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A qualitative explanation for the scaling of energy dissipation by high-Reynolds-
number fluid flows in contact with solid obstacles is proposed in the light of recent
mathematical and numerical results. Asymptotic analysis suggests that it is governed
by a fast, small-scale Rayleigh–Tollmien–Schlichting instability with an unstable
range whose lower and upper bounds scale as Re3/8 and Re1/2, respectively. By linear
superposition, the unstable modes induce a boundary vorticity flux of order Re1, a
key ingredient in detachment and drag generation according to a theorem of Kato.
These predictions are confirmed by numerically solving the Navier–Stokes equations
in a two-dimensional periodic channel discretized using compact finite differences in
the wall-normal direction, and a spectral scheme in the wall-parallel direction.

Key words: boundary layer stability, vortex shedding

1. Introduction
Since the challenge laid down by Euler in 1748 for the Mathematics Prize of the

Prussian Academy of Sciences in Berlin, the force exerted onto a solid by a fluid
flow has been one of the central unknowns of fluid mechanics. From the vorticity
transport equations he had derived, d’Alembert (1768) deduced his now famous
paradox, that this force should vanish, contrary to what experimental results and even
everyday observation indicate. A frictional explanation involving the viscosity of the
fluid was advanced during the nineteenth century within the frame of the new theories
of Navier, Saint-Venant and Stokes, but the actual amplitude of the force remained
unaccounted for. Indeed, estimates based on the magnitude of the viscosity ν of the
fluid, or equivalently, after non-dimensionalization, on the inverse of the Reynolds
number Re, predict that friction should become negligible when Re� 1.

The group working at Göttingen University, notably Prandtl (1904) and Blasius
(1908), were first to come up with a way of computing, under some hypotheses,
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Dissipation caused by boundary layer instability 677

the asymptotic behaviour of the force in the limit Re → ∞. Their method relies
on the notion that viscous effects are confined to a thin layer along the boundary
whose thickness scales like Re−1/2, now called the Prandtl boundary layer (BL),
inside which the motion is governed by appropriately rescaled equations, whereas
the bulk of the fluid remains inviscid. Momentum transport across this layer gives
rise to a net drag force of order O(Re−1/2), which can even be computed explicitly
in some academic cases. Although Prandtl’s theory has been very fruitful, it has the
drawback of breaking down for sufficiently large Re in practically all relevant flow
configurations. Indeed, according to the experiments made in Göttingen itself and
elsewhere, the force then acquires the stronger scaling O(1) (Schlichting 1979).

The precise dynamical mechanism which allows a transition to this regime, starting
from a fluid initially at rest, is still unknown today. Prandtl, assuming that the BL
approximation becomes invalid beyond a certain separation point along the boundary,
had already established that the viscous shear vanishes or, in other words, that the
flow in the neighbourhood of the wall reverses direction at this point. After the
formal asymptotic expansion achieved by Goldstein (1948), which clearly indicates a
singularity, a viscous scaling of the parallel coordinate was developed to analyse the
flow near the separation point, finally leading to the so-called triple-deck structure
(Stewartson 1974). This steady asymptotic theory is instructive and well developed
but remains unsatisfactory, since practically all flows become unsteady above a certain
Reynolds number.

The classical understanding about the onset of unsteadiness in shear flows goes back
to Rayleigh (1880), who showed in particular that a necessary condition for inviscid
instability is that the base velocity profile has an inflection point. Since many BL
flows lack such a point, Rayleigh’s result seemed at first to rule out linear instability
as a generic mechanism for BL breakdown. This impression was even reinforced by
a result of Sommerfeld (1909) showing that purely linear shear flows (u′′(y) = 0)
were linearly unconditionally stable even when including the effect of viscosity. But
the Göttingen group then realized that including the effects of viscosity with a non-
zero second derivative of the base flow could trigger an instability which is absent
in the inviscid setting (Prandtl 1921; Tietjens 1925). Following some of the ideas
developed by Heisenberg (1924) in his thesis, Tollmien (1929) then studied asymptotic
solutions to the Orr–Sommerfeld equation, and thus achieved an elegant analysis of
the instability mechanism. He also produced an approximate marginal curve for what
is now known as the Tollmien–Schlichting instability, a widely accepted mechanism
for transition to turbulence in BLs. Its range of application is, however, limited to
small perturbations around a stationary base flow. The Orr–Sommerfeld equation has
also been used to derive rigorously qualitative properties of the solution of the two-
dimensional Euler equations – for details we refer to Bedrossian, Masmoudi & Vicol
(2016).

Beyond this, one is faced with the full unsteady Navier–Stokes equations (NSEs) at
high Reynolds number, and the BL problem becomes so wide ranging that it has been
investigated almost independently for the past 60 years by two distinct schools, which
we will call the ‘aerodynamical’ and the ‘mathematical’ schools. Aerodynamicists
took steady BL theory as their starting point and attempted to generalize the main
ideas of Prandtl and Goldstein to the unsteady case. This led in the 1950s to the
establishment of the Moore–Rott–Sears criterion (Sears & Telionis 1975), stating
that detachment originates from a point within the BL, not necessarily lying on the
wall, where vorticity vanishes and parallel velocity equals that of the exterior flow.
Reasoning by analogy with the steady case, Sears & Telionis (1975) conjectured that
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separation coincides with the appearance of a singularity in the solution at some
finite time t∗. The approach to such a singularity was confirmed using numerical
experiments by Van Dommelen & Shen (1980) for the impulsively started cylinder,
and then analysed in detail by power-series expansions in Lagrangian variables by
Van Dommelen & Cowley (1990). We refer the reader to Van Dommelen’s (1981)
PhD thesis for a detailed pedagogical account of these findings. Later work largely
supports his results (Ingham 1984; Weinan & Engquist 1997; Gargano, Sammartino
& Sciacca 2009).

The next challenge was to understand what happens to the actual NSE flow as
the corresponding Prandtl solution becomes singular. Elliott, Smith & Cowley (1983)
obtained the estimate (t∗− t)=O(Re−2/11) for the time t at which the BL assumptions
first break down. To describe the solution at later times, some hope came from the
interacting boundary layer (IBL) method, which relieves the Goldstein singularity in
steady BLs, but it was quickly shown (Smith 1988; Peridier, Smith & Walker 1991a,b)
to lead to a finite-time singularity when applied to unsteady problems.

Over the same period of time, the mathematical school focused on totally different
issues concerning the initial value problem for the unsteady Prandtl equations, on
the one hand, and the vanishing viscosity limit for solutions of the NSEs on the
other. Local well-posedness for the Prandtl equations was proved long ago by Oleinik
(1966) in cases where detachment is not expected, i.e. for monotonic initial data
and favourable pressure gradient. Sammartino & Caflisch (1998) showed local
well-posedness without the monotonicity conditions, but this time under a very
harsh regularity condition, that the amplitude of the parallel Fourier coefficients of all
quantities decrease exponentially with wavenumber. These conditions were recently
improved by Gérard-Varet & Masmoudi (2015), but the required decay of Fourier
coefficients is still faster than any power of k. Although no rigorous construction of
such a solution exists to our knowledge, it is generally believed that there exist exact
solutions of Prandtl equations which blow up in finite time. Maekawa (2014) proved
the convergence of the Euler and Prandtl solution versus the Navier–Stokes (NS)
solution in the L∞ norm with order

√
ν for an initial condition where the vorticity is

compactly supported at finite distance from the wall.
Kato (1984) made a decisive contribution, by linking the vanishing viscosity limit

problem to the behaviour of energy dissipation at the boundary. Kato’s theorem
implies, in the particular case of a flow in a smooth two-dimensional domain Ω

with smooth initial data and without forcing, the equivalence between the following
assertions:

(i) The NS flow converges to the Euler flow uniformly in time in the energy norm.
(ii) The energy dissipation associated with the NS flow, integrated over a strip of

thickness proportional to Re−1 around the solid, which we will call the Kato layer,
tends to zero as Re→∞.

Since convergence to the Euler flow excludes detachment, one of the essential
messages carried by this theorem is that the flow has to develop dissipative activity
at a scale at least as fine as Re−1 for detachment to be possible. Later refinements of
Kato’s work linked breakdown to scalings O(Reα) with α > 3/4 of the wall pressure
gradient (Temam & Wang 1997), and O(Reβ) with β> 1/2 of the L2 norm of velocity
in the Kato layer (Kelliher 2007). For a detailed review about mathematical theorems
related to turbulence, we refer to Bardos & Titi (2013).

Not only is the gap between the aerodynamical and the mathematical schools of
thought quite impressive when one realizes that they are really concerned with the
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Dissipation caused by boundary layer instability 679

same problem, but after close consideration, it even appears that they contradict
each other on an essential point, which we now attempt to clarify. As shown by
Van Dommelen & Cowley (1990), the finite-time singularity in the unsteady Prandtl
equations, which is characterized by a blow-up of parallel vorticity gradients, does
correspond to a ‘detachment’ process, in the sense that there exist fluid particles
that are accelerated infinitely rapidly away from the wall. In the following, we shall
call this process ‘eruption’. Since its discovery, it seems to have been at least tacitly
assumed to underlie the initial stage of the (a priori different) detachment process
actually experienced by the NS solution. According to this scenario, singularity would
be avoided in the NS case thanks to a large-scale process not taken into account in
the Prandtl approximation, namely the normal pressure gradient. The Kato criterion,
on the other hand, tells us something entirely different, which is that, for detachment
to happen, scales as fine as Re−1, which are not even accounted for in the Prandtl
solution, need to come into play. This suggests that eruption never really enters the
scene in the NS flow, being indeed short-circuited by a faster mechanism at finer
scales.

In the last decade, instabilities at high parallel wavenumber came up as a possible
explanation for these finer scales. On the mathematical side, Grenier (2000) proved
that Prandtl’s asymptotic expansion is invalid for some types of smooth perturbed
shear flows, due to instabilities at high parallel wavenumbers. Then Gérard-Varet
& Dormy (2010) showed, again for smooth perturbed shear flows, that the Prandtl
equations could be linearly ill-posed in any Sobolev space (i.e. assuming spectra
which decay like powers of k), although they are locally well-posed in the analytical
framework, as we have seen above. In the last decade, Grenier, Guo & Nguyen
(2015, 2016) have continued working on the ambitious programme aiming to achieve
a rigorous mathematical description of instabilities in generic BL flows. Once again,
their proofs show that the ill-posedness is due to modes with large wavenumber in
the direction parallel to the wall. Grenier & Nguyen (2018) even studied higher-order
terms in the asymptotic expansion of the inviscid limit but were faced with the
appearance of further instabilities which have not been tamed up to now.

