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FATIGUE EFFECTS IN ELASTIC MATERIALS WITH VARIATIONAL DAMAGE

MODELS: A VANISHING VISCOSITY APPROACH

ROBERTO ALESSI, VITO CRISMALE, GIANLUCA ORLANDO

Abstract. We study the existence of quasistatic evolutions for a family of gradient damage models

which take into account fatigue, that is the process of weakening in a material due to repeated applied
loads. The main feature of these models is the fact that damage is favoured in regions where the

cumulation of the elastic strain (or other relevant variables, depend on the model) is higher. To prove

the existence of a quasistatic evolution, we follow a vanishing viscosity approach based on two steps:
we first let the time-step τ of the time-discretisation and later the viscosity parameter ε go to zero.

As τ → 0 , we find ε -approximate viscous evolutions; then, as ε → 0 , we find a rescaled approximate

evolution satisfying an energy-dissipation balance.
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1. Introduction

In Material Science, fatigue refers to the process which leads to the weakening of a material due to repeated
applied loads, which individually would be too small to cause the direct failure of the material itself. Macroscopic
fatigue fractures appear as a consequence of the interaction of many and complicated material phenomena oc-
curring at the micro-scale, such as, for instance, plastic slip systems and coalescence of micro-voids, [38, 34, 36].
Fatigue failure is extremely dangerous, since it often occurs without forewarning resulting in devastating events,
and is responsible for up to the 90% of all mechanical failures [37]. The main reason is that it is very difficult, in
real situations, to identify the fatigue degradation state of a material. Therefore, its prediction still represents an
open challenge for modeling and simulation at the cutting edge of mechanics.

Fatigue favours the occurrence of damage and fracture in different types of materials, both brittle and ductile.
When the stress level is high enough to induce plastic deformations, the material is usually subjected to a so-called
low-cycle fatigue regime; instead, high-cycle fatigue occurs if the stress is below the yield stress such that the
strains are primarily elastic. Models where fatigue effects are induced by the cumulation of plastic deformations
have been recently studied in [3, 4, 2, 1] and [9, 11, 12].

In this paper we study a phenomenological material model where damage is the only inelastic phenomenon
and the fatigue weakening of the material is a consequence of repeated cycles of elastic deformations. Our work
is inspired by the recent paper [5], where the authors propose a similar model in the one-dimensional setting and
to which the reader is invited to refer to for further mechanical details.

As usual, damage is expressed in terms of a scalar variable which affects the elastic response of the material and
may be interpreted as the local percentage of sound interatomical bonds. In contrast to many previous damage
models [19, 27, 7, 40, 39, 23, 24, 25], in this paper the dissipation depends not only on the damage variable itself,
but also on the history of the evolution. Indeed, damage is favoured in regions where a suitable history variable
has a higher value. This history variable is defined pointwise in the body as the cumulation in time of a given

1



2 ROBERTO ALESSI, VITO CRISMALE, GIANLUCA ORLANDO

function ζ that may be the strain, or the stress, or the energy density, according to the model. As a consequence,
the material may undergo a damage process even if the variable ζ remains small during the evolution.

We are here interested in proving the existence of quasistatic evolutions for this model in a two-dimensional
antiplane shear setting, following a vanishing viscosity approach. To present in detail our result, we introduce
the time-incremental minimisation problem corresponding to a time discretisation tik := iT

k
= iτk for the un-

knowns α : Ω→ [0, 1] (the damage variable) and u : Ω→ R (the displacement) assuming that the previous states

(αjk, u
j
k)i−1
j=0 are known:

(αik, u
i
k) ∈ argmin

α≤αi−1
k

{1

2

∫
Ω

µ(α)
∣∣∇u∣∣2 dx+

1

2

∫
Ω

∣∣∇α∣∣2 dx+

∫
Ω

f(V i−1
k )(αi−1

k − α) dx+
ε

2τk
‖α− αi−1

k ‖
2
L2

}
.

The functional minimised above consists of three parts: the internal energy, given by the sum of the elastic
energy and the damage regularisation term; the energy dissipated from the previous state; and the viscosity
term, depending on a small parameter ε . The elastic response is affected by the factor µ(α) > 0, where µ in
nondecreasing in α , according to the fact that α = 1 represents a sound material and α = 0 a completely damaged
one. (Notice that the constraint α ≤ αi−1

k enforces the irreversibility of the damage process.) The L2 norm of ∇α
is the usual regularising term in gradient damage models (see the aforementioned works and [16, 10, 13] for coupling
with plasticity). The dissipation term characterises the present model in comparison to other damage models,

since the fatigue term f(V i−1
k ) weights the damage increment. For every j , the history variable V jk is defined by

V jk :=

j∑
h=1

∣∣ζhk − ζh−1
k

∣∣ ,
where ζhk represents the elastic strain, or the stress, or the density of the elastic energy at time thk . Notice that

V jk =
∫ tj

k
0
|ζ̇k(s)| ds , where ζk(s) is the piecewise affine interpolation of ζhk . The function f is nonincreasing, so

that in the minimisation it is more convenient to take α lower where the cumulation V i−1
k is larger. The viscosity

term prevents αik to be too far (in L2 ) from the previous damage state αi−1
k .

The approach that we follow consists of two main steps: as, e.g., in [27, 7, 40, 39, 23, 24], we let first the time-
step of the discretisation τk and later the viscosity parameter ε tend to 0. More precisely, the starting point is to
define for every k the discrete-time evolution (αε,k(t), uε,k(t)) as the piecewise affine interpolation of (αik, u

i
k) and

to derive a priori estimates (cf. Proposition 3.5) which guarantee that ‖αε,k‖H1(0,T ;H1(Ω)) , ‖uε,k‖H1(0,T ;W1,p(Ω))

are bounded uniformly with respect to k (not with respect to ε) and ‖αε,k‖W1,1(0,T ;H1(Ω)) , ‖uε,k‖W1,1(0,T ;W1,p(Ω))

are bounded uniformly with respect to k and ε , for some p > 2.
We exploit the a priori estimates H1 in time to pass to the limit as k → +∞ : for every ε we obtain

an ε -approximate viscous evolution (αε(t), uε(t)) characterised by an equilibrium condition in uε(t) , a unilat-
eral stability condition in αε(t) (referred to as Kuhn-Tucker condition), and an energy-dissipation balance (cf.
Definition 4.1).

The a priori estimates W 1,1 in time allow us to reparametrise the ε -approximate viscous evolutions and to
obtain a family of equi-Lipschitz evolutions (α◦ε(s), u

◦
ε(s)) in a slower time scale s . At this stage we let ε → 0

and obtain an evolution (α◦(s), u◦(s)) together with a reparametrisation function t◦(s) that permits the passage
from the slow to the original fast time scale t . In Theorem 5.1 we prove that (α◦, u◦) still satisfies an equilibrium
condition in u◦(s) , a unilateral stability condition in α◦(s) , and an energy-dissipation balance. However, the

dissipation in the energy balance weights the rate of damage with a function f̃◦(s) ≤ f(V ◦(s)) , where V ◦(s) is
the history variable associated to the evolution (α◦, u◦) . An interesting issue, that we were not able to solve, is

to determine whether there are explicit examples where this inequality is strict and f̃◦(s) is actually the correct
weight to consider in the energy-dissipation balance.

In the mathematical treatment of the present model some technical difficulties arise. Here we discuss the main
issues in the a priori estimates and in the limits as k → +∞ and ε→ 0.

The proof of the a priori estimates rests upon the manipulation of the Discrete Kuhn-Tucker conditions (3.9)
and (3.10) evaluated at two subsequent times ti−1

k and tik , respectively, as e.g. in [32, 23, 29, 24, 11, 25]. The

resulting estimate (3.17) contains in the right-hand side also discrete-time derivatives at time ti−1
k , in contrast to

the aforementioned works, where only discrete-time derivatives at time tik appear. These additional terms are due
to the presence of the fatigue weight f(V i−1

k ) in the dissipation for the i -th incremental minimisation problem
and prevent the immediate application of the discrete Gronwall estimate used in the previous works. We refine
the usual technique to overcome this issue in (3.19)–(3.22).

The main difficulty in deriving the properties of the ε -approximate viscous evolutions (αε(t), uε(t)) consists
in passing to the limit as k → +∞ in the dissipation term containing the fatigue weight f(Vε,k(t)) . The a priori
estimate on ‖uε,k‖H1(0,T ;W1,p(Ω)) only guarantees that ∇u̇ε,k ⇀ ∇u̇ε weakly in L2(0, T ;Lp(Ω;R2)) , and this
convergence is not sufficient to deduce the convergence of Vε,k to Vε , even in the paradigmatic case where ζ

is the elastic strain, namely when the history variable is V (t) =
∫ t

0
|∇u̇(s)| ds . To circumvent this problem
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we first let f(Vε,k(t)) converge to some f̃ε(t) weakly* in L∞(Ω) for every t by an Helly-type theorem (cf.
Lemma 4.6), to get an evolution (αε(t), uε(t)) satisfying the Kuhn-Tucker condition and the energy-dissipation

balance with f̃ε(t) in place of f(Vε(t)) (cf. Propositions 4.8 and 4.10). At this stage, we exploit the convergence
of all the terms of the discrete-time energy-dissipation balance to the corresponding ones in the continuous-time
energy-dissipation balance. This improves the convergence of α̇ε,k to α̇ε (Proposition 4.11), allowing us to deduce

that ∇u̇ε,k → ∇u̇ε strongly in L2(0, T ;Lp(Ω;R2)) and thus that f̃ε(t) = f(Vε(t)) . Eventually, we obtain the
existence of an ε -approximate evolution.

The scenario when ε → 0 is radically different. Indeed, here the energy-dissipation balance does not help to
improve the weak convergence ∇u̇◦ε ⇀ ∇u̇◦ for the rescaled evolutions (α◦ε(s), u

◦
ε(s)) , due to the rate-independence

of the system as ε→ 0. As a consequence, the limit evolution is formulated with f̃◦(s) , the weak∗ -L∞ limit of
the fatigue weight reparametrisations f(V ◦ε (s)) , in place of f(V ◦(s)) . This motivates why we pass to the limit in
two steps, rather than directly taking a simultaneous limit τk/εk → 0, k → +∞ , as in the framework developed
in [30, 26] and followed in [25].

2. Assumptions on the model

Vector-valued functions. In this paragraph we let X be a Banach space. We will often consider the Bochner
integral of measurable functions v : [0, T ]→ X . For the definition of this notion of integral and its main properties
we refer to [8, Appendix] or to the textbook [18]. The Lebesgue space Lp(0, T ;X) is defined accordingly. We

recall that, if p ∈ [1,∞) and X is separable, the dual of Lp(0, T ;X) is Lp
′
(0, T ;X ′) , where 1

p
+ 1

p′ = 1 and X ′

is the dual of X .
For the definition and the main properties of absolute continuous functions AC([0, T ];X) and Sobolev functions

W 1,p(0, T ;X) , the reader is referred to [8, Appendix]. We recall here the Aubin-Lions Lemma [6, 35] about the
compactness property enjoyed by W 1,p(0, T ;X) . Let Y be a Banach space compactly embedded in X , and let
1 ≤ p, q ≤ ∞ . Then the space W = {v ∈ Lp(0, T ;Y ) : v̇ ∈ Lq(0, T ;X)} is: 1) compact in Lp(0, T ;X) if p <∞ ;
2) compact in C([0, T ];X) if p =∞ and q > 1.

In this paper, the Banach space X will be either a Lebesgue space Lq(U ;Rm) or a Sobolev space W 1,q(U) ,
where U is an open set of Rn . Given an element v ∈ Lp(0, T ;Lq(U ;Rm)) , p, q ∈ [1,∞) , we identify it with the
function v : [0, T ]×Ω→ Rm defined by v(t;x) :=

(
v(t)

)
(x) .

The norms ‖ · ‖Lp and ‖ · ‖W1,p without any further notation will always denote the Lp -norm and the
W 1,p -norm with respect to the space variable x , respectively.

The reference configuration. Throughout the paper, Ω is a bounded, Lipschitz, open set in R2 representing
the cross-section of a cylindrical body in the reference configuration. The deformation v : Ω×R → Ω×R takes
the form v(x1, x2, x3) = (x1, x2, x3 +u(x1, x2)) , where u : Ω → R is the vertical displacement. In this antiplane
shear framework, the two dimensional setting is the physical relevant one. This assumption gives the compact
embedding H1(Ω) in Lp(Ω) for every p ∈ [1,∞) , which we employ in the a priori estimates.

We assume that ∂Ω = ∂DΩ∪∂NΩ, where ∂DΩ and ∂NΩ are relatively open sets in ∂Ω with ∂DΩ∩∂NΩ = Ø
and H1(∂DΩ) > 0. A Dirichlet boundary datum will be prescribed on the set ∂DΩ.

In order to apply the integrability result [21] to our problem (see Remark 3.2 below), we assume that Ω∪∂NΩ
is regular in the sense of [21, Definition 2]. (Notice that in dimension 2 this regularity assumption on Ω∪ ∂NΩ is
satisfied, e.g., when the relative boundary ∂(∂NΓ) in ∂Ω consists of a finite number of points.)

It is convenient to introduce the notation W−1,p
∂DΩ (Ω) for the dual of the space {u ∈W 1,p′(Ω) : u = 0 on ∂DΩ} ,

where 1
p

+ 1
p′ = 1.

The total energy. Following [20], the damage state of the body is represented by an internal variable α : Ω→
[0, 1] . The value α = 1 corresponds to a sound state, whereas α = 0 corresponds to the maximum possible
damage. As usual in gradient damage models [33], the system in analysis comprises a regularizing term ‖∇α‖2L2 .

In particular, the damage variable α belongs to the Sobolev space H1(Ω).
For every α ∈ H1(Ω) and u ∈ H1(Ω), the stored elastic energy is defined by

1

2

∫
Ω

µ(α)
∣∣∇u∣∣2 dx .

We make the following assumptions on the dependence of the shear modulus µ on the damage variable α :

µ : R→ [0,+∞) is a C1,1(R), nondecreasing function with µ(0) > 0 ,

µ(β) = µ(0) for β ≤ 0, µ(β) = µ(1) for β ≥ 1 . (2.1)

The regularity assumption on µ is needed in the proof of Proposition 3.5 (see (3.14)). The condition (2.1) on µ
forces α to take values in [0, 1] in the evolution (see Remark 3.1).
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The total energy corresponding to a damage state α and to a displacement u is

E(α, u) :=
1

2

∫
Ω

µ(α)|∇u|2 dx+
1

2

∫
Ω

|∇α|2 dx . (2.2)

Notice that the constant 1
2

in the gradient damage regularisation term does not play a role in the mathematical
treatment and may be replaced by any positive constant.

We compute here the derivatives of the total energy. Note that an integrability strictly higher than 2 is required
on ∇u to guarantee the differentiability of the energy with respect to α .

Lemma 2.1. The following statements hold true:

i) Let u ∈W 1,p(Ω) , with p > 2 . Then the functional α ∈ H1(Ω) 7→ E(α, u) is differentiable and

〈∂αE(α, u), β〉 =
1

2

∫
Ω

µ′(α)
∣∣∇u∣∣2β dx+

∫
Ω

∇α · ∇β dx , (2.3)

for every α, β ∈ H1(Ω) .
ii) Let α ∈ H1(Ω) . Then the functional u ∈ H1(Ω) 7→ E(α, u) is differentiable and

〈∂uE(α, u), v〉 =

∫
Ω

µ(α)∇u · ∇v dx ,

for every v ∈ H1(Ω) .

