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Abstract This article describes an elementary construction of a dual basis for
non-uniform B-splines that is local, L∞-stable and reproduces polynomials of
any prescribed degree. This allows to define local projection operators with near-
optimal approximation properties in any Lq, 1 ≤ q ≤ ∞, and high order moment
preserving properties. As the dual basis functions share the same piecewise polyno-
mial structure as the underlying splines, simple quadrature formulas can be used
to compute the projected spline coefficients.
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1 Introduction

Since the early developments of splines spaces and their description as linear com-
binations of locally supported B-splines {ϕi : 0 ≤ i < n}, many local dual bases
{ψi : 0 ≤ i < n} have been proposed, see e.g. [4,5,9,6,19,22,10]. Thanks to well-
established stability properties these dual bases provide local projection operators
P : f 7→

∑
i〈ψi, f〉ϕi that are stable in L1 or L∞, and are also high order accu-

rate thanks to the polynomial reproduction properties of the splines. In particular,
they may be used as efficient alternatives to the non-local L2 projection or nodal
interpolation operators.

In some cases, it is important that the dual basis itself has high order polyno-
mial reproduction properties: on an abstract level this guarantees that the dual
projection Q : f 7→

∑
i〈ϕi, f〉ψi also satisfies some high order approximation prop-

erties, and for the primal spline projection P it corresponds to a moment preserving
property. In mortar methods for instance [3], the use of local dual bases spanning
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high order polynomials allows to localize the matching conditions at the interfaces
without loosing the optimality of the method, see [23,20,17]. Another framework
where such a tool is useful is the extension of classical commuting diagrams [18,1,
2,11] to non-conforming discretization spaces, see [13,12,14] and the presentation
below.

One specific feature of B-splines compared to standard Finite Element spaces is
their high order smoothness. This reduces their localization and makes it difficult
to apply the abstract construction tools proposed in [20]. On the other hand,
local dual bases with polynomial reproduction properties have been studied in the
framework of spline wavelet multiresolutions [15,16] but their structure is made
complicated by the refinability properties required by the multiresolution analysis,
and their extension to non-uniform spline spaces is far from straightforward.

In this article we thus propose a direct and elementary construction of local
dual bases for B-splines that reproduce polynomials of any desired degree. These
dual bases are discontinuous but stable in L∞, and they share the same (possibly
non-uniform) piecewise polynomial structure as the splines. As a consequence,
the resulting local projection operators are moment preserving, stable and near
optimal in Lq, 1 ≤ q ≤ ∞, and they can be implemented with simple quadrature
formulas for the spline coefficients.

The outline is as follows. In the remainder of Section 1 we review a few classical
tools that we will need, and specify some notation. Section 2 then specifies the role
played by moment preserving projection operators in the design of non-conforming
commuting diagrams, which was an important motivation for this work. A couple
of classical and not-so-classical local dual bases are then presented in Section 3, and
our new dual basis is presented in Section 4, together with its stability analysis.
Section 5 then provides a couple of numerical tests to verify the practical validity
of the proposed construction.

1.1 Univariate B-splines

We begin by collecting some well-known facts about splines which can be found
in [8, Ch. IX] or [21, Ch. 4], and set some notation. Given two integers p, n, and
a knot vector

ξ = {0 = ξ0 ≤ · · · ≤ ξn+p = 1}, (1)

we remind that B-splines Bpi = Bp[ξi, . . . , ξi+p+1] can be recursively defined on
the interval Ω = [0, 1] by the Cox-de Boor formula, namely B0

i = 1[ξi,ξi+1) for
0 ≤ i < n+ p, and for q = 1, . . . p,

Bqi (x) =
x− ξi
ξi+q − ξi

Bq−1
i (x) +

ξi+q+1 − x
ξi+q+1 − ξi+1

Bq−1
i+1 (x), 0 ≤ i < n+ p− q.

In this article we restrict ourselves to the case where the spline space

Sp,ξ := Span{Bpi }
n−1
i=0 (2)

contains every p-degree polynomial and is of maximal regularity, which corresponds
to the following assumption.
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Assumption 1 The extremal knots have multiplicities p + 1 (the knot vector is
said open), and the inner knots have multiplicities 1, i.e.

0 = ξ0 = · · · = ξp < ξp+1 < · · · < ξn−1 < ξn = · · · = ξn+p = 1.

Under Assumption 1 we may denote by

Ik := [ζk, ζk+1) with ζk := ξk+p, 0 ≤ k < N := n− p, (3)

the non-empty intervals corresponding to the knot vector (1). The spline space
then corresponds to

Sp,ξ = {v ∈ Cp−1(Ω) : v|Ik ∈ Pp(Ik), 0 ≤ k < N}

where Pp is the space of polynomials of degree less or equal to p, see [21, Ex. 4.3],
and the B-splines

ϕi := Bpi , 0 ≤ i < n, (4)

form a basis of Sp,ξ with local supports supp(ϕi) = [ξi, ξi+p+1], see [21, Th. 4.9].