Several fluid dynamicists have also advanced the idea that instability-type
mechanisms may play an important role in the process of unsteady detachment. Cassel
(2000) directly compared numerical solutions of the NSEs and of the corresponding
Prandtl equations in an attempt to verify the correctness of the asymptotic expansion.
Although he considered a vortex-induced BL instead of the impulsively started
cylinder, his Prandtl solution behaves qualitatively like the one in Van Dommelen &
Shen (1980), developing strong parallel velocity gradients in a process which seems
to lead to a finite-time singularity associated with a large normal displacement of
fluid particles concentrated around a single parallel location. But interestingly, around
the same time, the NS solution adopts a quite different behaviour, characterized by
the appearance of strong oscillations in the wall-parallel pressure gradient, which
he was not able to explain. Brinckman & Walker (2001) also saw oscillations, and
claimed that they were due to a Rayleigh instability of the shear velocity profile,
a hypothesis which was developed further in the review paper by Cowley (2002).
Although the numerics underlying these findings were later invalidated by Obabko &
Cassel (2002) due to their insufficient grid resolution, the existence of an instability
mechanism has continued to be a hot topic in later papers on unsteady detachment
(Bowles, Davies & Smith 2003; Bowles 2006; Cassel & Obabko 2010; Gargano,
Sammartino & Sciacca 2011; Gargano et al. 2014). In fact, it seems to be the only
surviving conjecture at this time to explain unsteady detachment. The nature and
quantitative properties of the instability remain to be elucidated.
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Imposing no-slip boundary conditions on high-Reynolds-number flows, even in two
dimensions, is a tough numerical problem and one should be especially careful with
the numerics given that the problem is theoretically not well understood yet. In our
previous work (Nguyen van yen, Farge & Schneider 2011), we computed a series
of dipole–wall collisions, a well-studied academic flow introduced by Orlandi (1990).
Our goal was to derive the scaling of energy dissipation when the Reynolds number
increases, for fixed initial data and geometry. According to the Kato criterion, this
is an important element to understand detachment. We chose to work with a volume
penalization scheme, which has the advantages of being efficient, easy to implement
and, most importantly, providing good control on numerical dissipation. However, the
no-slip condition is only approximated, and the higher the Reynolds number, the more
costly it is to enforce satisfactorily. In fact, post-processing numerically calculated
flows revealed that they effectively experienced Navier boundary conditions with a slip
length proportional to Re−1 – for a more detailed analysis of the scheme, see Nguyen
van yen, Kolomenskiy & Schneider (2014). In this setting, we did find indications that
energy dissipation converges to a finite value when Re→∞.

Sutherland, Macaskill & Dritschel (2013) reconsidered the computations of Nguyen
van yen et al. (2011) and studied the effects of a finite slip length inversely
proportional to the Reynolds number. They confirmed our findings using compact
finite differences on a Chebyshev grid in the wall-normal direction and a Fourier
method in the wall-parallel direction. Therewith exact no-slip boundary conditions
and Navier boundary conditions with a given slip length (independently of Re) can
be imposed. In the no-slip case and also for a fixed slip length, they concluded
that energy dissipation vanishes and that there is no indication of the persistence of
energy-dissipating structures in the vanishing viscosity limit. This is quite unexpected
since, due to the spectral properties of the Stokes operator, the no-slip boundary
condition is stiffer that any Navier boundary condition with a non-zero slip length,
and should thus generate larger gradients, or in other words more dissipation. This
makes the claim of Sutherland et al. (2013), that there is dissipation at vanishing
viscosity with Navier conditions for a fixed slip length, but not with no-slip conditions,
quite counterintuitive. In fact, looking more closely at their results, it appears that the
central claim is based on a single computation (see figures 17 and 18 of their paper),
for which a convergence test is not provided, which in our opinion leaves the matter
unsettled.

Clercx & van Heijst (2002) already studied the role of no-slip boundaries in
two-dimensional flows considering the dipole–wall interaction using a Chebyshev
spectral method. They observed enstrophy scalings Z ∝ Re0.8 for Re 6 20 000 and
Z ∝ Re0.5 for Re > 20 000, where Re is based on the velocity and the size of
the dipole. Then Keetels et al. (2011) proposed an oscillating plate model as an
analogous simplified boundary layer to predict these scalings, which are in reasonable
agreement with the numerical simulations of Clercx & van Heijst (2002). These
scaling observations indeed imply that dissipation would vanish in the limit of
infinite Reynolds number. However, dissipation effects remain highly important for
high-Reynolds-number two-dimensional flows in wall-bounded domains, as reviewed
recently by Clercx & van Heijst (2017).

Following the findings of Sutherland et al. (2013), we decided to revisit the issue
once again, but this time using a numerical scheme which has both high precision
and accurate no-slip boundary conditions. For this, we have turned to compact finite
differences with an ad hoc irregular grid in the wall-normal direction, and Fourier
coefficients in the wall-parallel direction. Combining ideas developed in the last
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Dissipation caused by boundary layer instability 681

decade by many authors, we propose a heuristic scenario for detachment, based on
an instability mechanism of the Tollmien–Schlichting type, which also explains the
new vorticity scaling O(Re1) and the occurrence of dissipation. We then check that
all these processes are actually occurring in our numerical solution of the dipole–wall
initial value problem. For this, adopting a methodology similar to the one employed
by Cassel (2000), we directly compare the NS solution and the corresponding Prandtl
approximation which we also compute.

In the next section (§ 2), we introduce the flow configuration and the corresponding
NS and Prandtl models. Although these models are classical, we present specific
reformulations which were chosen in order to facilitate both numerical efficiency
and theoretical interpretation. Then we use the model to predict the appearance
of an instability and understand its characteristics. In § 3, we introduce the model
discretizations which we have used for our numerical computations. In § 4 we describe
the numerical results. Finally, in § 5 we analyse the numerical results in the light of
our preceding theoretical developments and we draw the necessary conclusions.

2. Models
2.1. Navier–Stokes model

The incompressible Navier–Stokes equations in a smooth plane domain Ω read

∂tu+ (u · ∇)u= ν1u−∇p, (2.1a)
∇ · u= 0, (2.1b)

where u(x, t) is the velocity field, p is the pressure field, ν is the kinematic viscosity,
and we shall denote by (u, v) the two components of u. In order to make formulas
a little more concise, we shall in the following often omit to write the time variable
explicitly, except when doing so would create an ambiguity.

As spatial domain, we choose

Ω = {(x, y) | x ∈T, y ∈ ] 0, 1 [ }, (2.1c)

where T=R/Z is the unit circle, which models a periodic channel. Dirichlet boundary
conditions are imposed at y= 0 and y= 1,

u(x, 0, t)= u(x, 1, t)= 0, (2.1d)

and we specify an initial condition

u(x, y, 0)= ui(x, y), (2.1e)

which we shall assume to have zero spatial average. By introducing characteristic
velocity and length scales U and L, a Reynolds number can be defined as follows:

Re=
UL
ν
. (2.2)

When discretizing this system, difficulties arise due to the interplay between the
divergence condition (2.1b) and the no-slip boundary condition (2.1d). We have
chosen to work with the vorticity formulation of the NSEs, which eliminates the
divergence constraint at the cost of transforming the Dirichlet boundary conditions on
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u into a non-local integral constraint on ω. Although they used to be controversial,
such formulations are now well established (see Gresho 1991; Weinan & Liu 1996;
Maekawa 2013), under the condition that the discretization of the integral constraint
is properly carried out. Fortunately, our periodic channel geometry allows for an
explicit and easy-to-understand approach, which we now present.

The vorticity field ω= ∂xv − ∂yu satisfies the transport equation

∂tω+∇ · (uω)= ν1ω, (2.3)

with initial data

ωi(x, y) :=∇× ui(x, y), (2.4)

where u is expressed as a function of ω by means of the streamfunction ψ defined
by

u=−∂yψ, (2.5a)
v = ∂xψ, (2.5b)

which in turn satisfies the Poisson equation

1ψ =ω. (2.6)

From the wall-normal component of (2.1d) and the fact that
∫
Ω

u= 0 is a constant of
motion, a Dirichlet boundary condition for ψ follows,

ψ(x, 0, t)=ψ(x, 1, t)= 0, (2.7)

which uniquely determines ψ , and therefore u, as a function of ω.
To close the problem, the tangential component of (2.1d), which has not yet been

used, needs to be reformulated into the missing boundary condition on ω necessary
because of the presence of a Laplacian in (2.3). A general discussion of this issue has
been carried out by Gresho (1991). In our case, due to the simple geometry, (2.5)–
(2.7) can be solved explicitly to get an expression for ψ . For this, we first introduce
the Fourier coefficients

ω̂k(y)=
∫ 1

0
ω(x, y)e−iκx dx, (2.8)

where κ = 2πk, and the corresponding reconstruction formula

ω(x, y)=
∑
k∈Z

ω̂k(y)eiκx, (2.9)

which applies similarly for other fields. By (2.6) we then have

−κ2ψ̂k + ∂
2
y ψ̂k = ω̂k. (2.10)

Combining this with the boundary conditions (2.7), we obtain

ψ̂k(y) = −
1

2|κ|(1− e−2|κ|)

(
(1− e−2|κ|y)

∫ 1

y
ω̂k(y′)(e−|κ|(y

′
−y)
− e−|κ|(2−y′−y)) dy′

+ (1− e−2|κ|(1−y))

∫ y

0
ω̂k(y′)(e−|κ|(y−y′)

− e−|κ|(y+y′)) dy′
)
, (2.11a)

for k 6= 0, and

ψ̂0(y)= y
∫ 1

0
(1− y′)ω̂0(y′) dy′ +

∫ y

0
(y− y′)ω̂0(y′) dy′. (2.11b)
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Using these expressions, the no-slip boundary condition (2.1d) can now be
reformulated as two linear constraints on ω̂k:

∀k, B+k (ω̂k)= B−k (ω̂k)= 0, (2.12)

where

B+k ( f )=
∫ 1

0
e−|κ|yf (y) dy, B−k ( f )=

∫ 1

0
e−|κ|(1−y)f (y) dy= 0, (2.13a,b)

for k 6= 0, and

B+0 ( f )=
∫ 1

0
yf (y) dy= 0 and B−0 ( f )=

∫ 1

0
(1− y)f (y) dy= 0. (2.13c,d)

For numerical purposes, it is better to reformulate these stiff conditions by taking
advantage of the diffusion operator, i.e. by applying B+ and B− to (2.3). Assuming
smooth solutions, the linear constraints commute with the partial time derivative,
i.e. we also have B±k (∂tω̂k)= 0. Applying the Fourier transform, for which a similar
argument holds, to (2.3) and then applying B±k to the resulting equations eliminates
the time derivative terms for each wavenumber k and yields

B±k (∂
2
y ω̂k)= ν

−1B±k (∇̂(uω)k). (2.14)

The above analysis ensures that the system of equations (2.3)–(2.5), (2.11) and
either one of (2.12) or (2.14) is equivalent to the original Navier–Stokes system for
smooth strong solutions.