Proof. We only prove i), the proof of ii) being trivial. The derivative of 1
2
‖∇α‖2L2 simply gives the second integral

in (2.3). As for the differentiability of
∫
µ(α)|∇u|2 dx , let us fix α, β ∈ H1(Ω), and δ > 0. By Young’s inequality

we have ∣∣∣µ(α+ δβ)− µ(α)

δ

∣∣∇u∣∣2∣∣∣ ≤ ‖µ′‖L∞ |β| ∣∣∇u∣∣2 ≤ C[|β|q +
∣∣∇u∣∣p] ,

where q = p
p−2

< ∞ . Thanks to the embedding H1(Ω) b Lq(Ω), we can apply the Dominated Convergence

Theorem to deduce that the functional α ∈ H1(Ω) 7→ E(α, u) is Gâteaux-differentiable and its Gâteaux-differential
is expressed by (2.3). Moreover, since u ∈ W 1,p(Ω), with p > 2, and H1(Ω) b Lr(Ω), for any r ∈ [1,∞) , it is
immediate that the functionals in i) and ii) are Fréchet-differentiable. �

Fatigue and damage dissipation. The damage dissipation is affected by the cumulation of a suitable variable
of the system during the history of the evolution. This variable may be for instance the elastic strain, the
stress, or the density of the elastic energy, according to the material model. In the general case, we consider
a function depending on the damage variable α and on the elastic strain ∇u : we take, for given evolutions
α ∈ AC([0, T ];Lq(Ω; [0, 1])) , u ∈ AC([0, T ];W 1,p(Ω)) , with p > 2, 1

q
+ 1

p
< 1

2
, the function

ζ(t) := g(α(t))∇u(t) , (2.4)

where g ∈ C1,1([0, 1]) . (In the following we will guarantee that the damage variable takes values in [0, 1] , see
Remark 3.1; one could also assume g ∈ C1,1(R) and constant in (−∞, 0] and [1,∞) as done for µ , the difference
is that the terms involving g are constant in the incremental minimisation, see (3.1).) For instance, if g(α) ≡ 1,
then ζ is simply the elastic strain; if g(α) = µ(α) , then ζ is the stress.

By our assumption on the evolutions α , u , we have that ζ ∈ AC([0, T ];L2(Ω;R2)) , so we consider the
corresponding cumulation

V ζ(t;x) ≡ V (t;x) :=

∫ t

0

∣∣ζ̇(s;x)| ds , x ∈ Ω , (2.5)

defined as the Bochner integral in L2(Ω).
In (2.5) the notation ≡ represents the fact that we do not write in the following the dependence of the

cumulated variable from ζ . We shall also use the notation Vk, Vε , etc. for the cumulated variable corresponding
to ζk , ζε , etc. given by (2.4) for αk and uk , αε and uε , etc., respectively, specifying the correspondence in each
case.

We notice that one could consider other possible choices for the variable ζ , for which the results of this paper
still hold. For instance, one could take ζ(t) = g(α) |∇u|θ , with θ ∈ [1, p) , so ζ ∈ AC([0, T ];Lp/θ(Ω)) (see also
the observations in Proposition 3.5 and Lemmas 4.3 and 4.4). This covers, e.g., the case where ζ is the density
of the elastic energy, i.e., when g(α) = µ(α) and θ = 2.

For every measurable function V : Ω → [0,+∞) , playing the role of the cumulation of ζ , and for every β ∈
H1(Ω) with β ≤ 0 a.e. in Ω, representing the damage rate, we define the corresponding dissipation potential by

R(β;V ) := −
∫
Ω

f(V )β dx , (2.6)
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where

f : [0,+∞)→ [0,+∞) is a Lipschitz, nonincreasing function with f(0) > 0 .

The regularity assumptions on f , g are used in the proof of Proposition 3.5 (see (3.14)), and in Lemmas 4.3
and 4.4.

V

f(V )

Figure 1. Graph of the function f appearing in the dissipation potential. The higher the value of V , the
smaller the weight f(V ) in the damage dissipation. Recall that V plays the role of the cumulation of the
variable ζ .

According to the general theory of Rate-Independent systems [28], R naturally induces the following dissipation
between two damage states α1, α2 ∈ H1(Ω; [0, 1]) with α1 ≤ α2 a.e. in Ω

D(α1, α2;V ) := R(α2 − α1;V ) . (2.7)

Remark 2.2. The dissipation potential R that we choose here slightly differs from the one proposed in the model
of [5]. In that paper, the dissipation potential features an additional term depending on the gradient of the
damage variable. More precisely, using the notation of our paper, a choice more coherent with [5] would be
R(α̇,∇α,∇α̇;V ) =

∫
Ω
f(V )(−α̇+∇α · ∇α̇) dx . We explain here two reasons that lead us to the decision of not

including the term ∇α · ∇α̇ in the dissipation potential.
The first reason is a mathematical one. Note that a generic evolution α(t) may not satisfy the inequality

−α̇+∇α ·∇α̇ ≥ 0; the validity of this condition is however crucial for a physically consistent notion of dissipation
potential. Our approach to the problem does not guarantee the a priori fulfilment of this condition.

The second reason is a modelling one. The model proposed in [5] is an approach to fatigue fracture via a phase-
field model. In a classical phase-field model (without fatigue), the energy dissipated by a fracture is approximated
by an energy of the form

∫
Ω

(1−α) + 1
2
|∇α|2 dx , and in that case the term

∫
Ω

1
2
|∇α|2 dx should be interpreted as

part of the dissipation. This explains why in [5] the rate of 1
2
|∇α|2 appears in the definition of R(α̇,∇α,∇α̇;V )

and the fatigue weight f(V ) also affects this term. In contrast, our aim is to study damage models, whereas the
approximation of fracture via damage is not in the scope of this paper. For this reason (as already done in other
papers about damage models [27, 7, 40, 39, 23, 24, 25]) we interpret

∫
Ω

1
2
|∇α|2 dx as part of the internal energy

of the system. In particular, the rate of 1
2
|∇α|2 does not appear in the definition of the dissipation potential.

Boundary conditions and initial data. For every α ∈ H1(Ω; [0, 1]) and for every w ∈ H1(Ω), the set of
admissible pairs (α, u) with respect to the damage variable α and the boundary datum w is defined by:

A (α,w) := {(α, u) ∈ H1(Ω)×H1(Ω) : 0 ≤ α ≤ α a.e. in Ω, u = w on ∂DΩ} .

The quasistatic evolution will be driven by a boundary datum satisfying

w ∈ H1(0, T ;W 1,p̃(Ω)
)
, (2.8)

where p̃ > 2 is a suitable exponent that is chosen according to Lemma 3.3. The p̃ integrability of ∇w is needed to
control the increments of the displacement with those of the damage variable (cf. Lemma 3.3). The H1 regularity
in time of the boundary datum is needed for the proof of the a priori bounds in Proposition 3.5 (see (3.26)).

We prescribe initial conditions α0 ∈ H1(Ω) and u0 ∈ W 1,p̃(Ω) at time t = 0. We assume, consistently
with (2.5), that the initial cumulation V0 = 0 for notation simplicity. Taking a generic initial cumulation
V0 ∈ L2(Ω) with V0 ≥ 0 a.e. in Ω does not entail any mathematical difficulty. (Note that, in that case,
definition (2.5) should be modified accordingly by adding the initial cumulation V0 .)

We require

∂αE(α0, u0) ∈ L2(Ω) . (2.9)

Notice that one could also assume that α0 and u0 are stable with V−1 = 0, so that the Euler conditions in
Lemma 3.4 hold for i = 0 too. The assumption (2.9) is slightly more general, since, for instance, the initial
condition α0 = 0, u0 = 0 is always admissible, no matter whether it is stable or not.
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3. Incremental minimum problems

Construction of discrete-time evolutions. We fix a sequence of subdivisions (tik)ki=0 of the interval [0, T ] ,
where tik := i

k
T are equispaced nodes. We denote the step of the time discretisation by τk = 1

k
. For notational

simplicity, we omit the dependence of τk on k and we use the symbol τ . Moreover, we fix ε > 0.
We define the discretisation of the boundary datum w by wik := w(tik) , i = 0, . . . , k .
Let α0

k := α0 , u0
k := u0 , ζ0

k := g(α0)∇u0 , and V 0
k := V0 = 0. Assuming that we know αi−1

k and V i−1
k , we

define (αik, u
i
k) as a solution to the incremental minimisation problem (cf. (2.2), (2.6), (2.7) for the definition of

E and D )

min
{
E(α, u) +D(α, αi−1

k ;V i−1
k ) + ε

2τ
‖α− αi−1

k ‖
2
L2 : (α, u) ∈ A (αi−1

k , wik)
}

(3.1)

and we set ζik := g(αik)∇uik and

V ik := V i−1
k +

∣∣ζik − ζi−1
k

∣∣ =

i∑
j=1

∣∣ζjk − ζj−1
k

∣∣ .
The existence of a solution to (3.1) is obtained by employing the direct method of the Calculus of Variations.

Remark 3.1. It is immediate to see that αik is a solution to the problem

min
{
E(α, uik) +D(α, αi−1

k ;V i−1
k ) + ε

2τ
‖α− αi−1

k ‖
2
L2 : α ∈ H1(Ω; [0, 1]), α ≤ αi−1

k

}
, (3.2)

where u = uik is fixed. Notice that αik is also a solution to the problem

min
{
E(α, uik) +D(α, αi−1

k ;V i−1
k ) + ε

2τ
‖α− αi−1

k ‖
2
L2 : α ∈ H1(Ω;R), α ≤ αi−1

k

}
, (3.3)

where also competitors α with negative values are taken into account. Indeed, let us fix a competitor for the
problem (3.3), namely α ∈ H1(Ω;R) with α ≤ αi−1

k and let us set α+ := max{α, 0} . We employ the fact that

α+ is a competitor for (3.2), the assumption (2.1), and the fact that αi−1
k ≥ 0 to obtain

E(αik, u
i
k) +D(αik, α

i−1
k ;V i−1

k ) + ε
2τ
‖αik − αi−1

k ‖
2
L2

≤ E(α+, uik) +D(α+, αi−1
k ;V i−1

k ) + ε
2τ
‖α+ − αi−1

k ‖
2
L2

≤ E(α, uik) +D(α, αi−1
k ;V i−1

k ) + ε
2τ
‖α− αi−1

k ‖
2
L2 .

This proves the equivalence between (3.2) and (3.3).

We define the upper and lower piecewise constant interpolations by

tk(t) := tik , αk(t) := αik , uk(t) := uik , ζk(t) := ζik , wk(t) := wik ,

tk(t) := ti−1
k , αk(t) := αi−1

k , uk(t) := ui−1
k , ζ

k
(t) := ζi−1

k , wk(t) := wi−1
k ,

and

V k(t) := V i−1
k for t ∈ (ti−1

k , tik] ,

for i = 1, . . . , k and αk(0) := α0 , uk(0) := u0 , V k(0) := V0 = 0, while tk(T ) := T , αk(T ) := αkk , uk(T ) := ukk .
Moreover, we consider the piecewise affine interpolations defined by

αk(t) := αi−1
k + (t− ti−1

k )α̇ik ,

uk(t) := ui−1
k + (t− ti−1

k )u̇ik ,

ζk(t) := ζi−1
k + (t− ti−1

k )ζ̇ik , for t ∈ [ti−1
k , tik] ,

for i = 1, . . . , k , where

α̇ik :=
αi
k−α

i−1
k

τ
, u̇ik :=

ui
k−u

i−1
k

τ
, ζ̇ik :=

ζik−ζ
i−1
k
τ

,

and define wk as the affine interpolation in time of w . We set also

Vk(t) := V k(t) +
t− tk(t)

τ

∣∣ζk(t)− ζk(tk(t))
∣∣ . (3.4)

It is not difficult to verify that Proposition A.4 yields

Vk(t) =

∫ t

0

∣∣ζ̇k(s)
∣∣ ds (3.5)

in the sense of Bochner integral in L2(Ω).
Note that in the above definitions we dropped the dependence on ε for notation simplicity.
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A priori bounds on discrete-time evolutions. We start the analysis of the discrete evolutions by deducing
higher integrability properties of the strain. Following the idea of previous papers (see, e.g., [23]), we apply a
result proved in [21, Theorem 1] (see also [22, Theorem 1.1] for an extension to the case of elliptic systems with
the symmetric gradient in place of ∇u) regarding the integrability of solutions to elliptic systems with measurable
coefficients and with mixed boundary conditions.

Remark 3.2. By [21, Theorem 1], there exist a constant C > 0 and p̃ > 2 depending on ‖µ‖L∞ such that the

following property is satisfied: for every α ∈ H1(Ω; [0, 1]) , for every p ∈ [2, p̃ ] , and for every ` ∈ W−1,p
∂DΩ (Ω), the

weak solution v ∈W 1,p(Ω) to the problem{
div
(
µ(α)∇v

)
= ` in Ω ,

v = 0 on ∂DΩ

satisfies

‖v‖W1,p ≤ C‖`‖
W
−1,p
∂DΩ

.

In the following lemma we apply the regularity given by Remark 3.2 to deduce higher integrability of ∇uk(t)
and to control the increments of the displacement u with the increments of the damage variable α .

Lemma 3.3 (Higher integrability of the strain). There exist p̃ > 2 (depending only on ‖µ‖L∞ ) and a constant
C > 0 (depending only on ‖µ‖L∞ , ‖µ′‖L∞ , and ‖w‖L∞(0,T ;W1,p̃(Ω)) ) such that

‖uk(t)‖W1,p̃ + ‖uk(t)‖W1,p̃ + ‖uk(t)‖W1,p̃ ≤ C , for t ∈ [0, T ] (3.6a)

‖u̇k(t)‖W1,p ≤ C
[
‖α̇k(t)‖Lq + ‖ẇk(t)‖W1,p̃

]
, for t ∈ [0, T ] \ {t0k, . . . , tkk} , (3.6b)

for every p ∈ [2, p̃ ) , where q = pp̃
p̃−p .

Proof. Let p̃ > 2 be the exponent given in Remark 3.2. To prove (3.6a), let us fix t ∈ (ti−1
k , tik] for i ∈ {1, . . . , k}

(notice that the inequality is trivial for t = 0). By (3.1), the function uik minimises E(αik, u) among all u ∈ H1(Ω)
with u = wik on ∂DΩ. Therefore uik is a weak solution to the problem{

div
(
µ(αik)∇uik

)
= 0 in Ω ,

uik = wik on ∂DΩ .
(3.7)

By Remark 3.2, we have that

‖uik − wik‖W1,p̃ ≤ C
∥∥div

(
µ(αik)∇wik

)∥∥
W
−1,p̃
∂DΩ

≤ C‖µ‖L∞‖wik‖W1,p̃ ,

which implies (3.6a) (recall the definition of uk , uk , uk in terms of the family of uik ).

To prove (3.6b), let us fix p ∈ [2, p̃ ) and t ∈ (ti−1
k , tik) for t ∈ {1, . . . , k} . By (3.7) for i and i− 1 we get that

the function v := uik − ui−1
k − wik + wi−1

k is a weak solution to the problem{
div
(
µ(αi−1

k )∇v
)

= ` in Ω ,

v = 0 on ∂DΩ ,
(3.8)

where ` := div
(
(µ(αi−1

k )− µ(αik))∇uik
)
− div

(
µ(αi−1

k )(∇wik −∇wi−1
k )

)
. Notice that ` ∈W−1,p

∂DΩ (Ω) by (3.6a). By
Remark 3.2 and by Hölder’s inequality we deduce that

‖v‖W1,p ≤ C‖`‖
W
−1,p
∂DΩ

≤ C
[
‖(µ(αi−1

k )− µ(αik))∇uik‖Lp + ‖µ(αi−1
k )(∇wik −∇wi−1

k )‖Lp

]
≤ C

[
‖µ′‖L∞‖αik − αi−1

k ‖Lq‖∇uik‖Lp̃ + ‖µ‖L∞‖wik − wi−1
k ‖W1,p̃

]
,

since 1
q

= 1
p
− 1

p̃
. By (3.6a) and dividing by τ we conclude that

‖u̇ik‖W1,p ≤ C
[
‖α̇ik‖Lq + ‖ẇik‖W1,p̃

]
,

hence the thesis. �

We are now in a position to derive the Euler conditions satisfied by the damage variable in the discrete
evolutions. These conditions are also called Discrete Kuhn-Tucker conditions, since we have a constraint of
unidirectionality on the damage variable. They are a fundamental ingredient to deduce the a priori bounds in
Proposition 3.5.
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Lemma 3.4 (Euler equations). For every t ∈ [0, T ] \ {t0k, . . . , tkk} we have

〈∂αE(αk(t), uk(t)), β〉+R(β;V k(t)) + ε〈α̇k(t), β〉L2 ≥ 0 . (3.9)

for every β ∈ H1(Ω) such that β ≤ 0 a.e. in Ω . Moreover

〈∂αE(αk(t), uk(t)), α̇k(t)〉+R(α̇k(t);V k(t)) + ε‖α̇k(t)‖2L2 = 0 . (3.10)

Proof. Let us fix t ∈ (ti−1
k , tik) for some i ∈ {1, . . . , k} . Let β ∈ H1(Ω) with β ≤ 0 a.e. in Ω and let δ > 0.