1.2 Local projection operators with moment preservation properties

A convenient way of building local projection operators on Sp,ξ that preserve
polynomial moments up to some given degree m is to design functions

ψi ∈ L∞(Ω), 0 ≤ i < n, (5)

with the following properties:

– they are dual to the B-splines (4),

〈ψi, ϕj〉 = δi,j , 0 ≤ i, j < n, (P1)

– they are local, in the sense that there exists K = K(p,m) such that

suppψi ⊂ I+i with I+i = I+i (K) :=
⋃

|k−i|≤K

Ik (P2)

– they are stable, i.e. there exists a constant C = C(p,m) such that

‖ψi‖L∞ ≤ Ch−1
i where hi := |ξi+p+1 − ξi|, (P3)

– they span every polynomial of degree m,

Pm(Ω) ⊂ Span{ψi}n−1
i=0 . (P4)

Thus, our problem is to design a dual basis with the properties listed above. To
propose a solution we shall make the additional assumption that the grid is locally
quasi-uniform.

Assumption 2 There exists a constant c∗ (possibly depending on p and m) such
that

1

c∗
≤ Ik
Ik−1

≤ c∗, k = 1, . . . , N − 1. (6)
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Using the above properties it is indeed standard to prove the following result,
following for instance the arguments of Th. 6.60 in [21].

Theorem 3 Let p, n,m ∈ N and let ξ be a knot vector satisfying Assumption 1
and 2. If (P1)-(P3) hold for given functions ψi, 0 ≤ i < n, then the operator

P : L1(Ω)→ Sp,ξ, f 7→
n−1∑
i=0

〈ψi, f〉ϕi (7)

is a projection on Sp,ξ which is locally near-optimal in the sense that for 1 ≤ q ≤ ∞,

‖f − Pf‖Lq(Ik) ≤ C inf
v∈Sp,ξ

‖f − v‖Lq(I∗k)
, 0 ≤ k < N (8)

holds with I∗k = ∪k≤i≤k+pI+i ⊂ I+k (K + p), and a constant C that only depends
on p and m. Moreover if (P4) holds, then P preserves the polynomial moments of
degree m,

〈g, Pf〉 = 〈g, f〉, ∀g ∈ Pm, f ∈ L1(Ω). (9)

Proof The projection property is straightforward to verify using (P1), and the
moment preserving property simply follows by noticing that any g ∈ Pm writes
g =

∑
0≤i<n γiψi according to (P4), therefore

〈g, Pf〉 =
∑

0≤i<n

〈g, ϕi〉〈ψi, f〉 =
∑

0≤i<n

γi〈ψi, f〉 = 〈g, f〉, f ∈ L1(Ω).

For (8) we first establish a local stability estimate. Given k, we observe that ϕi
vanishes on Ik for i /∈ {k, . . . , k + p}, and 0 ≤ ϕi ≤ 1 holds by definition. Hence

we have ‖ϕi‖Lq(Ik) ≤ |Ik|
1/q ≤ h1/qi , and

‖Pf‖Lq(Ik) ≤
k+p∑
i=k

|〈ψi, f〉|‖ϕi‖Lq(Ik) ≤
k+p∑
i=k

|〈ψi, f〉|h
1
q

i .

The products are then bound using a Hölder inequality, (P2) and (P3): it yields

|〈ψi, f〉| ≤ ‖ψi‖Lq′ (I+i )‖f‖Lq(I+i ) ≤ ‖ψi‖L∞ |I
+
i |

1
q′ ‖f‖Lq(I+i ) ≤ Ch

−1+ 1
q′

i ‖f‖Lq(I+i )

where we have used the local quasi-uniformity property (6) and (P2) to estimate
|I+i | ≤ Chi with a constant independent of i and N . As −1 + 1

q′ = −1
q , the above

bounds show that

‖Pf‖Lq(Ik) ≤ C‖f‖Lq(I∗k)
(10)

holds with a constant C depending only on p. The local error estimate is then
easily obtained by observing that

‖f − Pf‖Lq(Ik) ≤ ‖f − v‖Lq(Ik) + ‖P (f − v)‖Lq(Ik) ≤ (1 + C)‖f − v‖Lq(I∗k)

holds for all v ∈ Sp,ξ. ut
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2 Non-conforming commuting diagrams involving weak derivatives

An important motivation for moment preserving projection operators comes from
the observation that they play a central role in commuting diagrams for non-
conforming discretizations, which themselves are a key tool in the stable discretiza-
tion of many systems of PDEs, see e.g. [18,1,2,11,13].

To describe this setting with univariate spline discretizations, we denote by

Vh = Sp,ξ and Wh = Sp−1,ξ′

two spline spaces of degree p and p−1 with open knot vectors ξ and ξ′ correspond-
ing to the same grid ζ0, . . . , ζN , under Assumption 1. This allows us to consider
the standard derivative as a discrete operator mapping Vh to Wh, denoted

dh : Vh →Wh, v 7→ ∂xv

and its discrete adjoint d∗h : Wh → Vh defined by the relations

〈d∗hw, v〉 = 〈w, dhv〉 v ∈ Vh, w ∈Wh.