2.2. Prandtl–Euler model
We now describe the alternative model for the flow derived by Prandtl (1904).
Although Prandtl and most later authors used the velocity variable to write down the
equations, we present here the equivalent vorticity formulation, since we have found
that it leads to a simpler understanding of the phenomena we are interested in.

The starting point is the following ansatz for the vorticity field as Re→∞:

ω(x, y)=ωE(x, y)+ ν−1/2ωP(x, ν−1/2y)− ν−1/2ωP(x, ν−1/2(1− y))+ωR(x, y), (2.15)

where ωE(x, y) is a smooth function on Ω×]0,T [, and ωP(x, yP) is a smooth function
on C=T×]0,∞[×]0,T [ which decays rapidly when yP→∞. The indices E, P and
R denote, respectively, the Euler, Prandtl and remainder terms, and yP = ν

−1/2y is the
Prandtl variable. Note that, for simplicity, we have assumed that the flow is symmetric
around the channel axis, so that the two ωP terms correspond to two symmetric BLs
of opposite sign at y= 0 and y= 1.

By a classical multiple scales analysis, it can be formally shown that ωE should
satisfy the incompressible Euler equations in Ω , and ωP the Prandtl equations,

∂tωP +∇(uPωP)= ∂
2
yP
ωP, (2.16a)

ωP(x, yP, 0)= 0, (2.16b)

ψP(x, yP, t)=
∫ yP

0
dy′P

∫ y′P

0
dy′′PωP(x, y′′P, t), (2.16c)

∂yPωP(x, 0, t)=−∂xpE(x, 0, t), (2.16d)
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where pE is the pressure field calculated from ωE. It is instructive to rederive the
classical Neumann condition (2.16d) as follows. First, by replacing ω according to
(2.15) in (2.12), one obtains∫ 1

0
ω̂Ek(y) exp(−|κ|y) dy+ ν−1/2

∫ 1

0
ω̂Pk(y) exp(−|κ|y) dy= 0, (2.17)

and by expressing the second integral with respect to yP and keeping the lowest-order
term in ν, one has ∫

∞

0
ω̂Pk(yP) dyP =−

∫ 1

0
ω̂Ek(y) exp(−|κ|y) dy. (2.18)

Then by integrating (2.16a) over [0, ∞], one finds that the contribution of the
nonlinear term vanishes, and one is left with

− ∂t

∫ 1

0
ω̂Ek(y) exp(−|κ|y) dy=

∫
∞

0
∂2

yP
ω̂Pk(y)=−∂yPω̂Pk(0), (2.19)

where, from the considerations in the preceding paragraph, it appears that the left-
hand side can be identified with the pressure gradient ∂xpE(x, 0, t). Intuitively, the wall
pressure gradient computed from the Euler solution creates vorticity at the boundary,
which then diffuses inwards and evolves nonlinearly due to the flow it generates in
the BL.

Since the Prandtl equations do not include diffusion parallel to the wall, in general
nothing prevents the vorticity gradient in the x direction from growing indefinitely
– hence the possibility of finite-time singularity. More precisely, the mechanism
proposed by Van Dommelen & Cowley (1990) is that a fluid element is compressed
to a point in the wall-parallel direction, and extends to infinity in the wall-normal
direction. We shall denote by t∗ the time at which this first occurs, and by x∗ the
corresponding x location. From the scaling exponents computed by Van Dommelen &
Cowley (1990), we can deduce that, if the initial data are analytic, the spectrum of
the solution will fill when approaching singularity with a characteristic cutoff parallel
wavenumber scaling like

kC ∝ (t∗ − t)−3/2. (2.20)

2.3. Interactive boundary layer model
As the singularity builds up in the Prandtl solution, the corresponding Navier–Stokes
solution adopts a quite different behaviour. As first explained by Elliott et al. (1983),
the first divergence between the two solutions occurs when the outer potential flow
generated by the BL vorticity creates a pressure gradient perturbation of order 1 at the
wall, which in turn impacts the inward diffusion of vorticity. This effect generically
starts to take place when

t∗ − t=O(Re−2/11). (2.21)

A rigorous asymptotic description of this new effect would require the modification
of the vorticity ansatz (2.15) with new BLs, both in x and in y, coming into
play. To avoid such complications, we follow Peridier et al. (1991b) and consider
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Dissipation caused by boundary layer instability 685

the finite-Reynolds-number description called the interactive boundary layer (IBL)
model, which simply consists in modifying the Prandtl equations to include the new
large-scale interaction, but without trying to rescale the solution a priori. Ansatz
(2.15) therefore remains valid, except that ωP is replaced by ωI , the solution of the
interactive equations, which we shall now derive.

Since we are working with the vorticity formulation, we are blind to potential flow
perturbations, but their effect manifests itself through the integral boundary condition
(2.12) on ω. Starting again from (2.17), but expanding the exponential up to order
Re−1/2, yields∫ 1

0
ω̂Ik(yP) dyP − ν

1/2
|κ|

∫
∞

0
yPω̂Ik(yP) dyP =−

∫ 1

0
ω̂Ek(y) exp(−|κ|y) dy, (2.22)

and, following the same procedure as above, leads to a perturbed boundary condition
for ωI ,

∂yPω̂Ik(0)=−iκ p̂Ek(0)− ν1/2
|κ|∂tβ̂Ik, (2.23)

where

βIk(x)=
∫
∞

0
yPωI(x, yP) dyP. (2.24)

On the other hand, by multiplying (2.16a) by yP and integrating over yP, we obtain
an expression for ∂tβI , which closes the problem.

As a side remark, let us note that the classical name ‘interactive boundary layer’ for
this model is misleading, since in fact no retroaction of the Prandtl layer onto the bulk
Euler flow is taken into account. An alternative name could be ‘wet boundary layer’,
which better encompasses the notion that the potential far flow affects the boundary
layer equations only through a passive effect.

2.4. Orr–Sommerfeld model
Several numerical studies suggest that a linear instability mechanism could play a
role in the detachment process. Since we are concerned with an unsteady problem,
the notion of linear instability should be understood here in an asymptotic sense,
in terms of a rescaled time variable in which the evolution of the base flow can
be neglected. Moreover, since we are looking for an instability happening at high
wavenumbers in the parallel direction, we also neglect, for the time being, the parallel
variation of the base flow, or in other words we study the possible occurrence of
perturbations which have a large parallel wavenumber k compared to the characteristic
parallel wavenumber L−1 of the flow prior to detachment. The combination of both
hypotheses constitutes the frozen flow approximation. Its domain of validity could
be properly evaluated only by resorting to a multiple-time-scale asymptotic analysis,
which we have not yet achieved in this setting.

2.4.1. Formulation
Under these two simplifying hypotheses, we are brought back to Rayleigh’s

classical shear flow stability problem, later generalized to viscous fluids by Orr
and Sommerfeld. In the case of a boundary layer, several simplifications are possible
which allowed Tollmien (1929) to obtain an elegant asymptotic description of the
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modes now known as Tollmien–Schlichting waves, and of the corresponding stability
region in the (Re, k) plane, which was later confirmed experimentally by Schubauer &
Skramstad (1947). For a more recent review on the subject, see Reed, Saric & Arnal
(1996). Although most of the material presented here is classical (see Lin 1967),
previous studies have mostly emphasized the computation of the critical Reynolds
number, so that it is instructive to rederive the main results directly in the Re→∞
limit, which concerns us here.

For small perturbations δψ(x, yP, t2) = φ(yP)ei(κx−αt2) to the streamfunction, the
profile function φ satisfies the Orr–Sommerfeld equation

(uP − c)(φ′′ − νκ2φ)− u′′Pφ =
1
iκ
(φ′′′′ − νκ2φ′′ + ν2κ4φ), (2.25)

where c= α/κ is the phase velocity, and primes denote derivatives with respect to yP.
Note that c is in general a complex number, and unstable perturbations are those for
which c has a strictly positive imaginary part. Now assuming that

L−1
� k� L−1Re1/2, (2.26)

(2.25) simplifies to

(uP − c)φ′′ − u′′Pφ =
1
iκ
φ′′′′. (2.27)

The no-slip boundary condition translates to φ(0) = φ′(0) = 0. Assuming from now
on that k> 0 without loss of generality, the boundary condition for yP→+∞ can be
obtained by matching φ with a harmonic outer solution of the form exp(−κy) using
the hypothesis that vorticity vanishes outside the BL, which means that

φ(yP) =
yP→∞

A(1− κν1/2yP)+ o(κν1/2yP). (2.28)

Note that it is essential to keep the first-order term in this expression in order to
find unstable modes. Following Tollmien (1929), we now deal with the singular
perturbation problem (2.27) by first considering inviscid solutions, and then adding a
boundary layer.