Since αik solves (3.3) and αik + δβ ≤ αi−1
k , we get

0 ≤ E(αik + δβ, uik) +D(αik + δβ, αi−1
k ;V i−1

k ) + ε
2τ
‖αik + δβ − αi−1

k ‖
2
L2+

− E(αik, u
i
k)−D(αik, α

i−1
k ;V i−1

k )− ε
2τ
‖αik − αi−1

k ‖
2
L2

Dividing by δ and letting δ → 0+ , by (2.3) we get

1

2

∫
Ω

µ′(αik)
∣∣∇uik∣∣2β dx+

∫
Ω

∇αik · ∇β dx−
∫
Ω

f(V i−1
k )β dx+ ε

∫
Ω

α̇ik β dx ≥ 0 .

This concludes the proof of (3.9).
To prove (3.10), notice that αik − δα̇ik ≤ αi−1

k for 0 < δ < τ . Since αik solves (3.3) we get that

0 ≤ E(αik − δα̇ik, uik) +D(αik − δα̇ik, αi−1
k ;V i−1

k ) + ε
2τ
‖αik − δα̇ik − αi−1

k ‖
2
L2+

− E(αik, u
i
k)−D(αik, α

i−1
k ;V i−1

k )− ε
2τ
‖αik − αi−1

k ‖
2
L2 .

Dividing by δ and letting δ → 0+ , by (2.3) this implies (3.10). �

The following proposition ensures that the evolution of α and u is H1 in time uniformly in k for fixed ε , and
AC in time uniformly in k and ε , with values in the target spaces H1(Ω) and W 1,p(Ω).

Proposition 3.5 (A priori bounds). Let p̃ be as in Lemma 3.3. There exists a positive constant C independent
of ε , k , and t such that for every ε > 0 , k ∈ N , t ∈ [0, T ] \ {t0k, . . . , tkk} , p < p̃ , it holds that

ε‖α̇k(t)‖L2 ≤ C exp
(
C τk(t)

ε

)
, (3.11)

ε

∫ τk(t)

0

‖α̇k(s)‖2H1 ds+ ε

∫ τk(t)

0

‖u̇k(s)‖2W1,p ds ≤ C exp
(
C τk(t)

ε

)
, (3.12)∫ T

0

‖α̇k(s)‖H1 ds+

∫ T

0

‖u̇k(s)‖W1,p ds ≤ C . (3.13)

Proof. We only need to show the estimates on αk(t) , since the estimates on uk(t) simply follow from (3.6b).
We start with computations which are common in the proofs of all the three inequalities in the statement.

The starting point is to obtain an estimate on the time increments of α̇k(t) by testing the Euler equations at
two subsequent times of the time discretisation. To do so, we fix i ∈ {2, . . . , k} . The case i = 1 requires slightly
different arguments. By (3.10) evaluated at a time t ∈ (ti−1

k , tik) we get that

〈∂αE(αik, u
i
k), α̇ik〉+R(α̇ik;V i−1

k ) + ε‖α̇ik‖2L2 = 0 .

On the other hand, by testing (3.9) with β = α̇ik at a time t ∈ (ti−2
k , ti−1

k ) , we get

〈∂αE(αi−1
k , ui−1

k ), α̇ik〉+R(α̇ik;V i−2
k ) + ε〈α̇i−1

k , α̇ik〉L2 ≥ 0 .

Subtracting the second inequality from the first one, we infer that

〈∂αE(αik, u
i
k)− ∂αE(αi−1

k , ui−1
k ), α̇ik〉+R(α̇ik;V i−1

k )−R(α̇ik;V i−2
k ) + ε〈α̇ik − α̇i−1

k , α̇ik〉L2 ≤ 0 ,
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namely,

ε〈α̇ik − α̇i−1
k , α̇ik〉2L2 +

∫
Ω

(
∇αik −∇αi−1

k

)
· ∇α̇ik dx

≤ 1

2

∫
Ω

[
µ′(αi−1

k )
∣∣∇ui−1

k

∣∣2 − µ′(αik)
∣∣∇uik∣∣2]α̇ik dx+

∫
Ω

[
f(V i−1

k )− f(V i−2
k )

]
α̇ik dx

≤ 1

2

∫
Ω

µ′(αi−1
k )

[∣∣∇ui−1
k

∣∣2 − ∣∣∇uik∣∣2]α̇ik dx+
1

2

∫
Ω

[
µ′(αi−1

k )− µ′(αik)
]∣∣∇uik∣∣2α̇ik dx

+ ‖f ′‖L∞
∫
Ω

∣∣V i−1
k − V i−2

k

∣∣|α̇ik| dx
≤ 1

2
‖µ′‖L∞

∫
Ω

∣∣∇uik +∇uik
∣∣∣∣∇uik −∇ui−1

k

∣∣|α̇ik| dx+
1

2
‖µ′′‖L∞

∫
Ω

|αik − αi−1
k |

∣∣∇uik∣∣2|α̇ik|dx
+ ‖f ′‖L∞

∫
Ω

∣∣ζi−1
k − ζi−2

k

∣∣|α̇ik|dx
≤ Cτ

[ ∥∥∇uik +∇ui−1
k

∥∥
L2

∥∥∇u̇ik∥∥Lp‖α̇
i
k‖Lq1 +

∥∥∇uik∥∥2

Lp‖α̇
i
k‖2Lq1

+
∥∥∇ui−1

k

∥∥
Lp‖α̇

i−1
k ‖Lq1 ‖α̇ik‖Lq1 +

∥∥∇u̇i−1
k

∥∥
Lp‖α̇

i
k‖Lq1

]
.

(3.14)

In the last inequality we have chosen p ∈ (2, p̃ ) and q1 ∈ (2,∞) such that 1
p

+ 1
q1

= 1
2

, and we have employed

the identity

ζi−1
k − ζi−2

k = [g(αi−1
k )− g(αi−2

k )]∇ui−1
k + g(αi−2

k )[∇ui−1
k −∇ui−2

k ]

that gives∫
Ω

∣∣ζi−1
k − ζi−2

k

∣∣|α̇ik|dx ≤ τ(‖g′‖L∞∥∥∇ui−1
k

∥∥
Lp‖α̇

i−1
k ‖Lq1 ‖α̇ik‖Lq1 + ‖g‖L∞

∥∥∇u̇i−1
k

∥∥
Lp‖α̇

i
k‖Lq1

)
. (3.15)

We remark that, taking ζik := g(αik)|∇uik|θ , with θ ∈ [1, p) we could also get the conclusion in (3.14) with q′1 ≥ q1
such that θ

p
+ 1

q′1
= 1

2
, in place of q1 . Indeed

ζi−1
k − ζi−2

k = [g(αi−1
k )− g(αi−2

k )] |∇ui−1
k |

θ + g(αi−2
k )[|∇ui−1

k |
θ − |∇ui−2

k |
θ] ,

and since, by the Mean Value Theorem,∣∣|∇ui−1
k |

θ − |∇ui−2
k |

θ
∣∣ ≤ θ(|∇ui−1

k |+ |∇u
i−2
k |)

θ−1(|∇ui−1
k | − |∇u

i−2
k |

)
,

we have that∫
Ω

|ζi−1
k − ζi−2

k ||α̇ik| dx ≤ τ
(
‖g′‖L∞

∥∥∇ui−1
k

∥∥
Lp‖α̇

i−1
k ‖Lq′1

‖α̇ik‖Lq′1

+ ‖g‖L∞θ
(
‖∇ui−1

k ‖Lp + ‖∇ui−2
k ‖Lp‖

)∥∥∇u̇i−1
k

∥∥
Lp‖α̇

i
k‖Lq′1

)
.

(3.16)

Using the fact that 〈α̇ik − α̇i−1
k , α̇ik〉L2 ≥ ‖α̇ik‖L2

(
‖α̇ik‖L2 − ‖α̇i−1

k ‖L2

)
and by Lemma 3.3 we infer that

ε‖α̇ik‖L2

(
‖α̇ik‖L2 − ‖α̇i−1

k ‖L2

)
+ τ‖∇α̇ik‖2L2

≤ Cτ
[
‖α̇ik‖Lq1 ‖α̇ik‖Lq2 + ‖α̇ik‖2Lq1 + ‖α̇ik‖Lq1 ‖α̇i−1

k ‖Lq2 + ‖α̇ik‖Lq1

(
‖ẇik‖W1,p̃ + ‖ẇi−1

k ‖W1,p̃

)]
≤ c1τ

[
‖α̇ik‖2Lr + ‖α̇ik‖Lr‖α̇i−1

k ‖Lr + ‖ẇik‖2W1,p̃ + ‖ẇi−1
k ‖2W1,p̃

]
,

(3.17)

where q2 := pp̃
p̃−p ∈ (2,∞) and r = max{q′1, q2} ∈ (2,∞) . We labelled the constant in the last inequality with c1

in order to keep track of it in the sequel. By the compact embedding H1(Ω) b Lr(Ω) (notice that Ω ⊂ R2 ), we
have that for every δ > 0 there exists a constant Cδ > 0 such that for every β ∈ H1(Ω)

‖β‖2Lr ≤ δ‖∇β‖2L2 + Cδ‖β‖2L1 ≤ δ‖∇β‖2L2 + Cδ‖β‖L1‖β‖L2 . (3.18)
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Adding c1 τ‖α̇ik‖2Lr and τ
2
‖α̇ik‖2L2 to both sides of (3.17), choosing δ suitably small in the previous inequality,

and multiplying by 2τ
ε

we have that

2‖α̇ik‖L2

(
‖α̇ik‖L2 − ‖α̇i−1

k ‖L2

)
+ 2c1

τ
ε
‖α̇ik‖Lr

(
‖α̇ik‖Lr − ‖α̇i−1

k ‖Lr

)
+ τ

ε
‖α̇ik‖2H1

≤ c2 τε
(
‖ẇik‖2W1,p̃ + ‖ẇi−1

k ‖2W1,p̃

)
+ 2c2

τ
ε
‖α̇ik‖L1‖α̇ik‖L2 .

(3.19)

Let us set

Ai :=
[
‖α̇ik‖2L2 + c1

τ
ε
‖α̇ik‖2Lr

]1
2
, Bi :=

√
τ
2ε
‖α̇ik‖H1 ,

Ci :=
√
c2
τ
ε

[
‖ẇik‖2W1,p̃ + ‖ẇi−1

k ‖2W1,p̃

]1
2
, Di := c2

τ
ε
‖α̇ik‖L1 .

The quantities above are actually defined for every i = 1, . . . , k . When i = 1, we define C1 :=
√
c2
τ
ε
‖ẇik‖W1,p̃ .

Denoting by ai :=
(
‖α̇ik‖L2 ,

√
c1
τ
ε
‖α̇ik‖Lr

)
, we get that

‖α̇ik‖L2

(
‖α̇ik‖L2 − ‖α̇i−1

k ‖L2

)
+ c1

τ
ε
‖α̇ik‖Lr

(
‖α̇ik‖Lr − ‖α̇i−1

k ‖Lr

)
= ai · (ai − ai−1)

≥ |ai|
(
|ai| − |ai−1|) = Ai(Ai −Ai−1) .

(3.20)

Since τ ≤ ε we have that

τ
2ε
‖α̇ik‖2H1 = τ

4ε
‖α̇ik‖2H1 + τ

4ε
‖α̇ik‖2H1 ≥ τ

4ε
‖α̇ik‖2L2 + Cτ

4ε
‖α̇ik‖2Lr ≥ τ

4ε
‖α̇ik‖2L2 + Cτ2

4ε2
‖α̇ik‖2Lr

≥ Cτ
ε

[
‖α̇ik‖2L2 + c1

τ
ε
‖α̇ik‖2Lr

]
= 2c3

τ
ε
A2
i .

(3.21)

Collecting (3.19)–(3.21) and setting γ := c3
τ
ε

, we obtain that

2Ai(Ai −Ai−1) + 2γA2
i +B2

i ≤ C2
i + 2AiDi , (3.22)

for every i = 2, . . . , k .
Proof of estimate (3.11). Here we prove a slightly stronger inequality with an additional term on the left-hand

side. Specifically, we show that

ε
[
‖α̇k(t)‖2L2 + c1

τ
ε
‖α̇k(t)‖Lr

]
≤ C exp

(
C
ε
τk(t)

)
. (3.23)

By the inequalities 2Ai(Ai −Ai−1) ≥ A2
i −A2

i−1 and Di ≤ C τ
ε
Ai , from (3.22) we get in particular that

A2
i −A2

i−1 ≤ C2
i + C τ

ε
A2
i ,

for i = 2, . . . , k . We fix h ∈ {2, . . . , k} and we sum the inequality above for i = 2, . . . , h , deducing that

εA2
h − εA2

1 ≤ ε
h∑
i=2

C2
i + C

h∑
i=2

τA2
i . (3.24)

We claim that

εA2
1 ≤ C

[
εC2

1 + τA2
1 + 1

ε

]
. (3.25)

Once (3.25) is proven, summing (3.24) and (3.25), by the initial assumption on w (2.8) we conclude that

εA2
h ≤ C

[
1
ε

+
h∑
i=1

τ
(
‖ẇik‖2W1,p̃ + ‖ẇi−1

k ‖2W1,p̃

)
+

h∑
i=1

τA2
i

]
≤ C

[
1 + 1

ε
+

h∑
i=1

τA2
i

]
(3.26)

for every h = 1, . . . , k . By a discrete Gronwall inequality on εA2
h we deduce that

εA2
h ≤ C

(
1 + 1

ε

)
exp

(
C
thk
ε

)
(3.27)

for every h = 1, . . . , k . Multiplying by ε and taking the square root, we get

εAh ≤ C exp
(
C
thk
ε

)
(3.28)

and thus (3.23).
It remains to prove (3.25). Adding and subtracting ∂αE(α0, u0) to (3.10) evaluated at time t ∈ (0, t1k) , we

deduce that

〈∂αE(α1
k, u

1
k)− ∂αE(α0, u0), α̇1

k〉+R(α̇1
k, V0) + 〈∂αE(α0, u0), α̇1

k〉+ ε‖α̇1
k‖2L2 = 0 .
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With computations similar to those previously done in (3.14)–(3.17) and using the assumption ∂αE(α0, u0) ∈
L2(Ω), we infer that

ε‖α̇1
k‖2L2 + τ‖∇α̇1

k‖2L2 ≤ Cτ
[∥∥∇u1

k +∇u0‖L2

∥∥∇u̇1
k‖Lp‖α̇1

k‖Lq1 +
∥∥∇u1

k

∥∥2

Lp‖α̇
1
k‖2Lq1

]
+ ‖f‖L∞‖α̇1

k‖L1 + ‖∂αE(α0, u0)‖L2‖α̇1
k‖L2

≤ Cτ
[
‖ẇ1

k‖2W1,p̃ + ‖α̇1
k‖2Lr

]
+ ε

2
‖α̇1

k‖2L2 + C
ε
.

Using inequality (3.18) as above, it is not difficult to see that

ε‖α̇1
k‖2L2 + τ‖α̇1

k‖2H1 ≤ Cτ
[
‖ẇ1

k‖2W1,p̃ + ‖α̇1
k‖2L1 + 1

ε

]
, (3.29)

which in turn implies (3.25).
Proof of estimate (3.12). Inequality (3.22) implies in particular that

εB2
i ≤ εC2

i + CτA2
i (3.30)

for i = 2, . . . , k . From (3.29) we deduce that

εB2
1 ≤ C

[
εC2

1 + τA2
1 + 1

ε

]
(3.31)

Let us fix h ∈ {1, . . . , k} . Summing (3.30) for i = 2, . . . , h and (3.31), by (2.8) we obtain that

ε

h∑
i=1

B2
i ≤ C

[
1
ε

+

h∑
i=1

τ
(
‖ẇik‖2W1,p̃ + ‖ẇi−1

k ‖2W1,p̃

)
+

h∑
i=1

τA2
i

]
≤ C

[
1 + 1

ε
+

h∑
i=1

τA2
i

]
and thus, multiplying by ε and using (3.27),

ε

h∑
i=1

τ‖α̇ik‖2H1 ≤ C exp
(
C
thk
ε

)
.

In the equality above we have integrated the exponential function in time and we have used the fact that τ << ε .
This concludes the proof of (3.12).

