0, η0

1, η
0
2). We have

‖u‖L∞(0,T ;H1(Ω0)) ≤
∥∥∥u− ◦u∥∥∥

L∞(0,T ;H1(Ω0))
+
∥∥∥ ◦u∥∥∥

L∞(0,T ;H1(Ω0))
,

then using that ◦u(0) = u(0) and Lemma 4.1 the following estimate holds with the
constant C0 = C0(T0)∥∥∥u− ◦u∥∥∥

L∞(0,T ;H1(Ω0))
≤ C0

∥∥∥u− ◦u∥∥∥
H2,1(QT )

≤ C0 ‖u‖H2,1(QT ) + C0
∥∥∥ ◦u∥∥∥

H2,1(QT )

≤ C0R+ C0
∥∥∥ ◦u∥∥∥

H2,1(QT0 )
.

The second part is estimated as follows∥∥∥ ◦u∥∥∥
L∞(0,T ;H1(Ω0))

≤
∥∥∥ ◦u∥∥∥

L∞(0,T0;H1(Ω0))
≤ C ′0

∥∥∥ ◦u∥∥∥
H2,1(QT0 )

.

Finally estimate (3.8) on ◦u implies

‖u‖L∞(0,T ;H1(Ω0)) ≤ C0R+ (C0 + C ′0)CL
∥∥∥(u0, η0

1, η
0
2)
∥∥∥
X (Ω0)

.

The estimates on ηt and ηxx follow similarly. �

Lemma 4.3. Set µ0 =
∥∥(1 + η0)−1∥∥

L∞(Γs). For η ∈ H4,2(Σs
T ) such that η(0) = η0 the

function η̃ = η−η0

1+η0 satisfies the following estimates

(4.1) ‖η̃‖L∞(Σs
T ) ≤ µ0T

1/2 ‖ηt‖L2(0,T ;L∞(Γs)) ,

(4.2) ‖η̃x‖L∞(Σs
T ) ≤ µ0T

1/2 ‖ηtx‖L2(0,T,L∞(Γs)) + µ2
0

∥∥∥η0
x

∥∥∥
L∞(Γs)

T 1/2 ‖ηt‖L2(0,T ;L∞(Γs)) .

Proof. The estimates come from the fundamental theorem of calculus and Cauchy-
Schwarz inequality. �

Lemma 4.4. Let u be in L∞(0, T ;H1(Ω0)) and v be in H2,1(QT ). The following
estimate holds
(4.3) ‖u∂iv‖L2(QT ) ≤ CT

1/4 ‖u‖L∞(0,T ;H1(Ω0)) ‖v‖
1/2
L∞(0,T ;H1(Ω0)) ‖v‖

1/2
L2(0,T,H2(Ω0)) ,

with C independent of T , and i = 1, 2.

Proof. We have ∫
Ω0
|u|2|∂1v|2 ≤

(∫
Ω0
|u|6

)1/3 (∫
Ω0
|∂iv|3

)2/3
,

and, using Lebesgue interpolation, ‖∂iv‖L3(Ω0) ≤ ‖∂iv‖
1/2
L2(Ω0) ‖∂iv‖

1/2
L6(Ω0). Sobolev em-

beddings then yield

‖∂1v‖L4(0,T ;L3(Ω0)) ≤ C ‖v‖
1/2
L∞(0,T ;H1(Ω0)) ‖v‖

1/2
L2(0,T ;H2(Ω0)) .
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Then we use the estimate ‖c‖L2(0,T ) ≤ T 1/4 ‖c‖L4(0,T ) to obtain

‖u∂iv‖L2(0,T ;L2(Ω0)) ≤ ‖u‖L∞(0,T ;H1(Ω0)) ‖∂iv‖L2(0,T ;L3(Ω0))

≤ T 1/4 ‖u‖L∞(0,T ;H1(Ω0)) ‖∂iv‖L4(0,T ;L3(Ω0))

≤ CT 1/4 ‖u‖L∞(0,T ;H1(Ω0)) ‖v‖
1/2
L∞(0,T ;H1(Ω0)) ‖v‖

1/2
L2(0,T ;H2(Ω0)) .

�

Lemma 4.5. Let x0 belongs to X̃ (Ω0), R > 0, and µ > 0. For all 0 < T < T0 and
(u, p, η) in B(x0, R, µ, T ), the function M(u, η) belongs to H2,1(QT ) and the following
estimate holds

(4.4) ‖M(u, η)‖H2,1(QT ) ≤ C(T0, R, µ, ‖x0‖X (Ω0)).

Furthermore, for all (u1, p1, η1) and (u2, p2, η2) belonging to B(x0, R, µ, T ), the following
Lipschitz estimate holds
(4.5)
‖M(u1, η1)−M(u2, η2)‖H2,1(QT ) ≤ C(T0, R, µ, ‖x0‖X (Ω0)) ‖(u1, p1, η1)− (u2, p2, η2)‖YT

.

Proof. Through what follows we use the following basic estimate∥∥∥(1 + η̃)−1
∥∥∥
L∞(Σs

T )
=
∥∥∥∥∥1 + η0

1 + η

∥∥∥∥∥
L∞(Σs

T )
≤ µ

∥∥∥1 + η0
∥∥∥
L∞(Γs)

.

Most of the estimates of M(u, η) =
(

u1
1 + η̃

,
zη̃x

1 + η̃
u1 + u2

)T
and its derivatives are

explicit L∞ × L2 estimates using the previous lemmas and the regularity of η̃. To
estimate the second spatial derivative of u1

1+η̃ we compute η̃xx:

η̃xx =
(
ηxx − η0

xx

1 + η0

)
−
(

2(ηx − η0
x)η0

x − (η − η0)η0
xx

(1 + η0)2

)
+ 2(η0

x)2(η − η0)
(1 + η0)4 .

Then

‖η̃xx‖L∞(0,T ;H1(Γ0)) ≤ C1(η0) + C2(η0) ‖ηxx‖L∞(0,T ;H1(Γs))

+ C3(η0) ‖ηx‖L∞(0,T ;H1(Γs)) + C4(η0) ‖η‖L∞(0,T ;H1(Γs))

≤ C(T0, R, µ, ‖x0‖X (Ω0)).

This estimate is more precise that the one needed here (it implies an estimate on
‖η̃xx‖L∞(Σs

T ) using spatial Sobolev embeddings); we stated it because it is used in the
estimates of Theorem 4.1. For the time derivative we have∥∥∥∥ −η̃t

(1 + η̃)2

∥∥∥∥
L∞(Σs

T )
≤ µ2

∥∥∥1 + η0
∥∥∥2

L∞(Σs
T )
µ ‖ηt‖L∞(Σs

T ) ≤ C(T0, R, µ, ‖x0‖X (Ω0)).

It follows from these estimates that∥∥∥∥ u1
1 + η̃

∥∥∥∥
H2,1(QT )

≤ C(T0, R, µ, ‖x0‖X (Ω0)).
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The second component of M(u, η) and its derivatives estimated similarly, except for the
terms ∥∥∥∥zη̃xxxu1

1 + η̃

∥∥∥∥
L2(QT )

≤ C(µ, η0) ‖η̃xxxu1‖L2(QT ) .

The term η̃xxx is only in L2(Γs) and we cannot use Lemma 4.4. Let us write η̃ = ND
with N = η − η0 and D = (1 + η0)−1. We have

η̃xxx = NxxxD + 3NxxDx + 3NxDxx +NDxxx.

When multiplied by zu1
1 + η̃

, the terms involving up to two derivatives can be estimated
directly. For

z(ηxxx − η0
xxx)u1

(1 + η0)(1 + η̃) ,

we have∥∥∥∥∥z(ηxxx − η0
xxx)u1

(1 + η0)(1 + η̃)

∥∥∥∥∥
2

L2(QT )
≤ C(µ, η0)

∫ T

0

∥∥∥(ηxxx − η0
xxx)(·, t)

∥∥∥2

L2(Γs)
‖u(·, t)‖2L∞(Ω0) dt

≤ C(µ, η0)
∥∥∥ηxxx − η0

xxx

∥∥∥2

L4(0,T ;L2(Γs))
‖u‖2L4(0,T ;L∞(Ω0))

≤ C(µ, η0)T 1/4
∥∥∥ηxxx − η0

xxx

∥∥∥2

L8(0,T ;L2(Γs))
‖u‖2L4(0,T ;L∞(Ω0)) ,

and ∥∥∥ηxxx − η0
xxx

∥∥∥
L8(0,T ;L2(Γs))

≤ ‖ηxxx‖L8(0,T ;L2(Γs)) + T 1/8
∥∥∥η0

∥∥∥
H3(Γs)

≤ C(T0, R, µ, ‖x0‖X (Ω0)) + T
1/8
0

∥∥∥η0
∥∥∥
H3(Γs)

.