Formally the operator −d∗h can be seen as a weak approximation of ∂x on H1
0 (Ω),

and it is easy to verify that if one denotes by PVh
the L2 projection on Vh, namely

〈PVh
f, v〉 = 〈f, v〉, f ∈ L2(Ω), v ∈ Vh, (11)

and similarly for PWh
, then the following diagram commutes

H1
0 (Ω) L2(Ω)

Wh Vh

∂x

PWh
PVh

−d∗h
(12)

in the sense that −d∗hPWh
u = PVh

∂xu holds for all u ∈ H1
0 (Ω).

As described in [13,12], commuting diagrams can be extended to non-conforming
discretizations in order to gain some locality and flexibility in the design of the
Finite Element spaces. Here a natural choice for the non-conforming space consists
of broken splines. Given a division of the grid into subdomains containing each Ñ
cells (assuming N = ÑS for some S ∈ N) of the form

Ĩs = [ζ̃s, ζ̃s+1] with ζ̃s := ζsÑ , 0 ≤ s < S,

and writing ξ̃
s

= {ξ̃si : 0 ≤ i ≤ ñ + p} with ñ = Ñ + p the open knot vector
corresponding to p degree splines on the nodes ζk, sÑ ≤ k ≤ (s+ 1)Ñ , we let

Ṽh := {v ∈ L2(Ω) : v|Ĩs ∈ Sp,ξ̃s , 0 ≤ s < S} (13)

denote the resulting broken spline space, which satisfies Vh = Ṽh ∩ Cp−1(Ω). A
projection P of the form (7) can then be used as a local smoothing operator
mapping Ṽh on Vh, and this allows to define a non-conforming differential operator

d̃h : Ṽh →Wh, ṽ 7→ ∂xP ṽ
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and its discrete adjoint d̃∗h : Wh → Ṽh characterized by

〈d̃∗hw, ṽ〉 = 〈w, ∂xP ṽ〉, ṽ ∈ Ṽh.

A natural question is whether replacing d∗h, Vh and PVh
by their non-conforming

counterparts d̃∗h, Ṽh and PṼh
(the L2 projection on Ṽh) in (12) results in a commut-

ing diagram. The answer is negative, and instead one must consider the operator

P ∗ : L2(Ω)→ Ṽh, 〈P ∗f, ṽ〉 = 〈f, P ṽ〉, ṽ ∈ Ṽh. (14)

Indeed for all u ∈ H1
0 (Ω) and ṽ ∈ Ṽh, we have

−〈d̃∗hPWh
u, ṽ〉 = −〈PWh

u, ∂xP ṽ〉 = −〈u, ∂xP ṽ〉 = 〈∂xu, P ṽ〉 = 〈P ∗∂xu, ṽ〉

which means that the following diagram commutes:

H1
0 (Ω) L2(Ω)

Wh Ṽh

∂x

PWh P ∗

−d̃∗h
(15)

We note that applying P ∗ amounts to applying P on the broken B-splines and to
inverting mass matrices in the subdomains. As the latter have a bounded number
of cells this is a local computation, just as applying the L2 projection on Ṽh,

〈PṼh
f, ṽ〉 = 〈f, ṽ〉, ṽ ∈ Ṽh, (16)

amounts to solving local problems on the subdomains. We also observe that if
Q : f 7→

∑n−1
i=0 〈ϕi, f〉ψi denotes the dual projection operator mentioned in the

introduction, we have P ∗ = PṼh
Q. Interestingly, P ∗ cannot be a projection if Ṽh

involves more than one subdomain: indeed that would imply

〈ũ, ṽ〉 = 〈P ∗ũ, ṽ〉 = 〈ũ, P ṽ〉, ũ, ṽ ∈ Ṽh

and taking ũ = ṽ = (I −P )w̃ for an arbitrary w̃ ∈ Ṽh would give ‖(I −P )w̃‖ = 0,
hence w̃ = Pw̃ ∈ Vh, in contradiction with the fact that Vh is a proper subspace of
Ṽh. However, one easily verifies that if P is a moment preserving projection then
P ∗ is a quasi-interpolation.

Theorem 4 Let p, n,m ∈ N with m ≤ p, and let ξ be a knot vector satisfying
Assumptions 1 and 2. Given S, Ñ ∈ N such that SÑ = N := n− p, let then Ṽh be
the broken spline space defined by (13). If (P1)-(P4) hold for given functions ψi,
0 ≤ i < n, then the operator P ∗ : L2 → Ṽh defined by (14) is a quasi-interpolation,

P ∗g = g, g ∈ Pm, (17)

and it satisfies a local error estimate

‖f − P ∗f‖Lq(Ĩs)
≤ C inf

g∈Pm

‖f − g‖Lq(Ĩ∗s )
, 0 ≤ s < S,

with a constant C that depends on p and Ñ the number of elements in a subdomain,
and Ĩ∗s ⊂ I+

sÑ
(K̃), K̃ = K + max(Ñ , p), and interval which consists of a bounded

number of cells close to the node ζsÑ , see (P2).
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Proof To verify the quasi-interpolation property we use (14) and (9) to compute

〈P ∗g, ṽ〉 = 〈g, P ṽ〉 = 〈g, ṽ〉, ṽ ∈ Ṽh.

