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Abstract—Regularization and Bayesian inference based meth-
ods have been successfully applied for linear inverse problems.
In these methods, often simple Gaussian or Poisson models for
the forward model errors have been considered. In this work, we
use variable splitting for the errors to model different sources
of errors and their possible non-stationarity or impulsive nature
using Student-t or other heavy tailed distributions. Also, as a
prior model, a sparsity enforcing hierarchical model of Infinite
Gaussian Mixture model is introduced. With these prior models,
we obtain a complete Bayesian inference framework which can
efficiently be implemented for any linear inverse problem. In-
terestingly, many recent regularization-based algorithms such as
Alternating Direction Method of Multipliers (ADMM) as well as
more classical Bayesian based methods such as Sparse Bayesian
Learning (SBL) are obtained as particular cases. One advantage
of the Bayesian approach is the possibility to estimate, jointly with
the reconstruction, the hyper-parameters such as the regulariza-
tion parameter, thus the capability of proposing unsupervised
methods. Examples of implementation of the proposed method
in different signal and image processing such as deconvolution in
mass spectrometry, estimation of periodic components estimation
in biological signals and computed tomography are mentioned
and referenced.

keywords: Variable splitting, Bayesian inference; Sparsity en-
forcing, Inverse problems, Approximate Bayesian computation
(ABC)

I. INTRODUCTION

The classical single error term forward model for linear
inverse problems is:

g =Hf + ε, (1)

where all the uncertainties are summarized by ε. For this sim-
ple model, nowadays, almost everything has been told, starting
by deterministic methods: Least Squares (LS), then Quadratic
Regularization (QR), L1 regularization, Total Variation and
all associated optimization algorithms such as Augmented
Lagrangian (AL), ADMM, ISTA, FISTA, etc. [1], [2], But,
also the probabilistic methods and in particular the Bayesian
approach with simple Gaussian models for the noise and
Gaussian prior model, Double Exponential prior, Student-t
prior [3] to much more sophisticated Hierarchical models [4],
[5], [6].

However, in many real applications, it is needed to propose
forward models which can account for other sources of uncer-
tainties. For example, if we want to distinguish between the

measurement noise and model uncertainties, we can propose
the following variable splitting model:

g =Hf + ξ + ε (2)

which can also be written as:{
g = g0 + ε,
g0 =Hf + ξ,

(3)

where ε represents the measurement noise and ξ represents
the modelling errors [7].

In this paper, we consider this noise splitting forward
model and propose to model ε by a centered white Gaussian
model N (ε|0, vεI) with unknown variance vε and ξ with a
heavy tailed Student-t model as we want it to represent a
sparse error term. The choice of Student-t is motivated by the
equivalent Infinite Gaussian Scaled Mixture (IGSM) model of
the Student-t.

For the unknown f also, we propose the following hierar-
chical model

f =Dz + ζ (4)

where D is any linear transformation which can be invertible,
unitary or represent an overdetermined Dictionary and ζ an
error term for this prior model. We propose to model it by a
Gaussian N (ζ|0, vζI) with unknown variance vζ . Finaly, as
z is, in general, sparse, we model it again via the Student-t
probability distribution with its equivalent hierarchical IGSM
model.

The rest of this paper is organized as follows: In section
2, we present the details of the proposed forward model,
expressions of the likelihood, priors and the posterior. In
Section 3, the MAP estimator and the details of the optimiza-
tion algorithm are presented. In Section 4, the details of the
VBA algorithm are presented. In section 5, some applications
where we have implemented the proposed methods are just
mentionned, and finally in section 6, the conclusions are
described.

II. PROPOSED FORWARD MODEL

The proposed forward model can be summarized in the
following three equations: g = g0 + ε,

g0 =Hf + ξ,
f =Dz + ζ,

(5)



where g represents the observed data, ε the measurement
errors, g0 the ideal no-noise data, H the forward model, ξ
the model error, f the interesting real unknowns of the model,
D any linear transformation model, z the corresponding
representation of the unknowns in this transformed domain
which is, in general, sparse and finally, ζ the errors of this
transformation [8].