This implies ∥∥∥∥zη̃xxxu1
1 + η̃

∥∥∥∥
L2(QT )

≤ C(T0, R, µ, ‖x0‖X (Ω0)).

Thus (4.4) is proved. For the Lipschitz estimate we use the same techniques. Let us
make explicit the estimate on one of the terms, namely

zη̃1,x
1 + η̃1

u1,1 −
zη̃2,x

1 + η̃2
u2,1 = z

(
η̃1,x

1 + η̃1
− η̃2,x

1 + η̃2

)
u1,1 + zη̃2,x

1 + η̃2
(u1,1 − u2,1).

Using the previous techniques and Lemma 4.1 we obtain∥∥∥∥ zη̃2,x
1 + η̃2

(u1,1 − u2,1)
∥∥∥∥
H2,1(QT )

≤ C(T0, R, µ, ‖x0‖X (Ω0)) ‖u1 − u2‖H2,1(QT ) .

For the other term we write
η̃1,x

1 + η̃1
− η̃2,x

1 + η̃2
= η̃1,x − η̃2,x

(1 + η̃1)(1 + η̃2) + η̃1,x(η̃2 − η̃1)
(1 + η̃1)(1 + η̃2) + η̃1(η̃1,x − η̃2,x)

(1 + η̃1)(1 + η̃2) ,

and ∥∥∥∥z ( η̃1,x
1 + η̃1

− η̃2,x
1 + η̃2

)
u1,1

∥∥∥∥
H2,1(QT )

≤ C(T0, R, µ, ‖x0‖X (Ω0)) ‖η1 − η2‖H4,2(Σs
T ) .

�
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The nonlinearities in (2.3) can now be estimated.

Theorem 4.1. Let x0 belong to X̃ (Ω0), R > 0, and µ > 0. There exists a function
Pθ,n(T ) =

∑n
k=0 T

θk with n ∈ N∗ and θ ∈ (R∗+)n+1 such that, for all 0 < T < T0 and
all (u, p, η) ∈ B(x0, R, µ, T ), (F(u, p, η),Θ(u), H(u, η)) belongs to WT and the following
estimate holds
(4.6) ‖(F(u, p, η),Θ(u), H(u, η))‖WT

≤ C(T0, R, µ, ‖x0‖X (Ω0))Pθ,n(T ).

Moreover, for (ui, pi, ηi) ∈ B(x0, R, µ, T ) (i = 1, 2) the following estimate holds

(4.7)
‖(F1,Θ1, H1)− (F2,Θ2, H2)‖WT

≤ C(T0, R, µ, ‖x0‖X (Ω0))Pθ,n(T ) ‖(u1, p1, η1)− (u2, p2, η2)‖YT
,

with the notations (Fi,Θi, Hi) = (F(ui, pi, ηi),Θ(ui), H(ui, ηi)).

Proof. Step 1: Estimate of F(u, p, η). We recall the form of F(u, p, η):
F(u, p, η) = G(M(u, η), p, η)− ∂tN(u, η) + ν∆N(u, η).

Set u = M(u, η). Thanks to Lemma 4.5 we can prove the estimates with u and then
obtain estimates in terms of u. For

G(u, p, η) = −η̃ut +
[
zη̃t + νz

(
η̃2
x

1 + η̃
− η̃xx

)]
uz

+ ν

[
−2zη̃xuxz + η̃uxx + z2η̃2

x − η̃
1 + η̃

uzz

]
+ z(η̃xpz − η̃px)e1 − (1 + η̃)u1ux + (zη̃xu1 − u2)uz,

we use L∞ estimates on η̃ to gain a factor T for terms like the first one:
‖−η̃ut‖L2(QT ) ≤ ‖η̃‖L∞(Σs

T ) ‖ut‖L2(QT )

≤ µT 1/2 ‖ηt‖L2(0,T ;L∞(Γs)) ‖u‖H2,1(QT ) ≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/2.

For the product of functions in L∞(0, T ;H1(Ω0)) with derivatives of functions inH2,1(QT )
we use Lemma 4.4, for example:

‖zη̃tuz‖L2(QT ) ≤ CT
1/4 ‖η̃t‖L∞(0,T ;H1(Γs)) ‖u‖

1/2
L∞(0,T ;H1(Ω0)) ‖u‖

1/2
L2(0,T ;H2(Ω0))

≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/4,

and
‖−νzη̃xxuz‖L2(QT ) ≤ CT

1/4 ‖η̃xx‖L∞(0,T ;H1(Ω0)) ‖u‖
1/2
L∞(0,T ;H1(Ω0)) ‖u‖

1/2
L2(0,T ;H2(Ω0))

≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/4,

where we have used the estimates on η̃t and η̃xx given in the proof of Lemma 4.5.

The term N(u, η) =
(−η̃u1

1 + η̃
,
zη̃xu1
1 + η̃

)T
has already been estimated in the proof of Lemma

4.5 and the factor T is obtained with the previous techniques and Lebesgue interpolation
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for the terms
z(ηxxx − η0

xxx)u1
(1 + η0)(1 + η̃) .

Step 2: Estimate of Θ(u). In order to obtain an estimate in L2(0, T ;H1/2(Γi,o)) we
study Θ(u) = (1/2)|u|2 on Ω0 and then look for the restriction to Γi,o. We have

Θ(u) = u2
1 + u2

2
2 ,

Θ(u)x = u1u1,x + u2u2,x,

Θ(u)z = u1u1,z + u2u2,z,

and using Lemma 4.4

‖u1u1,x‖L2(QT ) ≤ CT
1/4 ‖u‖3/2

L∞(0,T ;H1(Ω0)) ‖u‖L2(0,T ;H2(Ω0)) ≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/4.

which implies a L2(0, T ;H1(Ω0)) estimate on Θ(u) and thus a L2(0, T ;H1/2(Γi,o)) esti-
mate for the trace.

Step 3: Estimate of H(u, η). We recall that H(u, η) = Ψ(M(u, η), η) with

Ψ(u, η) = ν

(
ηx

1 + η̃
u1,z + ηxu2,x −

η̃xηxz − 2
1 + η̃

u2,z

)
.

For the terms without η̃ we use directly the regularity of u to gain a factor T . Us-
ing fractional Sobolev embeddings [1, Theorem 7.58] and trace theorems we know that
ux(x, 1+η0(x), t),uz(x, 1+η0(x), t) belong to H1/2,1/4(QT ) and L4(0, T ;L2(Γs)). Hence∥∥∥∥ν ηx

1 + η̃
u1,z

∥∥∥∥
L2(0,T ;L2(Γs))

≤ C(µ, η0) ‖ηxu1,z‖L2(0,T ;L2(Γs)) ,

and

‖ηxu1,z‖2L2(Σs
T ) ≤ ‖ηx‖

2
L∞(Σs

T )

∫ T

0
‖u1,z‖2L2(Γs) dt

≤ ‖ηx‖2L∞(Σs
T ) T

1/2 ‖u1,z‖2L4(0,T ;L2(Γs))

≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/2.

The other terms are estimated with the previous techniques.

Step 4: Lipschitz estimates. The Lipschitz estimates are obtained with the same tech-
niques. Let us make explicit some inequalities.

‖η̃1u1,t − η̃2u2,t‖L2(QT )

≤ ‖(η̃1 − η̃2)u1,t‖L2(QT ) + ‖η̃2(u1,t − u2,t)‖L2(QT )

≤ ‖η̃1 − η̃2‖L∞(Σs
T ) ‖u1,t‖L2(QT ) + ‖η̃2‖L∞(Σs

T ) ‖u1,t − u2,t‖L2(QT )

≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/2(‖η1 − η2‖H4,2(Σs
T ) + ‖u1 − u2‖H2,1(QT )).

All the interest of working in the initial domain Ω0 instead of the rectangular Ω comes
from the estimate (4.3) on η̃. With the usual change of variables, the term η2(u1 − u2)
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cannot be estimated without smallness assumption on η0. For νzη̃1,xxu1,z − νzη̃2,xxu2,z
we have

‖νz(η̃1,xx − η̃2,xx)u1,z‖L2(QT )

≤ CT 1/4 ‖η̃1,xx − η̃2,xx‖L∞(0,T ;H1(Ω0)) ‖u1‖1/2L∞(0,T ;H1(Ω0)) ‖u1‖1/2L2(0,T ;H2(Ω0))

≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/4 ‖η1 − η2‖H4,2(Σs
T ) ,

and

‖νzη̃2,xx(u1,z − u2,z)‖L2(QT )

≤ CT 1/4 ‖η̃2,xx‖L∞(0,T ;H1(Ω0)) ‖u1 − u2‖1/2L∞(0,T ;H1(Ω0)) ‖u1 − u2‖1/2L2(0,T ;H2(Ω0))

≤ C(T0, R, µ, ‖x0‖X (Ω0))T 1/4 ‖u1 − u2‖H2,1(QT ) .

