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Local Enlacement Histograms for Historical
Drop Caps Style Recognition

Abstract—This article focuses on the specific issue of drop caps
image recognition in the context of cultural heritage preservation.
Due to their heterogeneity and their weakly structured properties,
these historical images represent challenging data. An important
aspect in the recognition process of drop caps is their background
styles, which can be considered as discriminative features to iden-
tify both the printer and the period. Most existing methods for
style recognition are based on low-level features such as color or
texture properties. In this article, we present a novel framework
for the recognition of drop caps style based on features of higher
levels. We propose to capture the spatial structure carried by
these images using relative position descriptors modeling the
enlacement between local cells of pixel layers obtained from a
document segmentation step. Such descriptors are then exploited
in an efficient bag-of-features learning procedure. Experimental
results obtained on a dataset of historical drop caps images
highlight the interest of this approach, and in particular the
benefit of considering spatial information.

I. INTRODUCTION

The cultural heritage of Europe is a unique public good
that represents our collective memory, and constitutes a solid
basis for the development of the industries relying on digital
contents. In this paper, we deal with the problem of cultural
heritage preservation, focusing on collections of heterogeneous
and weakly structured documents. Such complex data raise
both the information research issue and the navigation problem
among these corpus. More specifically, this work focuses
on historical images of ornamental letters, called drop caps
or lettrines. As illustrated on the first row of Fig. 1, drop
caps images are usually made up of the following main
characteristics: the letter, the color of the letter and the back-
ground patterns around the letter. In general, such background
patterns can be categorized into different classes, which are
illustrated on the second row of Fig. 1: hatchings, dotted, and
decorative patterns (with either black or white letters). An
important step in the indexing process of drop caps consists
in annotating these different background styles, as they are
used by historians to retrieve similar looking drop caps, to
identify the printer and the period.

In this article, we propose a new method to describe and
classify historical drop caps images according to their back-
ground styles (independently from the letter). To this end, the
rest of this article is organized as follows. In section II, we give
an overview of related works and of our contributions. The
first step of our approach consists in a segmentation strategy
based on Zipf law to decompose drop caps into three layers
of information in the images. This procedure is presented in
section III. Then, we introduce in section IV how to describe
such layers using local enlacement histograms and following

Fig. 1: Illustrative examples of drop caps (first row) and of
different background styles for the same letter (second row).

a bags-of-features strategy. Experimental results attesting of
the performance of this approach will be found in section V.
Conclusion and perspectives are given in section VI.

II. RELATED WORK

The automated analysis of graphical drop caps is a promis-
ing step towards the digitalization of historical books and
manuscripts. Indeed, such information can be used to date
historically, to authenticate, and to characterize books by iden-
tifying the differences between analyzed historical drop caps.
In order to enrich drop caps semantically, by adding meta-data
or semantic annotations, many works proposed to describe,
to classify and to compare them using some statistical or
structural signatures. This context therefore encompasses the
ongoing development of content-based image retrieval (CBIR)
systems for historical drop caps [1]. The development of such
image retrieval systems is complex, since these historical drop
caps present a large variety and wide range of models and
styles, and because the images contain a lot of information
(e.g. texture, letter, and decorated background).

In order to cope with the complexity of these images, the
authors of [2], [3] proposed an original binarization method
based on connected operators which enable to extract relevant
document objects by means of the component-tree structure.
This work allowed for an efficient shape-based classification
of the image connected components, focusing in particular
on detecting and recognizing the letters. However, the main
drawback of this approach is the necessity to choose the color
of foreground or background, while drop caps could have
either a white or black letter on a white or black background.

To deal with this limitation, Coustaty et al. [4] proposed a
method for the decomposition of drop cap letters by extracting
the information contained in the images into several layers (i.e.
segmenting the letter and the elements from its background).
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The Meyer decomposition allows used to filter out the noise,
to extract the spatial frequencies of drop cap images, and to
segment them into separate layers (shape, texture, and noise
layers). Then, the use of Zipf law on the most frequent gray
level patterns of the shape layer ensured the detection of large
homogeneous regions, which often contain the letter.