With this model, a first deterministic regularization based
method can be proposed by defining the following criterion

J(f , g0, z) =
1

2vε
‖g − g0‖22 + 1

2vξ
‖g0 −Hf‖22

+ 1
2vζ
‖f −Dz‖22 + α‖z‖1

(6)

and trying to optimize it. This criterion can be assimilated as
the criterion of the Maximum A Posteriori (MAP) estimate in
a Bayesian framework

(f̂ , ĝ0, ẑ) = argmax
(f ,g0,z)

{p(f , g0, z|g)} (7)

where p(f , g0, z|g) ∝ p(g|g0)p(g0|f)p(f |z)p(z) with the
following expressions:

p(ε) = N (ε|0, vεI)→ p(g|g0) = N (ε|g0, vεI)
p(ξ) = N (ξ|0, vξI)→ p(g0|f) = N (g0|f , vξI)
pζ) = N (ζ|0, vζI)→ p(f |z) = N (f |z, vζI)
p(z) = DE(z|α) ∝ exp [α‖z‖1] .

(8)

The following particular cases are of great interest:
1) Quadratic regularization is obtained with ξ = 0

(i.e. g0 = Hf ) and D = 0 (i.e. f = ζ). The criterion
becomes the classical quadratic regularization:

J(f) =
1

2
‖g −Hf‖22 + µ‖f‖22, with µ =

vε
2vζ

(9)

2) Classical L1 regularization is obtained with ξ = 0,
D = I and ζ = 0 (i.e. f = z). The criterion becomes:

J(f) =
1

2
‖g −Hf‖22 + µ‖f‖1, with µ =

vε
α

(10)

3) Synthesis L1 regularization is obtained with ξ = 0 and
ζ = 0 (i.e. f =Dz. The criterion becomes:

J(z) =
1

2
‖g−HDz‖22+µ‖z‖1, with f =Dz (11)

4) Analysis L1 regularization is obtained with ξ = 0, D is
an invertible (f = Dz and z = D−1f ) or orthogonal
matrix (D′D = I , f = Dz and z=D’f) and ζ = 0.
The criterion becomes equivalent to the classical Total
Variation (TV):

J(f) =
1

2
‖g−Hf‖22+µ‖D

′f‖1, with µ =
vε
α

(12)

5) The case ξ = 0, i.e g = Hf + ε and ζ = 0 where
f = Dz and where D is an ivertible or orthogonal
operator, i.e. z = D′f is the last interesting particular
case because the solution is defined by the following
optimization problem:

J(f , z) =
1

2vξ
‖g−Hf‖22+α‖z‖1 s.t. z =D′f (13)

Using the Augmented Lagrangian (AL) method to this
linear constraint optimization problem consists in defin-
ing:

J(f , z, λ) = 1
2vξ
‖g0 −Hf‖22 + α‖z‖1

+ ‖z −D′f‖2 + λ′(z −D′f)
(14)

and looking for its stationary point via the expressions
of its gradients with respect to its arguments or as an
alternate optimization algorithm:
f := argmin

f

{
1

2vξ
‖g −Hf‖22 + ‖z −D

′f‖22

+λ′(z −D′f)
}
,

z := argmin
z

{
‖z −D′f‖22 + α‖z‖1 + λ′(z −D′f)

}
,

λ := λ+ (z −D′f).
(15)

where we can compare it with some particular cases of
ADMM.

6) In the previous case, considering D = I , i.e. f = z,
we obtainz := z + α

(k)
1

[
H ′(g −Hz

]
f := argmin

f

{
‖f − z‖22 + α‖f‖1

}
= STα(z),

(16)
where STα(z) represents the Soft Thresholding (ST) of
z and we thus can compare it to the well known Iterative
Soft Thresholding Algorithm (ISTA) [9], [10], [11].

More generally, alternate optimization of this criterion with
respect to f , g0 and z becomes:

f (k+1) = f (k) + α
(k)
1

[
H ′(g0 −Hf

(k))− µf (k)
]
,

g
(k+1)
0 = g

(k)
0 + α

(k)
2

[
(g0 −Hf

(k))
]
,

z(k+1) = argminz

{
1

2vξ
‖f −Dz‖22 + α‖z‖1

}
(17)

can be compared to many special purpose optimization al-
gorithms such as Augmented Lagragian (AL) [12], [11] and
Bregman Duality (BD) [13], [14], [12], [15], [16], [11], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27].

III. ADVANTAGES OF BAYESIAN VERSUS
REGULARIZATION APPROACHES

The main difficulties in these regularization based methods
are twofold:
• How to determine the regularization parameters, and
• How to quantify the remaining uncertainty on the ob-

tained solution.
The Bayesian approach gives these possibilities. To see this,
let consider the simplest case where{

g =Hf + ε, with p(ε) = N (ε|0, vεI)
f = ζ, with p(f) = N (f |0, vfI),

(18)

For this case, we have:
p(f |g) = N (f |f̂ , Σ̂) with
f̂ = argminf

{
‖g −Hf‖2 + µ‖f‖2

}
Σ̂ = vε[H

′H + µI]−1, µ = vε
vf

(19)



In the supervised case where vε and vf are known, the problem
is entirely completed. We have access to the posterior law
and any question about f can be answered and uncertainties
quantified.