The Lipschitz estimates with lower regularity terms like η̃xxx are obtained as in the proof
of Lemma 4.5. �

4.2. Fixed point procedure. For all x0 = (u0, η0
1, η

0
2) ∈ X̃ (Ω0), R > 0, µ > 0 and

T > 0 such that B(x0, R, µ, T ) 6= ∅, consider the map

(4.8) F :
{
B(x0, R, µ, T ) −→ YT ,
(u, p, η) 7→ (u∗, p∗, η∗),

where (u∗, p∗, η∗) is the solution to (2.7) with right-hand side (F(u, p, η),Θ(u), H(u, η)).
In order to solve (2.6) we look for a fixed point of the map F .

Theorem 4.2. For all x0 = (u0, η0
1, η

0
2) in X̃ (Ω0), there exist R > 0, µ > 0 and T > 0

such that F is a contraction from B(x0, R, µ, T ) into B(x0, R, µ, T ). Hence F has a fixed
point.

Proof. Set µ =
∥∥(1 + η0)−1∥∥

L∞(Γs). Let ( ◦u, ◦η, ◦p) be the solution on [0, T0] to (2.7) with
right-hand side 0. We choose R1 such that

∥∥∥( ◦u, ◦η, ◦p)∥∥∥
XT0
≤ R1. Writing

1 + ◦
η(t) = 1 + η0 +

∫ t

0

◦
ηt(s)ds,

we can choose 0 < T1 < T0 such that

(4.9)
∥∥∥(1 + ◦

η)−1
∥∥∥
L∞(Σs

T1
)
≤ 1
‖1 + η0‖L∞(Γs) − T1C(µ, T0, R1, ‖x0‖X (Ω0))

≤ 2µ.

Thus the ball B(x0, R1, µ, T1) is non-empty. From Theorems 4.1 and 3.4, it follows that

‖F(u, p, η)‖YT1
≤ CL

(∥∥∥(u0, η0
1, η

0
2)
∥∥∥
X (Ω0)

+ C(T0, R1, µ, ‖x0‖X (Ω0))Pθ,n(T1)
)
,

for all (u, p, η) ∈ B(x0, R1, µ, T1).
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Then we choose R2 ≥ R1 such that R2 ≥ 2CL
∥∥(u0, η0

1, η
0
2)
∥∥
X (Ω0), and T2 ≤ T1 such that

CLC(T0, R2, µ, ‖x0‖X (Ω0))Pθ,n(T2) ≤ CL
∥∥∥(u0, η0

1, η
0
2)
∥∥∥
X (Ω0)

and
∥∥∥(1 + η∗)−1

∥∥∥
L∞(Σs

T2
)
≤ 2µ.

Therefore F is well defined from B(x0, R2, µ, T2) into B(x0, R2, µ, T2). Still with Theo-
rems 4.1 and 3.4, it follows that

‖F(u1, p1, η1)−F(u2, p2, η2)‖YT2

≤ CLC(T0, R2, µ, ‖x0‖X (Ω0))Pθ,n(T2) ‖(u1, p1, η1)− (u2, p2, η2)‖YT2
,

for all (u1, p1, η1) and (u2, p2, η2) belonging to B(x0, R2, µ, T2). We choose 0 < T3 ≤ T2
such that CLC(T0, R2, µ, ‖x0‖X (Ω0))Pθ,n(T3) ≤ 1/2. The mapping F is a contraction
from the complete metric space B(x0, R2, µ, T3) into itself, and the Banach fixed point
theorem concludes the proof. �

Theorem 4.3. For all (u0, η0
1, η

0
2) ∈ X̃ (Ω0) there exists T > 0 such that the system

(2.6) has a unique strong solution (u, p, η) in H2,1(QT )× L2(0, T ;H1(Ω0))×H4,2(Σs
T ).

Proof. The existence is already proved. Set x0 = (u0, η0
1, η

0
2) and let (u, p, η) be the

unique solution to (2.6) in B(x0, R, µ, T ) with

µ =
∥∥∥(1 + η0)−1

∥∥∥
L∞(Γs)

, R = 2CL
∥∥∥(u0, η0

1, η
0
2)
∥∥∥
X (Ω0)

,

and T > 0, constructed by the fix point method in the previous Theorem. Let (u′, p′, η′)
be another solution to (2.6) defined on [0, T ] with the same initial data. Define the
constants R0 = ‖(u′, p′, η′)‖YT

and µ0 =
∥∥(1 + η′)−1∥∥

L∞(Σs
T ). Assume that T > 0 is

small enough such that
∥∥(1 + η′)−1∥∥

L∞(Σs
T ) ≤ 2µ. From Theorems 4.1 and 3.4, it follows

that∥∥(u′, p′, η′)∥∥YT1
≤ CL

(∥∥∥(u0, η0
1, η

0
2)
∥∥∥
X (Ω0)

+ C(T0, R0, µ0, ‖x0‖X (Ω0))Pθ,n(T1)
)
,

for all 0 < T1 ≤ T . Let us choose 0 < T1 ≤ T such that

CLC(T0, R0, µ0, ‖x0‖X (Ω0))Pθ,n(T1) ≤ CL
∥∥∥(u0, η0

1, η
0
2)
∥∥∥
X (Ω0)

.

Hence (u′, p′, η′) belongs to B(x0, R, µ, T1) and (u, p, η) = (u′, p′, η′) on [0, T1].

Let 0 < T ∗ ≤ T be the greatest time such that the two solutions are equal. We then
consider the system (2.6) starting at the time T ∗, rewritten in Ωη(T ∗), with the initial
conditions (u(T ∗), η(T ∗), ηt(T ∗)) = (u′(T ∗), η′(T ∗), η′t(T ∗)). If T ∗ < T , using the fixed
point procedure we prove the existence of a solution (u′′, η′′, η′′t ) on [T ∗, T2] with T2 > T ∗.
The previous argument shows that there exists T3 > 0 such that the three solutions are
equal (after a change of variable in order to consider functions in the domain Ωη(T ∗))
on [T ∗, T3] which is a contradiction with the definition of T ∗. Hence T ∗ = T and the
solution to (2.6) is unique. �
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The previous ideas and techniques can be applied on system (1.1) with the Dirichlet
boundary conditions u = 0 on Γi,o and thus fix the gap in the proof of local existence in
[15].

To conclude this section, we state the existence and uniqueness of a solution for (2.6) on
[0, T ], with T > 0 a fixed time and smallness assumptions on the initial data. This result
is proved on the rectangular domain since the estimates of the nonlinear terms are done
through the radius of the ball in the fixed point argument. The existence technique
is similar to the one in [21, Theorem 10.1] and the uniqueness comes from the local
existence and uniqueness result. Let us notice that with this approach the nonlinear
term in the beam equation in (2.3) with η0 = 0 writes

Ψ(û, η) = ν

(
ηx

1 + η
û1,z + ηxû2,x −

η2
xz − 2
1 + η

û2,z

)

= −2νû2,z + ν

(
ηx

1 + η
û1,z + ηxu2,x −

η2
xz − 2η
1 + η

û2,z

)
= −2νû2,z + Ψ(û, η).

After writing û = M(u, η) = u +N(u, η) this nonlinear term becomes

H(u, η) = −2νu2,z − 2νN(u, η)2,z + Ψ(M(u, η), η),

and as div u = u1,x + u2,z = 0 in QT and u1,x = 0 on Σs
T = Σ0

T we obtain u2,z = 0 on
Σs
T . Hence all the nonlinear terms in the beam equation are at least quadratic.

Theorem 4.4. Let T > 0 be a fixed time and recall that Ω = (0, L) × (0, 1). There
exists r > 0 such that for all (u0, η0

1, η
0
2) in X (Ω) satisfying

∥∥(u0, η0
1, η

0
2)
∥∥
X (Ω) ≤ r, the

system (2.6) admits a unique solution in H2,1(QT )× L2(0, T ;H1(Ω))×H4,2(Σs
T ).