The equality P ∗g = g then follows from the fact that for m ≤ p, Pm is a subspace
of Ṽh. Turning to the a priori estimate, we denote by {φ̃s,a ∈ L2(Ĩs) : 0 ≤ a < ñ}
an orthonormal basis for the local spline space Sp,ξ̃s , 0 ≤ s < S, and set

ϕ̃s,a = h̃
1
2
s 1Ĩs φ̃s,a and ψ̃s,a = h̃−1

s ϕ̃s,a with h̃s = |Ĩs|.

These functions satisfy 〈ψ̃s,a, ϕ̃t,b〉 = δ(s,a),(t,b) for 0 ≤ s, t < S, 0 ≤ a, b < ñ,
and standard arguments based on the piecewise polynomial structure of the space
Sp,ξ̃s over its quasi-uniform grid (6) allow us to write

‖ϕ̃s,a‖Lq ≤ Ch̃
1
q
s and ‖ψ̃s,a‖Lq ≤ Ch̃

−1+ 1
q

s (18)

with constants depending only on p and Ñ , the number of polynomial pieces in
each subdomain. By definition of P ∗ we then have

P ∗f =

S−1∑
s=0

ñ−1∑
a=0

〈Pψ̃s,a, f〉 ϕ̃s,a.

A local stability estimate can then be obtained for P ∗ using similar arguments as
above: On a subdomain Ĩs we estimate

‖P ∗f‖Lq(Ĩs)
≤
ñ−1∑
a=0

|〈Pψ̃s,a, f〉|h̃
1
q
s

and we infer from (P2) that the support of any Pψ̃s,a =
∑

0≤i<n〈ψi, ψ̃s,a〉ϕi with

0 ≤ a < ñ consists of a bounded number of intervals around ζ̃s = ζsÑ , that is

Ĩ∗s := supp(Pψ̃s,a) ⊂
⋃

i :I+(K)i∩Ĩs 6=∅

 ⋃
i−p≤k<i

Ik

 ⊂ I+
sÑ

(K̃)

with K̃ = K + max(Ñ , p) as announced. It follows that we can bound

|〈Pψ̃s,a, f〉| ≤ ‖Pψ̃s,a‖Lq′ ‖f‖Lq(Ĩ∗s )
≤ Ch̃

−1+ 1
q′

s ‖f‖Lq(Ĩ∗s )

where we have used the Lq stability of P , namely Eq. (10), and the estimates (18).
Using again −1 + 1

q′ = −1
q , the above bounds give

‖P ∗f‖Lq(Ĩs)
≤ C‖f‖Lq(Ĩ∗s )

with a constant C depending only on p, q and Ñ . The local error estimate is then
easily derived from the quasi-projection property (17), indeed

‖f − P ∗f‖Lq(Ĩs)
≤ ‖f − g‖Lq(Ĩs)

+ ‖P ∗(f − g)‖Lq(Ĩs)
≤ (1 + C)‖f − g‖Lq(Ĩ∗s )

holds for all g ∈ Pm. ut
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3 Local dual bases

Before describing a solution to our problem we recall a couple of local dual bases,
i.e. functions ψi, 0 ≤ i < n, that satisfy properties (P1)-(P3) but not (P4).

3.1 The dual basis of de Boor

A classical L∞-stable local dual basis is described in [6], see also [21, Th. 4.41]. It is
based on the perfect spline Bp∗ =

(
p+1
2

)
Bp[ξ∗0 , . . . , ξ

∗
p+1] associated with the knots

ξ∗i = cos
( (p+1−i)π

p+1

)
, i = 0, 1, . . . , p + 1 (called perfect because its p-th derivative

is of constant absolute value on its support [−1, 1]). A scaled transition function
is then defined as

Gi(x) = g
(2x− ξi − ξi+p+1

ξi+p+1 − ξi

)
with g(x) =


0 if x < −1,∫ x
−1
Bp∗ if − 1 ≤ x < 1,

1 if 1 ≤ x

and the resulting dual basis functions read

ψdb
i (x) =

dp+1

dxp+1

(
Gi(x)

∏i+p
j=i+1(x− ξj)

p!

)
, 0 ≤ i < n. (19)

It is known (see, e.g. the proof of Theorem 4.41 in [21]) that these functions satisfy
properties (P1) and (P3), and one easily verifies that supp(ψdb

i ) ⊂ [ξi, ξi+p+1], so
that (P2) holds with K = p.