In practical situations we may not know these two hyper-
parameters. In the Bayesian approach, it is possible to include
the hyperparameters θ = (vε, vf ) in the estimation process by
looking at the joint posterior:

p(f ,θ|g) ∝ p(g|f , vε)p(f |vf )p(θ) (20)

with θ = (θ1,θ2) [28], [29]. This joint posterior law can be
used to infer f and θ jointly and to quantify the uncertainty on
the solution. This can be done, for example by computing the
posterior covariance. However, often, the exact computation of
the posterior mean and covariance may not be easy or may be
too costly. Hopefully, solutions exist. For example, we can use
the Variational Bayesian Approximation (VBA) methods to
approximate p(f ,θ|g) by q(f ,θ) = q1(f)q2(θ) by choosing
appropriate families for q1 and q2. For example, by choosing
the a priori laws:{

p(vε) = IG(vf |αε0 , βε0),
p(vf ) = IG(vf |αf0 , βf0),

(21)

it is easy to obtain the expression of the joint posterior law:

p(f , vε, vf |g) ∝ p(g|f , vε)p(f |vf )p(vε)p(vf ) (22)

and by approximating it by

q(f , vε, vf ) = q1(f)q2(vε)q3(vf ) (23)

with q1(f) = N (f |µ̃, Σ̃), q2(vε) = IG(vf |α̃, β̃ε) and
q3(vf ) = IG(vf |α̃f , β̃f ) we obtain:

q1(f) = N (f |µ̃, Σ̃)

q2(vε) = IG(vε|α̃ε, β̃ε)
q3(vf ) = IG(vf |α̃f , β̃f )

(24)

where the VBA algorithm becomes an iterative algorithm
which updates successively (µ̃, Σ̃), (α̃ε, β̃ε) and (α̃f , β̃f ). At
the convergence or at the end of the iterations we get the ap-
proximate separable q(f , vε, vf ) = q1(f)q2(vε)q3(vf ) which
we can use to infer on f , vε and vf . For the expressions of the
updating these tilded variables and more details see [30], [4],
[31]. Figure 1 shows the generative graphical representations
of the supervised and unsupervised models.

IV. FULL BAYESIAN FRAMEWORK FOR PROPOSED
FORWARD MODELS

We keep the general forward model (5) with the same
Gaussian prior models for ε and ζ, but letting their variances to
be unknown. For ξ we choose a Student-t model to be able to
control its sparsity degree. For direct sparsity enforcing of f or
for sparsity in the transform domain z, we propose also to use
Student-t in place of Double Exponential (DE) or Generalized
Gaussian (GG) due to its scaled mixture property which gives
us to propose a hierarchical Normal-Inverse Gamma model.
In the following these two cases are expanded.

A. Direct sparsity case

To summarize, for the direct sparsity of f , we have the
following relations:

1) g = g0 + ε, ε Gaussian:{
p(g|g0, vε) = N (g|g0, vεI),
p(vε) = IG(vε|αε0 , βε0).

(25)

2) g0 =Hf + ξ, ξ Student:{
p(g0|f ,vξ) = N (g0|Hf ,V ξ), V ξ = diag [vξ] ,
p(vξ) =

∏M
i=1 p(vξi) =

∏M
i=1 IG(vξi|αξ0 , βξ0).

(26)
3) f Sparse:{

p(f |vf ) = N (f |0,V f ), V f = diag [vf ] ,
p(vf ) =

∏N
j=1 p(vfj ) =

∏N
j=1 IG(vfj |αf0 , βf0)

(27)
which results in:

p(f , g0, vε,vξ,vf |g) ∝ exp [−J(f , g0, vε,vξ,vf )] (28)

with

J(f , g0, vε,vξ,vf ) =
1

2vε
‖g − g0‖22 + (αε0 + 1) ln vε +

βε0
vε

+ 1
2‖V

−1/2
ξ (g0 −Hf) ‖22 +

∑M
i=1

[
(αξ0 + 1) ln vξi +

βξ0
vξi

]
+ 1

2‖V
−1/2
f f‖22 +

∑N
j=1

[
(αf0 + 1) ln vfj +

βf0
vfj

]
.