Remark 4.1. Note that the initial condition is taken in X (Ω), not X̃ (Ω), which means
that η1

0 can be different from 0.

5. Appendix

5.1. Steady Stokes equations. Consider the steady Stokes equations

(5.1)
− ν∆u +∇p = f, div u = 0 in Ω0,

u = g on Γ0, u = 0 on Γb, u2 = 0 and p = h on Γi,o,

with f ∈ L2(Ω0), g = (0, g)T ∈ H3/2
00 (Γ0) and h ∈ H1/2(Γi,o). We prove in Theorem

5.4 the existence and uniqueness of a pair (u, p) ∈ H2(Ω0) ×H1(Ω0) solution to (5.1).
An existence and uniqueness result for (5.1) with weaker data is given in Theorem 5.7.
The nonhomogeneous boundary condition on the pressure is handled directly with a lift-
ing operator R ∈ L(H1/2(Γi,o), H1(Ω0)). For the nonhomogeneous Dirichlet boundary
condition we use the following theorem.
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Theorem 5.1. For all g = (0, g)T ∈ H3/2
00 (Γ0) the system

(5.2) div w = 0 in Ω0,
w = g on Γ0, w = 0 on Γb, w2 = 0 on Γi,o,

admits a solution w ∈ H2(Ω0) satisfying the estimate
‖w‖H2(Ω0) ≤ C ‖g‖H3/2

00 (Γ0) .

Proof. We look for w under the form w = (−∂2φ, ∂1φ)T , which ensures the property
div w = 0. The boundary conditions on w imply the following conditions on φ

(5.3) ∂2φ = 0 and ∂1φ = g on Γ0,
∂φ
∂n = ∂1φ = 0 on Γi,o, ∂2φ = ∂1φ = 0 on Γb.

Let η0
e be an H3(R) extension of η0. We consider the change of variables

ψ± :
{

R2 −→ R2

(x, y) 7→ (x, y ± η0
e(x)).

Let v̂ be a function in H3(R2). Thanks to the H3-regularity of η0
e , the function v̂ ◦ ψ±

is still in H3(R2). We search for φ solution to (5.3) under the form φ = φ̂ ◦ ψ− with
φ̂ ∈ H3((0, L)× (−∞, 1)) satisfying

(5.4) ∂2φ̂ = 0 and ∂1φ̂ = ĝ on Γs,
∂1φ̂ = 0 on Γi,o, φ̂ = 0 on (0, L)× (−∞, 1− δ),

with ĝ = g ◦ ψ+ and

(5.5) δ =


min

x∈(0,L)
(1 + η0(x)) if min

x∈(0,L)
(1 + η0(x)) < 1,

α if min
x∈(0,L)

(1 + η0(x)) ≥ 1,

for a fixed α ∈ (0, 1). This condition is used to ensure that the function φ = φ̂ ◦ ψ− is
equal to zero near Γb, in order to fulfil the boundary conditions ∂1φ = ∂2φ = 0 on Γb.
To build φ̂ we first search for φ̂o such that

(5.6)
∂φ̂o

∂n = 0 on Γs ∪ Γo,
φ̂o(x, y) = G(x, y) =

∫ x
0 ĝ(s)ds for (x, y) ∈ Γs,

φ̂o = 0 on (0, L)× (−∞, 1− δ),
The boundary conditions on Γs are handled directly thanks to a lifting and a symmetry
argument is used to obtain the homogeneous Neumann boundary condition on Γo. We
set

G∗ :
{
G∗(x, y) = G(x, y) for (x, y) ∈ Γs,
G∗(x, y) = G(2L− x, y) for (x, y) ∈ (L, 2L)× {1}.

Denote by ĝs the odd extension of ĝ on Γs,s = (0, 2L)×{1}. As ĝ ∈ H3/2
00 (Γs), the function

ĝs belongs to H3/2(Γs,s). Indeed odd and even symmetries preserve the H1-regularity
(resp. H2-regularity) for functions in H1

0 (Γ0) (resp. in H2
0 (Γ0)), thus, by interpolation,

the H3/2-regularity is also preserved for functions in H3/2
00 (Γ0) = [H1

0 (Γ0), H2
0 (Γ0)]1/2.



26 JEAN-JÉRÔME CASANOVA

As ∂1G
∗(·, 1) = ĝs(·) we have G∗ ∈ H5/2(Γs,s). We still denote by G∗ a regular extension

of G∗ on R× {1}. The lifting results in [17] in the case of the half-plan give a function
φ̂1 ∈ H3(R× (−∞, 1)) such that φ̂1 = G∗ and ∂φ̂1

∂n = 0 on R× {1}. We then use cut-off
functions to ensure that φ̂1 = 0 on (0, 2L)× (−∞, 1− δ).

Introduce the symmetric function φ̂2 to φ̂ with respect to the axis x = L defined by
φ̂2(x, y) = φ̂2(2L − x, y) for (x, y) ∈ (0, 2L) × (−∞, 1). As the Dirichlet boundary
condition G∗ is symmetric, φ̂2 satisfies the same boundary conditions as φ̂1 on Γs,s. We
finally set φ̂o = φ̂1+φ̂1,s

2 . The function φ̂o belongs to H3((0, 2L) × (−∞, 1)) and admits
x = L as an axis of symmetry. Hence we have ∂φ̂o

∂n = 0 on Γo and the restriction on
(0, L)× (−∞, 1) is a solution to (5.6).

Using the same tools we obtain a function φ̂i ∈ H3((0, L)× (−∞, 1)) such that

(5.7)
∂φ̂i
∂n = 0 on Γs ∪ Γi,
φ̂i(x, y) = G(x, y) =

∫ x
0 ĝ(s)ds for (x, y) ∈ Γs,

φ̂i = 0 on (0, L)× (−∞, 1− δ).

Then we combine φ̂o and φ̂i. Let α be a function defined on [0, L] such that α = 1 near
Γi, α = 0 near Γo and α ∈ C∞([0, L]). The function φ̂ defined by

φ̂(x, y) = α(x)φ̂i(x, y) + (1− α(x))φ̂o(x, y) for all (x, y) ∈ (0, L)× (−∞, 1),

is a solution to (5.4). Finally the restriction to Ω0 of the function φ = φ̂◦ψ− is a solution
to (5.3). Indeed,

∂2φ = ∂2φ̂ ◦ ψ− = 0 on Γ0,

∂1φ = ∂1φ̂ ◦ ψ− − η0
x∂2φ̂ ◦ ψ− = ∂1φ̂ ◦ ψ− = ĝ ◦ ψ− = g on Γ0,

∂φ
∂n = ∂1φ = 0 on Γi,o, ∂2φ = ∂1φ = 0 on Γb.

and w = (−∂2φ, ∂1φ)T is a solution of (5.2). We have w ∈ H2(Ω0) and the estimate
follows from the continuity of the lifting operator in [17]. �

Let w ∈ H2(Ω0) be the lifting of g given by Theorem 5.1 and H = R(h). By setting
(v, q) = (u, p)− (w, H) the Stokes system (5.1) is equivalent to

(5.8)
− ν∆v +∇q = f, div v = 0 in Ω0,

v = 0 on Γd, v2 = 0 and q = 0 on Γi,o,

with f = f + ν∆w−∇H. Using Green formula one can derive the following variational
formulation for (5.8).

Theorem 5.2. Let (v, q) ∈ H2(Ω0) ×H1(Ω0) be a solution to (5.8). Then v satisfies
the variational formulation :

Find v ∈ V such that ν

∫
Ω0
∇v : ∇ϕ =

∫
Ω0

f ·ϕ for all ϕ ∈ V. (?)
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Theorem 5.3. The variational formulation (?) admits a unique solution v ∈ V . More-
over there exists a pressure Q ∈ L2(Ω0), unique up to an additive constant, such that
−ν∆v +∇Q = f in H−1.

The pressure Q is mentioned as a pressure associated with v.

Proof. As the only constant in V is the null function we can use a Poincaré inequality
to prove that the bilinear form

a(v,ϕ) = ν

∫
Ω0
∇v : ∇ϕ,

is coercive on V . Hence the Lax-Milgram lemma gives us the existence of a unique
solution v ∈ V to the variational formulation (?). For the pressure, we use the equality〈

−ν∆v− f,ϕ
〉

H−1,H1
0

= 0, for all ϕ ∈ (H1
0 (Ω0))2 such that div ϕ = 0,

and [10, Chap 4, Theorem 2.3] to prove the existence of Q ∈ L2(Ω0), unique up to an
additive constant and such that −ν∆v +∇Q = f in H−1. �

We now state the main theorem of this section.