In parallel of this document analysis context, bags-of-
features strategies have attracted numerous research attentions
in the computer vision community for object recognition
and image classification tasks [5]. The approach was notably
adapted to historical drop caps images, to recognize styles of
strokes [6] as well as letters and background styles in [7], [8],
in combination with graph-based representations.

In the field of symbol recognition, the works of [9], [10]
introduced bags-of-relations (BoR), an original way to produce
vocabularies of spatial relations. The approach was applied
on a well-controlled set of visual primitives specific to the
application domain (e.g., circles, corners or extremities of
symbols). A generalization of the bags-of-relations approach
was proposed in [11] using Force Histograms [12]. These
works illustrated the interest of considering spatial relations
descriptors into the bags-of-features framework. A new rel-
ative position descriptor was recently proposed in [13], and
illustrated notably the interest of considering enlacement and
interlacement configurations to classify the style of drop caps
images. However, the descriptors were applied globally on
the whole images, which does not allow to capture distinctive
patterns depicted in drop caps at a more local scale.

In the present work, we propose to further explore this
idea of exploiting spatial relations to recognize the back-
ground styles of historical drop caps. Our contributions are
to consider enlacement histograms across local cells (instead
of evaluating the images globally) in combination with the
Zipf decomposition strategy, and to exploit this characteristic
spatial information into a bags-of-features framework.

III. DROP CAPS DECOMPOSITION

As stated before, graphical drop caps are composed of three
main layers of information which need to be extracted while
their content can be white or black. Based on the results
presented in [4], we decided to use a Zipf law segmentation
process in order to extract three layer of information and to
analyze the spatial configuration. In this section, we present
the employed approach to decompose drop cap images into
meaningful layers of pixels representing respectively homoge-
neous regions, outline and details (H, O and D).

Zipf law [14] is an empirical law relying on a power law.
It relies on the idea that in phenomena figured by a set
of topologically organized symbols, the distribution of the
occurrence numbers of n-tuples named patterns is organized
in such a way that the frequencies of the patterns M1,
M2...Mn, noted N1, N2...Nn, are in relation with the rank
of these symbols when sorted with respect to their occurrence
frequencies. The following relation holds:

Nσ(i) = k × ia (1)

Fig. 2: Example of a drop cap image along its Zipf plot. In blue
are indicated the different 3× 3 patterns sorted by appearance
frequencies in the image. In red is the corresponding Zipf law,
which can be separated into 3 linear parts.

where the number of occurrences of the pattern with rank i is
represented by Nσ(i), k is a constant linked to the length of the
symbol sequence studied, and a a constant that characterizes
the value of the exponent. Even if the relation is not linear, a
simple transformation step leads to a linear relation between
the logarithm of Nσ and the logarithm of the rank. Finally,
the value of the exponent a can be easily estimated by the
leading coefficient of the regression line approximating the
experimental points of the 2D graph (log10(i), log10(Nσ(i))),
with i varying from 1 to n.

In our context of drop caps image, the patterns considered
are all the possible gray level patterns of size 3×3 which can
appear in an image. As the images we are dealing with in this
study are mostly binary, we decided to keep only 3 gray levels.
This step is essential to build a realistic Zipf curve associated
with a drop cap (as by keeping all the 256 gray levels available
would lead to patterns with very low frequencies without any
meaning). More details about this step can be found in [4].
The obtained graph, presented in Fig. 2 is called Zipf graph.
The approximation of the graph is made using the least square
method on the experimental points. As a matter of fact, we can
see that the curve cannot be reasonably modeled by a straight
line. Nevertheless, we can observe that three different linear
segments can be extracted to model the curve. Then, according
to the frequency of the pattern, we can distinguish three sets
of patterns for which the Zipf law holds.

