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REVERSE HARDY–LITTLEWOOD–SOBOLEV INEQUALITIES

JOSÉ A. CARRILLO, MATÍAS G. DELGADINO, JEAN DOLBEAULT, RUPERT L. FRANK,

AND FRANCA HOFFMANN

ABSTRACT. This paper is devoted to a new family of reverse Hardy–Littlewood–Sobolev

inequalities which involve a power law kernel with positive exponent. We investigate the

range of the admissible parameters and the properties of the optimal functions. A striking

open question is the possibility of concentration which is analyzed and related with free

energy functionals and nonlinear diffusion equations involving mean field drifts.

1. INTRODUCTION

We are concerned with the following minimization problem. For any λ > 0 and any
measurable function ρ ≥ 0 on RN , let

Iλ[ρ] :=
Ï
RN×RN

|x − y |λρ(x)ρ(y)d x d y .

For 0 < q < 1 we consider

CN ,λ,q := inf

{
Iλ[ρ](∫

RN ρ(x)d x
)α (∫

RN ρ(x)q d x
)(2−α)/q

: 0 ≤ ρ ∈ L1 ∩Lq (RN ) , ρ 6≡ 0

}
,

where

α := 2 N −q (2 N +λ)

N (1−q)
.

By convention, for any p > 0 we use the notation ρ ∈ Lp (RN ) if
∫
RN |ρ(x)|p d x is finite.

Note that α is determined by scaling and homogeneity: for given values of λ and q , the
value of α is the only one for which there is a chance that the infimum is positive. We
are asking whether CN ,λ,q is equal to zero or positive and, in the latter case, whether
there is a unique minimizer. As we will see, there are three regimes q < 2 N /(2 N +λ),
q = 2 N /(2 N+λ) and q > 2 N /(2 N+λ), which respectively correspond toα> 0,α= 0 and
α< 0. The case q = 2 N /(2 N +λ), in which there is an additional conformal symmetry,
has already been dealt with in [16] by J. Dou and M. Zhu, and in [32] by Q.A. Ngô and
V.H. Nguyen, who have explicitly computed CN ,λ,q and characterized all solutions of the
corresponding Euler–Lagrange equation. Here we will mostly concentrate on the other
cases. Our main result is the following.
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Theorem 1. Let N ≥ 1, λ> 0, q ∈ (0,1) and define α as above. Then the inequality

Iλ[ρ] ≥CN ,λ,q

(∫
RN
ρ(x)d x

)α (∫
RN
ρ(x)q d x

)(2−α)/q

(1)

holds for any nonnegative function ρ ∈ L1 ∩Lq (RN ), for some positive constant CN ,λ,q , if
and only if q > N /(N +λ). In this range, if either N = 1, 2 or if N ≥ 3 and q ≥ min

{
1−

2/N , 2 N /(2 N +λ)
}
, there is a radial positive, nonincreasing, bounded function ρ ∈ L1 ∩

Lq (RN ) which achieves the equality case.

This theorem provides a necessary and sufficient condition for the validity of the in-
equality, namely q > N /(N +λ) or equivalently α< 1. Concerning the existence of an op-
timizer, the theorem completely answers this question in dimensions N = 1 and N = 2.
In dimensions N ≥ 3 we obtain a sufficient condition for the existence of an optimizer,
namely, q ≥ min

{
1−2/N ,2 N /(2 N +λ)

}
. This is not a necessary condition and, in fact, in

Proposition 17 we prove existence in a slightly larger, but less explicit region.
In the whole region q > N /(N +λ) we are able to prove the existence of an optimizer

for the relaxed inequality

Iλ[ρ]+2M
∫
RN

|x|λρ(x)d x ≥CN ,λ,q

(∫
RN
ρ(x)d x +M

)α (∫
RN
ρ(x)q d x

)(2−α)/q

(2)

with the same optimal constant CN ,λ,q . Here ρ is an arbitrary nonnegative function in
L1 ∩Lq (RN ) and M an arbitrary nonnegative real number. If M = 0, inequality (2) is re-
duced to inequality (1). It is straightforward to see that (2) can be interpreted as the
extension of (1) to measures with an absolutely continous part ρ and an additional Dirac
mass at the origin. Therefore the question about existence of an optimizer in Theorem 1
is reduced to the problem of whether the optimizer for this relaxed problem in fact has a
Dirac mass. Fig. 1 summarizes these considerations.