Theorem 5.4. For all (f,g, h) ∈ L2(Ω0) × H3/2
00 (Γ0) × H1/2(Γi,o) the equation (5.1)

admits a unique solution (u, p) ∈ H2(Ω0)×H1(Ω0). This solution satisfies the estimate

‖u‖H2(Ω0) + ‖p‖H1(Ω0) ≤ C(‖f‖L2(Ω0) + ‖g‖H3/2
00 (Γ0) + ‖h‖H1/2(Γi,o)).

Proof. Let us work directly on the homogeneous system (5.8). We prove the existence of
a unique pair (v, q) ∈ H2(Ω0)×H1(Ω0) solution to this system. According to Theorems
5.2 and 5.3, v has to solve the variational formulation (?). Hence we start with the
solution of the variational formulation (?) and we prove that it is the solution to (5.8).
The plan is the following:

• Step 1: We extend the variational formulation (?) on a larger domain Ω0,e with
a solution denoted by ve.
• Step 2: We prove that the solution ve to this new variational formulation is in
H2 in a neighbourhood of Γi.
• Step 3: We prove that the restriction of ve to the initial domain Ω0 is the solution
v to (?) which implies that v is H2 in a neighbourhood of Γi, and finally that
v ∈ H2(Ω0).
• Step 4: We prove that all the pressures associated with v are in H1(Ω0) and are
constant on Γi,o.
• Step 5: We conclude by taking the pressure satisfying q = 0 on Γi,o, so that the
pair (v, q) is the unique solution to (5.8).



28 JEAN-JÉRÔME CASANOVA

Step 1: Let η0
e be the function defined by

η0
e :
{
η0(x) for all x ∈ (0, L),
η0(−x) for all x ∈ (−L, 0).

We recall that η0 is in H3(0, L) and that η0(0) = η0
x(0) = 0. Due to the even symmetry

we have η0
e(0−) = η0

e(0+) = 0, η0
e,x(0−) = η0

e,x(0+) = 0, η0
e,xx(0−) = η0

e,xx(0+) and thus we
obtain η0

e ∈ H3(−L,L) and the curve Γ0,e = {(x, y) ∈ R2 | x ∈ (−L,L), y = 1 + η0
e(x)}

is C2. We set Ω0,e = {(x, y) ∈ R2 | x ∈ (−L,L), 0 < y < 1 + η0
e(x)}.

Let ve be the solution to

ν

∫
Ω0,e

∇ve : ∇ψ =
∫

Ω0,e

fe · ψ for all ψ ∈ Ve,

where

Ve = {v ∈ H1(Ω0,e) | div v = 0 in Ω0,e, v = 0 on Γd,e, v2 = 0 on Γi,o,e},
Γd,e = (−L,L)× {0} ∪ Γ0,e, Γi,e = {−L} × (0, 1), Γi,o,e = Γi,e ∪ Γo,

and fe is the function defined by

fe :


fe = f in Ω0,

fe(x, y) =
(

1 0
0 −1

)
f(−x, y) for all (x, y) ∈ Ω0,s,

with Ω0,s = {(x, y) ∈ R2 | x ∈ (−L, 0), 0 < y < 1 + η0
e(x)} .

Step 2: We use cutoff functions to prove the H2 regularity result near Γi. Let ϕ be a
function in C∞0 (R2) such that ϕ = 1 on Ωϕ,1 and support(ϕ) ⊂ Ωϕ,2, with Ωϕ,1 and Ωϕ,2
two open sets with smooth boundaries such that Ωϕ,1 ⊂ Ωϕ,2 ⊂ Ω0,e and Ωϕ,1 containing
a neighbourhood of Γi.

Let Qe be a pressure associated to ve. The pair (vc, qc) = (ϕve, ϕQe) satisfies, in
H−1(Ωϕ,2),

−ν∆vc +∇qc = −ν∆ϕve − 2ν∇ve ∇ϕ+Qe∇ϕ+ ϕfe.

Since (vc, qc) belongs to H1
0(Ωϕ,2)×L2(Ωϕ,2), the previous equality implies that (vc, qc)

is a solution to the following Stokes equations (in the usual variational sense)

(5.9)
−ν∆vc +∇qc = −ν∆ϕve − 2ν∇ve ∇ϕ+Qe∇ϕ+ ϕfe in Ωϕ,2,

div vc = ve · ∇ϕ in Ωϕ,2, vc = 0 on ∂Ωϕ,2.

We then use known results for Stokes equations with Dirichlet boundary conditions (see
for example [10, Chap IV, Theorem 5.8]) to obtain (vc, qc) ∈ H2(Ωϕ,2) ×H1(Ωϕ,2). As
(vc, qc) is equal to (ve,Qe) on Ωϕ,1 we obtain the regularity result for (ve,Qe) in a
neighbourhood of Γi.
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Step 3: We want to prove that the restriction to Ω0 of ve is the solution v to the
variational formulation (?). Using the Lax-Milgram lemma we know that ve satisfies

(5.10) 1
2ν
∫

Ω0,e

|∇ve|2 −
∫

Ω0,e

fe · ve = min
ϕ∈Ve

(
1
2ν
∫

Ω0,e

|∇ϕ|2 −
∫

Ω0,e

fe ·ϕ
)
.

Hence, using the symmetry properties of fe we can prove that the function vs defined by

vs(x, y) =
(

1 0
0 −1

)
ve(−x, y) for all (x, y) ∈ Ω0,e,

is also a solution to the minimization problem (5.10). As (5.10) admits a unique solution
we obtain that vs = ve. The symmetry properties and the regularity of ve imply that
ve,2 = 0 on Γi. We can now prove that the restriction to Ω0 of ve is the solution v to
(?). Let ϕ be a test function in V and denote by ϕe the function defined by

ϕe :


ϕe = ϕ on Ω0,

ϕe(x, y) =
(

1 0
0 −1

)
ϕ(−x, y) for all (x, y) ∈ Ω0,s.

Thanks to the condition ϕ2 = 0 on Γi,o we notice that ϕe is in H1(Ω0,e), and more
precisely in Ve. Hence we can use ϕe as a test function in the variational formulation
satisfied by ve, we obtain

ν

∫
Ω0,e

∇ve : ∇ϕe =
∫

Ω0,e

fe ·ϕe.

Using the symmetry properties of ve, ϕe and fe we have∫
Ω0,s

∇ve : ∇ϕe =
∫

Ω0
∇ve : ∇ϕe,

and ∫
Ω0,s

fe ·ϕe =
∫

Ω0
fe ·ϕe.

Hence,
ν

∫
Ω0
∇ve : ∇ϕ =

∫
Ω0

f ·ϕ,

for all ϕ in V , which proves that the restriction to Ω0 of ve is the solution v to the
variational formulation (?). Hence v isH2 in a neighbourhood of Γi. The same technique
works for the boundary Γo which implies the regularity result on the whole domain Ω0.

Step 4: Let Q be a pressure associated with v. The regularity of v and the equality (in
the sense of the distributions)

−ν∆v +∇Q = f,
imply that Q belongs to H1(Ω0). We now have to prove that Q is equal to a constant
on Γi,o. Thanks to the regularity of (v,Q), the equality −∆v+∇Q = f holds in L2(Ω0).
For all ψ in V we have∫

Ω0
f ·ψ =

∫
Ω0

(−ν∆v +∇Q) ·ψ =
∫

Ω0
ν∇v : ∇ψ +

∫
Γi,o

Q(ψ · n),
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and, using the definition of v, ∫
Γi,o

Q(ψ · n) = 0.

This implies that Q is constant on Γi,o. To see this, it is sufficient to prove that for all
φ ∈ C∞c (Γi,o) satisfying ∫

Γi,o

φ = 0,

there exists ψ ∈ V such that ψ · n = φ on Γi,o. Let φ be the function defined by

φ :


φ = 0 on Γd,

φ =
(
φ

0

)
on Γi,o.

Using [13, Lemma 2.2] the equations{
div ψ = 0

ψ = φ

Ω0,

Γ0,

admit a solution ψ in H1(Ω0). Such a ψ belongs to V and satisfies ψ · n = φ on Γi,o.
Hence Q is constant on Γi,o.

Step 5: Among the pressures Q associated with v there exists a unique q in H1(Ω0)
satisfying q = 0 in Γi,o in the sense of the trace for Sobolev functions. The pair (v, q)
in H2(Ω0) ×H1(Ω0) is the unique solution to (5.8) and (u, p) = (v, q) + (w, H) is the
unique solution to (5.1). The estimate on (u, p) follows from classical estimate for the
Stokes equations (5.9) and Theorem 5.1 to estimate w. �

According to Theorem 5.4 the Stokes operator A associated to (5.1) with homogeneous
boundary condition is defined by

D(A) = H2(Ω0) ∩ V,

and for all u ∈ D(A), Au = νΠ∆u.