Proof of estimate (3.13). By the discrete Gronwall estimate proved in [23, Lemma 4.1] we deduce that for

every h = 2, . . . , k( h∑
i=2

(1 + γ)2(i−h)−1B2
i

)1
2 ≤

(
(1 + γ)−2hA2

1 +

h∑
i=2

(1 + γ)2(i−h)−1C2
i

)1
2

+
√

2

h∑
i=2

(1 + γ)i−k−1Di

≤
[
2(1 + γ)−2hA2

1 + 2

h∑
i=2

(1 + γ)2(i−h)−1C2
i + 4

( h∑
i=2

(1 + γ)i−k−1Di
)2]1

2

≤
√

2(1 + γ)−hA1 + 2

h∑
i=2

(1 + γ)2(i−h)−1C2
i + 1 + 2

h∑
i=2

(1 + γ)i−k−1Di

(3.32)

Using the estimate

γ

h∑
i=2

(1 + γ)2(i−h)−1 ≤ 1
c3
,

by the Cauchy-Schwarz inequality we estimate the left-hand side of (3.32) by

γ

h∑
i=2

(1 + γ)2(i−h)−1‖α̇ik‖H1 ≤ C
( h∑
i=2

(1 + γ)2(i−h)−1B2
i

)1
2
,

for h = 2, . . . , k . Hence (3.32) reads

γ
h∑
i=2

(1 + γ)2(i−h)−1‖α̇ik‖H1

≤ C
[
1 + (1 + γ)−hA1 + γ

h∑
i=2

(1 + γ)2(i−h)−1(‖ẇik‖2W1,p̃ + ‖ẇi−1
k ‖2W1,p̃

)
+ γ

h∑
i=2

(1 + γ)i−k−1‖α̇ik‖L1

]
,

(3.33)

for h = 2, . . . , k . We multiply both sides of (3.33) by τ and we sum over h = 2, . . . , k . Using the expression of
the partial sums of the geometric series, it is possible to show that

k∑
i=2

τ‖α̇ik‖H1 ≤ C
[
1 + εA1 +

k∑
i=2

τ
(
‖ẇik‖2W1,p̃ + ‖ẇi−1

k ‖2W1,p̃

)
+

k∑
i=2

τ‖α̇ik‖L1

]
. (3.34)
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We refer to [23, Proposition 4.3] or [9, Proposition 3.8] for more details about the computations mentioned above.
Multiplying (3.29) by τ , taking the square root and using the fact that τ << ε , we infer that

τ‖α̇1
k‖H1 ≤ Cτ

[
‖ẇ1

k‖W1,p̃ + ‖α̇1
k‖L1 + 1

]
.

Adding this last inequality to (3.34) we obtain that

k∑
i=1

τ‖α̇ik‖H1 ≤ C
[
1 + εA1 +

k∑
i=1

τ
(
‖ẇik‖2W1,p̃ + ‖ẇi−1

k ‖2W1,p̃

)
+

k∑
i=1

τ‖α̇ik‖L1

]
.

To conclude the proof of (3.13), we observe that: εA1 ≤ C by (3.28) evaluated for h = 1; the second sum is
bounded by a constant by the initial assumption on w (2.8); the third sum is actually a telescopic sum, namely

k∑
i=1

τ‖α̇ik‖L1 =

∫
Ω

(
α0 − αkk

)
dx ≤ |Ω| .

�

In order to obtain the energy dissipation balance for the evolution (αk, uk) , in Proposition 3.7, we integrate
in time the energy evaluated on these affine interpolations. We are allowed to do so because they are absolutely
continuous (actually H1 ) in time. Since we also employ the Euler equation (3.10) of Lemma 3.4, that contains
also the piecewise constant interpolations, we have to estimate the difference of the piecewise affine and constant
interpolations. This is done in the following remark.

Remark 3.6. For every t ∈ [0, T ]

‖αk(t)− αk(t)‖H1 =
∥∥∥∫ tk(t)

t

α̇k(s) ds
∥∥∥
H1
≤
∫ tk(t)

t

‖α̇k(s)‖H1 ds ≤ τ
1
2 ‖αk‖H1(0,T ;H1(Ω))

and therefore, by (3.12),

‖αk − αk‖L∞(0,T ;H1(Ω)) ≤ Cετ
1
2 . (3.35a)

Similarly, we have

‖αk − αk‖L∞(0,T ;H1(Ω)) ≤ Cετ
1
2 , (3.35b)

‖uk − uk‖L∞(0,T ;W1,p(Ω)) ≤ Cετ
1
2 , for p ∈ [2, p̃) , (3.35c)

‖uk − uk‖L∞(0,T ;W1,p(Ω)) ≤ Cετ
1
2 , for p ∈ [2, p̃) . (3.35d)

Discrete energy-dissipation balance. Here we obtain the energy-dissipation balance, by employing the Euler
condition (3.10), correcting with the piecewise affine interpolations in place of the piecewise constant ones.

Proposition 3.7 (Discrete energy-dissipation balance).

E(αk(T ), uk(T )) +

∫ T

0

R(α̇k(t);V k(t)) dt+ ε

∫ T

0

‖α̇k(t)‖2L2 dt

= E(α0, u0) +

∫ T

0

〈µ(αk(t))∇uk(t),∇ẇk(t)〉L2 dt+Rk ,

(3.36)

where Rk → 0 .

Proof. By (3.12)–(3.13), the piecewise affine interpolations αk(t) and uk(t) are absolutely continuous in t . As a
consequence, t 7→ E(αk(t), uk(t)) is absolutely continuous and

d

dt

[
E(αk(t), uk(t))

]
= 〈∂αE(αk(t), uk(t)), α̇k(t)〉+ 〈∂uE(αk(t), uk(t)), u̇k(t)〉

= 〈∂αE(αk(t), uk(t)), α̇k(t)〉+ 〈∂uE(αk(t), uk(t)), u̇k(t)〉+ ηk(t)
(3.37)

for a.e. t , where

ηk(t) := 〈∂αE(αk(t), uk(t))− ∂αE(αk(t), uk(t)), α̇k(t)〉+ 〈∂uE(αk(t), uk(t))− ∂uE(αk(t), uk(t)), u̇k(t)〉 . (3.38)

Using u̇k(t)− ẇk(t) as test function in (3.7), we deduce that

〈∂uE(αk(t), uk(t)), u̇k(t)〉 = 〈∂uE(αk(t), uk(t)), ẇk(t)〉 = 〈µ(αk(t))∇uk(t),∇ẇk(t)〉L2

Together with the Euler equation for αk(t) (3.10) and (3.37), this gives

d

dt

[
E(αk(t), uk(t))

]
= −ε‖α̇k(t)‖2L2 −R(α̇k(t);V k(t)) + 〈µ(αk(t))∇uk(t),∇ẇk(t)〉L2 + ηk(t) (3.39)

Integrating in time the previous equality, we obtain (3.36) with Rk :=
∫ T

0
ηk(t) dt .
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Let us show that Rk → 0. By Hölder’s Inequality, by (3.35a), by (3.6a), and by (3.13) we deduce that∣∣∣ ∫ T

0

∫
Ω

(
µ′(αk(t))− µ′(αk(t))

)
|∇uk(t)|2α̇k(t) dx dt

∣∣∣ ≤ C ∫ T

0

∫
Ω

|αk(t)− αk(t)||∇uk(t)|2|α̇k(t)| dx dt

≤ C
∫ T

0

‖αk(t)− αk(t)‖H1‖uk(t)‖2W1,p‖α̇k(t)‖H1 dt ≤ Cετ
1
2

Furthermore by Hölder’s Inequality, by (3.6a), by (3.35c), and by (3.13) we infer that∣∣∣ ∫ T

0

∫
Ω

µ′(αk(t))
(
|∇uk(t)|2 − |∇uk(t)|2

)
α̇k(t) dx dt

∣∣∣ ≤ C ∫ T

0

∫
Ω

|∇uk(t) +∇uk(t)| |∇uk(t)−∇uk(t)| |α̇k(t)| dx dt

≤ C
∫ T

0

‖uk(t) + uk(t)‖W1,p‖uk(t)− uk(t)‖W1,p‖α̇k(t)‖H1 dt ≤ Cετ
1
2 .

Finally, by (3.35a) and (3.13) we get that∣∣∣ ∫ T

0

∫
Ω

(
∇αk(t)−∇αk(t)

)
· ∇α̇k(t) dx dt

∣∣∣ ≤ ∫ T

0

‖αk(t)− αk(t)‖H1‖α̇k(t)‖H1 dt ≤ Cετ
1
2 .

This shows that

lim
k→+∞

∫ T

0

〈∂αE(αk(t), uk(t))− ∂αE(αk(t), uk(t)), α̇k(t)〉 dt = 0 .

With completely analogous computations it is not difficult to show that

lim
k→+∞

∫ T

0

〈∂uE(αk(t), uk(t))− ∂uE(αk(t), uk(t)), u̇k(t)〉 dt = 0 .

This concludes the proof. �

We observe that the energy balance (3.36) holds for any couple of times t1 < t2 ∈ [0, T ] , as one can see arguing
as in Proposition 3.7 and integrating (3.39) in the time interval (t1, t2) .

4. Existence of viscous evolutions

In this section we pass to the limit as k → +∞ (i.e., as the time-step goes to zero). Notice that ε > 0
is fixed in this section. The main result is the existence of viscous evolutions, defined as follows. Given αε ∈
AC([0, T ];H1(Ω)) , uε ∈ AC([0, T ];H1(Ω)) we define, as in (2.4), ζε := g(αε)∇uε and, as in (2.5),

Vε(t) :=

∫ t

0

∣∣ζ̇ε(s)∣∣ ds , (4.1)

as a Bochner integral in L2(Ω). During the section we are in the constitutive assumptions of Section 2.

Definition 4.1. We say that a function (αε, uε) : [0, T ]→ H1(Ω)×W 1,p(Ω) is an ε -approximate viscous evolution
if αε ∈ H1(0, T ;H1(Ω)) , uε ∈ H1(0, T ;W 1,p(Ω)) and the following conditions are satisfied:

(ev0)ε irreversibility :

[0, T ] 3 t 7→ αε(t) is nonincreasing as a family of measurable functions on Ω ;

(ev1)ε equilibrium: for every t ∈ [0, T ] , αε(t) and uε(t) solve the (distributional) problem{
div
(
µ(αε(t))∇uε(t)

)
= 0 in Ω ,

uε(t) = w(t) on ∂DΩ .
(4.2)

(ev2)ε Kuhn-Tucker inequality : for a.e. t ∈ [0, T ] and for every β ∈ H1(Ω) with β ≤ 0 a.e. in Ω we have

〈∂αE(αε(t), uε(t)), β〉+R(β;Vε(t)) + ε〈α̇ε(t), β〉L2 ≥ 0 . (4.3)

(ev3)ε energy balance:

E(αε(T ), uε(T )) +

∫ T

0

R(α̇ε(t);Vε(t)) dt+ ε

∫ T

0

‖α̇ε(t)‖2L2 dt = E(α0, u0) +

∫ T

0

〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 dt .

All the section is devoted to the proof of the result below.

Theorem 4.2. Let p̃ > 2 be given by Lemma 3.3. For every ε > 0 and p < p̃ there exists an ε -approximate
viscous evolution with (αε(0), uε(0)) = (α0, u0) and there is a constant C > 0 , indipendent of ε , such that∫ T

0

‖α̇ε(s)‖H1 ds+

∫ T

0

‖u̇ε(s)‖W1,p ds ≤ C . (4.4)
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The strategy of the proof consists in showing first the existence of a weak form of ε -approximate viscous
evolution. This satisfies the conditions (ev0)ε , (ev1)ε , and the (ev2)ε , (ev3)ε with a different expression of
dissipation (Propositions 4.7, 4.8, and 4.10). Such a weak existence result allows us to improve, for fixed ε , the a
priori convergences of the discrete-time evolutions (Proposition 4.11) and to express the dissipation in terms of
Vε(t) , the cumulation of ζε (cf. (4.1)), so recovering its form in Definition 4.1, by Lemma 4.4.

Compactness. We start by exploiting the a priori bounds found in Proposition 3.5 to deduce compactness of
the discrete-time evolutions. By (3.12) we find a subsequence (which we do not relabel) such that

αk ⇀ αε weakly in H1(0, T ;H1(Ω)) , (4.5)

uk ⇀ uε weakly in H1(0, T ;W 1,p(Ω)) , for p ∈ [2, p̃ ) , (4.6)

as k → +∞ . (Actually, we also extract a subsequence independent of t such that the convergence in (4.20)
below holds. We do not state this here for the sake of clarity in the presentation.) By the compact embeddings
H1(Ω) b Lq(Ω) and W 1,p(Ω) b Lp(Ω), by the Aubin-Lions lemma [6], and by (3.35) we deduce that

‖αk − αε‖C([0,T ];Lq(Ω)), ‖αk − αε‖L∞(0,T ;Lq(Ω)), ‖αk − αε‖L∞(0,T ;Lq(Ω)) → 0 , for q ∈ [1,∞) , (4.7a)

‖uk − uε‖C([0,T ];Lp(Ω)), ‖uk − uε‖L∞(0,T ;Lp(Ω)), ‖uk − uε‖L∞(0,T ;Lp(Ω)) → 0 , for p ∈ [2, p̃ ) . (4.7b)

Moreover, from the inequality ‖αk‖L∞(0,T ;H1(Ω)) ≤ C
(
1+‖αk‖W1,1(0,T ;H1(Ω))

)
and by (3.6a) and (3.35a)–(3.35d)

we deduce that for every t ∈ [0, T ] we also have

αk(t) , αk(t) , αk(t) ⇀ αε(t) weakly in H1(Ω) , (4.8)

uk(t) , uk(t) , uk(t) ⇀ uε(t) weakly in W 1,p̃(Ω) . (4.9)

In particular, for every t ∈ [0, T ] we have

‖uε(t)‖W1,p̃ ≤ lim inf
k→+∞

‖uk(t)‖W1,p̃ ≤ C . (4.10)

In view of the convergences (4.5), (4.6), by (3.13) we get∫ T

0

‖α̇ε(s)‖H1 ds+

∫ T

0

‖u̇ε(s)‖W1,p ds ≤ C , (4.11)

and then Vε is well defined in (4.1).

Energy-dissipation balance and stability. In this subsection we pass to the limit as k → +∞ in the discrete
energy-dissipation balance (3.36). We start by discussing the easiest terms in the energy-dissipation balance,
namely the terms involving the energy, the viscous dissipation, and the work done by the boundary forces. The
dissipation involving the fatigue term requires finer techniques and will be discussed below.

From the pointwise convergences (4.8)–(4.9) and the lower semicontinuity of the energy E with respect to the
weak convergence of α in H1(Ω) and the weak convergence of u in W 1,p(Ω) we deduce that

E(αε(T ), uε(T )) ≤ lim inf
k→+∞

E(αk(T ), uk(T )) . (4.12)

Moreover, since α̇k ⇀ α̇ε weakly in L2(0, T ;L2(Ω)) , we have that

ε

∫ T

0

‖α̇ε(t)‖2L2 dt ≤ lim inf
k→+∞

(
ε

∫ T

0

‖α̇k(t)‖2L2 dt
)
. (4.13)

We claim that

lim
k→+∞

∫ T

0

〈µ(αk(t))∇uk(t),∇ẇk(t)〉L2 dt =

∫ T

0

〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 dt . (4.14)

To show the convergence above, first of all we notice that µ(αk(t))∇uk(t) ⇀ µ(αε(t))∇uε(t) weakly in L2(Ω;R2)
for every t ∈ [0, T ] thanks to (4.8)–(4.9). In addition, (3.6a) and assumption (2.8) imply∣∣〈µ(αk(t))∇uk(t),∇ẇk(t)〉L2

∣∣ ≤ C ∫ T

0

‖uk(t)‖H1‖ẇk(t)‖H1 dt ≤ C .

Since ∇ẇk(t) → ∇ẇ(t) strongly in L2(Ω;R2) for a.e. t ∈ [0, T ] , by the Dominated Convergence Theorem the
convergence in (4.14) holds true.

We consider now the limit of the dissipation involving the fatigue term. We start with the following lemma,
which shows that the affine interpolation of the cumulation is close to the piecewise constant interpolation.