2.4.2. Inviscid mode
Neglecting the viscous contribution in (2.27), we obtain

(uP − c)φ′′ − u′′Pφ = 0, (2.29)

which admits the obvious regular solution

φ1,c = uP − c, (2.30)

but is singular at any point where uP = c. To construct another independent solution
φ2,c, we now assume that c does not lie directly on the real axis, and we make the
change of unknown φ = (uP − c)f , leading to

(uP − c)f ′′ + 2u′Pf ′ = 0 (2.31)

and thus

φ2,c(yP)= (uP − c)

(∫ yP

∞

((
u∞ − c
uP − c

)2

− 1

)
+ yP

)
, (2.32)

where u∞ is the velocity outside the boundary layer. By combining φ1,c and φ2,c, a
solution φout satisfying the condition (2.28) at +∞ is readily obtained:

φout = φ1,c − κν
1/2φ2,c. (2.33)
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2.4.3. Viscous correction
We now look for a viscous sublayer correction φin which is necessary since φout

does not in general satisfy the no-slip boundary condition at yP = 0. For small yP,
(2.27) reduces to

u′P(z0(c))(yP − z0(c))φ′′ − u′′P(0)φ(0)=
1
iκ
φ′′′′, (2.34)

where we have defined z0(c) to be the solution with the smallest real part to the
equation u(z) = c (see appendix A). An inner variable can then be defined in the
viscous sublayer by η= ε(yP − z(c))|κu′P(z(c))|5

1/3, where ε = sign(u′P(z(c))), leading
to, with κ� 1,

ηφ̃′′ =−iφ̃′′′′. (2.35)

We are interested in a solution of this equation which remains bounded and whose
derivative tends to zero when yP→∞. When ε > 0, this limit is equivalent to η→
∞, and a solution to the problem was given by Tollmien (1929) in terms of Hankel
functions:

φ̃in(η)=

∫
∞

η

dη′
∫
∞

η′
dη′′ η′′1/2H(1)

1/3(
2
3(iη

′′)3/2). (2.36)

Note that, as long as it is expressed in terms of the η variable, this solution is
universal. Expressed as a function of yP, it reads

φin(yP)= φ̃in

((
yP −

c
u′P(0)

)
|κu′P(0)|

1/3

)
. (2.37)

In the case ε < 0, yP→∞ corresponds to η→−∞, and the solution φ̃in(η) should
be adapted accordingly.

2.4.4. Construction of unstable modes
Now, in the asymptotic regime, any admissible solution φ of (2.27) can approxi-

mately be expressed as

φ = Aφout + Bφin, (2.38)

so that the boundary conditions φ(0)= φ′(0)= 0 translate to the linear system{
Aφout(0)+ Bφin(0)= 0,
Aφ′out(0)+ Bφ′in(0)= 0.

(2.39)

In order for a non-trivial solution to exist, this system should be degenerate, i.e.

φin(0)
φ′in(0)

=
φout(0)
φ′out(0)

. (2.40)

On the one hand, denoting

ηw =−cκ1/3
|u′P(0)|

−2/3, (2.41)
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FIGURE 1. Imaginary versus real part of the Tietjens function F(η) for η ∈ [2, 20]. The
sampling points (every 0.1) are indicated by crosses.

the position of the wall in terms of the η variable, it is shown following Tollmien
(1929) that

φin(0)
φ′in(0)

=−
c

u′P(0)
F(−ηw) if u′P(0) > 0, (2.42)

where F is a one-parameter complex function known as the Tietjens function F.
Although there is no closed analytical formula for F, it is easily approximated from
(2.37) using quadrature formulas. A graphical representation is given in figure 1.

On the other hand, denoting for convenience of notation

Ic =−c
∫
∞

0

(
1

(uP(y)− c)2
−

1
(u∞ − c)2

)
dy (2.43)

and using (2.33), it is shown that

φout(0)
φ′out(0)

=−
c

u′P(0)
E(κν1/2, c), (2.44)

where

E(κν1/2, c)= 1−
κν1/2(u∞ − c)2

cu′P(0)
(

1−
κν1/2(u∞ − c)2

c

(
Ic −

1
u′(0)

)) . (2.45)

Injecting (2.42) and (2.44) back into the degeneracy condition (2.40), we obtain the
dispersion relation

F(−ηw)= E(κν1/2, c). (2.46)

The profile is linearly unstable if and only if this equation has solutions such that
Im(c) > 0. In the range of κ we are considering, there can be no solutions if c is
of order u∞ or larger, because then ηw→−∞, and therefore F(−ηw)→ 0, whereas
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Dissipation caused by boundary layer instability 689

E remains of order 1. In the following, we therefore look for solutions under the
restriction that c� u∞.

The asymptotic behaviour of Ic for small c is dominated by what happens near
solutions of u(yP)= 0. As established in appendix A, if uP and u′P do not have any
zeros in common, then

Ic =
c→0

1
u′P(0)

− c
u′′P(0)
u′P(0)3

ln
(
−

c
u′P(0)

)
− ciπ∆u + cKR + o(c), (2.47)

where KR is a real constant, ln is the principal branch of the complex logarithm, and

∆u =
∑

{yP>0|uP(yP)=0}

u′′P(yP)

u′P(yP)3
. (2.48)

The behaviour of this asymptotic expression when c approaches the real axis is
tricky and should be considered with care. If Re(c/u′P(0)) < 0, the argument of the
complex logarithm lies on the right-hand side of the complex plane, and the limit
Im(c)→ 0 is well behaved. But if Re(c/u′P(0)) > 0, the limit does not exist strictly
speaking, and Ic should be considered as multi-valued, which is well captured by
replacing ∆u by

∆±u =


∆u if Re(c/u′P(0)) < 0,

±
u′′P(0)
u′P(0)3

+∆u if Re(c/u′P(0)) > 0.
(2.49)

By inserting our estimate for Ic into (2.45), and assuming for simplicity that
κν1/2 log |c| � 1, we obtain the following estimates for the real and imaginary parts
of E (respectively) when c is close to the real axis:

Re(E)∼ 1−
κν1/2u2

∞

cu′P(0)
, (2.50a)

Im(E)∼
κ2νu4

∞
∆±u π

cu′P(0)
, (2.50b)

where we have assumed that ∆±u 6= 0 (this analysis therefore does not apply directly
to the Blasius boundary layer). Since the imaginary part of E is negligible compared
to its real part, (2.40) can be satisfied only in the neighbourhood of points where F is
purely real. This happens for ηw→−∞, as well as for a certain finite value η0'−2.3
where F(−η0)' 0.56 (see figure 1).

In the case u′P(0)< 0, the latter leads, with (2.50a), to a single critical wavenumber

k1 ' 0.161|u′P(0)|
5/4u−3/2

∞
ν−3/8, (2.51)

beyond which the modes are unstable. In the case u′P(0) > 0, the multi-valuedness of
Ic implies that k1 splits into two critical wavenumbers with very close values, and,
therefore, a negligible instability region.

The critical point near ηw→−∞ corresponds to F(−ηw)→ 0, so from (2.50a)

κν1/2u2
∞

cu′P(0)
' 1. (2.52)
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To obtain another equation relating c and κ , we use the estimate F(−ηw) ∼η→−∞
−eiπ/4

|η|−3/2, which, combined with (2.50b), leads to

κ2νu4
∞
∆±u π

cu′P(0)
'

√
2

2
|ηw|

−3/2. (2.53)

This equation has a simple root if and only if ∆u > 0 and u′P(0) < 0, in which case
we obtain a second critical wavenumber

k2 = 0.0968|u′P(0)|
1/2
|∆u|

−1/3
|u∞|−5/3ν−5/12. (2.54)

In other cases, if there exists an unstable region for k> k1, its upper bound cannot be
found under our current restriction k� ν−1/2, which implies that it extends at least
up to wavenumbers scaling like ν−1/2, corresponding to what is usually called the
Rayleigh instability. This observation should be kept in mind as it is one of the key
elements of the detachment scenario we will propose below.

Another important quantity we need to estimate is the growth rate of the unstable
modes. From (2.45), we see that, since c remains small in absolute value, the growth
rate α of the instability satisfies

α ∼
u2
∞

Im(F(−ηw))

|u′P(0)|
ν1/2κ2. (2.55)

To sum up, the generic instability expected to play a role in such boundary layer
flows in the inviscid limit manifests itself by the growth of wavepackets in the vicinity
of the boundary confined in physical space to regions where u′P(0) < 0 (recirculation
bubbles), and whose parallel wavenumber support extends from O(Re3/8) to at least
O(Re1/2).

2.4.5. The case u′P(0)= 0
To be complete, our analysis should also take into account the case u′P(0) = 0,

investigated in detail by Hughes & Reid (1965). Going back to the general expression
(2.33) for the outer solution, we obtain in the case u′P(0)= 0 that

E(κν1/2, c)=
φout(0)
φ′out(0)

=−
c2

κν1/2(u∞ − c)2
− cIc (2.56)

or, with (A 18), and when c is close to the real axis,

Re(E)'−
c2

κν1/2u2
∞

, (2.57a)

Im(E)'−
π

4

(
2c

u′′P(0)

)1/2

. (2.57b)

Concerning the inner solution, (2.42) is replaced by

φin(0)
φ′in(0)

=−z(c)F(−ηw), (2.58)
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which, combined with (2.57b), yields

Im(F(−ηw))=−
π

4
, (2.59)

or equivalently, according to Hughes & Reid (1965),

ηw '−0.488, Re(F(−ηw))' 1.580, (2.60a,b)

and therefore

c3/2

κν1/2u2
∞

=

√
2

u′′P(0)
1.580, (2.61)

2c
u′′P(0)

κ1/3(2cu′′(0))1/3 = 0.488, (2.62)

which finally gives us the critical wavenumber

k1 = 0.0279u′′P(0)
10/11u16/11

∞
ν−4/11. (2.63)

The growth rate, obtained following the same reasoning as above with (2.45)
replaced by (2.56), reads

α ∼ u∞Im(F(−ηw))ν
1/4κ3/2. (2.64)

2.4.6. Physical interpretation
In this section we formulate some conjectures regarding the physical interpretation

of the above model. We have shown that, subject to the validity of the frozen flow
approximation, all BL flows containing recirculation bubbles are subject to Tollmien–
Schlichting–Rayleigh instabilities for wavenumbers k ∈ [k1, k2], where k1 and k2 both
diverge to ∞ when Re→∞.

Therefore a plausible scenario for detachment may begin as follows. Suppose that
initially the flow is very smooth, for example, that it has analytic regularity, i.e. its
Fourier coefficients decay exponentially with k, and that a recirculation bubble appears
due to the Prandtl BL nonlinear dynamics. Our analysis then suggests that within the
recirculation bubble the range [k1, k2] is subject to a fast linear instability. Note that,
since we have found that k1, k2 and the growth rate α (see (2.55)) diverge with Re,
there are reasonable chances that the frozen flow approximation becomes more and
more accurate for higher Re. However, for sufficiently large Reynolds number, the
initial excitation of such high-wavenumber modes is so small that they do not have
time to grow and the Prandtl solution remains a good approximation.