In Fig. 3, we show for different drop caps images the
associated decompositions into three layers according to the
Zipf curve. We can find an interpretation to these layers. The
first set (black layer) which is associated with the left part of
the curve, corresponds to the most frequent patterns. It usually
corresponds to flat regions with homogeneous intensity values.
The second set (red layer), associated with the middle part of
the curve, seem to correspond to outline regions, where a lot
of transitions between dark and light pixels can be found in the
image. Finally, the right part of the curve (green layer), which
corresponds to the third layer, can be interpreted as details
of an image, i.e. the least frequent patterns. As a result, for
each drop cap image we obtain a decomposition into three



Fig. 3: Examples of Zipf decompositions of drop cap images.
The first row shows drop caps from the different background
styles (from left to right: hatchings, dotted and decorative).
The second row shows their corresponding Zipf decomposi-
tions into three layers (in black: homogeneous layer H; in red:
outline layer O; in green: details layer D).

meaningful pixel layers: the homogeneous layer H, the outline
layer O and the details layer D.

In the following, we propose to keep all of these three levels
of information, and to encode the pairwise spatial organization
between them to describe the content of drop caps images.
In particular, this allows to retain small details such as very
thin contours or small dots, which are characteristic of certain
background styles.

IV. LOCAL ENLACEMENT LEARNING

In this section, we propose a way to describe the com-
plex content of drop caps images by considering the spatial
organization of layers of pixels at a local scale. For this
purpose, we first present enlacement histograms, which are
spatial relations descriptors allowing to characterize how two
objects are imbricated in each other. Then, we show how to
incorporate such descriptors into a bags-of-features framework
to recognize drop caps styles.

A. Enlacement histograms

We briefly present the model used to describe the relative
enlacement of objects, which was initially introduced in [13].

Two-dimensional objects of the plane are considered, where
an object A is defined by its characteristic function fA : R2 →
R. This generic definition allows to handle complex objects
composed of multiple connected components (for instance
in the binary case, an object can be a set of pixels). We
represent the oriented line of angle θ at the altitude ρ by
the non-finite set ∆(θ,ρ) = {eiθ(t + iρ), t ∈ R}. The subset
A ∩ ∆(θ,ρ) represents a one-dimensional slice of the object
A, also called a longitudinal cut. In the case of crisp objects,
such a longitudinal cut of A is either empty (the oriented line
does not cross the object) or composed of a finite number

of segments. In the general case of real-valued objects, a
longitudinal cut of A along the line ∆(θ,ρ) is defined as:

f
(θ,ρ)
A : R −→ R

t 7−→ fA(eiθ(t+ iρ)).
(2)

The goal is to describe how an object A is enlaced by
another object B. The idea is to capture the occurrences of
points of A being between points of B. To determine such
occurrences, the objects are handled in a one-dimensional
case, using longitudinal cuts. For a given oriented line ∆(θ,ρ),
we seek to combine the quantity of object A (represented
by f

(θ,ρ)
A ) located simultaneously before and after object

B (represented by f
(θ,ρ)
B ). Let f and g be two bounded

measurable functions with compact support from R to R. The
enlacement of f with regards to g is defined as:

E(f, g) =

∫ +∞

−∞
g(x)

∫ +∞

x

f(y)

∫ +∞

y

g(z) dz dy dx. (3)

The scalar value E(f
(θ,ρ)
A , f

(θ,ρ)
B ) represents to which degree

A is enlaced by B along the oriented line ∆(θ,ρ). For crisp
objects (i.e., each point is either 0 or 1), this corresponds to
the total number of ordered triplets of points (bi, ak, bj), i <
k < j, which can be seen as arguments to put in favor
of the proposition “A is enlaced by B” in direction θ.
Algorithmically, this value can be derived by an appropriate
distribution of segments lengths along the longitudinal cuts of
both objects (see [13] for more details).