3.2 Dual functions based on the piecewise polynomial structure of the B-splines

Another dual basis is easily derived from the piecewise polynomial structure of the
B-splines. The resulting projection operator corresponds to the Bézier projection
introduced in [22] and is studied as a particular case of local quasi-interpolation
operators in [10].

An attractive feature of this basis is that it has the same polynomial struc-
ture as the B-splines, which simplifies the use of accurate quadrature formulas in
numerical implementations. It can be defined as follows. For 0 ≤ k < N , denote

ϕi,k := ϕi|Ik , 0 ≤ i < n, (20)

the restriction of the B-spline ϕi = Bpi to the cell Ik = [ζk, ζk+1). For k ≤ i ≤ k+p
these functions form a basis of Pp(Ik), see e.g. [21, Th. 4.21]: we may then let

ψi,k ∈ Pp(Ik), k ≤ i ≤ k + p, (21)

denote the dual polynomial basis on Ik, characterized by the relations

〈ψj,k, ϕi,k〉Ik = δi,j for k ≤ i, j ≤ k + p.
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The resulting dual functions are then defined as

ψps
i :=

∑
k∈K(i)

αi,k1Ikψi,k with αi,k :=
(∫

ϕi
)−1

∫
Ik

ϕi (22)

where K(i) =
{
k ∈ {0, . . . , N − 1} : k ≤ i ≤ k + p

}
, 0 ≤ i < n, denotes the cell

indexes where the B-spline ϕi has a non zero contribution.

Lemma 5 For 0 ≤ k < N , the mapping ΠIk : f 7→
∑k+p
j=k〈ψj,k, f〉Ikϕj,k coincides

with the L2 (orthogonal) projection on Pp(Ik).

Proof Writing ψj,k =
∑k+p
l=k c

k
j,lϕl,k we see that

δi,j = 〈ψj,k, ϕi,k〉Ik =

k+p∑
l=k

ckj,l〈ϕl,k, ϕi,k〉Ik ,

which also shows that the matrix (ckj,l)k≤j,l≤k+p is symmetric. It follows that

k+p∑
j=k

〈ϕi,k, ϕj,k〉Ik〈ψj,k, f〉Ik =

k+p∑
j,l=k

〈ϕi,k, ϕj,k〉Ikc
k
l,j〈ϕl,k, f〉Ik = 〈ϕi,k, f〉Ik

which characterizes ΠIk as the orthogonal projection on Pp(Ik). ut

Remark 6 In particular, the linear forms λIk` , ` = 1, . . . , p+ 1 from [10, Eq. (11)]
and their analogs from [22, Eq. (58)] correspond to

λIk` (f) = 〈ψi,k, f〉Ik with i = k + `− 1.

Theorem 7 Let p ∈ N. The functions ψps
i defined by (22) satisfy the properties

(P1)-(P3), i.e. they form a local and stable dual basis to the B-splines. Moreover
they satisfy (P4) with m = 0, i.e. they span the constant functions.

Proof By definition of the set K(i), we compute∑
k∈K(i)

αi,k =
∑

k∈K(i)

(∫
ϕi
)−1

∫
Ik

ϕi = 1, (23)

hence
〈ψps
i , ϕj〉 =

∑
k∈K(i)

αi,k〈ψi,k, ϕj,k〉Ik =
∑

k∈K(i)

αi,kδi,j = δi,j

which proves the duality property (P1). The locality property (P2) is verified
by construction. For the stability (P3) we can use Theorem 1 in [10] thanks to
Remark 6 above. Under the local quasi-uniformity Assumption (2), this result
states that

|〈ψi,k, f〉Ik | ≤ C|Ik|
−1‖f‖L1(Ik)

holds for k ≤ i ≤ k + p with a constant depending only on p. This allows to write

‖ψi,k‖L∞ = sup
f∈L1

〈ψi,k, f〉Ik
‖f‖L1(Ik)

≤ C|Ik|−1 ≤ Ch−1
i ,
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where the last inequality uses again the local quasi-uniformity (6). This clearly
proves (P3) as the coefficients αi,k are all bounded (by 1). To finally prove the
conservation property we observe that

( ∫
ϕi
)
αi,k = 〈1, ϕi,k〉 is the i-th coefficient

of the function 1 in the local basis (21). In particular, we have

n−1∑
i=0

(∫
ϕi
)
ψps
i =

n−1∑
i=0

∑
k∈K(i)

〈1, ϕi,k〉1Ikψi,k =

N−1∑
k=0

1Ik = 1Ω

which proves that (P4) indeed holds with m = 0. ut

Remark 8 As studied in [22] and [10], any bounded combination of the form (22)
with

∑
k∈K(i) αi,k = 1 provides a stable and local dual basis for the B-splines. In

[22] the values αi,k = (
∫
ϕi)
−1
∫
Ik
ϕi are advocated as leading to more accurate

projections, and they are the only ones for which the dual basis spans the constants.