Lemma 4.3. For every k ∈ N , ε > 0 we have that

‖f(Vk)− f(V k)‖L2(0,T ;L2(Ω)) ≤ Cτ
(
‖αk‖H1(0,T ;L2(Ω)) + ‖uk‖H1(0,T ;H1(Ω))

)
≤ Cε τ . (4.15)
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Proof. By (3.4) and (3.6a) we have

Vk(t)− V k(t) =
t− tk(t)

τ

([
g(αk(t))− g(αk(t))

]
∇uk(t) + g(αk(t))

[
∇uk(t)−∇uk(t)

])
,

so that

|Vk(t)− V k(t)| ≤ τ
(
‖g′‖L∞ |α̇k(t)||∇uk(t)|+ |g(αk(t))||∇u̇k(t)|

)
≤ Cτ

(
|α̇k(t)|+ |∇u̇k(t)|

)
.

Thus for any β ∈ L2(0, T ;L2(Ω)) (recall that f is Lipschitz)∫ T

0

∫
Ω

|f(Vk(t))− f(V k(t))| |β(t)| dx dt ≤ Cτ
∫ T

0

∫
Ω

(
|α̇k(t)|+ |∇u̇k(t)|

)
|β(t)| dx dt

≤ Cτ
∫ T

0

(
‖α̇k(t)‖L2 + ‖u̇k(t)‖H1

)
‖β(t)‖L2 dt

≤ Cτ
(
‖αk‖H1(0,T ;L2(Ω)) + ‖uk‖H1(0,T ;H1(Ω))

)
‖β‖L2(0,T ;L2(Ω)) .

Recalling (3.12), the estimate above gives (4.15). We notice that we arrive at the same conclusion also with ζ
defined by g(α)|∇u|θ , for θ ∈ [1, p̃) , arguing similarly to what done to pass from (3.15) to (3.16) in Proposition 3.5.

�

In the following lemma we show that a strong convergence of the discrete-time evolutions would guarantee the
convergence of the dissipation term. We stress that the a priori bounds on uk(t) found in Proposition 3.5 only
guarantee the weak convergence (4.6). Therefore we are not allowed to apply Lemma 4.4 at the moment.

Lemma 4.4. Assume that the following convergences for αk and uk hold true:

αk → αε strongly in W 1,1(0, T ;L2(Ω)) , (4.16a)

uk → uε strongly in W 1,1(0, T ;W 1,p(Ω)) , for p ∈ [2, p̃) . (4.16b)

Then

f(Vk)→ f(Vε) strongly in L2(0, T ;L2(Ω)) , (4.17)

and

lim
k→+∞

∫ T

0

R(α̇k(t);V k(t)) dt =

∫ T

0

R(α̇ε(t);Vε(t)) dt , (4.18)

where the cumulations Vk and Vε are defined in (3.4) and (4.1), respectively.

Proof. For the proof it is convenient to introduce the function

dg(β, h) :=


g(β + h)− g(β)

h
, if h 6= 0 ,

g′(β) , if h = 0 ,

for every β, h ∈ R . Observe that g(β + h) = g(β) + hdg(β, h) and since g ∈ C1,1(R)

| dg(β, h)− g′(β)| ≤ ‖g′′‖L∞ |h| .

Using the function dg , we can write for every s ∈ [0, T ]

ζ̇k(s) = dg(αk(s), τ α̇k(s))α̇k(s)∇uk(s) + g(αk(s))∇u̇k(s) .
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We now estimate Vk − Vε by employing (3.5) and (4.1). For every t ∈ [0, T ] we have∫
Ω

|Vk(t;x)− Vε(t;x)| dx ≤
∫ t

0

∫
Ω

∣∣ζ̇k(s;x)− ζ̇ε(s;x)
∣∣ dx ds

≤
∫ t

0

∫
Ω

∣∣∣ dg(αk(s), τ α̇k(s)) α̇k(s)∇uk(s) + g(αk(s))∇u̇k(s)− g′(αε(s)) α̇ε(s)∇uε(s)− g(αε(s))∇u̇ε(s)
∣∣∣dxds

≤
∫ t

0

∫
Ω

[
τ‖g′′‖L∞

∣∣α̇k(s)
∣∣2∣∣∇uk(s)

∣∣+ ‖g′′‖L∞
∣∣αk(s)− αε(s)

∣∣∣∣α̇k(s)
∣∣∣∣∇uk(s)

∣∣
+ ‖g′‖L∞

∣∣α̇k(s)− α̇ε(s)
∣∣∣∣∇uk(s)

∣∣+ ‖g′‖L∞
∣∣α̇ε(s)∣∣∣∣∇uk(s)−∇uε(s)

∣∣
+ ‖g′‖L∞

∣∣αk(s)− αε(s)
∣∣∣∣∇u̇k(s)

∣∣+ ‖g‖L∞
∣∣∇u̇k(s)−∇u̇ε(s)

∣∣] dxds

≤ C
(
‖αk − αε‖L∞(0,T ;Lq(Ω))‖αk‖W1,1(0,T ;Lq(Ω)) + ‖αk − αε‖W1,1(0,T ;L2(Ω))

)
‖uk‖L∞(0,T ;W1,p(Ω))

+ C
(
τ + ‖uk − uε‖L∞(0,T ;W1,p(Ω))

)
‖αε‖W1,1(0,T ;Lq(Ω))

+ C‖αk − αε‖L∞(0,T ;Lq(Ω))‖uk‖W1,1(0,T ;W1,p(Ω)) + C‖uk − uε‖W1,1(0,T ;W1,p(Ω)) ,

for q ∈ (2,∞) such that 1
q

+ 1
p
< 1

2
.

Notice that we obtain the above inequality also if ζε = g(αε)|∇uε|θ , with θ ∈ [1, p̃) , up to consider q′ > q
with 1

q′ + θ
p
< 1

2
in the estimates of α , since

d

dt

∣∣∇u∣∣θ = θ|∇u
∣∣θ−2∇u · ∇u̇ .

Let us now integrate in time the inequality obtained above for Vk − Vε : using (3.6), (3.13), (3.35), (4.7),
and (4.16) we deduce that

‖Vk − Vε‖L1(0,T ;L1(Ω)) → 0 ,

and then we get (4.17), since f is bounded.
Moreover, by weak convergence α̇k ⇀ α̇ε in L2(0, T ;L2(Ω))∫ T

0

R(α̇k(t);Vk(t)) dt = −
∫ T

0

∫
Ω

f(Vk(t))α̇k(t) dx dt→ −
∫ T

0

∫
Ω

f(Vε(t))α̇ε(t) dx dt =

∫ T

0

R(α̇ε(t);Vε(t)) dt

and, by (4.15),∣∣∣ ∫ T

0

(
R(α̇k(t);Vk(t))−R(α̇k(t);V k(t))

)
dt
∣∣∣ ≤ ‖f(Vk)− f(V k)‖L2(0,T ;L2(Ω))‖αk‖H1(0,T ;L2(Ω)) ≤ Cετ → 0 ,

as k → +∞ . This concludes the proof. �

Remark 4.5. Combining (4.15) and (4.17) we obtain that if (4.16b) holds, then

f(V k)→ f(Vε) strongly in L2(0, T ;L2(Ω)) . (4.19)

At the moment we do not have convergence (4.16b) at our disposal, and we cannot deduce that the convergence
of the functions f(V k(t)) to f(Vε(t)) . For this reason, in the following lemma we consider an additional variable

f̃ε(t) in the limit evolution, which later in the proof will turn out to be f(Vε(t)) .

Lemma 4.6 (Compactness for the cumulated variable). For every ε > 0 there exist a nonincreasing function

t 7→ f̃ε(t) ∈ L∞(Ω) and a subsequence independent of t (which we do not relabel) such that

f(V k(t))
∗
⇀ f̃ε(t) weakly* in L∞(Ω) , (4.20)

for every t ∈ [0, T ] .

Proof. To prove the lemma we apply the generalized version of the classical Helly Theorem given in [17, Helly
Theorem] in the space Mb(Ω). For every t ∈ [0, T ] , the sequence

(
f(V k(t))

)
k

is equibounded in L∞(Ω), and

thus is relatively compact in Mb(Ω) with respect to the weak* convergence. Moreover, the functions f(V k)
have uniformly bounded variation in Mb(Ω). Indeed, for s ≤ t we have f(V k(t)) ≤ f(V k(s)) and thus, given a
partition 0 = s0 < · · · < sm = T , we get

m∑
j=1

∫
Ω

∣∣f(V k(sj))− f(V k(sj−1))
∣∣ dx =

∫
Ω

f(V k(0))− f(V k(T )) dx ≤ ‖f‖L∞ .
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On the one hand, by [17, Helly Theorem] we deduce that there exists a subsequence independent of t (which
we do not relabel) and a function t 7→ λt ∈Mb(Ω) such that

f(V k(t))L2 Ω
∗
⇀ λt weakly* in Mb(Ω) . (4.21)

On the other hand, for every t ∈ [0, T ] there exists a function f̃ε(t) ∈ L∞(Ω) and a subsequence kj(t) depending
on t such that

f(V kj(t)(t))
∗
⇀ f̃ε(t) weakly* in L∞(Ω) . (4.22)

By (4.21) and (4.22) we conclude that λt = f̃ε(t)L2 Ω and the convergence in (4.22) holds on the whole

subsequence k where (4.21) is satisfied. Notice that f̃ε(t) is nonincreasing in t . �

The first step is to deduce the existence of an evolution where the fatigue term f(Vε(t)) is in fact replaced by the

term f̃ε(t) . We first prove one inequality in the energy-dissipation balance for the continuous-time evolutions. The
opposite inequality will follow automatically from the differential conditions satisfied by αε , see Proposition 4.10
below.

Proposition 4.7 (Energy-dissipation balance in weak form: first inequality). For every ε > 0 we have

E(αε(T ), uε(T ))−
∫ T

0

∫
Ω

f̃ε(t)α̇ε(t) dx dt+ ε

∫ T

0

‖α̇ε(t)‖2L2 dt ≤ E(α0, u0) +

∫ T

0

〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 dt .

(4.23)

Proof. In order to prove (4.23), we write the dissipation with the fatigue term as a supremum of finite sums which
are continuous with respect to the convergence (4.20). Specifically∫ T

0

R(α̇k(t);V k(t)) dt = sup
0=s0<···<sm=T

{ m∑
j=1

∫
Ω

f(V k(sj))(αk(sj−1)− αk(sj)) dx
}
, (4.24)

where the supremum is taken among all possible partitions 0 = s0 < · · · < sm = T , m ∈ N , of the interval [0, T ] .
The supremum is in fact attained on the partition 0 = t0k < · · · < tkk = T . To check this, let us fix a partition
0 = s0 < · · · < sm = T and let us prove that

m∑
j=1

∫
Ω

f(V k(sj))(αk(sj−1)− αk(sj)) dx ≤
k∑
i=1

∫
Ω

f(V k(tik))(αk(ti−1
k )− αk(tik)) dx

= −
∫ T

0

∫
Ω

f(V k(t))α̇k(t) dxdt .

(4.25)

Note that if we refine the partition 0 = s0 < · · · < sm = T by including the nodes t0k, . . . , t
k
k , the dissipation

increases, since the monotonicity of f(V k) and of αk yields the following triangular inequality:∫
Ω

f(V k(r3))(αk(r1)− αk(r3)) dx ≤
∫
Ω

f(V k(r2))(αk(r1)− αk(r2)) dx+

∫
Ω

f(V k(r3))(αk(r2)− αk(r3)) dx

for 0 ≤ r1 ≤ r2 ≤ r3 ≤ T . Therefore we can assume without loss of generality that {t0k, . . . , tkk} ⊂ {s0, . . . , sm} .
Let us now fix i ∈ {1, . . . , k} and 1 ≤ hi < `i ≤ m such that ti−1

k = shi < · · · < s`i = tik . Then the sum in in
the left-hand side of (4.25) can be rearranged as

k∑
i=1

`i∑
j=hi

∫
Ω

f(V k(sj))(αk(sj−1)− αk(sj)) dx =

k∑
i=1

`i∑
j=hi

∫
Ω

f(V i−1
k )

sj − sj−1

τ
(αi−1
k − αik) dx

=

k∑
i=1

∫
Ω

f(V i−1
k )

tik − ti−1
k

τ
(αi−1
k − αik) dx =

k∑
i=1

∫
Ω

f(V k(tik))(αk(ti−1
k )− αk(tik)) dx .

Now we pass to the limit in (4.24) as k → +∞ . Let us fix a partition 0 = s0 < · · · < sm = T and let us
fix j ∈ {0, . . . ,m} . By (4.8) we have in particular that αk(sj) → αε(sj) and αk(sj−1) → αε(sj−1) strongly
in L1(Ω) and therefore, by (4.20), we obtain that∫

Ω

f(V k(sj))(αk(sj−1)− αk(sj)) dx→
∫
Ω

f̃ε(sj)(αε(sj−1)− αε(sj)) dx (4.26)

as k → +∞ .
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On the other hand we have that

sup
0=s0<···<sm=T

{ m∑
j=1

∫
Ω

f̃ε(sj)(αε(sj−1)− αε(sj)) dx
}

= −
∫ T

0

∫
Ω

f̃ε(t)α̇ε(t) dx dt . (4.27)

The equality above follows from a general lemma proved in [9, Lemma A.1] regarding the integral representation
of weighted variations. To check the fulfillment of the assumptions required by [9, Lemma A.1] we remark that:

• αε ∈ AC([0, T ];L2(Ω)) ;
• α̇ε ≤ 0 a.e. in Ω;

• f̃ε(t) ≤ f̃ε(s) a.e. in Ω for s ≤ t ;
• there exists a countable set E ⊂ [0, T ] such that t 7→ f̃ε(t) is continuous for every t ∈ [0, T ] \ E with

respect to strong L2 topology (this follows from the monotonicity by [9, Lemma A.2]).

Applying [9, Lemma A.1] with X := L2(Ω) and F = L2(Ω), we get (4.27).
By (4.24)–(4.27) we conclude that

−
∫ T

0

∫
Ω

f̃ε(t)α̇ε(t) dx dt ≤ lim inf
k→+∞

∫ T

0

R(α̇k(t);V k(t)) dt . (4.28)

We conclude the proof using the inequality above together with (4.12)–(4.14) and (3.36). �

Proposition 4.8 (Stability in weak form). Let ε > 0 . For every t ∈ [0, T ] , uε(t) is a weak solution to the
problem {

div
(
µ(αε(t))∇uε(t)

)
= 0 in Ω ,

uε(t) = w(t) on ∂DΩ .
(4.29)

For a.e. t ∈ [0, T ] and for every β ∈ H1(Ω) with β ≤ 0 a.e. in Ω we have

〈∂αE(αε(t), uε(t)), β〉 −
∫
Ω

f̃ε(t)β dx+ ε〈α̇ε(t), β〉L2 ≥ 0 . (4.30)

Proof. To prove (4.29) it is sufficient to observe that from (3.7) we have that uk(t) is a weak solution to the
problem {

div
(
µ(αk(t))∇uk(t)

)
= 0 in Ω ,

uk(t) = wk(t) on ∂DΩ ,
(4.31)

and pass (4.31) to the limit as k → +∞ using (4.9) and (4.8).
Let us fix β ∈ H1

−(Ω). Integrating (3.9) in time, we get

−
∫ T

0

〈∂αE(αk(t), uk(t)), β〉 dt+

∫ T

0

∫
Ω

f(V k(t))β dx dt− ε
∫ T

0

〈α̇k(t), β〉L2 dt ≤ 0 . (4.32)

First of all, we claim that for every t ∈ [0, T ]

− 〈∂αE(αε(t), uε(t)), β〉 ≤ lim inf
k→+∞

−〈∂αE(αk(t), uk(t)), β〉 . (4.33)

Indeed, since ∇uε(t)β ∈ H1(Ω), by (4.9) we have

−
∫
Ω

µ′(αε(t))
∣∣∇uε(t)∣∣2β dx = lim

k→+∞

[
−
∫
Ω

µ′(αε(t))∇uk(t) · ∇uε(t)β dx
]

≤ lim inf
k→+∞

[
−
∫
Ω

µ′(αε(t))
∣∣∇uk(t)

∣∣2β dx
] 1

2
[
−
∫
Ω

µ′(αε(t))
∣∣∇uε(t)∣∣2β dx

] 1
2

and thus

−
∫
Ω

µ′(αε(t))
∣∣∇uε(t)∣∣2β dx ≤ lim inf

k→+∞

[
−
∫
Ω

µ′(αε(t))
∣∣∇uk(t)