To further measure the global enlacement of two objects
in direction θ, we aggregate the one-dimensional enlacement
values obtained for all parallel lines {∆(θ,ρ), ρ ∈ R}. The
enlacement of A by B in direction θ is therefore defined by:

EAB(θ) =
1

‖A‖1‖B‖1

∫ +∞

−∞
E(f

(θ,ρ)
A , f

(θ,ρ)
B ) dρ, (4)

where ‖A‖1 and ‖B‖1 denote the respective areas of the
objects. This normalization factor allows to achieve invariance
with regards to scaling transformations. Then, the computation
of EAB along a set of k discrete directions in [0, π] yields a
circular histogram describing the enlacement of A by B. Note
that both histograms EAB and EBA must be considered to fully
describe the spatial configuration.

B. Learning by Bags-of-Enlacement

We present how to extend the bags-of-relations approach
to work with the Zipf segmentation results, using enlacement
histograms as features. The approach is inspired by traditional
bags-of-features strategies usually applied with local image
descriptors (such as SIFT or HOG).

A given training image is first segmented using the Zipf
decomposition approach which was presented previously. We
therefore obtain three binary layers of the image, representing
respectively homogeneous regions, outline and details (H, O
and D). Then, the images corresponding to the three possible
couples of layers are considered, denoted by HO, HD and OD
in the following. Each of these images is split into local, non-
overlapping square cells of size 32×32. For a drop cap image
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Fig. 4: Illustrative examples of local enlacement configurations obtained for the HO layers (homogeneous regions in white
and outline in gray). For each of the four illustrative clusters, the centroid of the cluster is shown, alongside with some
corresponding local cells that are attached to this centroid. Clustering was performed for a vocabulary size of K = 100, and
with EAB and EBA concatenated into a single descriptor (shown here on separate curves for the sake of visualization).

of size 200 × 200, this results in about 36 × 3 = 108 cells
(i.e., 36 blocks for each of the three couples of layers). For
each of these cells, we compute the two enlacement histograms
EAB and EBA between the two binary objects represented in
the current layer (i.e., for a local cell of HO for example,
A and B correspond to homogeneous and outline pixels
respectively). As these two histograms are complementary to
describe the spatial configuration, they are concatenated into a
single feature vector describing the local enlacement between
the two layers of a given cell.

We then apply the K-Means clustering algorithm [15] to
regroup enlacement descriptors into similar clusters, therefore
building a spatial vocabulary of local enlacement configu-
rations. We perform distinct clusterings of enlacement his-
tograms, one for each couple of layers. That is, for a vo-
cabulary of size K, we perform three independent clusterings
with the descriptors coming from couples of layers HO, HD
and OD respectively. We therefore produce a total of K × 3
vocabulary words corresponding to similar local enlacement
configurations between the different layers of the Zipf decom-
position. For visualization purposes, some examples of local
enlacement words obtained for the HO layers (homogeneous
regions and outline) are presented in Fig. 4. We can notice
how very distinctive drop caps patterns are captured by these
spatial vocabulary words.

Following this vocabulary building procedure, we then
apply a pooling step which consists in representing each image
by a distribution of each vocabulary word it is composed of.
In this work, we applied a soft encoding strategy [16] that
allows to take into account the distance of the descriptors to
the built clusters. For a given image, the soft assignment value

for the vocabulary work wk is given by:

zk =
1

n

n∑
i=1

Kσ(fi,wk) (5)

where {fi}ni=1 denote the set of descriptors of the image
(i.e., its set of enlacement histograms across the local cells),
and where Kσ is the Gaussian kernel:

Kσ(x1,x2) = exp−||x1 − x2||2

2σ2
, (6)

with σ allowing to control the smoothness of assignments.
The image is finally described by the feature vector z =
[z1, . . . , zK ] summarizing the soft assignment values for the
K vocabulary words. As for vocabulary building, this encod-
ing procedure is followed independently for each couple of
layers HO, HD and OD. We therefore obtain three codebooks
corresponding different layers of information in the images.
Finally, style recognition of test images can be performed by
using any supervised classifier trained on a given codebook,
or on a combination of multiple ones (by concatenating the
feature vectors of the different codebooks).