Theorem 5.5. The operator (A,D(A)) is the infinitesimal generator of an analytic
semigroup on V0

n,Γd
(Ω0). Moreover we have D(A1/2) = V .

Proof. The bilinear form associated with the operator A defined by

∀(v,ϕ) ∈ V × V, a(v,ϕ) = ν

∫
Ω0
∇v : ∇ϕ,

is continuous and coercive, hence [7, Part 2, Theorem 2.2] proves that the operator A is
the infinitesimal generator of an analytic semigroup. For the second part of the theorem
we have, for all u ∈ D(A),

‖u‖V = 〈−Au,u〉 =
∥∥∥(−A)1/2u

∥∥∥
V0

n,Γd
(Ω0)

.

By density, the previous equality is still true for u ∈ V which concludes the proof. �
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We now want to study (5.1) for weaker data using transposition method. The following
lemma, used to solved non-zero divergence Stokes equations, is needed to obtain weak
estimates on the pressure in Theorem 5.6.

Lemma 5.1. For all Φ ∈ H1
0 (Ω0) the system

(5.11) div w = Φ in Ω0,
w = 0 on Γd, w2 = 0 on Γi,o,

admits a solution w ∈ H2(Ω0) satisfying the estimate

‖w‖H2(Ω0) ≤ C ‖Φ‖H1
0 (Ω0) .

Proof. If Φ has a zero average the result comes directly from [22, Chap II.2, Lemma
2.3.1]. This lemma gives the existence of a function w ∈ H2

0(Ω0) such that div w = Φ.
In the general case, the idea is to find a pair (w0,Φ0) solution to (5.11), where Φ0 has
a non zero average, and to use it to come back to the previous framework.

Let δ > 0 be the constant defined by (5.5) in Theorem 5.1 and ρ ∈ C∞(R) be a non
zero non negative function compactly supported in (0, δ). Let θ ∈ C∞(0, L) be such that
θ = 0 near 0 and θ = 1 near L. Define w0(x, y) = (ρ(y)θ(x), 0)T for all (x, y) ∈ Ω0.
The function w0 is smooth and satisfies the boundary conditions in (5.11). Finally, set
Φ0(x, y) = div w0(x, y) = ρ(y)θ′(x) for all (x, y) ∈ Ω0 and remark that Φ0 ∈ H1

0 (Ω0)
and ∫

Ω0
ρ(y)θ′(x)dxdy =

∫ δ

0
ρ(y)dy > 0.

We look for a solution to (5.11) under the form w = w̃ + cw0 with c =
∫

Ω0
Φ/
∫

Ω0
Φ0.

The function w̃ needs to satisfy
div w̃ = Φ− cΦ0 in Ω0,
w̃ = 0 on Γd, w̃2 = 0 on Γi,o.

The function Φ̃ = Φ − cΦ0 is in H1
0 (Ω0) and has a zero average. The existence of w̃

follows from [22, Chap II.2, Lemma 2.3.1]. To prove the estimate on w remark that

c ≤
√
µ(Ω0)∫
Ω0

Φ0
‖Φ‖H1

0 (Ω0) .

�

Theorem 5.6. For all (f,g, h) ∈ L2(Ω0)×H3/2
00 (Γ0)×H1/2(Γi,o) the solution (u, p) of

the equation (5.1) satisfies the estimate

(5.12) ‖u‖L2(Ω0) + ‖p‖H−1(Ω0) ≤ C(‖f‖(H2(Ω0))′ + ‖g‖(H1/2(Γ0))′ + ‖h‖(H3/2(Γi,o))′).

Proof. The fluid part estimate is similar to [20, Lemma A.3] using as test function the
solution (Ψ, π), given by Theorem 5.4, to

(5.13)
− ν∆Ψ +∇π = ϕ, div Ψ = 0 in Ω0,

Ψ = 0 on Γd, Ψ2 = 0 and π = 0 on Γi,o,
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with ϕ ∈ L2(Ω0). Let us prove the pressure estimate. For all Φ ∈ H1
0 (Ω0) consider the

system

(5.14)
− ν∆v +∇q = 0, div v = Φ in Ω0,

v = 0 on Γd, v2 = 0 and q = 0 on Γi,o.

Using Lemma 5.1 and Theorem 5.4 this system admits a unique solution (v, q) in
H2(Ω0)×H1(Ω0) which satisfies

‖v‖H2(Ω0) + ‖q‖H1(Ω0) ≤ C ‖Φ‖H1
0 (Ω0) .

Using Green’s formula the following computations hold

0 =
∫

Ω0
(−ν∆v +∇q) · u

= −ν
∫

Ω0
∆u · v− ν

∫
∂Ω0

u · (∇vn) + ν

∫
∂Ω0

v · (∇un) +
∫
∂Ω0

q(u · n)

=
∫

Ω0
f · v−

∫
Ω0
∇p · v + ν

∫
∂Ω0

u · (∇vn) +
∫

Γ0
q(u · n)

=
∫

Ω0
f · v +

∫
Ω0
pΦ−

∫
Γi,o

h(v · n) + ν

∫
∂Ω0

u · (∇vn) +
∫

Γ0
q(g · n),

and ∫
∂Ω0

u · (∇vn) =
∫

Γ0
g · (∇vn) +

∫
Γi,o

u · (∇vn)

=
∫

Γ0
g P2(∇vn) +

∫
Γi,o

u1∂1v1,

where g = (0, g)T and P2 is the vectorial projection on the second component. As
∂1v1 + ∂2v2 = Φ and v2 = 0 on Γi,o we notice that ∂1v1 = Φ on Γi,o and as Φ ∈ H1

0 (Ω0)
we obtain ∂1v1 = 0 on Γi,o. Finally∣∣∣∣∫

Ω0
pΦ
∣∣∣∣ ≤ C(‖f‖(H2(Ω0))′ ‖v‖H2(Ω0) + ‖h‖(H3/2(Γi,o))′ ‖v · n‖H3/2(Γi,o)

+ ‖g‖(H1/2(Γ0))′ ‖P2(∇vn)‖H1/2(Γ0) + ‖g‖(H1/2(Γ0))′ ‖P2(qn)‖H1/2(Γ0)),
≤ C(‖f‖(H2(Ω0))′ + ‖g‖(H1/2(Γ0))′ + ‖h‖(H3/2(Γi,o))′) ‖Φ‖H1

0 (Ω0) ,

which implies the pressure estimate. �

As for [20, Theorem A.1] we now define a notion of weak solutions for (5.1). For (f,g, h)
in (H2(Ω0))′× (H1/2(Γ0))′× (H3/2(Γi,o))′ consider the following variational formulation:

Find (u, p) ∈ L2(Ω0)×H−1(Ω0) such that

(5.15)

∫
Ω0

u ·ϕ = 〈f,Ψ〉(H2(Ω0))′,H2(Ω0) + 〈h,Ψ · n〉(H3/2(Γi,o))′,H3/2(Γi,o)

−〈g, P2(∇Ψn)〉(H1/2(Γ0))′,H1/2(Γ0) + 〈g, P2(πn)〉(H1/2(Γ0))′,H1/2(Γ0),



FLUID STRUCTURE SYSTEM WITH BOUNDARY CONDITIONS INVOLVING THE PRESSURE 33

for all ϕ ∈ L2(Ω0) and (Ψ, π) solution of (5.13), and
(5.16)
〈p,Φ〉H−1(Ω0),H1

0 (Ω0) = − 〈f,v〉(H2(Ω0))′,H2(Ω0) + 〈h,v · n〉(H3/2(Γi,o))′,H3/2(Γi,o)

−〈g, P2(∇vn)〉(H1/2(Γ0))′,H1/2(Γ0) + 〈g, P2(qn)〉(H1/2(Γ0))′,H1/2(Γ0),

for all Φ ∈ H1
0 (Ω0) and (v, q) solution of (5.14).

Theorem 5.7. For all (f,g, h) ∈ (H2(Ω0))′ × (H1/2(Γ0))′ × (H3/2(Γi,o))′ there exists
a unique solution (u, p) ∈ L2(Ω0) × H−1(Ω0) of (5.1) in the sense of the variational
formulation (5.15)-(5.16). This solution satisfies the following estimate

(5.17) ‖u‖L2(Ω0) + ‖p‖H−1(Ω0) ≤ C(‖f‖(H2(Ω0))′ + ‖g‖(H1/2(Γ0))′ + ‖h‖(H3/2(Γi,o))′).