4 Dual functions based on a macro-subdivision

We now present our solution to the problem described in Section 1.2.

4.1 Construction of the dual basis

To preserve an arbitrary number of moments when projecting a function in the
spline space, we construct a dual basis that uses a subdivision of the domain Ω
into macro-elements containing each m + p + 1 cells of the form Ik = [ζk, ζk+1),
see (3). Assuming that such a subdivision is possible, i.e., that there exists a
positive integer L such that

N = LM with M := m+ p+ 1

(under Assumption 1 we have N = n− p), we denote the elements of the macro-
subdivision by

Î` = [ζ̂`, ζ̂`+1) with ζ̂` = ζ`M . (24)

We next subdivide the B-splines ϕi, 0 ≤ i < n, in two groups.

– B-splines ϕi that do not vanish on a macro-vertex ζ̂` = ζ`M will be said to be
of macro-vertex type. Under Assumption 1 they are of the form

ϕi with i ∈ Imv
` := {`M, · · · , `M + p− 1} for some 0 ≤ ` < L.

– B-splines ϕi that have their support contained in a single macro-element Î`
will be said to be of macro-element type. They are of the form

ϕi with i ∈ Ime
` := {`M + p, · · · , (`+ 1)M − 1} for some 0 ≤ ` < L.

We gather the previous index sets into

Imv :=
⋃

0≤`≤L

Imv
` and Ime :=

⋃
0≤`<L

Ime
`

and define the macro-subdivision dual basis functions ψms
i as follows.
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– If i ∈ Imv is the index of a macro-vertex spline, then we may take any stable
dual basis function for the associated macro-vertex dual function. In order
to have the same polynomial structure as the B-spline, we choose to set

ψms
i := ψps

i for i ∈ Imv. (25)

– If i ∈ Ime is the index of a macro-element spline, we proceed in two steps.
Given 0 ≤ ` < L, we let {φ`j : j ∈ Ime

` } be the polynomial basis of Pm(Î`) that
satisfies

〈φ`j , ϕl〉 = δj,l for j, l ∈ Ime
` . (26)

Here the important point is that such a basis is indeed well defined, and stable:
it is guaranteed by Lemma 9 below. The macro-element dual function is
then defined as

ψms
i := φ`i −

∑
j∈Imv

` ∪I
mv
`+1

〈φ`i , ϕj〉ψms
j for i ∈ Ime

` , 0 ≤ ` < L. (27)

Lemma 9 Let 0 ≤ ` < L. There exists a unique basis {φ`i : i ∈ Ime
` } of Pm(Î`)

that satisfies the relations

〈φ`i , ϕj〉 = δi,j i, j ∈ Ime
` , (28)

moreover the estimate

‖φ`i‖L∞(Î`)
≤ Ch−1

i , i ∈ Ime
` (29)

holds with a constant that only depends on p and m.

We postpone the proof of this lemma to Section 4.2 and state the desired result.

Theorem 10 Let p,m ∈ N. The functions ψms
i defined by (25) and (27) satisfy the

properties (P1)-(P4), i.e. they form a local and stable dual basis to the B-splines
that span the polynomials of degree ≤ m.

Proof The duality property (P1) is straightforward to verify, given that the func-
tions ψps

i also satisfy this property. To verify the locality we first use the fact
that the functions ψps

i have the same local supports (ξi, ξi+p+1) as the B-splines,
hence it is also the case for the dual functions of macro-vertex type. For the dual
functions of macro-element type we observe that the functions φ`i vanish by con-
struction outside the macro-elements Î`. It follows that

supp(ψms
i ) ⊂

(
Î` ∪

⋃
j∈Imv

` ∪I
mv
`+1

supp(ψps
j )

)
= (ξ`M , ξ(`+1)M+2p)

which proves (P2) with K = 2p + m. The stability property (P3) is then easily
derived from Theorem 7 and Lemma 9, using also the local quasi-uniformity (6)
for the bound

|〈φ`i , ϕj〉| ≤ ‖φ`i‖L∞‖ϕj‖L1 ≤ Ch−1
i hj ≤ C′

which holds with constants C, C′ depending only on p and m. ut
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4.2 Stability analysis

We now prove Lemma 9. Given 0 ≤ ` < L we denote

ϕ̂a = ϕp+`M+a, 0 ≤ a ≤ m, (30)

the macro-element B-splines associated with Î = Î` = [ζ̂0, ζ̂M ]. We then let M ∈
Mm+1(R) be the matrix of moments

Ma,b :=
1

a!(m− a)!

∫ ζ̂M

ζ̂0

(ζ̂M − x)a

(ζ̂M − ζ̂0)a
ϕ̂b(x) dx, 0 ≤ a, b ≤ m.

Verifying (28) amounts to showing that M is invertible: the polynomials φ`i are
then given by

φ`p+`M+b =
∑

0≤a≤m

ηb,a
a!(m− a)!

(ζ̂M − x)a

(ζ̂M − ζ̂0)a
with ηb,a := (M−1)b,a.