∣∣2β dx
]
, (4.34)

for every t ∈ [0, T ] . Moreover, by (4.7a)∣∣∣ ∫
Ω

(
µ′(αε(t))− µ′(αk(t))

)∣∣∇uk(t)
∣∣2β dx

∣∣∣ ≤ C‖αε(t)− αk(t)‖Lq‖uk(t)‖W1,p‖β‖H1

≤ C‖αε(t)− αk(t)‖Lq → 0 uniformly with respect to t ,

(4.35)

where q ∈ (2,∞) . Furthermore, by (4.8)∫
Ω

∇αk(t) · ∇β dx→
∫
Ω

∇αε(t) · ∇β dx , (4.36)
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for every t ∈ [0, T ] . Summing (4.34)–(4.36) we obtain (4.33).
Moreover, by convergence (4.20), we have∫

Ω

f(V k(t))β dx→
∫
Ω

f̃ε(t)β dx (4.37)

for every t ∈ [0, T ] .
Finally, (4.5) implies

ε

∫ t2

t1

〈α̇k(t), β〉L2 → ε

∫ t2

t1

〈α̇ε(t), β〉L2 , (4.38)

for every 0 ≤ t1 ≤ t2 ≤ T .
Collecting (4.33), (4.37), (4.38), and by (4.32), we infer that

−
∫ t2

t1

〈∂αE(αε(t), uε(t)), β〉 dt+

∫ t2

t1

∫
Ω

f̃ε(t)β dx dt− ε
∫ t2

t1

〈αε(t), β〉L2 dt ≤ 0

for every β ∈ H1
−(Ω) and 0 ≤ t1 ≤ t2 ≤ T . By the arbitrariness of t1 , t2 , a localisation argument gives (4.30). �

Remark 4.9. Using (4.29) we can improve the convergence in (4.7b), namely for every ε > 0

‖uk − uε‖C([0,T ];W1,p(Ω)), ‖uk − uε‖L∞(0,T ;W1,p(Ω)), ‖uk − uε‖L∞(0,T ;W1,p(Ω)) → 0 , for p ∈ [2, p̃ ) . (4.39)

Indeed by (4.31) and (4.29) we deduce that the function v := uε(t)− uk(t)− w(t) + wk(t) is a weak solution to
the problem {

div
(
µ(αε(t))∇v) = ` in Ω ,

v = 0 on ∂DΩ ,

where ` ∈ W−1,p
∂DΩ (Ω) is defined by ` := div

(
(µ(αk(t))− µ(αε(t)))∇uk(t)

)
+ div

(
µ(αε(t))(∇wk(t)−∇w(t))

)
. By

Remark 3.2, (3.6a), (4.7a), and (2.8) we deduce that

‖uk(t)− uε(t)‖W1,p ≤ C
[
‖αk(t)− αε(t)‖Lq‖uk(t)‖W1,p̃ + ‖αε(t)‖Lq‖wk(t)− w(t)‖W1,p̃

]
≤ C

[
‖αk(t)− αε(t)‖Lq + ‖wk(t)− w(t)‖W1,p̃

]
→ 0

uniformly with respect to t , for a suitable q ∈ (2,∞) . The convergence of uk and uk follows from (3.35c)–(3.35d).

Proposition 4.10 (Energy-dissipation balance in weak form). For every ε > 0 we have

E(αε(T ), uε(T ))−
∫ T

0

∫
Ω

f̃ε(t)α̇ε(t) dx dt+ ε

∫ T

0

‖α̇ε(t)‖2L2 dt = E(α0, u0) +

∫ T

0

〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 dt .

Proof. One inequality has been proven in Proposition 4.7. To prove the opposite inequality, we observe that
t 7→ E(αε(t), uε(t)) is absolutely continuous and

d

dt

[
E(αε(t), uε(t))

]
= 〈∂αE(αε(t), uε(t)), α̇ε(t)〉+ 〈∂uE(αε(t), uε(t)), u̇ε(t)〉

≥
∫
Ω

f̃ε(t)α̇ε(t) dx− ε‖α̇ε(t)‖2L2 + 〈µ(αε(t))∇uε(t)),∇ẇ(t)〉L2

for a.e. t ∈ [0, T ] , where in the last inequality we have used (4.30) and (4.29). Integrating the previous inequality
in time, we complete the proof. �

The energy-dissipation balance obtained in Proposition 4.10 above allows us to get the desired strong conver-
gence (4.16b).

Proposition 4.11 (Strong convergence of discrete-time evolutions). For every ε > 0 we have

αk → αε strongly in W 1,1(0, T ;Lq(Ω)) , for q ∈ [1,∞) , (4.40a)

uk → uε strongly in W 1,1(0, T ;W 1,p(Ω)) , for p ∈ [2, p̃) . (4.40b)

Proof. From Proposition 3.7 and Proposition 4.10 and using the convergence of the work term (4.14), we deduce
that

lim
k→+∞

[
E(αk(T ), uk(T )) +

∫ T

0

R(α̇k(t);V k(t)) dt+ ε

∫ T

0

‖α̇k(t)‖2L2 dt
]

= E(αε(T ), uε(T ))−
∫ T

0

∫
Ω

f̃ε(t)α̇ε(t) dx dt+ ε

∫ T

0

‖α̇ε(t)‖2L2 dt .
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Notice that if (ak)k and (bk)k are two sequences such that ak + bk → a+ b and a ≤ lim infk ak , b ≤ lim infk bk ,
then ak → a and bk → b . Therefore, by (4.12), (4.13), and (4.28) we obtain that

lim
k→+∞

∫ T

0

‖α̇k(t)‖2L2 dt =

∫ T

0

‖α̇ε(t)‖2L2 dt .

As a consequence

α̇k → α̇ε strongly in L2(0, T ;L2(Ω)) . (4.41)

We want to deduce the strong convergence (4.40a) from (4.41). In order to do so, we shall control ‖u̇ε(t) −
u̇k(t)‖W1,p with ‖α̇ε(t) − α̇k(t)‖Lq for some q ∈ (2,∞) , as we did in the proof of (3.6b). For this reason it is
necessary to slightly improve the integrability in the target space in (4.41). More precisely, we claim that for
every q ∈ [1,∞)

α̇k → α̇ε strongly in L1(0, T ;Lq(Ω)) . (4.42)

Indeed, let us fix θ ∈ (0, 1) and q > 2 (the case q ≤ 2 being already covered by (4.41)) and let us define r > q in
such a way that 1

q
= θ

2
+ 1−θ

r
. Using the interpolation inequality between the spaces L2(Ω) and Lq(Ω), Hölder’s

Inequality, (3.13), (4.11), and (4.41) we obtain that∫ T

0

‖α̇k(t)− α̇ε(t)‖Lq dt ≤
∫ T

0

‖α̇k(t)− α̇ε(t)‖θL2‖α̇k(t)− α̇ε(t)‖1−θLr dt

≤
(∫ T

0

‖α̇k(t)− α̇ε(t)‖L2 dt
)θ(∫ T

0

‖α̇k(t)− α̇ε(t)‖H1 dt
)1−θ

≤ C
(∫ T

0

‖α̇k(t)− α̇ε(t)‖L2 dt
)θ
→ 0

as k → +∞ . This proves (4.42).
We are now ready to prove (4.40a). Differentiating (4.29) in time and by (3.8) we obtain that for a.e. t ∈ [0, T ]

the function v := u̇ε(t)− u̇k(t)− ẇ(t) + ẇk(t) is a weak solution to the problem{
div
(
µ(αε(t))∇v) = ` in Ω ,

v = 0 on ∂DΩ ,

where ` ∈W−1,p
∂DΩ (Ω) is defined by

` := −div
(
µ′(αε(t))α̇ε(t)

(
∇uε(t)−∇uk(t)

))
− div

(
µ(αε(t))

(
∇ẇ(t)−∇ẇk(t)

))
+ div

((
µ(αk(t))− µ(αε(t))

)
∇u̇k(t)

)
+ div

((µ(αk(t)+τα̇k(t))−µ(αk(t))

τ
− µ′(αε(t))α̇ε(t)

)
∇uk(t)

)
.

Observe that for a.e. t ∈ Ω∣∣∣µ(αk(t)+τα̇k(t))−µ(αk(t))

τ
− µ′(αε(t))α̇ε(t)

∣∣∣
≤
∣∣∣µ(αk(t)+τα̇k(t))−µ(αk(t))

τ
− µ′(αk(t))α̇k(t)

∣∣∣+
∣∣µ′(αk(t))− µ′(αε(t))

∣∣∣∣α̇k(t)
∣∣+
∣∣µ′(αε(t))∣∣∣∣α̇k(t)− α̇ε(t)

∣∣
≤ C

[
τ
∣∣α̇k(t)

∣∣+
∣∣αk(t)− αε(t)

∣∣∣∣α̇k(t)
∣∣+
∣∣α̇k(t)− α̇ε(t)

∣∣]
a.e. in Ω. Therefore, by Remark 3.2, (3.6a), (3.6b), and (4.10) we get that

‖u̇k(t)− u̇ε(t)‖W1,p ≤ C
[
‖α̇ε(t)‖Lq‖uε(t)− uk(t)‖W1,p1 + ‖ẇk(t)− ẇ(t)‖W1,p̃

+ ‖αk(t)− αε(t)‖Lq‖u̇k(t)‖W1,p1 + τ‖α̇k(t)‖Lq‖uk(t)‖W1,p̃

+ ‖αk(t)− αε(t)‖Lq‖α̇k(t)‖Lr‖uk(t)‖W1,p1 + ‖α̇k(t)− α̇ε(t)‖Lq‖uk(t)‖W1,p̃

]
≤ C

[
‖α̇ε(t)‖H1‖uε(t)− uk(t)‖W1,p1 + ‖ẇk(t)− ẇ(t)‖W1,p̃

+ ‖αk(t)− αε(t)‖Lq‖α̇k(t)‖H1 + τ‖α̇k(t)‖H1 + ‖α̇k(t)− α̇ε(t)‖Lq

]
,
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where q, r ∈ (2,∞) , and p1 ∈ (2, p̃ ) are suitable exponents. Integrating in time the previous inequality and by
Hölder’s Inequality we obtain

‖u̇k − u̇ε‖L1(0,T ;W1,p(Ω)) ≤ C
[
‖αε‖W1,1(0,T ;H1(Ω))‖uε − uk‖L∞(0,T ;W1,p1 (Ω)) + ‖wk − w‖W1,1(0,T ;W1,p̃(Ω))

+ ‖αk − αε‖L∞(0,T ;Lq(Ω))‖αk‖W1,1(0,T ;H1(Ω)) + τ‖α̇k‖W1,1(0,T ;H1(Ω))

+ ‖α̇k − α̇ε‖L1(0,T ;Lq(Ω))

]
≤ C

[
‖uε − uk‖L∞(0,T ;W1,p1 (Ω)) + ‖wk − w‖W1,1(0,T ;W1,p̃(Ω))

+ ‖αk − αε‖L∞(0,T ;Lq(Ω)) + τ + ‖α̇k − α̇ε‖L1(0,T ;Lq(Ω))

]
.

By (4.39), (2.8), (4.7a), and (4.42) we conclude that the right-hand side in the inequality above converges to zero
as k → +∞ . �

Proof of Theorem 4.2. For fixed ε > 0, Propositions 4.8 and 4.10 show that (αε, uε) , obtained by (4.5), (4.6) as
weak limit of a sequence of discrete-time evolutions (αk, uk) , satisfy the conditions of Definition 4.1 in a weak

sense. In fact, (ev0)ε , (ev1)ε hold, while (ev2)ε , (ev3)ε are satisfied with f̃ε(t) in place of f(Vε(t)) , where f̃ε(t)
is such that (cf. (4.20))

f(V k(t))
∗
⇀ f̃ε(t) weakly* in L∞(Ω) ,

for every t ∈ [0, T ] .
Actually we find, in Proposition 4.11, that a posteriori we have an enhanced convergence for the displacement

evolutions that guarantees the strong convergence

f(V k)→ f(Vε) strongly in L2(0, T ;L2(Ω)) ,

by Lemma (4.4) and Remark 4.5. We conclude that for a.e. t ∈ [0, T ]

f̃ε(t) = f(Vε(t)) ,

so that (ev2)ε , (ev3)ε are satisfied with f(Vε(t)) and (αε, uε) is an ε -approximate viscous evolution. The
estimate (4.4) follows immediately from (4.11). �

We conclude this section by a characterisation of the energy balance for ε -approximate viscous evolutions, that
will be employed in the next section to pass to the limit as ε tends to 0. We first deduce the following lemma.

Lemma 4.12. Let (αε, uε) ∈ H1(0, T ;H1(Ω)) × H1(0, T ;W 1,p(Ω)) satisfies (ev0)ε , (ev1)ε of Definition 4.1.
Then (ev3)ε for (αε, uε) is equivalent to:

(ev3’)ε : for a.e. t ∈ (0, T )

〈∂αE(αε(t), uε(t)), α̇ε(t)〉+R(α̇ε(t);Vε(t)) + ε‖α̇ε(t)‖2L2 = 0 . (4.43)

Proof. Being αε , uε absolutely continuous (in time) we get that t 7→ E(αε(t), uε(t)) is absolutely continuous and

d

dt

[
E(αε(t), uε(t))

]
= 〈∂αE(αε(t), uε(t)), α̇ε(t)〉+ 〈∂uE(αε(t), uε(t)), u̇ε(t)〉

= 〈∂αE(αε(t), uε(t)), α̇ε(t)〉+ 〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 ,
(4.44)

using (ev1)ε . Differentiating in time (ev3)ε gives then the equivalence between (ev3)ε and (ev3’)ε . �

Remark 4.13. Arguing in a similar way (cf. also Proposition 4.10 and [11, Proposition 4.2]) it is not difficult to
see that if (αε, uε) ∈ H1(0, T ;H1(Ω)×W 1,p(Ω)) satisfies (ev0)ε , (ev1)ε , (ev2)ε of Definition 4.1 and

(ev3”)ε :

E(αε(T ), uε(T )) +

∫ T

0

R(α̇ε(t);Vε(t)) dt+ ε

∫ T

0

‖α̇ε(t)‖2L2 dt ≤ E(α0, u0) +

∫ T

0

〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 dt ,

then (αε, uε) is an ε -approximate viscous evolution.

Let us introduce some notation in view of the characterisation of the energy balance for ε -approximate viscous
evolutions. We denote by H1

−(Ω) the functions β ∈ H1(Ω) with β ≤ 0.

For (α, u) ∈ W 1,1(0, T ;H1(Ω)×H1(Ω)) and f̃ ∈ L2(Ω) (that we regard as an element of (H1(Ω))′ with

〈f̃ , β〉 =
∫

Ω
f β dx) we define

Φ(g) := sup
β∈F
〈−g, β〉 for every g ∈ (H1(Ω))′ , Ψ(α, u, f̃) := Φ

(
∂αE(α, u)− f̃

)
, (4.45)

where

F := {β ∈ H1
−(Ω): ‖β‖L2 ≤ 1}
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Employing Lemma 4.12 we obtain the following characterisation of the energy balance, which is invariant under
time reparametrisation.

Proposition 4.14. Let (αε, uε) be an ε -approximate viscous evolution. Then with the notation above we have
that

ε‖α̇ε(t)‖L2 = Ψ(αε(t), uε(t), f(Vε(t))) , (4.46)

and one may recast the energy balance (ev3)ε as

E(αε(T ), uε(T )) +

∫ T

0

R(α̇ε(t);Vε(t)) dt+

∫ T

0

‖α̇ε(t)‖L2Ψ(αε(t), uε(t), f(Vε(t))) dt

= E(α0, u0) +

∫ T

0

〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 dt .

(4.47)

Proof. By (ev2)ε we get that for every β ∈ H1
−(Ω)

ε〈α̇ε(t), β〉 ≥ 〈−∂αE(αε(t), uε(t)), β〉+R(β;Vε(t)) .