V. EXPERIMENTAL VALIDATIONS

In this section, we report experimental results obtained for
recognition of drop cap styles with our approach, and we
compare these results with relevant baselines.

A. Dataset

The dataset used in the following experiments is a set of 636
images of historical drop caps. These images were classified
by historians into three classes, each class representing a
different background styles (independently from the letter):
hatchings (253 images), dotted (214 images) and decorative
(169 images). The decorative class is composed of various



TABLE I: Average classification accuracy scores obtained for
the recognition of drop caps styles, for different combinations
of layers issued from the Zipf decomposition, and for different
vocabulary sizes.

Layers / K 100 200 500
DH 79.81 ± 2.15 80.04 ± 1.63 80.00 ± 1.55
OD 80.69 ± 1.82 80.96 ± 1.88 81.30 ± 1.62
OH 80.96 ± 1.83 81.03 ± 1.68 81.43 ± 1.64

DH+OH 81.49 ± 1.87 81.70 ± 1.62 81.43 ± 1.38
OH+OD 82.68 ± 1.62 82.68 ± 1.65 82.49 ± 1.99
DH+OD 84.84 ± 1.35 83.98 ± 2.39 84.53 ± 1.56

DH+OH+OD 85.07 ± 2.05 84.32 ± 2.33 85.26 ± 1.10

patterns, with notably several inversed images (i.e., dark letter
and outline over light background, and conversely). To main-
tain homogeneity in the dataset, all images were downsampled
to a maximum size of 200× 200.

B. Experimental Protocol

First, the images of the dataset are segmented following
the Zipf decomposition strategy presented in section III. For
a given image, we obtain three layers of decomposition
(H, O and D) which are combined into the couples of layers
HO, HD and OD, and split into local cells of size 32 × 32.
Then, we compute the enlacement histograms for each of
these cells. All enlacement histograms are computed onto a
set of 32 discrete directions, equally separated along the [0, π]
interval. When concatenating EAB and EBA, this translates
into descriptors of size 64. Following this indexing phase, we
obtain a total of 21503 descriptors over the entire dataset.

The dataset is then split into a training set representing 25%
of its total size (159 training images), while the remaining 75%
is used for testing. The bags-of-enlacement (BoE) approach is
applied on training images for all possible combinations of
couples of layers, and for different vocabulary sizes (i.e., the
value of K for K-Means clustering). For soft encoding (see
Eq. 5 and 6), we used an adaptive Gaussian kernel Kσ̃ where
σ̃ was fixed according to the mean of the pairwise Euclidean
distances between the training enlacement features and their
associated vocabulary words.

The resulting codebooks are then fed to SVM classifiers [17]
to recognize the background styles of the corresponding drop
caps images. In these experiments, we used linear SVMs fol-
lowing a one-versus-all strategy for multiclass classification.
The soft-margin hyperparameter of SVMs was optimized by
performing grid search on the training set, following a 5-fold
cross validation. Different SVM kernels were tried (Gaussian
and χ2) but they did not seem to improve the classification
results, while greatly increasing the computation times.

To better assess the robustness of the approach, this classifi-
cation procedure is repeated 10 times with different randomly
chosen training sets (each time preserving the distribution of
the different classes). We evaluate the classification results
using the accuracy score for each run, and we report the
average scores over all runs.
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Fig. 5: Interpolated precision-recall curves obtained for our
method (BoE and Zipf) and for the considered comparative
baselines (Otsu thresholding instead of Zipf, and standard
HOG bags-of-features).