We will actually show that the inversion is stable, namely that

‖M−1‖ ≤ C|Î|−1 (31)

with a constant depending only on p and m. This in turn will allow us to write

‖φ`p+`M+b‖L∞ ≤
∑

0≤a≤m

|ηb,a|Cm ≤ C|Î|−1

which leads to the desired bound (29), thanks to the local quasi-uniformity (6).
To prove (31) we consider an arbitrary vector γ = (γa)0≤a≤m ∈ Rm+1 and let

g :=
∑

0≤a≤m

γaϕ̂a

be the associated spline. The vector µ := Mγ then corresponds to the moments
of g: its coefficients read

µa =
1

a!(m− a)!

∫ ζ̂M

ζ̂0

(ζ̂M − x)a

(ζ̂M − ζ̂0)a
g(x) dx, 0 ≤ a ≤ m. (32)

We next let G0 := g and define

Ga+1(x) :=

∫ x

ζ̂0

Ga(y) dy for a = 0, . . . ,m.

By construction, G := Gm+1 is a spline of degree M on Î = [ζ̂0, ζ̂M ], therefore it
belongs to the space SM,ξ̂ associated with the open knot vector ξ̂ = {ξ̂0, . . . , ξ̂3M}
obtained by repeating M + 1 times the extremal nodes ζ̂0 and ζ̂M , namely

ξ̂0 = · · · = ξ̂M < · · · < ξ̂2M = · · · = ξ̂3M and ξ̂M+k = ζ̂k for 0 ≤ k ≤M.
(33)
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It will be convenient to denote by B̂qi the B-splines of degree q ≤ M on these
knots. The macro-element B-splines (30) then correspond to

ϕ̂a = B̂pM+a, 0 ≤ a ≤ m, (34)

and since G is a linear combination of M -degree B-splines on these knots, we may
write G =

∑2M−1
i=0 ΓiB̂

M
i . One can then verify that the first M coefficients vanish

in this sum: indeed by construction one has

G(r) =

{
Gm+1−r for 0 ≤ r ≤ m
g(r−m−1) for m+ 1 ≤ r ≤ m+ p = M − 1,

(35)

so that G(r)(ζ̂0) = 0 for 0 ≤ b ≤ M − 1. This guarantees that G only involves
B-splines B̂Mi with indexes i ≥M , which can also be seen as a consequence of the
de Boor-Fix formula [9,7]

Γi =
M∑
r=0

(−1)M−rΨ
(M−r)
i (τi)G

(r)(τi) with Ψi(x) =
(ξ̂i+1 − x) · · · (ξ̂i+M − x)

M !
.

(36)
Here τi can be arbitrary in (ξ̂i, ξ̂i+M+1), and we further notice that any knot ξ̂i+k
with 1 ≤ k ≤ M is allowed (even if not in the open interval): indeed in the sum
(36) the only discontinuous term corresponds to r = M , and on these knots the

function Ψ
(M−r)
i = Ψi vanishes, which makes the sum actually continuous. Thus,

for 0 ≤ i < M one may take τi = ξ̂M = ζ̂0 and the formula yields Γi = 0 indeed.
For M ≤ i ≤ 2M − 1 we then take τi = ξ̂2M = ζ̂M , which yields

|Γi| ≤
M−1∑
r=0

|Î|r

r!
|G(r)(ζ̂M )|.

Using again that g consists of macro-element B-splines, the relations (35) imply
that G(r)(ζ̂M ) = 0 if m+ 1 ≤ r. For 0 ≤ r ≤ m we then compute

G(r)(ζ̂M ) = Gm+1−r(ζ̂M ) =

∫ ζ̂M

ζ̂0

Gm−r(x) dx

=

∫ ζ̂M

ζ̂0

(ζ̂M − x)Gm−r−1(x) dx (if r ≤ m− 1)

...

=

∫ ζ̂M

ζ̂0

(ζ̂M − x)m−r

(m− r)! g(x) dx = r! |Î|m−rµm−r

where the last equality follows from (32). This yields

‖Γ‖∞ ≤ Cm|Î|m‖µ‖. (37)

Turning to the function g, we use the recurrence relations (5.2) in [7] and the
equality (34) to write

m∑
a=0

γaB̂
p
M+a = g = G(m+1) =

( 2M−1∑
i=M

ΓiB̂
M
i

)(m+1)
=

2M−1∑
i=M

Γ
(m+1)
i B̂pi
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with differentiated coefficients defined by

Γ
(r)
i :=

{
Γi if r = 0
M+1−r

ξ̂i+M+1−r−ξ̂i

(
Γ

(r−1)
i − Γ (r−1)

i−1

)
if r ≥ 1.