On the other hand Lemma 4.12 implies that the equality above is attained for β = α̇ε(t)
‖α̇ε(t)‖

L2
and this gives (4.46),

since β is in F and R(β;Vε(t)) = −
∫

Ω
f(Vε(t))β dx . Then (4.47) follows immediately from the energy balance

(ev3)ε . �

Remark 4.15. Arguing in the same way of [11, Lemma 4.4] (see also [31, Lemma A.2]) we deduce that

Φ(g) = d2(g,G) for every g ∈ (H1(Ω))′ ,

where

G := {h ∈ (H1(Ω))′ : 〈h, β〉 ≥ 0 for every β ∈ H1
−(Ω)} , d2(g,G) := min{‖h‖L2 : h ∈ L2(Ω) , h+ g ∈ G} .

5. Vanishing viscosity limit

This section concerns the asymptotics of the viscous evolution, whose existence has been proven in Section 4,
under the constitutive assumptions in Section 2, as the viscosity parameter ε vanishes. We use a rescaling
technique, common to many other works (see e.g. [14, 23, 24, 11]). Let {(αε, uε)}ε>0 be a family of ε -approximate
viscous evolutions satisfying the uniform W 1,1 bound in time (4.4), for a given p < p̃ , where p̃ is given by
Lemma 3.3. The existence of these evolutions has been shown in Theorem 4.2. For ε > 0 and t ∈ [0, T ] we set

s◦ε(t) := t+

∫ t

0

‖α̇ε(s)‖H1 ds+

∫ t

0

‖u̇ε(s)‖W1,p ds . (5.1)

Then s◦ε is absolutely continuous and

s◦ε(t2)− s◦ε(t1) ≥ t2 − t1 for every 0 ≤ t1 ≤ t2 ≤ Sε := s◦ε(T ) ,

in particular s◦ε is strictly increasing and bijective on its domain. We denote by t◦ε : [0, Sε] → [0, T ] the inverse
of s◦ε . In view of (4.4), we have that T ≤ Sε < C , for C > 0 independent of ε , and then, up to a subsequence,
Sε → S as ε→ 0, with S ≥ T . We define the rescaled evolution on [0, Sε] by setting

α◦ε(s) := αε(t
◦
ε(s)) , u◦ε(s) := uε(t

◦
ε(s)) , ζ◦ε (s) := ζε(t

◦
ε(s)) , V ◦ε (s) := Vε(t

◦
ε(s)) , w◦ε(s) := w(t◦ε(s)) . (5.2)

Up to extending t◦ε with t◦ε(Sε) in (Sε, S] , for S := supε>0 Sε (ε small), we assume the rescaled functions above
defined on the fixed time interval [0, S] . By a change of variable we have from (4.1) that

V ◦ε (s) =

∫ s

0

|ζ̇◦ε (σ)| dσ a.e. in Ω, for every s ∈ [0, S] .

Since (5.1) gives that t◦ε is nondecreasing and that

t◦ε(s2)− t◦ε(s1) + ‖α◦ε(s2)− α◦ε(s1)‖H1 + ‖u◦ε(s2)− u◦ε(s1)‖W1,p ≤ s2 − s1 (5.3)

for every 0 ≤ s1 ≤ s2 ≤ S , we deduce (cf. also e.g. [14, 11, 24]) that, up to a (not relabeled) subsequence

(t◦ε , α
◦
ε , u
◦
ε)
∗
⇀ (t◦, α◦, u◦) weakly∗ in W 1,∞(0, S; [0, T ]×H1(Ω)×W 1,p(Ω)) , (5.4)

for a suitable (t◦, α◦, u◦) with

ṫ◦(s) + ‖α̇◦(s)‖H1 + ‖u̇◦(s)‖W1,p ≤ 1 for a.e. s ∈ [0, S] .

Moreover, in view of the equicontinuity (with respect to ε) of (α◦ε , u
◦
ε) , it follows that for every s ∈ [0, S] and

sε → s

α◦ε(sε) ⇀ a◦(s) weakly in H1(Ω) , u◦ε(sε) ⇀ u◦(s) weakly in W 1,p(Ω) . (5.5)
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Similarly to the analogous situation in Section 4, the weak convergences above are not enough to guarantee
pointwise convergence for the cumulations of the strains, even if the cumulation of ζ◦

V ◦(s) =

∫ s

0

∣∣ζ̇◦(σ)
∣∣dσ a.e. in Ω, for every s ∈ [0, S]

is well defined as a Bochner integral in L2(Ω). We may only say, passing through an Helly type selection principle

as in Lemma 4.6 that there exists f̃◦ : [0, S]→ L∞(Ω), increasing in time for a.e. fixed x ∈ Ω, such that

f(V ◦ε (s))
∗
⇀ f̃◦(s) weakly∗ in L∞(Ω) , for every s ∈ [0, S] . (5.6)

However, differently from Section 4, in view of the loss of the viscous term in the limit evolution we are not able

to improve the convergences (5.4) a posteriori, so to express f̃◦ in terms of V ◦ , but we prove only an inequality,
see Proposition 5.4.

We obtain then the following existence result for limit of rescaled ε -approximate viscous evolutions, that we
call rescaled quasistatic viscosity evolutions, which is the main result of the paper.

Theorem 5.1. With the notation above the function (t◦, α◦, u◦) ∈ W 1,∞(0, S; [0, T ]×H1(Ω)×W 1,p(Ω)) , defined
as limit of rescaled ε -approximate viscous evolutions in (5.4), satisfies the following properties:

(ev0) irreversibility:

[0, S] 3 s 7→ α◦(s) is nonincreasing as a family of measurable functions on Ω ;

(ev1) equilibrium: for every s ∈ [0, S] , α◦(s) and u◦(s) solves the (distributional) problem{
div
(
µ(α◦(s))∇u◦(s)

)
= 0 in Ω ,

u◦(s) = w(t) on ∂DΩ .
(5.7)

(ev2) first order stability: for a.e. s ∈ [0, S] \ U◦ := {s ∈ [0, S] : t◦ is constant in a neighbourhood of s} and
for every β ∈ H1(Ω) with β ≤ 0 a.e. in Ω we have

〈∂αE(α◦(s), u◦(s))− f̃◦(s), β〉 ≥ 0 . (5.8)

(ev3) energy balance:

E(α◦(S), u◦(S))−
∫ S

0

〈f̃◦(s), α̇◦(s)〉 ds+

∫ s

0

‖α̇◦(s)‖L2 Ψ(α◦(s), u◦(s), f̃◦(s)) ds

= E(α0, u0) +

∫ S

0

〈µ(α◦(s))∇u◦(s),∇ẇ◦(s)〉 ds .

Moreover, for every s ∈ [0, S] we have that

E(α◦(s), u◦(s)) = lim
ε→0
E(α◦ε(s), u

◦
ε(s)) , (5.9)

−
∫ S

0

〈f̃◦(s), α̇◦(s)〉 ds = − lim
ε→0

∫ S

0

〈f(V ◦ε (s)), α̇◦ε(s)〉 ds = lim
ε→0

∫ S

0

R(α̇◦ε(s);V
◦
ε (s)) ds ,

and ∫ s

0

‖α̇◦(s)‖L2 Ψ(α◦(s), u◦(s), f̃◦(s)) ds = lim
ε→0

∫ s

0

‖α̇◦ε(s)‖L2Ψ(α◦ε(s), u
◦
ε(s), f(V ◦ε (s))) ds .

Remark 5.2. The stability condition (ev2) is equivalent to Ψ(α◦(s), u◦(s), f̃◦(s)) = 0, by the definition of Ψ
(4.45), so that the term in Ψ in the energy balance gives a contribution only in the zones where the evolution is

not stable. Notice also that Ψ(α◦(s), u◦(s), f̃◦(s)) = d2(∂αE(α◦(s), u◦(s)) − f̃◦(s), G) , (cf. Remark 4.15) a sort
of L2 -distance from the (first order) stability set G .

Remark 5.3. If (t◦, α◦, u◦) ∈W 1,∞(0, S; [0, T ]×H1(Ω)×W 1,p(Ω)) satisfies (ev0), (ev1), (ev2), then (ev3) is equiv-
alent to say that for a.e. s ∈ [0, S]

〈∂αE(α◦(s), u◦(s))− f̃◦(s), α̇◦(s)〉+ ‖α̇◦(s)‖L2 Ψ(α◦(s), u◦(s), f̃◦(s)) = 0 , (5.10)

arguing as done for Lemma 4.12, by differentiation. Notice that, by definition of Ψ (4.45), we have

〈∂αE(α◦(s), u◦(s))− f̃◦(s), β〉+ ‖β‖L2 Ψ(α◦(s), u◦(s), f̃◦(s)) ≥ 0 , (5.11)

for every β ∈ H1(Ω) with β ≤ 0 a.e. in Ω.

By the convergence of the energies (5.9) we deduce the following relation between f̃◦ and f(V ◦) .

Proposition 5.4. For every s ∈ [0, S]

f̃◦(s) ≤ f(V ◦) a.e. in Ω . (5.12)
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Proof. In this proof we use the notion of essential variation of a time-dependent family of functions, whose
definition is given in Definition A.1 in the Appendix. Here we recall that, by Proposition A.4,

V ◦ε (s) = ess Var(ζ◦ε ; 0, s) = ess sup
0=s0<···<sm=s

{ m∑
j=0

|ζ◦ε (sj)− ζ◦ε (sj−1)|
}
.

Hence, since f is nonincreasing, we have that for every partition 0 ≤ s0 < · · · < sm ≤ s

f(V ◦ε (s)) ≤ f
( m∑
j=1

|ζ◦ε (sj)− ζ◦ε (sj−1)|
)

a.e. in Ω . (5.13)

Indeed
m∑
j=1

|ζ◦ε (sj)− ζ◦ε (sj−1)| ≤ V ◦ε (s) ,

as functions on Ω. By (5.5) and (5.9) we have that ∇u◦ε(s)→ ∇u◦(s) in L2(Ω) for every s ∈ [0, S] , so that

ζ◦ε (s)→ ζ◦(s) in L2(Ω) ,

and then
m∑
j=1

|ζ◦ε (sj)− ζ◦ε (sj−1)| →
m∑
j=1

|ζ◦(sj)− ζ◦(sj−1)| in L2(Ω) (5.14)

as ε → 0 for every fixed partition. Testing (5.6) with characteristic functions of any Borel set B ⊂ Ω and
employing (5.13), (5.14), we can pass to ε→ 0 and obtain∫

B

f̃◦(s) dx ≤
∫
B

f
( m∑
j=1

|ζ◦(sj)− ζ◦(sj−1)|
)

dx ,

that gives, since B ⊂ Ω Borel is arbitrary,

f̃◦(s) ≤ f
( m∑
j=1

|ζ◦(sj)− ζ◦(sj−1)|
)
.

By the arbitrariness of the partition, and since f is nonincreasing, this implies

f̃◦(s) ≤ f
(
essVar(ζ◦; 0, s)

)
,

and (5.12) follows because V ◦(s) = essVar(ζ◦; 0, s) by Proposition A.4. �

Remark 5.5. By Proposition 5.4 we have that the first order stability (ev2) holds also for f(V ◦(s)) in place of

f̃◦(s) , that is for a.e. s ∈ [0, S] \ U◦ and β ∈ H1(Ω), β ≤ 0, we have

〈∂αE(α◦(s), u◦(s))− f(V ◦(s)), β〉 ≥ 0 .

However we can guarantee only the inequality

E(α◦(S), u◦(S))−
∫ S

0

〈f(V ◦(s)), α̇◦(s)〉 ds+

∫ s

0

‖α̇◦(s)‖L2 Ψ(α◦(s), u◦(s), f̃◦(s)) ds

≥ E(α0, u0) +

∫ S

0

〈µ(α◦(s))∇u◦(s),∇ẇ◦(s)〉 ds .

in place of (ev3), if we consider f(V ◦(s)) instead of f̃◦ .

Proof of Theorem 5.1. Since in general t◦ is not invertible, we consider its left and right inverse, defined by

s◦−(t) := sup{s ∈ [0, S] : t◦(s) < t} for t ∈ (0, T ] , s◦−(0) := 0 ,

s◦+(t) := inf{s ∈ [0, S] : t◦(s) > t} for t ∈ [0, T ) , s◦+(T ) := S .

For every t ∈ [0, T ] we have that t◦(s◦−(t)) = t = t◦(s◦−(t)) and

s◦−(t) ≤ lim inf
ε→0

s◦ε(t) ≤ lim sup
ε→0

s◦ε(t) ≤ s◦+(t) , (5.15)

while s◦−(t◦(s)) ≤ s ≤ s◦+(t◦(s)) for every s ∈ [0, S] . The set

S◦ := {t ∈ [0, T ] : s◦−(t) < s◦+(t)} (5.16)

is at most countable, and

U◦ =
⋃
t∈S◦

(s◦−(t), s◦+(t)) . (5.17)

Arguing as done in Proposition 4.8, by (5.5), we pass (ev1)ε to the limit and obtain (ev1), while (ev0) is
immediate from the pointwise convergence of α◦ε(s) to α◦(s) for every s ∈ [0, S] .
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Proof of (ev2). It is enough to show that A◦ ⊂ U◦ , where

A◦ := {s ∈ [0, S] : Ψ(α◦(s), u◦(s), f̃◦(s)) > 0} . (5.18)

Arguing as in the proof Proposition 4.8 to obtain (4.33) and (4.37), we deduce that for every β ∈ H1
−(Ω) and

every s ∈ [0, S]

〈−∂αE(α◦(s), u◦(s)) + f̃◦(s), β〉 ≤ lim inf
ε→0

〈−∂αE(α◦ε(s), u
◦
ε(s)) + f(V ◦ε (s)), β〉 ,

so that, passing to the supremum for β ∈ H1
−(Ω),

Ψ(α◦(s), u◦(s), f̃◦(s)) ≤ lim inf
ε→0

Ψ(α◦ε(s), u
◦
ε(s), f(V ◦ε (s))) . (5.19)

By (2.3) and the convergences (5.5) we have that the map s 7→ 〈−∂αE(α◦(s), u◦(s)), β〉 is continuous for every

β ∈ H1
−(Ω). Also s 7→ 〈f̃◦(s), β〉 is continuous: indeed

|〈f(V ◦ε (s2))−f(V ◦ε (s1)), β〉| ≤ ‖f ′‖L∞
∫
Ω

|β|
∫ s2

s1

|ζ̇◦ε (σ)| dσ dx ≤ ‖f ′‖∞
(∫ s2

s1

‖ζ̇◦ε (σ)‖L2 dσ
)
‖β‖L2 ≤ C(s2−s1)‖β‖L2 ,

since

‖ζ̇◦ε (σ)‖L2 = ‖g′(α◦ε(σ)) α̇◦ε(σ)∇u◦ε(σ) + g(α◦ε(σ))∇u̇◦ε(σ)‖L2 ≤ C
(
‖α̇◦ε(σ)‖H1 + ‖∇u̇◦ε(σ)‖L2

)
≤ C ,

and we pass to the limit as ε→ 0 to get

|〈f̃◦(s2)− f̃◦(s1), β〉| ≤ C(s2 − s1)‖β‖2 .

Therefore s 7→ 〈−∂αE(α◦(s), u◦(s)) + f̃◦(s), β〉 is continuous, and

s 7→ Ψ(α◦(s), u◦(s), f̃◦(s)) is lower semicontinuous. (5.20)

In particular, A◦ is an open set. We now follow closely the argument in [11, Theorem 5.4, proof of (ev3) therein],
to say that

lim sup
ε→0

ṫ◦ε(s) > 0 for a.e. s ∈ (0, S) \D◦ , (5.21)

where D◦ := {s ∈ (0, S) : ṫ◦(s) = 0} .
Arguing by contradiction, there exists a measurable set B ⊂ (0, S) \D◦ with positive measure such that

lim
ε→0

ṫ◦ε(s) = 0 for every s ∈ B ,

t◦ε being nondecreasing. Since the functions t◦ε are 1-Lipschitz, the Dominated Convergence Theorem implies
that

lim
ε→0

∫
B

ṫ◦ε(s) ds = 0 .