(29)
Alternate optimization of this criterion results to the optimiza-
tion of the following criteria:

1) with respect to f :
J(f) = 1

2‖V
−1/2
ξ (g0 −Hf) ‖22 + 1

2vζ
‖f −Dz‖22

2) with respect to g0:
J(g0) =

1
2vε
‖g − g0‖22 + 1

2‖V
−1/2
ξ (g0 −Hf) ‖22

3) with respect to vε:
J(vε) =

1
2vε
‖g − g0‖22 + (αε0 + 1) ln vε +

βε0
vε

4) with respect to vξi :
J(vξi) =

1
2‖V

−1/2
ξ (g0 −Hf) ‖22

+

M∑
i=1

[
(αξ0 + 1) ln vξi +

βξ0
vξi

]
5) with respect to vfj :

J(vfj ) =
1
2‖V

−1/2
f f‖22

+
∑N
j=1

[
(αf0 + 1) ln vfj +

βf0
vfj

]
which can be compared to ADMM like algorithms with extra
advantage which is updating of the hyperparameters which
makes the method unsupervized and more robust.

The second main advantage is that we have access to the
expressions of all the conditional posterior laws as well as
to the joint posterior law upto its normalization constant. All
the conditional posterior laws are either Gaussian or Inverse
Gamma which can be handled easily and we have access to
their means and variances.



Finally, the third advantage is that we can do better than
JMAP by using the Variational Bayesian Approximation meth-
ods and for example approximate the joint posterior law
p(f , g0, vε,vξ,vf |g) by the following separable one

q(f , g0, vε,vξ,vf ) = q1(f)q2(g0)q3(vε)q4(vξ)q5(vf ) (30)

using the Kullback-Leibler divergence

KL (q : p) =

∫
q ln

q

p
(31)

which gives rise to the VBA algorithms [32], [33], [4], [34],
[35], [36], [37].

The following figure shows the graphical representations of
the new forward model.
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Fig. 1. Graphical representations of the proposed model.

V. APPLICATIONS

The simple forward model 1 and the more detailed forward
model 2 with different prior models for f (without or with
another hierarchical level) and the two proposed models have
been applied with succes in different application area:

• 1D biological signal processing and in particular peri-
odic components estimation in short time biological time
series [36], [5], [38].

• Signal deconvolution in Mass Spectrometry [39], [37].
• Image restoration in RAMAN Mass Spectrometry or in

Radio Astronomy [39], [37].
• Detecting and estimating unknown periodic shapes in a

short duration signal [39]
• 2D and 3D Industrial Computed Tomography (CT) for

Non Destructive Testing (NDT) application [40], [8],
[41], [42], [43], [44], [45].

• Low dose and limited angle CT for biological or medical
applications [8], [46], [47], [44].

We refer the readers to the appropriate references mentionned
for these applications for more details.

VI. CONCLUSIONS

In this work, we extended the classical single additive noise,
linear forward model to account for different uncertainties by
variable splitting techniques.

In the first step, we splitted the error term in two parts
to distinguish between observation noise and forward model
uncertainty and assigning to them different and appropriate
prior probability distributions. Then, we examined in parallel
the deterministic regularization and the Bayesian MAP ap-
proach focusing more on the second. As a by-product, we
could see the links between an alternate optimization algorithm
for the MAP estimator and the optimization algorithms such
as Alternate Descent Minimization Maximization (ADMM)
or ISTA or its fast version FISTA for the particular case of
double exponential prior. The main advantage of the Bayesian
approach are twofold: i) giving the tools to go further by esti-
mating the hyperparameters and ii) being able to quantify the
uncertainties of the solutions of the inversion problems. These
two points are often crucial in real applications. However, one
may be careful about choosing appropriate hyperparameters,
the order of the optimization and the convergency of the
algorithms. As the problems are in general very ill-posed, we
have to carefully choose the priors to guarantee, at least, the
local convergency of the algorithms. But this problem is a
very general task for any inverse problem. One main question
is still open: finding the reason for better performances of
these variable splitting algorithms. This goes in the opposite
direction of the regularization idea of restricting the space
of the solution to obtain a regularized solution. As a final
conclusion, we may try to answer the following question:
Is it better to restrict the space and define a criterion with a
global minimum or, in the opposite, increase the dimension of
the unknown space, define a criterion which may have many
minima and looking for a local minimum of it?
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