But if and when a Prandtl singularity builds up, it starts feeding non-negligible
excitations into the interval [k1, k2]. In the competition between the oncoming
singularity and the growth of unstable modes, it is interesting to determine which
modes first reach a finite amplitude, and when this occurs.

Now if we replace κ by the characteristic excitation (2.20) generated by the Prandtl
dynamics some time t∗ − t before the singularity, we obtain

α ∝ ν1/2(t∗ − t)−3. (2.65)

With this growth rate, the first perturbations to reach order 1 occur at a time

t∗ − t=O(Re−1/4). (2.66)
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By comparing this result with (2.21), we note that this occurs later than the
perturbations due to large-scale interactions, as described by the IBL model. Therefore,
the BL profile resulting from an IBL computation, not the Prandtl profile, should
be used as base profile when performing the stability analysis. This confirms the
analysis of Gargano et al. (2014), who pointed out that what they call a large-scale
interaction always precedes the approach to detachment.

In the region with reversed flow near the wall, the width of the unstable
wavenumber range scales likes O(Re1/2). Assuming that all the modes grow
simultaneously and reach order 1, this means that the support of ω̂ extends to
k ∝ O(Re1/2), while the amplitude of the modes continues to scale like O(Re1/2).
Owing to the properties of the inverse Fourier transform, these scalings immediately
imply that the profile of ω very near the wall has a kind of wavepacket shape with
amplitude scaling like O(Re1).

During the linear phase, the characteristic wall-normal extent of such modes is
controlled by the considerations of § 2.4.3, i.e. κ−1/3Re−1/2

∼ Re−2/3. But once the
unstable modes have reached order 1 and the amplitude of ω scales like O(Re1)

(due to the superposition of all modes as noted above), nonlinear vorticity advection
effects imply that the characteristic scale becomes O(Re−1), which gives us a possible
physical explanation for the Kato layer.

3. Solvers
3.1. Set-up

To trigger an unsteady separation process, we have chosen an initial configuration
inspired by the dipole of Orlandi (1990), later modified by Clercx & van Heijst (2002).
However, this dipole has the drawback of generating a secondary, weaker dipole
propagating in the opposite direction which is computed at a waste. For efficiency
reasons, we have thus preferred a quadrupole configuration, which is symmetric both
around the channel axis and around the midplane, thus sparing three-quarters of the
domain size for a given Re. It is defined in terms of its streamfunction as follows:

ψi(x, y)= Axy exp
(
−
(x− x0)

2
+ (y− y0)

2

2s2

)
, (3.1)

where A= 0.625847306637464 and s= 6.3661977236758 determine the amplitude of
the vortices and their size, and (x0, y0)= (0.5, 0.5) their initial location. Note that the
boundary conditions are satisfied only approximately by this velocity field, but in fact

vi(x, y= 0)≈ 10−15, (3.2)

which is in any case of the same order as the round-off error in double-precision
arithmetic.

Owing to the symmetry of this initial condition, the analysis can be restricted
without loss of information to the subdomain K = [0, 1/2] × [0, 1/2]. The streamlines
of ui in K are shown in figure 2. The definitions and initial values of several integral
quantities which will be important in our study are given in table 1.

In this work we shall analyse the flows obtained by solving the Navier–Stokes
equations numerically up to T = 57.05 for ν decreasing from 4× 10−7 to 5× 10−8 by
factors of

√
2 (i.e. seven different values in total). Reynolds numbers corresponding

to these values of ν are defined according to (2.2), where U ' 2.42 × 10−2 is the
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FIGURE 2. Streamlines of initial velocity field in the subdomain K = [1/2, 1] × [0, 1/2].

Quantity Enstrophy Maximum vorticity Energy Maximum velocity

Definition
1
2

∫
Ω

ω2 maxΩ ω
1
2

∫
Ω

|u|2 maxΩ |u|

Initial value 7.48× 10−3 1.00 9.05× 10−6 2.42× 10−2

TABLE 1. Definitions and initial values of several integral quantities of interest.

initial maximum velocity, and L = 2s ' 1.27 × 10−1 is a measure of the size of
the quadrupole. Both ν and Re are provided up to three significant digits in table 2.
To facilitate comparison with previous results concerning dipole–wall collisions (see
e.g. Clercx & van Heijst 2017), we have also included the Reynolds number Rerms
computed from the root-mean-square (r.m.s.) velocity Urms= 4.25× 10−3 and channel
width instead, which is of the same order of magnitude and a factor 1.4 larger.

3.2. Navier–Stokes solver
To solve the initial value problem for the Navier–Stokes equations, derivatives in
the periodic x direction are computed with spectral resolution from their sine and
cosine series expansions. As we shall see below, we will need two different grid
refinements in the x direction, with Nx,1 (respectively Nx,2) collocation points and
a corresponding resolution of ∆x,1 (respectively ∆x,2). Since the yP direction is not
periodic, derivatives in the yP direction have to be treated differently. The Chebyshev
scheme in the wall-normal direction is accurate but very costly and requires Gauss
collocation points, which are optimal from an approximation theory point of view.
However, according to our linear analysis, Gauss collocation points are not optimal.
Indeed, to have sufficient resolution in the bulk flow, the number of modes should
scale at least like Re1/2, which in turn imposes a wall-normal resolution O(Re−1)
in the whole Prandtl boundary layer. But this would be a waste of resolution since

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

39
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.396


694 N. Nguyen van yen, M. Waidmann, R. Klein, M. Farge and K. Schneider

Case I II III IV V VI VII VIII IX

108ν 40.0 28.3 20.0 14.1 10.0 7.07 5 3.54 2.5
10−2Rerms 106 150 213 301 425 601 851 1200 1700
10−2Re 76.8 109 154 217 308 435 615 870 1230
103∆yE,1 1.90 1.91 1.92 1.92 1.93 1.93 1.93 1.94 1.94
105∆yP,1 15.4 13.0 11.0 9.25 7.80 6.57 5.54 4.66 3.93
104∆x,1 9.77 9.77 9.77 9.77 9.77 4.88 4.88 4.88 4.88
103∆yE,2 1.76 1.87 1.95 2.02 2.07 2.12 2.16 2.19 2.22
105∆yP,2 14.4 12.7 11.2 9.71 8.39 7.22 6.18 5.28 4.50
105∆yK ,2 11.4 8.46 6.24 4.56 3.32 2.40 1.73 1.24 0.889
104∆x,2 9.77 9.77 4.88 2.44 1.22 0.610 0.305 0.305 0.153

TABLE 2. Parameters of numerical experiments. All figures in this table are given up to
three significant digits.

the initial growth of a wavepacket in the event of a Tollmien–Schlichting instability
would occur only in a sublayer of thickness Re−2/3. We have therefore preferred
to turn to fifth-order compact finite differences (Lele 1992; Gamet et al. 1999).
Denoting by fi approximate values of a function f on the uniform grid defined by
y1,i= i/(NyP − 1) (06 i<NyP), and by f ′i and f ′′i approximations of its first and second
derivatives at the same locations, we impose fifth-order accuracy by requiring that

αif ′i−1 + f ′i + βif ′i+1 = Aifi−1 + Bifi +Cifi+1, (3.3a)
γif ′′i−1 + f ′′i + δif ′′i+1 =Difi−1 + Eifi + Fifi+1, (3.3b)

where the coefficients are calculated by matching the Taylor expansions of both sides
up to fifth order.

Note, however, that these expressions are only valid for 16 i<Ny− 1, so that two
additional equations are needed to determine f ′i and f ′′i uniquely. For the computation
of ∂y(vω), they are obtained by noting that the derivative vanishes at y = 0 and
y= 1, which is a direct consequence of the boundary conditions on u and v and of
incompressibility.

For the viscous term ∂2
yω, they should follow from the boundary conditions (2.14).

To derive them, the integrals are first discretized by a fifth-order local quadrature
formula. To preserve accuracy, ω is expanded locally into its Taylor polynomial form,
and the contribution of the k-dependent exponential factor is included using numerical
algorithms for gamma functions from the BOOST.MATH library. In order to solve
the two resulting square linear systems efficiently, a parallel shared memory direct
solver based on sparse LU factorization with pivoting is used, as implemented in the
SuperLU library (Demmel, Gilbert & Li 1999; Li et al. 1999), and the PETSc library
(Balay et al. 2013) is used for matrix arithmetic. Note that, owing to the dependence
of the integral constraint on k, the number of LU factorizations is multiplied by Nx.
The cost of these factorizations is considerable, and they are tractable only under the
condition that Nx and Ny are not too large.

To cope with the huge scale disparity between the bulk of the channel and the BL,
we therefore have to use non-uniform grids in the y direction. During the first phase
of the flow evolution, the BL is expected to follow Prandtl’s scaling. The total number
of grid points is fixed to Ny,1 = 385. The grid spacing is set to a certain value ∆yP,1
between 0 and

L1 = 166Re−1/2L, (3.4)
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FIGURE 3. Schematics of discretization grids used by the Navier–Stokes solver for t 6
54 (a) and t> 54 (b). The thickness of the various regions is computed from the Reynolds
number as summarized in table 2.

which corresponds to the BL thickness as can be estimated from the Prandtl
calculations, and the remaining points are uniformly spread up to y = 1/2, with
spacing ∆yE,1.

At later times, the Prandtl scaling is expected to break down, and therefore a change
of grid is required. For convenience we always perform it at t= 54 independently of
Re. The new grid has Ny,2 = 449 points in the y direction. The grid spacing is set to
∆yK ,2 between 0 and

L2 = 1210Re−1L, (3.5)

then to ∆yP,2 between L2 and L1, and the remaining points are spread uniformly up
to y= 1/2. The values of all deltas are given in table 2, and graphical representations
of the two grids are provided in figure 3.