On the other hand, from t◦ε ⇀ t◦ weakly∗ in W 1,∞ (see (5.5))

lim
ε→0

∫
B

ṫ◦ε(s) ds =

∫
B

ṫ◦(s) ds ,

and this contradicts ∫
B

ṫ◦(s) ds > 0 ,

that follows from the definition of D◦ .
By (5.19) and (4.46) evaluated in t = t◦ε(s) (cf. (5.2)) we deduce

0 ≤ Ψ(α◦(s), u◦(s), f̃◦(s)) ≤ lim inf
ε→0

Ψ(α◦ε(s), u
◦
ε(s), f(V ◦ε (s))) = lim inf

ε→0
ε‖α̇ε(t◦ε(s))‖L2 = lim inf

ε→0
ε
‖α̇◦ε(s)‖L2

ṫ◦ε(s)
= 0

for a.e. s ∈ (0, S) \D◦ . This implies that ṫ◦(s) = 0 for a.e. s ∈ A◦ . Being A◦ open by (5.20), every s ∈ A◦ has
an open neighborhood where ṫ◦ = 0; then A◦ ⊂ U◦ , because t◦ is Lipschitz.
Proof of (ev3). Looking at the version of the energy balance (4.47) proven in Proposition 4.14, this is invariant
under time reparametrisation. Then, by the change of variables t = t◦ε(s) we get

E(α◦ε(S), u◦ε(S)) +

∫ S

0

R(α◦ε(s);V
◦
ε (s)) ds+

∫ S

0

‖α̇◦ε(s)‖L2Ψ(α◦ε(s), u
◦
ε(s), f(V ◦ε (s))) ds

= E(α0, u0) +

∫ S

0

〈µ(α◦ε(s))∇u◦ε(s),∇ẇ(s)〉L2 ds .

(5.22)

Arguing as done in Proposition 4.10 to deduce (4.28), we obtain

−
∫ S

0

〈f̃◦(s), α̇◦(s)〉 ds = sup
0=s0<···<sm=S

{ m∑
j=1

〈f̃◦(sj), α◦(sj−1)− α◦(sj)〉
}
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and then, since (5.5) and (5.6) give

〈f̃◦(sj), α◦(sj−1)− α◦(sj)〉 = lim
ε→0
〈f(V ◦ε (sj)), α

◦
ε(sj−1)− α◦ε(sj)〉

for any sj−1 , sj , we deduce

−
∫ S

0

〈f̃◦(s), α̇◦(s)〉 ds ≤ lim inf
ε→0

∫ S

0

R(α◦ε(s);V
◦
ε (s)) ds , (5.23)

recalling (4.27). Moreover, we claim that∫
A◦
‖α̇◦(s)‖L2 Ψ(α◦(s), u◦(s), f̃◦(s)) ds ≤ lim inf

ε→0

∫
A◦
‖α̇◦ε(s)‖L2Ψ(α◦ε(s), u

◦
ε(s), f(V ◦ε (s))) ds . (5.24)

Indeed, for every compact set C ⊂ A◦ and every continuous function ψ : C → [0,+∞) such that

Ψ(α◦(s), u◦(s), f̃◦(s)) > ψ(s) for every s ∈ C ,

by the compactness of C and (5.19), for ε sufficiently small we get

Ψ(α◦ε(s), u
◦
ε(s), f(V ◦ε (s))) > ψ(s) for every s ∈ C .

Then, by approximating the semicontinuous function s 7→ Ψ(α◦(s), u◦(s), f̃◦(s)) from below by continuous func-
tions, in order to prove (5.24) it is sufficient to show∫

C

‖α̇◦(s)‖L2 ψ(s) ds ≤ lim inf
ε→0

∫
C

‖α̇◦ε(s)‖L2 ψ(s) ds

for every compact C ⊂ A◦ and every continuous function ψ : C → [0,+∞) . This is done as in [11, Theorem 5.4]
or [14, Lemma 6.4], using a localisation argument and the fact that for every ϕ ∈ Cc(Ω) with ‖ϕ‖L2 = 1 the
functions s 7→ 〈ϕ, α̇◦ε(s)〉 are equi-Lipschitz on [0, S] and converge to s 7→ 〈ϕ, α̇◦(s)〉 for every s .

By (5.23), (5.24), and the semicontinuity of the internal energy (cf. (4.12)) we obtain the lower semicontinuity
of the left hand side of the energy balance (5.22).

Let us now study the limit with respect to ε of the right hand side of (5.22). Since for every t ∈ [0, T ] \ S◦ it
holds that s◦−(t) = limε→0 s

◦
ε(t) (see (5.15)), then

αε(t) ⇀ α◦(s◦−(t)) in H1(Ω) , uε(t) ⇀ u◦(s◦−(t)) in W 1,p(Ω) ,

and ∫ T

0

〈µ(α◦(s◦−(t)))∇u◦(s◦−(t)),∇ẇ(t)〉L2 dt = lim
ε→0

∫ T

0

〈µ(αε(t))∇uε(t),∇ẇ(t)〉L2 dt

by the Dominated Convergence Theorem. On the other hand,∫ T

0

〈µ(α◦(s◦−(t)))∇u◦(s◦−(t)),∇ẇ(t)〉L2 dt =

∫ S

0

〈µ(α◦(s◦−(t◦(s))))∇u◦(s◦−((t◦(s))),∇ẇ(t◦(s)) ṫ◦(s)〉L2 ds

=

∫ S

0

〈µ(α◦(s))∇u◦(s),∇ẇ◦(s)〉L2 ds ,

since ṫ◦(s) = 0 for a.e. s ∈ U◦ and s◦−((t◦(s)) = s for a.e. s ∈ [0, S] \U◦ . Therefore the right hand side of (5.22)
passes to the limit and we conclude the energy balance (ev3).

The terms at the right hand side are continuous with respect to ε since are separately lower semicontinuous
and their sum is continuous with respect to ε . This concludes the proof. �

We conclude by showing some properties of an evolution (t◦, α◦, u◦) , obtained as limit of rescaled ε -approximate
viscous evolution, in the spirit of e.g. [14, 23, 11]. We are in particular interested in its description in the time
subset U◦ ⊂ [0, S] , where it is not rate independent: if α◦ remains constant in (s1, s2) ⊂ U◦ , then all the evolu-
tion is trivial in (s1, s2) (Remark 5.6); on the other hand, if α̇◦ > 0 in space in a time interval, up to a further
time reparametrisation we have that the system is governed by an equation satisfied in the transition between
the initial and final configurations: this equation (see (5.25) and (5.26) in Proposition 5.7) corresponds formally
to consider 1 as viscosity parameter in (4.43) in Lemma 4.12, governing the ε -approximate viscous evolutions.

Remark 5.6. If α̇◦(s) = 0 for every s ∈ (s1, s2) ⊂ U◦ , then u̇◦(s) = 0 for every s ∈ (s1, s2) ⊂ U◦ . Indeed, by
definition of U◦ , it follows that t◦(s) = t◦(s1) and w◦(s) = w◦(s1) for every s ∈ (s1, s2) , and then u◦(s) = u◦(s1) ,
the unique solution of

min
u=w◦(s1) on ∂DΩ

∫
Ω

µ(α◦(s1))|∇u|2 dx ,

by (ev1) in Theorem 5.1.
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Proposition 5.7. Let (s1, s2) ⊂ A◦ (with A◦ defined in (5.18)) containing no subintervals where α̇◦(s) = 0 in
Ω for a.e. s , and let for every s ∈ (s1, s2)

%(s) :=

∫ s

s1+s2
2

‖α̇◦(σ)‖L2

Ψ(α◦(σ), u◦(σ), f̃◦(σ))
dσ .

Then % is locally Lipschitz and stricly increasing, the function

α](r) := α◦(%−1(r)) for r ∈ %((s1, s2))

has bounded variation and is continuous into H1(Ω) , and

‖α̇◦(%−1(r))‖2L2

[〈
∂αE(α](r), u](r))− f̃ ](r), α̇](r)

〉
+ ‖α̇](r)‖2L2

]
= 0 , (5.25)

for every r ∈ %−1((s1, s2)) , where u](r) := u◦(%−1(r)) , f̃ ](r) := f̃◦(%−1(r)) .
If, moreover, α̇◦(s) is not 0 for every s ∈ (s1, s2) and ‖α̇◦(s)‖L2 > δK for every K b (s1, s2) , then % is

locally bi-Lipschitz, α] is locally Lipschitz, and〈
∂αE(α](r), u](r))− f̃ ](r), α̇](r)

〉
+ ‖α̇](r)‖2L2 = 0 . (5.26)

Proof. By (5.18) and (5.20), for any K b A◦ we get that Ψ(α◦(σ), u◦(σ), f̃◦(σ)) ≥ δK > 0 for σ ∈ K . Then %
is locally Lipschitz on (s1, s2) , and it is strictly increasing by the assumptions that in no subintervals of (s1, s2)
we have α̇◦(s) = 0 in Ω. This gives also %−1 continuous and strictly increasing, so that α] is continuous and
with bounded variation, since α◦ is Lipschitz.

The change of variables s = %−1(r) in (5.10) gives〈
∂αE(α](r), u](r))− f̃ ](r), α̇◦(%−1(r))

〉
+ Ψ(α](r), u](r), f̃ ](r)) ‖α̇◦(%−1(r))‖L2 = 0 ,

that is

‖α̇◦(%−1(r))‖L2

〈
∂αE(α](r), u](r))− f̃ ](r), α̇◦(%−1(r))

〉
+ Ψ(α](r), u](r), f̃ ](r)) ‖α̇◦(%−1(r))‖2L2 = 0 , (5.27)

for every r ∈ %−1((s1, s2)) and every β ∈ H1
−(Ω). Now α] is weakly differentiable in H1(Ω) at a.e. r ∈

%−1((s1, s2)) , and we have the chain rule

α̇](r) = α̇◦(%−1(r))
d

dt
%−1(r) = α̇◦(%−1(r))

Ψ(α](r), u](r), f̃ ](r))

‖α̇◦(%−1(r))‖L2
a.e. in Ω (5.28)

for a.e. r such that ‖α̇◦(%−1(r))‖L2 > 0. Then (5.27) and (5.28) imply

‖α̇◦(%−1(r))‖L2

[〈
∂αE(α](r), u](r))− f̃ ](r), α̇◦(%−1(r))

〉
+ 〈α̇](r), α̇◦(%−1(r))〉L2

]
= 0 ,

Recalling that Ψ(α](r), u](r), f̃ ](r)) > 0 for every r ∈ %−1(s1, s2) , the two previous inequalities imply (5.25). At
this stage, (5.26) follows easily since ‖α̇◦(%−1(r))‖2L2 > 0 for every r ∈ %−1((s1, s2)) . �

As usual in an analysis based on time rescaling, one could see that in the original, faster, time variable t ∈ [0, T ] ,
the evolution is rate-independent outside an at most countable number of jump times, which is a subset of S◦

introduced in (5.16). In order to describe the evolution of the system during these jump, one has to employ the
description given by Remark 5.6 and Proposition 5.7. Here we do not perform directly this analysis, based on
inverse rescaling in time, since it would be very similar to that in e.g. [15, Section 5] and [11, Proposition 6.7], to
which we refer the interested reader.

A. Auxiliary results

The essential variation. In this appendix X denotes a measure space. We do not label the measure on X and
the notions of Lp space and of a.e.-equivalence refer to the measure on X . Moreover we fix n ≥ 1.

We define here the notion of essential variation, namely the variation for a time-dependent family of measurable
functions, in the sense of a.e. inequality.

Definition A.1. Let us consider a function t 7→ ζ(t) , with ζ(t) : X → Rn . Let 0 ≤ s ≤ t ≤ T . The essential
variation of ζ in the interval [s, t] is the function ess Var(ζ; s, t) : X → [0,+∞] defined by

ess Var(ζ; s, t) := ess sup
s=s0<···<sm=T

{ m∑
j=0

|ζ(sj)− ζ(sj−1)|
}
,

where the essential supremum is taken over all partitions 0 = s0 < · · · < sm = t , m ∈ N .

Remark A.2. For every t1 ≤ t2 ≤ t3 we have

ess Var(ζ; t1, t3) = ess Var(ζ; t1, t2) + ess Var(ζ; t2, t3) a.e. in X .

For completeness, we recall here the definition of the essential supremum of a family of measurable functions.
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Definition A.3. Let (vi)i∈I be a family of measurable functions from X to [−∞,∞] . Let v : X → [−∞,∞]
be a measurable function such that

(i) v ≥ vi a.e. in X , for every i ∈ I ;
(ii) if v : X → [−∞,∞] is a measurable function such that v ≥ vi a.e. in X , for every i ∈ I , then v ≥ v

a.e. in X .

The functions v is called an essential supremum of the family (vi)i∈I . In fact, there exists a unique (up to a.e.
equivalence) essential supremum v of the family (vi)i∈I . We denote it by ess sup

i∈I
vi := v .

In the next proposition we provide an explicit formula for the essential variation of a function ζ that is
absolutely continuous in time. A quick survey about the notion and the main properties of the Bochner integral
can be found in the appendix of [8]; for a more detailed treatment of the subject we refer to [18].

Proposition A.4. Let p ∈ [1,∞) , and let ζ ∈ AC([0, T ];Lp(X;Rn)) . Then

ess Var(ζ; 0, t)(x) =

∫ t

0

|ζ̇(r;x)| dr , for a.e. x ∈ X ,

where the integral in the right-hand side is a Bochner integral in Lp(X) .

Proof. We start by claiming that

ess Var(ζ; 0, ·) ∈ AC([0, T ];Lp(X)) and
d

dt
ess Var(ζ; 0, t) = |ζ̇(t)| in Lp(X) . (A.1)

To prove the claim, let us fix s ≤ t and a partition s = s0 < · · · < sm = t . By the absolute continuity of ζ we
obtain that

m∑
j=1

|ζ(sj)− ζ(sj−1)| =
m∑
j=1

∣∣∣ ∫ sj

sj−1

ζ̇(r) dr
∣∣∣ ≤ m∑

j=1

∫ sj

sj−1

|ζ̇(r)| dr =

∫ t

s

|ζ̇(r)| dr (A.2)

a.e. in X , where the last integral is a Bochner integral in Lp(X) . Note that the second inequality in (A.2) can
be proven, e.g., with an approximation argument via step functions. Taking the essential supremum in (A.2), by
Remark A.2 we deduce that

ess Var(ζ; 0, t)− ess Var(ζ; 0, s) ≤
∫ t

s

|ζ̇(r)| dr a.e. in X . (A.3)

Inequality (A.3) computed for s = 0 yields, in particular, that ess Var(ζ; 0, t) ∈ Lp(X) for every t ∈ [0, T ] .
Moreover, it shows that ess Var(ζ; 0, ·) ∈ AC([0, T ];Lp(X)) . By (A.3) and by Lebesgue’s Differentiation Theorem
for vector-valued functions [18, p. 217] we get that

d

dt
ess Var(ζ; 0, t) = lim

s→t−

ess Var(ζ; 0, t)− ess Var(ζ; 0, s)

t− s ≤ |ζ̇(t)|

if t is a differentiability point for ess Var(ζ; 0, ·) and it is a Lebesgue point for |ζ̇| , the limit being taken with
respect to the Lp -norm.

On the other hand, s < t is a particular partition of the interval [s, t] , therefore

|ζ(t)− ζ(s)|
t− s ≤ ess Var(ζ; 0, t)− ess Var(ζ; 0, s)

t− s a.e. in X .

Taking the limit as s→ t− with respect to the Lp -norm of both sides, we obtain

|ζ̇(t)| ≤ d

dt
ess Var(ζ; 0, t) a.e. in X ,

if t is a differentiability point for ess Var(ζ; 0, ·) and ζ . This proves that d
dt

ess Var(ζ; 0, t) = |ζ̇(t)| .
Finally, since ess Var(ζ; 0, ·) ∈ AC([0, T ];Lp(X)) , we conclude that

ess Var(ζ; 0, t) =

∫ t

0

d

dt
ess Var(ζ; 0, r) dr =

∫ t

0

|ζ̇(t)| dr a.e. in X .

�
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[21] K. Gröger, A W 1,p -estimate for solutions to mixed boundary value problems for second order elliptic differential
equations, Math. Ann., 283 (1989), pp. 679–687.

[22] R. Herzog, C. Meyer, and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elas-
ticity with mixed boundary conditions, J. Math. Anal. Appl., 382 (2011), pp. 802–813.

[23] D. Knees, R. Rossi, and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Math.

Models Methods Appl. Sci., 23 (2013), pp. 565–616.
[24] , A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains,

Nonlinear Anal. Real World Appl., 24 (2015), pp. 126–162.

[25] , Balanced viscosity solutions to a rate-independent system for damage, European Journal of Applied Mathe-
matics, (2018), pp. 1–59.
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