(38)

This shows that γa = Γ
(m+1)
M+a , and in particular Γ

(m+1)
M+a = 0 for a > m. Moreover,

arguing as above one verifies that G(r) only involves splines B̂M−ri with i ≥ M ,

hence the recurrence relations [7, Eq. (5.2)] yield Γ
(r)
i = 0 for all i < M and

0 ≤ r ≤ m+1. According to (38) this allows us to only consider vectors of the form

(Γ
(r)
M+a)ma=0, (which we shall conveniently denote by Γ (r)) when we evaluate the

differentiated coefficients Γ
(m+1)
M+a . This restriction is helpful since for 0 ≤ a ≤ m

and 1 ≤ r ≤ m+ 1, the interval (ξ̂M+a, ξ̂2M+a+1−r) always contains at least one
non-empty cell Ik of the original grid. The local quasi-uniformity property (6) then
allows us to write

|Γ (r)
a | ≤ c|Î|−1‖Γ (r−1)‖

for 1 ≤ r ≤ m+ 1, with a constant c = c(p,m). Using (37) and (38) this leads to

‖γ‖ = ‖Γ (m+1)‖ ≤ cm|Î|−m−1‖Γ‖ ≤ C|Î|−1‖µ‖

with another constant C = C(p,m). This proves (31) and ends the proof of
Lemma 9.

5 Numerical results

We end our study with a numerical assessment of the convergence properties of
the various approximation operators described above.

5.1 Accuracy of the local projection operators P on the spline space

In Figure 1 we show the L2 convergence curves of the local projection operators P
on the smooth spline space Vh = Sp,ξ, as defined by (7). The different operators
tested here are reminded in Table 1 and their accuracy is compared to that of
the L2 projection PVh

which is optimal. The plots on the left correspond to the
approximation of the H1 function fabs(x) = |x − 1/π|, and the plots on the right
correspond to the approximation of the smooth (C∞) Runge function frunge(x) =
1/(25(2x − 1)2 + 1). Both are computed with degrees p ∈ {1, 2, 3}, from top to
bottom.

Overall the accuracies of the different projection operators are very similar, and
close to that of the optimal L2 projection, which confirms the result of Theorem 3.
For fabs (on the left) some differences are visible when cubic splines are employed:
in particular the moment preserving Pms projection has a reduced accuracy on the
coarsest meshes, which is due to its oscillating behavior close to the point where
the target function is not C1. For the smooth frunge (on the right) the curves are
hardly distinguishable
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Fig. 1 Convergence curves corresponding to the projection operators P : L2 → Vh defined on
smooth spline spaces of specified degrees 1 ≤ p ≤ 3, as indicated. Definitions of the different
operators are reminded in Table 1.

5.2 Accuracy of the commuting approximations P ∗ on the broken splines

In Figure 2 we show the L2 convergence curves of the operators P ∗ which provide
a commuting diagram for the broken spline space Ṽh, as studied in Section 2. The
definitions of the different operators are reminded in Table 2 and their accuracy is
compared to that of the L2 projection PṼh

which is optimal. Again we note that
the latter operator is local because of the broken nature of the space, but it does
not yield a commuting diagram, as discussed in Section 2. The target functions
and spline degrees are the same as in Figure 1.

In contrast to Figure 1, we find that the accuracies of the different operators are
not comparable, even for the smooth target function frunge. As announced by our
a priori estimate from Theorem 4 the operator P ∗ms involving macro-subdivision
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Table 1 Projection operators Pkey : L2 → Vh used in Figure 1, for given values of key.

key operator reference

L2 non-local L2 projection PVh
Eq. (11)

db local projection of de Boor Pdb Eq. (7), (19)
ps local projection Pps based on the spline polynomial structure Eq. (7), (22)
ms local projection Pms based on the macro-spline subdivision Eq. (7), (25), (27)

dual functions ψms
i seems to converge with an optimal rate, in accordance with

their high order moment preserving properties. The operator P ∗ps involving ψps
i

dual functions has a lesser accuracy but still converges, in accordance with its
first order moment preserving properties (see Theorem 7), and the operator P ∗db
involving ψdb

i dual functions hardly converges for degrees p ≥ 2.

Table 2 Approximation operators P̃key : L2 → Ṽh used in Figure 2, for given values of key.

key operator reference

L2 local L2 projection PṼh
Eq. (16)

db local operator P ∗db using de Boor dual functions Eq. (14), (19)
ps local operator P ∗ps using ps dual functions Eq. (14), (22)
ms local operator P ∗ms using ms dual functions Eq. (14), (25), (27)
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14. Campos Pinto, M., Sonnendrücker, E.: Compatible Maxwell solvers with particles I: con-
forming and non-conforming 2D schemes with a strong Ampere law. SMAI Journal of
Computational Mathematics 3, 53–89 (2017)



18 Martin Campos Pinto

15. Cohen, A., Daubechies, I., Feauveau, J.: Biorthogonal bases of compactly supported
wavelets. Communications on Pure and Applied Mathematics 45(5), 485–560 (1992)

16. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal Spline Wavelets on the Inter-
val—Stability and Moment Conditions. Applied and Computational Harmonic Analysis
6(2), 132–196 (1999)
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