3.3. Prandtl–Euler solver
Following previous work (see e.g. Nguyen van yen, Farge & Schneider 2009), the
Euler equation is approximated by the Navier–Stokes equations with hyper-dissipation,
i.e. the dissipation term ν1ω is replaced by −ν2(−1)

2ω. This approximation is
second-order in space (Kato 1972), which is sufficient for our purpose here. The
boundary conditions are enforced using the classical mirror image technique. Since
the vorticity field is antisymmetric with respect to y = 1/2, we just need to replace
the boundary conditions at y = 0 and y = 1 by periodic boundary conditions to
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effectively impose an exact non-penetration condition. The Navier–Stokes equations
are then solved on T2, taking advantage of the symmetry of the solution, using a
fully dealiased sine–cosine pseudo-spectral method corresponding to Nx = Ny = 4096
grid points in each direction. A low-storage third-order Runge–Kutta scheme is
employed for time discretization, the time step being adjusted dynamically to satisfy
the Courant–Friedrichs–Lewy (CFL) condition. The hyperviscosity parameter ν2 was
set to 2.146× 10−13, which was found to sufficiently regularize the solution.

To solve the initial value problem for the Prandtl equations (2.16), the spatial
domain is first restricted to a finite size LyP in the yP direction, where LyP should
be chosen sufficiently large so that the dependence of the solution on its value in
the considered time interval is of the same magnitude as other numerical errors. The
results presented below were obtained with LyP = 64. Spatial discretization is then
achieved as for the Navier–Stokes solver, except that the grid in y is regular.

When computing the advection term vP∂yPωP, the equations at the edges are
obtained by shifting the stencils so that they remain inside the computational grid
(no additional condition is required since nonlinear advection vanishes at domain
boundaries). For the dissipation term ∂2

yP
ωP, the integral constraint (2.19) is rewritten

as ∫
∞

0
∂2

yP
ωP(x, yP, t) dyP = ∂xpE(x, 0, t), (3.6)

which is enforced as for the Navier–Stokes solver. Finally, the system is closed by
imposing that ωP(x,LyP, t)= 0, which is consistent with the fact that the exact solution
decays rapidly in yP.

3.4. Interactive boundary layer solver
The interactive solver is similar to the Prandtl solver, the only difference being that
the pressure correction given by (2.23) is included at each evaluation of the right-hand
side. These modified boundary conditions unfortunately modify the stability region of
the time discretization scheme, making it much smaller. We have heuristically derived
the constraint

1t<C
∆2

x
√
ν
, (3.7)

where C= 1.5. For efficiency, we use the non-interactive Prandtl solver up to t= 50,
and only then do we switch on the interactive term.

3.5. Orr–Sommerfeld solver
To compare the Navier–Stokes solution with the predictions of our linear instability
model beyond asymptotics, we have written a simple MATLAB solver for the
Orr–Sommerfeld eigenvalue problem. The base velocity profile is taken from the
interactive boundary layer computations, and the Orr–Sommerfeld problem is solved
independently as desired for each value of x, k and t. The yP variable is again
truncated at LyP = 64, by using artificial boundary conditions ω(LyP) = 0 and
φ′(LyP) + kν1/2φ(LyP) = 0, which follow from the reconnection with a potential
solution at large yP.

A second-order finite difference scheme is used for spatial discretization, written
using sparse matrices for efficiency, which leads to a complex, non-symmetric
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eigenvalue problem. The six eigenvalues with largest imaginary part are solved for
using the MATLAB function ‘eigs’, which relies on the implicitly restarted Arnoldi
method from ARPACK. As a result, the eigenvalue with the largest imaginary part
is readily obtained, and the unstable wavenumber range can thus be detected and
estimated.

4. Results
4.1. Before detachment

The behaviour of the various solutions well before the Prandtl singularity time is
well understood and we present it only for the sake of completeness. After a rapid
relaxation phase, the initial vorticity distribution splits into two counter-propagating
dipoles, each of which shoots towards one of the channel walls. At this point, the
Navier–Stokes vorticity field in the bulk flow remains similar to the Euler vorticity
field, as shown by comparing their contour lines at t = 30 in figure 4(a). The
Navier–Stokes flow in the Prandtl boundary layer units (figure 4c) is smooth, and well
approximated by the corresponding solution of the Prandtl equations, shown in blue.
As the dipole approaches the wall, the pressure gradient increases, causing inward
diffusion of vorticity as well as increased vorticity gradients within the boundary
layer. At t = 50, we still observe qualitative similarity between the Navier–Stokes
flow at high Reynolds number, on the one hand, and the Euler flow in the bulk
with the Prandtl flow in the boundary layer, on the other (figure 4b,d). However, as
expected, the discrepancy between Prandtl and Navier–Stokes flows has increased.

At t=54 (figure 5a) a new important feature of the flow is that a region of opposite-
sign vorticity has appeared within the boundary layer, indicating the build-up of a
recirculation bubble along the wall. This effect is well captured by the Prandtl flow,
which overall continues to approach the Navier–Stokes solution pretty well, although
the discrepancy has again notably increased.

4.2. Prandtl blow-up
The first signs of a qualitatively different behaviour become visible shortly thereafter,
as shown for example at t = 55.3 in figure 5(b). The contour lines of the Prandtl
vorticity have become very concentrated around x∗ = 0.556, indicating the formation
of a finite-time singularity with precisely the qualitative features predicted by Van
Dommelen & Cowley (1990), in particular a blow-up of the wall-normal velocity
associated with an abrupt acceleration of fluid particles away from the wall.

As the Prandtl solution approaches its singularity time t∗ ' 55.6, parallel vorticity
gradients increase rapidly, and soon the cut-off parallel wavenumber of the numerical
scheme becomes insufficient to resolve it.

4.3. Large-scale interaction and instability
According to Elliott et al. (1983), the Navier–Stokes solution departs from the Prandtl
behaviour when the potential flow perturbation due to the presence of the boundary
layer starts to perturb the wall pressure gradient.

By comparing the Navier–Stokes, Prandtl–Euler and interactive boundary layer
models at different Reynolds numbers for t= 50, we observe good agreement between
all models (figure 6a). For t = 54 (figure 6b) it can be noted that the IBL solution
has indeed slightly departed away from the Prandtl solution, but to a point which
falls way short of capturing the full behaviour of the NS solution. This effect, which
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FIGURE 4. (Colour online) Comparison between Navier–Stokes at Re = 123 075 (black)
and Euler/Prandtl (blue). (a,b) Contour lines of vorticity field at t= 30 (a) and t= 50 (b),
for ω= 0.1, 0.2, . . . , 1. (c,d) Contour lines of corresponding boundary layer vorticity fields
in Prandtl variables, for ω=−|ω|max/6,−2|ω|max/6, . . . ,−5|ω|max/6, where |ω|max= 3.75×
10−4 and |ω|max = 8.70× 10−3, respectively.
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FIGURE 5. (Colour online) Contour lines of vorticity field in Prandtl variables at t=54 (a)
and t=55.3 (b), for ω=5|ω|max/6, . . . , |ω|max/6,0,−|ω|max/6,−2|ω|max/6, . . . ,−5|ω|max/6,
where |ω|max = 1.25 × 10−2 and |ω|max = 1.30 × 10−2, respectively. Black contour lines
correspond to Navier–Stokes at Re= 123 075, while blue lines correspond to Euler/Prandtl.
The ω= 0 contour line is shown in bold.
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FIGURE 6. (Colour online) Comparison between Navier–Stokes (black), Prandtl–Euler
(blue) and interactive boundary layer (red) models at t = 50 (a) and t = 54 (b). Contour
lines of vorticity (a,b) and vorticity along the boundary (c,d). The ω= 0 contour line is
shown in bold.

corresponds in principle to the large-scale interaction also described by Gargano et al.
(2014), seems to play only a secondary role in our setting. More importantly, we
observe the growth of an elbow feature in the NS solution, indicating the start of the
growth of a packet of higher-k modes concentrated around x= 0.6.

When considering the NSE solution for varying Re at the instants t=54 and t=55.3
in figure 7, we observe that for increasing Re the elbow structure looks more and
more like a wavepacket confined to a well-defined interval on the wall. To understand
better the onset of these oscillations, it is tempting to consider one-dimensional
Fourier transforms of those wall vorticity traces. Unfortunately, the odd symmetry
of the function around the dipole axis gives rise to fast oscillations in the Fourier
coefficients which impair the readability of the spectra. To get rid of this effect, the
spectra are averaged out using the low-pass filter exp(−(5.2|k|/N)x16). The results
are shown in figure 8.

The Prandtl solution (dashed curves) develops a k−3/2 power-law profile at high k,
consistent with the build-up of a jump singularity in ω along the wall. In contrast,
the NSE solution spectra decay exponentially at high k and develop a distinctive
bump in the wavenumber range. Both the width and k location of this bump increase
with Reynolds number and with time. Interestingly, for the largest Re considered, a
relatively good separation of scales can be observed at t = 55.3 between the low-k
features and the high-k wavepacket, the transition occurring somewhere between
k= 20 and k= 30. This confirms a posteriori the validity of the slowly varying flow
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FIGURE 7. Vorticity along the boundary for Navier–Stokes (solid line) for varying
Reynolds number (from Re= 7692 to 123 075) and Prandtl (dashed line).

approximation used in deriving the asymptotic stability results of § 2.4. Moreover,
all solutions have exponentially decaying spectra at sufficiently large values of k,
consistent with their analytic regularity being well resolved in the current numerical
setting.

We would now like to compare the characteristics of these spectra with the
predictions of our analysis based on the Orr–Sommerfeld equations. The numerical
instability range obtained by direct eigenmode analysis (figure 9, bold line) extends
over the interval x ∈ [0.555, 0.65] on the boundary, which is in good qualitative
agreement with the spatial extent of the oscillations seen in figure 6(b). In k-space,
the Orr–Sommerfeld computations predict that the instability should start around
k = 30 for the high Re considered, which is in very good agreement as well with
the wavenumber at which the corresponding spectrum in figure 8(a) starts to exceed
the reference Prandtl solution (shown in dashed lines). This effect becomes more
pronounced at t= 55.3, shown in figure 8(b). Another important point consistent with
our scenario is that the stable modes 10< k< 30 indeed appear damped in the NSE
solutions compared to the Prandtl solution, a phenomenon which would be very hard
to explain using a singularity-type scenario.