C. Experimental Results

Table I reports the average classification accuracy scores
obtained for all the possible combinations of layers from the
Zipf decomposition, and for different vocabulary sizes in the
bags-of-enlacement approach. The first three lines correspond
to the individual couples of layers DH, OH and OD, each
of them being composed of independent vocabularies of K
words. The following lines denote combinations of these
couples of layers, obtained by concatenating their respective
codebooks before SVM training (and therefore increasing the
dimensionality of the representations).

From these results, we can observe the overall stability of
the accuracy scores across the 10 random training runs, at-
testing of the generalization capacity of the proposed learning
approach. Altogether, the recognition results seem to increase
as we combine more couples of layers, the best results being
obtained for the full combination DH+OH+OD. This suggests
that all three layers of information can be useful to characterize
the different background patterns represented in drop caps
images. Regarding the vocabulary sizes, we can also observe
that the recognition results remain particularly stable across
the tested values of 100, 200 and 500. This suggests that
most spatial information is contained in a small number of
vocabulary words.

D. Comparative Study

As our approach is composed of two main parts (Zipf
decomposition for segmentation, and bags-of-enlacement for
recognition), we propose baseline comparisons on these two
aspects. For Zipf decomposition, we compare the results to
the same bags-of-enlacement approach but applied directly
on Otsu binarizations of drop caps images. For bags-of-
enlacement, we compare our results to classical HOG fea-
tures [18] extracted from the base gray-level drop cap images.
The same non-overlapping cells of size 32×32 that were used
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Fig. 6: Average confusion matrices obtained for our proposed
method and for the considered comparative baselines.

for local enlacement descriptors are considered. These features
are then pooled into a similar bags-of-features framework with
soft encoding. In the following comparative results, BoE-Zipf
indicates our proposed approach (bags-of-enlacement over the
Zipf decomposition) with an initial vocabulary size of K =
100, and with all couples of layers combined (DH+OH+OD),
therefore comprising a total of 300 spatial words. For compara-
bility purposes, BoE-Otsu and HOG comparisons are therefore
performed with K = 300 vocabulary words, and following the
same classification protocol.

Fig. 5 shows the precision-recall curves obtained for the
proposed comparative baselines. In the context of this drop
caps style recognition application, these results confirm the
interest of considering local enlacement descriptors based on
the spatial configuration of pixel layers, instead of gradient-
based features which are classically used in object recog-
nition tasks (i.e., BoE vs HOG). We can also observe that
the Zipf decomposition seem to perform slightly better than
Otsu thresholding of images. This suggests that this method
allows to better extract the complex patterns depicted in these
historical drop caps. To better grasp the relative performance
of these comparative methods, Fig. 6 also shows the respective
confusion matrices, allowing to evaluate the performance on
a class-by-class basis. We can remark that our approach
seem to recognize hatchings relatively well, which are indeed
directional alternating patterns that are efficiently characterized
by enlacement histograms.

VI. CONCLUSION

In this article, we proposed an approach for the recognition
of historical drop caps images, focusing in particular on their
background styles, independently from the letters. To this
end, we used a segmentation strategy based on Zipf law to
extract meaningful pixel layers in the images. These layers of
pixels are described across local cells using relative position
descriptors called enlacement histograms. Such descriptors
are then learned with a bags-of-features strategy in order to
classify the images. Experimental validations on a dataset of
drop caps images showed the interest of (1) using the Zipf
decomposition strategy as opposed to a standard binarization;
and (2) considering enlacement histograms as local descriptors
instead of standard gradient-based features.

In future works, we plan to extend this approach by in-
creasing the size and the variety of this drop caps dataset. In
collaboration with historians, the goal would be to characterize
a more diverse range of background patterns according to his-
torical preservation needs. Another perspective of this research
would be to study how to refine the produced spatial vocab-
ularies, for instance by putting an emphasis on most relevant
words, and by labeling them with semantic annotations.
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