Proof. See [20, Theorem A.1]. �

5.2. Unsteady Stokes equations. Consider the unsteady Stokes equations

(5.18)

ut − ν∆u +∇p = f, div u = 0 in QT ,
u = g on Σ0

T , u = 0 on Σb
T ,

u2 = 0 and p = 0 on Σi,o
T ,

u(0) = u0 on Ω0.

As for the steady Stokes equations, a nonhomogeneous boundary condition on the pres-
sure p = h in (5.18) can be handled directly with a lifting, hence through this section
we assume that h = 0. We prove the existence and uniqueness of a solution to (5.18)
in Theorem 5.8. Then we transform (5.18) to prove existence uniqueness and regularity
result when the Dirichlet boundary condition g is less regular (see Theorem 5.9). We
use this result to prove Lemma 3.2. Finally we specify the regularity result used in the
study of the fluid structure system in Theorem 5.11 and we apply this result in Lemma
5.3.

Writing the equations satisfied by u−Dg and using standard semigroup techniques we
obtain the following theorem. Remark that the assumption u0−Dg(0) ∈ V is equivalent
to u0 ∈ V1(Ω0), u0 = g on Γ0 and u0

2 = 0 on Γi,o.

Theorem 5.8. For all g ∈ L2(0, T ;H3/2
00 (Γ0)) ∩ H1(0, T ; (H1/2(Γ0))′), f ∈ L2(QT )

and u0 ∈ H1(Ω0) satisfying the compatibility condition u0 − Dg(0) belongs to V , the
equation (5.18) admits a unique solution (u, p) ∈ H2,1(QT ) × L2(0, T ;H1(Ω0)). This
solution satisfies the following estimate

‖u‖H2,1(QT ) + ‖p‖L2(0,T ;H1(Ω0))

≤ C(‖u0‖H1(Ω0) + ‖g‖
L2(0,T ;H3/2

00 (Γ0)) +
∥∥g′∥∥L2(0,T ;(H1/2(Γ0)))′ + ‖f‖L2(QT )).
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We now want to study (5.18) for g ∈ L2(0, T ;L2(Γ0)). We follow the approach of [20].
The operator A, using extrapolation method, can be extended to an unbounded operator
∼
A defined on (D(A∗))′ with domain D(

∼
A) = V0

n,Γd
(Ω0).

Definition 5.1. A function u ∈ L2(QT ) is called a weak solution to (5.18) if Πu is a
weak solution to the evolution equation

(5.19) Πu′ =
∼
AΠu + (−

∼
A)ΠDg + Πf, Πu(0) = Πu0,

and (I−Π)u is given by

(5.20) (I−Π)u = (I−Π)Dg in L2(QT ).

Remark that A = A∗ (the operator A is symmetric and onto from D(A) into V0
n,Γd

(Ω0)).
By definition to a weak solution for (5.19) (see [7]), Πu ∈ L2(0, T,V0

n,Γd
(Ω0)) is solution

to (5.19) if and only if for all Φ ∈ D(A∗) = D(A) the map t 7→
∫

Ω0
Πu · Φ belongs to

H1(0, T ) and

(5.21) d

dt

∫
Ω0

Πu ·Φ = 〈
∼
AΠu,Φ〉D(A)′,D(A) + 〈−

∼
AΠDg,Φ〉D(A)′,D(A) + 〈Πf,Φ〉D(A)′,D(A).

Using Green formula we compute the adjoint of the operator D.

Lemma 5.2. For all f ∈ L2(Ω0) the adjoint operator D∗ of D is defined by

D∗f = (−ν∇v + q)n,

where (v, q) ∈ H2(Ω0)×H1(Ω0) is the solution to
− ν∆v +∇q = f, div v = 0 in Ω0,

v = 0 on Γd, v2 = 0 and q = 0 on Γi,o.

Using that
∼
A
∗

= A on D(A) the variational formulation (5.21) becomes
d

dt

∫
Ω0

Πu · Φ =
∫

Ω0
Πu ·AΦ +

∫
Γ0
g ·D∗(−A)Φ +

∫
Ω0

Πf · Φ

=
∫

Ω0
Πu ·AΦ +

∫
Γ0
g · (−ν∇Φ + q)n,+

∫
Ω0

Πf · Φ,

with ∇q = ν(I − Π)∆Φ. The previous equality follows from the uniqueness of the
stationary Stokes system and the identity −ν∆Φ + ν(I− Π)∆Φ = −AΦ. Finally Πu is
a weak solution to 5.19 if and only if

(5.22) d

dt

∫
Ω0

Πu ·Φ =
∫

Ω0
Πu ·AΦ+

∫
Γ0
g · (−ν∇Φ+q)n+

∫
Ω0

Πf ·Φ for all Φ ∈ D(A).

We can now state a theorem analogue to [20, Theorem 2.3].

Theorem 5.9. For all Πu0 ∈ V0
n,Γd

(Ω0), g ∈ L2(0, T ;L2(Γ0)) and f ∈ L2(QT ) the
equation (5.18) admits a unique weak solution u in the sense Definition 5.1. This solution
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satisfies the following estimate
(5.23)
‖Πu‖

L2(0,T ;V1/2−ε
n,Γd

(Ω0)) + ‖Πu‖H1/4−ε/2(0,T ;V0(Ω0)) + ‖(I−Π)u‖L2(0,T ;V1/2(Ω0))

≤ C
(
‖Πu0‖V0

n,Γd
(Ω0) + ‖g‖L2(0,T ;L2(Γ0)) + ‖Πf‖L2(0,T ;V0

n,Γd
(Ω0))

)
, for all ε > 0.

Proof. See [20, Theorem 2.3]. �

As in [20] we can prove that for g ∈ L2(0, T ;H3/2
00 (Γ0))∩H1(0, T ;H−1/2(Γ0)) a function

u is solution to (5.18) in the sense of Theorem 5.8 if and only if u is a weak solution to
(5.18)(in the sense of Definition 5.1). The following theorem characterize the pressure.

Theorem 5.10. For all g ∈ L2(0, T ;H3/2
00 (Γ0))∩H1(0, T ; (H1/2(Γ0))′), f ∈ L2(QT ) and

u0 ∈ H1(Ω0) satisfying the compatibility condition u0 − Dg(0) belongs to V , a pair
(u, p) ∈ H2,1(QT )× L2(0, T ;H1(Ω0)) is solution of (5.18) if and only if

Πu′ = AΠu + (−A)ΠDg + Πf, u(0) = u0,

(I −Π)u = (I −Π)Dg, p = ρ− qt + pf,

where

• q ∈ H1(0, T ;H1(Ω0)) is the solution to

(5.24) ∆q = 0 in QT , ρ = 0 on Σi,o
T ,

∂q

∂n = g · n on Σ0
T ,

∂q

∂n = 0 on Σb
T .

• ρ ∈ L2(0, T ;H1(Ω0)) is the solution to

(5.25) ∆ρ = 0 in QT , ρ = 0 on Σi,o
T ,

∂ρ

∂n = ν∆Πu · n on Σd
T ,

where ν∆Πu · n is in L2(0, T ;H−1/2(Γd)) thanks to the divergence theorem.
• pf ∈ L2(0, T ;H1(Ω0)) is given by the identity (I −Π)f = ∇pf.

Proof. Writing u = Πu + (I−Π)u in Equation (5.18), we have

ut − ν∆u +∇p = Πut + (I−Π)ut − ν∆Πu− ν∆(I−Π)u +∇p = 0.

By definition of (I− Π) there exists q ∈ H1
Γi,o

(Ω0) such that ∇q = (I− Π)u. Using the
condition div u = 0 and (I − Π)u = (I − Π)Dg we obtain that q is solution to (5.24).
As g ∈ H1(0, T ;H−1/2(Γ0)) the function q belongs to H1(0, T ;H1(Ω0)).

The function Πu is solution to the equation

Πut − ν∆Πu +∇ρ = 0,

with ρ = p− ν∆q+ qt = p+ qt. Taking the divergence of the previous equation and the
normal trace on Γd (which is well defined as ∆Πu is in L2(0, T ;L2(Ω0)) with a divergence
equal to zero) we obtain (5.25) and ρ ∈ L2(0, T ;H1(Ω0)). �
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We conclude this section with a regularity result, coming from the interpolation of the
regularity results stated in Theorem 5.8 and Theorem 5.9, and an application to the
operator A1 defined in Section 3.3.