Concerning the theoretical prediction for the lower end of the instability range,
qualitative agreement is restricted to a narrow region around x = 0.6, whereas the
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FIGURE 8. Fourier spectra of boundary vorticity for Navier–Stokes (solid line) at different
Reynolds numbers (from Re = 7692 to 123 075) and Prandtl (dashed line). The spectra
have been smoothed to eliminate fast oscillations due to the odd symmetry of the function
(see text).

wavenumber is very underestimated as soon as a point where u′P(0)= 0 is approached.
Nevertheless, the overall instability region is qualitatively well captured by the
criterion u′P(0) < 0.
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FIGURE 9. Stability boundary subject to the frozen flow approximation, shown as a
function of x at t= 54 and for Re= 123 075. The upper and lower marginal wavenumbers
estimated from our asymptotic analysis (2.51) and (2.54) are shown in dashed lines.
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FIGURE 10. Contour lines of vorticity field in Prandtl variables for Navier–Stokes at t=
56 (a) and t= 56.9 (b). The ω= 0 contour line is shown in bold.

4.4. Detachment and production of dissipative structures
The instability process which we have seen at play above introduces a new vorticity
scaling, Re1, very close to the wall. This new scaling is difficult to notice at first,
because it is hidden behind the pre-existing large negative vorticity of the boundary
layer. A simple trick to observe it more easily is to consider only the maximum
vorticity of positive sign (figure 12a). This quantity scales like Re1/2 at t = 53, and
at t = 56.9 it has clearly transited to the stronger Re1 scaling. Accordingly, the
enstrophy scaling has become dissipative at t = 56.9, thus indicating the production
of a dissipative structure as predicted by the Kato criterion. Shortly thereafter,
several further extrema with alternating signs successively appear for sufficiently
high Reynolds number, corresponding to increasingly fine parallel scales in the x
direction, as illustrated in figures 10 and 11, and previously observed in figure 12 of
Kramer, Clercx & van Heijst (2007). Note that in table V of Kramer et al. (2007)
the vorticity maxima have been reported for 625 6 Re 6 20 000. Plotting their values
as a function of Reynolds number yields scalings from Re1 to Re0.65.
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FIGURE 11. Vorticity along the boundary for various Reynolds numbers (from Re= 7692
to 123 075) in Prandtl variables at t= 56 (a) and t= 56.9 (b).

4.5. Later evolution
At much later times, the Euler and Navier–Stokes solutions have become entirely
different (figure 13). In the Euler case, the vortices glide along the wall, having
paired with their mirror image, and no new vorticity has been generated. Energy and
enstrophy are both conserved. In the Navier–Stokes case, the detachment process has
led to the formation of two new vortices, of much larger amplitude than those of the
incoming dipole. The activity in the boundary layer remains intense, leading to the
ejection of smaller structures.

4.6. Convergence checks
An essential point concerns the control of the discretization error. Following common
practice in numerical fluid dynamics, we have taken care to use quite pessimistic
scalings to design the wall-parallel and wall-normal grids in order to resolve the
necessary range of scales, and as a result we have not observed spurious grid-scale
oscillations which would suffice to indicate under-resolution.

To go one step further, we now consider the contour lines of vorticity during
detachment, at t = 56 and t = 56.9. As shown in figure 14, the computation used in
our analysis and the one obtained with twice the grid spacing agree well.
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FIGURE 12. Reynolds-number scalings of maximum vorticity (a) and enstrophy (b)
for Prandtl and Navier–Stokes before detachment (t = 53), and for Navier–Stokes after
detachment (t= 56.9).

5. Discussion
Several features of our numerical solutions had not been observed in previous work.

The most striking one is the appearance of the scaling Re1 for the vorticity maximum,
which takes precedence, at the singularity time, over the weaker Prandtl scaling Re1/2.
Even more strikingly, as seen on the graphs of wall vorticity, this new extremum
does not even appear at the same location as the Prandtl singularity. This result
contradicts sharply the picture of boundary layer detachment as it was described
in earlier work, as an essentially local process coinciding with the singularity in
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FIGURE 13. Contour lines of vorticity field at t = 80 for Navier–Stokes at Re = 15 384
and Euler/Prandtl solutions.

the Prandtl equations. Thanks to the vorticity formulation we have favoured, the
origin of the non-locality can be traced back to the integral constraints (2.12) on the
vorticity field, which are themselves consequences of the no-slip boundary conditions
combined with incompressibility. If higher and higher k modes are excited, as occurs
in particular due to the Prandtl singularity formation, the reaction of the flow dictated
by (2.1) has no reason to be localized in the x direction.

A key observation is that, in regions with reversed flow near the wall, the
width of the unstable wavenumber range scales like Re1/2, while the amplitude
of vorticity continues to scale as Re1/2 due to the presence of a Prandtl boundary
layer. Therefore, as soon as the build-up of the Prandtl singularity sufficiently excites
those wavenumbers, their superposition induces a Re1 scaling for the amplitude of
ω. In the linear phase, the thickness of the corresponding new wall-normal sublayer
scales like Re−2/3, but as soon as the instability becomes nonlinear, vorticity transport
induces excitation of scales as fine as Re−1, leading to dissipation. According to this
scenario, the process of detachment is thus intricately linked to the occurrence of
dissipation.

Another open question concerns the description of the flow after detachment.
If it is confirmed, the scenario we are proposing indicates that the process of
detachment and vorticity production by no-slip walls could be modelled by detecting
Prandtl singularities and, when they are about to occur, by introducing nonlinear
Rayleigh–Tollmien–Schlichting waves, followed by roll-up and the injection of a
dissipative structure into the bulk flow. However, an essential point to keep in mind is
that the phase of these waves is very sensitive to Reynolds number, which means that
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FIGURE 14. Comparison between Navier–Stokes solutions at the same Reynolds number
(Re= 123 075) with two numerical resolutions, in order to check for convergence: (a) t=
56, (b) t= 56.9.

there is little hope of a fully deterministic Reynolds-number-independent description.
This could have important consequences for the modelling of wall-bounded turbulent
flows.

The existence of vortical structures in turbulent boundary layers is well established
(Robinson 1991). The local conditions in such flows are therefore not as different from
those we have studied as one might first expect. According to the logarithmic law of
the wall

〈U(y)〉 '
Uτ

Kkarman
log
(

yUτ

ν

)
, (5.1)

where

Uτ =

√√√√ν 〈 dU
dy

∣∣∣∣
y=0

〉
(5.2)

is the so-called friction velocity. This behaviour is confirmed by the most recent
experiments, with subtle corrections (see e.g. Marusic et al. 2010). An important
consequence is that the bulk velocity and Uτ have the same scaling with Re up to
a logarithmic factor. Then, from (5.2), one can immediately deduce that d〈u〉/dy|y=0
scales like Re1 up to a logarithmic factor, which can be seen as the statistical
signature of the existence of a boundary layer of thickness Re−1 in the neighbourhood
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of the wall. Hence we see that the log law, as an experimental result, is consistent
in some sense with the existence of a Kato layer, as we have established in our
two-dimensional computations in a much more restricted setting. This connection
can be made, as we just did, in a purely phenomenological way without invoking
the Kolmogorov scale and the notion of cascade. In fact, the essential point is that
Uτ scales with the bulk velocity, and this scaling was introduced by von Kármán
(1921) precisely to account for the behaviour of the drag coefficient at high Reynolds
number, which was recognized as the essential issue at this time. From this discussion
it appears that our results may help in investigating rigorous foundations to the
phenomenological Kármán theory.
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Appendix A. Estimation of the integral Ic

In this appendix, we establish the estimate (2.47) for the integral Ic defined by
(2.43). For simplicity we drop the index P, and denote generically by KR real numbers
not depending on c. Our guess is that the dominant behaviour of Ic when c→ 0 is
controlled by the behaviour of u around its zeros on [ 0,+∞ [. Hence, let (yi)16i6m
denote the locations of these zeros. We assume that u′(yi) 6= 0 for all i, and that u has
an analytic continuation in a complex neighbourhood of the real axis, which ensures
that there exist complex neighbourhoods Yi of yi such that u is a local holomorphism
u :Yi→ u(Yi), and u(Yi) are neighbourhoods of 0. Assuming that c is sufficiently close
to zero so that it lies in the intersection of all the u(Yi) and it is smaller than the
infimum of u outside of the Yi, the equation c= u(z) has exactly m solutions, which
we denote zi(c). Now letting

fi(y, c)=
1

(u(y)− c)2
−

1
(u∞ − c)2

−
1

u′(zi(c))2(y− zi(c))2
+

u′′(zi(c))
u′(zi(c))3(y− zi(c))

,

(A 1)

it follows from a straightforward Taylor expansion of u around zi(c) that fi(y, c) is
bounded on Yi by a constant independent of c, and therefore equi-integrable on Yi.
Therefore, if we define ξ0 = 0, ξi = (yi+1 + yi)/2 for i< m and ξm = 2ym + 1, fi(y, c)
is equi-integrable on [ξi, ξi+1], and by the Vitali convergence theorem, the pointwise
limit

fi(y, 0)=
1

u(y)2
−

1
u′(yi)2(y− yi)2

+
u′′(yi)

u′(yi)3(y− yi)
−

1
u2
∞

(A 2)

obtained when c→0 is integrable, its integral being the limit of the integrals of fi(y, c)
when c→ 0, i.e. ∫ ξi+1

ξi

fi(y, c) dy−−→
c→0

∫ ξi+1

ξi

fi(y, 0) dy. (A 3)
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Now letting

Ji,c =

∫ ξi+1

ξi

dy
u′(zi(c))2(y− zi(c))2

, (A 4a)

Ki,c =−

∫ ξi+1

ξi

u′′(zi(c)) dy
u′(zi(c))3(y− zi(c))

, (A 4b)

by construction

Ic =−c
m−1∑
i=0

(∫ ξi+1

ξi

fi(y, c) dy+ Ji,c +Ki,c

)
− c

∫
∞

ξm

(
1

(u(y)− c)2
−

1
(u∞ − c)2

)
(A 5)

or, by (A 3) and the fact that u does not vanish on [ξm,+∞],

Ic =
c→0
−c

m−1∑
i=0

(∫ ξi+1

ξi

fi(y, 0) dy+ Ji,c +Ki,c

)
− c

∫
∞

ξm

(
1

u(y)2
−

1
u2
∞

)
+ o(c) (A 6a)

=
c→0
−c

m−1∑
i=0

(Ji,c +Ki,c)+ cKR + o(c) (A 6b)

so that the dominant behaviour of Ic is controlled by Ji,c and Ki,c, which we now
proceed to estimate. Since

Ji,c =−
1

u′(zi(c))2

(
1

ξi+1 − zi(c)
−

1
ξi − zi(c)

)
, (A 7)

Ji,c converges to a real constant Ji if i 6= 0, but diverges for i= 0. By Taylor-expanding
u around 0, we get that

z0(c) =
c→0

c
u′(0)

+ o(c), (A 8)

and therefore

J0,c =
c→0
−

1
u′(0)c

+KR + o(1). (A 9)

Now

Ki,c =−
u′′(zi(c))
u′(zi(c))3

[ln(ξi+1 − zi(c))− ln(ξi − zi(c))], (A 10)

where for the complex logarithm we have legitimately taken the principal branch,
since the integration path does not cross the negative real axis. As before we first
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assume that i 6= 0, in which case

Ki,c =
c→0
−

u′′(yi)

u′(yi)3
(ln(ξi+1 − yi)− ln(ξi − yi))+ o(1) (A 11a)

=
c→0

iπ
u′′(yi)

u′(yi)3
+KR + o(1), (A 11b)

whereas we obtain

K0,c =
c→0
−

u′′(0)
u′(0)3

(
−ln

(
−

c
u′(0)

))
+KR + o(1). (A 12)

Finally, combining (A 6b), (A 9), (A 11b) and (A 12), we get the desired estimate
of Ic:

Ic =
c→0

1
u′(0)

− c
u′′(0)
u′(0)3

ln
(
−

c
u′(0)

)
− ciπ

m−1∑
i=1

u′′(yi)

u′(yi)3
+ cKR + o(c). (A 13)

If u′(0)= 0, we cannot apply Vitali’s theorem to (A 1) for i= 0 because the second
and third terms diverge when c→ 0. Hughes & Reid (1965) computed the asymptotic
expansion of Ic for a special form of u with u′(0) = 0, but we rederive it using a
different method for completeness. Letting v =

√
u, we may write

(u− c)2 = (v −
√

c)(v +
√

c), (A 14)

with

v′(z)2 −−→
z→0

u′′(0)
2

, v′′(z)−−→
z→0
±

√
2

u′′(0)
u′′′(0), (A 15a,b)

so that the above results can be applied to v with z+ and z− defined by v(z+(c))=
√

c
and v(z−(c))=

√
c, leading to

g±(y, c)=
1

(v(y)±
√

c)2
−

1
v′(z±(c))2(y− z±(c))2

+
v′′(z±(c))

v′(z±(c))3(y− z±(c))
. (A 16)

Since the functions g± are bounded by a constant independent of c, we can now safely
apply the Vitali theorem to the product g+g−. Owing to the order of the different
terms, it is sufficient to keep only one of them,

Ic ∼
c→0
−c
∫
∞

0

1
v′(z+(c))2v′(z−(c))2(y− z+(c))2(y− z−(c))2

, (A 17)

and after computing the residuals we finally obtain

Ic =
c→0

(8u′′(0)c)−1/2iπ+ o(c−1/2). (A 18)

Appendix B. Validation of the solvers
Although the discretization methods used for this paper are relatively classical, the

way the boundary conditions are imposed is new and it was thus necessary to conduct
validation runs, which are reported here.
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Current results Kramer et al. (2007)
Re t xd yd ωd xd yd ωd

0.0 0.0977 1.0000 316.70 0.1000 1.0000 316.84
625 0.6 0.1680 0.1836 158.51 0.1656 0.1827 158.70
625 1.0 0.2578 0.1953 102.53 0.2543 0.1949 102.64

2500 0.6 0.1797 0.1016 261.83 0.1654 0.1042 261.83
2500 1.0 0.1562 0.1445 231.22 0.2185 0.1738 231.40

TABLE 3. Location (xd, yd) and value (ωd) of maximum vorticity for various times and
Reynolds numbers, compared to the data in table III of Kramer et al. (2007), for the
dipole–wall test case.

B.1. Navier–Stokes solver
As a test case for the Navier–Stokes solver, the set-up designed by Kramer et al.
(2007) was considered. Contrary to the quadrupole set-up which has been studied in
the body of the present paper, the dipole is not symmetric with respect to the channel
centreline. The full span of the channel and the walls on both sides therefore needs
to be taken into account. Two runs with Re = 650 and Re = 2500 were performed,
respectively, with 512× 255 and 1024× 511 uniformly distributed grid points.

In order to make a quantitative comparison, the same procedure as used by Kramer
et al. (2007) is repeated here, namely to compare the location and amplitude of the
main vortex core at several instants. The data are presented in table 3. Note that, at
t = 0, there is a minor mistake in the reference data, since xd = 0.1 corresponds by
construction to the location of the vorticity maximum for an isolated monopole,
whereas the maximum of the dipole is slightly shifted due to interaction with
the opposite-sign vortex. The results are otherwise in good agreement. The slight
mismatch of the vortex position for Re= 2500 might be due to the under-resolution
of the present computation; nevertheless, the amplitude of the main vortex core agrees
well. Detailed benchmarking is an interesting perspective for future studies, as many
data for comparison are available in the literature (Clercx & Bruneau 2006; Kramer
et al. 2007).

B.2. Prandtl–Euler solver
For the Prandtl solver, the classical impulsively started cylinder studied by Van
Dommelen & Shen (1980), henceforth VDS, in the Lagrangian framework is
employed as a test case. It corresponds to a constant boundary pressure gradient
given by

∂xpE(x, 0, t)=−sin(x) cos(x), (B 1)

and an initial vorticity which is a Dirac distribution,

ωP(x, y, 0)=−δ0(y) sin(x). (B 2)

For spatial discretization, 1023 grid points are considered on the interval [0, π] in
the x direction, taking advantage of the odd symmetry of the solution, and 513 grid
points with Ly = 32 in the y direction. The initial Dirac distribution is approximated
by letting

ωP(xi, 0, 0)=−
sin(xi)

1x
, ωP(xi, y, 0)= 0 if y> 0. (B 3a,b)
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FIGURE 15. Wall shear stress at different instants for the impulsively started cylinder test
case.
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FIGURE 16. Unstable region for the Blasius boundary layer.

The results are then compared with figure 10 and table II of VDS. Figure 15 shows
the wall shear stress for different time instants. It is in very good qualitative agreement
with figure 10 of VDS, except maybe at very short times, which is to be expected
given the singular initial condition. Additionally, our estimate for the quantity F′′w at
t = 3 is 1.1061, which is in good agreement with the value 1.1122 found by VDS
at their much lower resolution (in doing this comparison we have assumed that the
undefined quantity T appearing in table II of VDS corresponds to t/2).

B.3. Orr–Sommerfeld solver

To validate the MATLAB code used to compute Orr–Sommerfeld eigenvalues, we
use the Blasius boundary layer as a test case. The obtained marginal stability curve
(figure 16) is in good agreement with figure 16.11 provided by Schlichting (1979).
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Navier–Stokes Euler/Prandtl

0.500–0.500–1.00 0 1.00

0.000073–0.000073–0.000146 0 0.000146

0.00537–0.00537–0.0107 0 0.0107

0.00576–0.00576–0.0115 0 0.0115

Bulk flow vorticity

Boundary layer vorticity

FIGURE 17. (Colour online) Vorticity fields for the Navier–Stokes solution (left) and
the Euler solution (right) in the bulk flow at t = 30, 50 and 55.1. The corresponding
vorticity fields in the boundary layer for the Navier–Stokes (left) and the Prandtl solutions
(right) are given directly below. The corresponding movie can be downloaded from
https://doi.org/10.1017/jfm.2018.396.

Appendix C. Overall flow evolution: comparison of Navier–Stokes and Euler/
Prandtl flows

The dipole first shoots towards the lower channel wall. The Navier–Stokes vorticity
field in the bulk (figure 17 top, left) remains very close to the Euler vorticity field
(figure 17 top, right). Plotting the Navier–Stokes flow in the Prandtl boundary layer
units (figure 17 top, left) reveals that it is smooth, and very well approximated
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Singularity !

0.00725–0.00725–0.0145 0 0.0145

1.66–2.73 –0.540–4.93 3.85

0.0011–0.0011–0.0022 0.0022

FIGURE 18. (Colour online) Continuation of figure 17 at time instants t = 57 and 100.
The Prandtl solution is singular and thus not shown. The corresponding movie can be
downloaded from https://doi.org/10.1017/jfm.2018.396.

by the solution of the Prandtl equations (figure 17 top, right). The vorticity along
the boundary (figure 19a) converges to the Prandtl values as the Reynolds number
increases.

As the dipole approaches the wall (figure 17, middle), the pressure gradient along
the wall becomes more intense and steeper, which causes a strong inward diffusion of
vorticity at the wall, as well as increased vorticity gradients within the boundary layer.
At time t = 50, we still observe convergence of the Navier–Stokes solution at high
Reynolds number towards the Euler flow in the bulk and towards the Prandtl flow in
the boundary layer. However, looking at the vorticity along the boundary (figure 19b)
reveals a larger difference between Prandtl and Navier–Stokes flows than at t= 30.

As the Prandtl solution approaches its singularity time t∗≈ 55.6 (figure 17, bottom),
parallel vorticity gradients increase rapidly, and soon the cut-off parallel wavenumber
of the numerical scheme becomes insufficient to resolve it. The convergence of the
Navier–Stokes boundary vorticity is lost over a wide interval in x, and the vorticity
around x= 0.61 adopts a stronger scaling with Reynolds number (figure 19c).

After the singularity, at t = 57 (figure 18, top), oscillations in the vorticity appear,
while the bulk flow still looks similar for Navier–Stokes and Euler. Following the
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FIGURE 19. Vorticity along the boundary at t= 30, 50, 55.1 and 57.

new vorticity extremum that has appeared at the boundary, a cascade of extrema with
opposite signs appear (for sufficiently high Reynolds number), exciting increasingly
fine scales parallel to the wall (figure 19d).

At much later times, t = 100 (figure 18, bottom), the Euler and Navier–Stokes
solutions have become completely different. In the Euler case, the vortices glide
along the wall, having paired with their mirror image, no new vorticity has been
generated and the energy is conserved. In the Navier–Stokes case, the detachment
process has led to the formation of two new vortices (shown in cyan and magenta in
figure 18, bottom, left) of much larger amplitude than those of the incoming dipole.
The activity in the boundary layer remains intense, leading to the ejection of smaller
structures.
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