Theorem 5.11. For all g ∈ L2(0, T ;H1
0(Γ0)) ∩H1/2(0, T ;L2(Γ0)), f = 0 and Πu0 = 0,

the solution u to (5.19)-(5.20) satisfies the estimate

‖Πu‖H3/2−ε,3/4−ε/2(QT ) ≤ C(‖g‖L2(0,T ;H1
0(Γ0)) + ‖g‖H1/2(0,T ;L2(Γ0))), for all ε > 0.

Lemma 5.3. The operator (A1,D(A1)) is the infinitesimal generator of a strongly
continuous semigroup on H.

Proof. The first part is to prove that the unbounded operator (
∼
A1,D(

∼
A1)), defined by

D(
∼
A1) = {(Πu, η1, η2) ∈ V1

n,Γd
(Ω0)× (H4(Γs)∩H2

0 (Γs))×H2
0 (Γs) | Πu−ΠDs(η2) ∈ V }

and
∼
A1 =

A 0 (−A)ΠDs

0 0 I
0 Aα,β δ∆s

 ,
is the infinitesimal generator of a strongly continuous semigroup on V −1 × Hs. Here,
V −1 is the dual of V endowed with the norm

v 7→
(〈

(−A)−1v,v
〉
V,V −1

)1/2
.

This proof is similar to [21, Theorem 3.5]. Then we consider the evolution equation

(5.26) d

dt

Πu
η1
η2

 =
∼
A1

Πu
η1
η2

 ,
Πu(0)
η1(0)
η2(0)

 =

Πu0

η0
1
η0

2

 .
The solution to (5.26) can be found in two steps. First we determine (η1, η2) and then
Πu. We recall that (As,D(As)) is the infinitesimal generator of an analytic semigroup
on Hs (see [11]). Let (Πu0, η0

1, η
0
2) be in V −1 ×Hs. Using [7, Chap 3, Theorem 2.2] we

obtain η1 ∈ H3,3/2(Σs
T ) and η2 ∈ H1,1/2(Σs

T ). Now let us assume that (Πu0, η0
1, η

0
2) ∈ H.

We have to solve

(Πu)′ = AΠu + (−A)ΠDs(η2), Πu(0) = Πu0.

We split this equation in two parts Πu = Πu1 + Πu2 with

(Πu1)′ = AΠu1 + (−A)ΠDs(η2), Πu1(0) = 0,

and
(Πu2)′ = AΠu2, Πu(0) = Πu0.

Using Theorem 5.11 we remark that Πu1 ∈ H3/2−ε,3/4−ε/2(QT ). For Πu2, [7, Chap 3,
Theorem 2.2] shows that Πu2 ∈ L2(0, T ;V ) ∩ H1(0, T ;V −1). Interpolation result [17,
Theorem 3.1] ensures that Πu2 ∈ C([0, T ];V0

n,Γd
(Ω0)).



FLUID STRUCTURE SYSTEM WITH BOUNDARY CONDITIONS INVOLVING THE PRESSURE 37

Hence (Πu, η1, η2) ∈ C([0, T ];H) and the restriction to the semigroup (et
∼
A1)t∈R+ to H

is a strongly continuous semigroup on H. Finally we can verify that the infinitesimal
generator associated with this restriction is exactly the operator (A1,D(A1)). �

5.3. Elliptic equations for the projector Π. In this section we prove higher regu-
larity result for an elliptic equation, which implies the regularity result on the projector
Π given in Lemma 3.1.

Lemma 5.4. Let f be in H1(Ω0) such that f = 0 on Γi,o and g be in H3/2
00 (Γ0). Then

the elliptic equation

(5.27)


∆ρ = f in Ω0,

∂ρ

∂n = g(1 + (η0)2)−1/2 on Γ0 and ∂ρ

∂n = 0 on Γb,
ρ = 0 on Γi,o,

admits a unique solution ρ ∈ H3(Ω0).

Proof. H3 regularity far from the corners of Ω0 is obtained through classical arguments.
To prove the H3 regularity at the corners, say along x = 0, we first perform a symmetry
with respect to x = 0 (step 1) and then a change of variables to transport the PDE on
(−L,L)× (0, 1) (step 2).

Step 1: Using the notations of step 1 in the proof of Theorem 5.4 for η0
e , Γ0,e, Ω0,s and

Ω0,e we define fe and ge by

fe :
{
fe = f in Ω0,

fe(x, y) = −f(−x, y) in Ω0,s,
ge :

{
ge = g in Γ0,

ge(x, y) = g(−x, y) in Γ0,e \ Γ0.

Assumptions on f and g ensure that (fe, ge) is in H1(Ω0,e)×H3/2(Γ0,e). Define ρe by

ρe :
{
ρe = ρ in Ω0,

ρe = −ρ(−x, y) for all (x, y) ∈ Ω0,s.

Then ρe ∈ H2(Ω0,e) and satisfies
∆ρe = fe in Ω0,

∂ρe
∂n = ge(1 + (η0

e)2)−1/2 on Γ0,e and
∂ρe
∂n = 0 on (−L,L)× {0},

ρe = 0 on ({−L} × (0, 1)) ∪ Γo.

Step 2: Let Ωe = (−L,L)× (0, 1) and ϕ be the change of variables

ϕ :


Ω0,e −→ Ωe,

(x, y) 7→ (x, z) =
(
x,

y

1 + η0
e(x)

)
.

As in Theorem 5.1 the function ϕ transports H3(Ω0,e) to H3(Ωe). Hence it is sufficient
to prove the H3 regularity after transport. Let Jϕ be the Jacobian matrix of ϕ. Setting
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ρ̃e = ρ ◦ ϕ−1, f̃e = |Jϕ|−1fe ◦ ϕ−1 and g̃e(x, 1) = ge(x, 1 + η0
e(x)) the function ρ̃e is

solution to

(5.28)


div(A∇ρ̃e) = f̃e in Ωe,

A∇ρ̃e · n = g̃e on (−L,L)× {1} and A(x, z)∇ρ̃e · n = 0 on (−L,L)× {0},
ρ̃e = 0 on ({−L} × (0, 1)) ∪ Γo,

where the matrix A = (Ai,j)1≤i,j≤2 = |det(Jϕ)|−1JϕJTϕ is uniformly positive definite
symmetric with coefficients in W 1,∞ ∩H2.

Step 3: Deriving (5.28) with respect to x shows that ∂xρ̃e satisfies (with ∂1 = ∂x and
∂2 = ∂z)

(5.29) div(A∇(∂xρ̃e)) = ∂xf̃e − F (A, ρ̃e),

with

F (A, ρ̃e) = (∂11A11) ∂1ρ̃e + (∂1A11) ∂11ρ̃e + (∂11A12) ∂2ρ̃e + (∂1A12) ∂12ρ̃e

+ (∂12A21) ∂1ρ̃e + (∂1A21) ∂21ρ̃e + (∂12A22) ∂2ρ̃e + (∂1A22) ∂22ρ̃e,

in the sense of the distributions on Ωe. From here on, we localize near (0, 1).

Step 4: We use a bootstrap argument. The first step is to find an L∞ estimate on ∇ρ̃e.
In the right hand-side of (5.29) the least regular terms are under the form (∂11A11) ∂xρ̃e
or (∂12A22) ∂zρ̃e. Sobolev embeddings show that these terms are in Lr for all 1 < r < 2.
Moreover the Neumann boundary condition involves ∂xg̃e − (∂1A21) ∂xρ̃e − (∂1A22) ∂zρ̃e
where the least regular terms are traces of W 1,r functions. Using the results of [2]
and [3] we obtain that ∂xρ̃e is in W 2,r. Then the embeddings W 2,r ⊂ W 1,r∗ ⊂ L∞

with r∗ = 2r
2−r > 2 show that the terms under the form (∂11A11) ∂xρ̃e are in L2 and

(∂1A21) ∂xρ̃e is in H1/2 (on the boundary). Moreover using the equation (5.28) we
obtain that ∂zzρ̃e is in Lr

∗ and thus ∂zρ̃e ∈ W 1,r∗ ⊂ L∞. Finally the right hand-side
is in L2 and the Neumann boundary condition in H1/2 and thus ∂xρ̃e is H2 near (0, 1).
For the regularity with respect to z we can use the equation (5.28) and ρ̃e is H3 in a
neighbourhood of (0, 0).

Step 5: The strategy applies for (0, 0). If we come back to the initial equation on the
domain Ω0 we have proved that ρ is H3 near Γi. The same proof can be used for the
regularity near Γo and finally ρ ∈ H3(Ω0). �
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