The optimizers have been explicitly characterized in the conformally invariant case
q = q(λ) := 2 N /(2 N +λ) in [16, 32] and are given, up to translations, dilations and multi-
plications by constants, by

ρ(x) = (
1+|x|2)−N /q ∀x ∈RN .

This result determines the value of the optimal constant in (1) as

CN ,λ,q(λ) =
1

π
λ
2

Γ
(

N
2 + λ

2

)
Γ

(
N + λ

2

) (
Γ(N )

Γ
(N

2

))1+ λ
N

.

By a simple argument that will be exposed in Section 2, we can also find the optimizers
in the special case λ = 2: if N /(N + 2) < q < 1, then the optimizers for (1) are given by
translations, dilations and constant multiples of

ρ(x) = (
1+|x|2)− 1

1−q .
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In this case we obtain that

CN ,2,q = N (1−q)

πq

(
(N +2) q −N

2 q

) 2−N (1−q)
N (1−q)

 Γ
(

1
1−q

)
Γ

(
1

1−q − N
2

)


2
N

.

Returning to the general case (that is, q 6= 2 N /(2 N +λ) and λ 6= 2), no explicit form of the
optimizers is known, but we can at least prove a uniqueness result in some cases, see also
Fig. 2.

Theorem 2. Assume that N /(N +λ) < q < 1 and either q ≥ 1−1/N and λ≥ 1, or 2 ≤λ≤ 4.
Then the optimizer for (2) exists and is unique up to translation, dilation and multiplica-
tion by a positive constant.

We refer to (1) as a reverse Hardy–Littlewood–Sobolev inequality as λ is positive. The
Hardy–Littlewood–Sobolev (HLS) inequality corresponds to negative values of λ and is
named after G. Hardy and J.E. Littlewood, see [20, 21], and S.L. Sobolev, see [34, 35]; also
see [22] for an early discussion of rearrangement methods applied to these inequalities.
In 1983, E.H. Lieb in [28] proved the existence of optimal functions for negative values
of λ and established optimal constants. His proof requires an analysis of the invariances
which has been systematized under the name of competing symmetries, see [9] and [29,
6] for a comprehensive introduction. Notice that rearrangement free proofs, which in
some cases rely on the duality between Sobolev and HLS inequalities, have also been
established more recently in various cases: see for instance [17, 18, 25]. Standard HLS
inequalities, which correspond to negative values of λ in Iλ[ρ], have many consequences
in the theory of functional inequalities, particularly for identifying optimal constants.

Relatively few results are known in the case λ> 0. The conformally invariant case, i.e.,
q = 2 N /(2 N +λ), appears in [16] and is motivated by some earlier results on the sphere
(see references therein). Further results have been obtained in [32], still in the confor-
mally invariant case. Another range of exponents, which has no intersection with the
one considered in the present paper, was studied earlier in [36, Theorem G]. Here we fo-
cus on a non-conformally invariant family of interpolation inequalities corresponding to
a given L1(RN ) norm. In a sense, these inequalities play for HLS inequalities a role anal-
ogous to Gagliardo-Nirenberg inequalities compared to Sobolev’s conformally invariant
inequality.

The study of (1) is motivated by the analysis of nonnegative solutions to the evolution
equation

∂tρ =∆ρq + ∇· (ρ∇Wλ∗ρ
)

, (3)

where the kernel is given by Wλ(x) := 1
λ
|x|λ. Eq. (3) is a special case of a larger family

of Keller-Segel type equations, which covers the cases q = 1 (linear diffusions), q > 1
(diffusions of porous medium type) in addition to 0 < q < 1 (fast diffusions), and also the
range of exponents λ < 0. Of particular interest is the original parabolic–elliptic Keller–
Segel system which corresponds in dimension N = 2 to a limit case as λ→ 0, in which
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the kernel is W0(x) = 1
2π log |x| and the diffusion exponent is q = 1. The reader is invited

to refer to [24] for a global overview of this class of problems and for a detailed list of
references and applications.

According to [1, 33], (3) has a gradient flow structure in the Wasserstein-2 metric. The
corresponding free energy functional is given by

F [ρ] :=− 1

1−q

∫
RN
ρq d x + 1

2λ
Iλ[ρ] .

As will be detailed later, optimal functions for (1) are energy minimizers for F under a
mass constraint. Smooth solutions ρ(t , ·) of (3) with sufficient decay properties as |x| →
+∞ conserve mass and center of mass over time while the free energy decays according
to

d

d t
F [ρ(t , ·)] =−

∫
RN
ρ

∣∣∣ q
1−q ∇ρq−1 −∇Wλ∗ρ

∣∣∣2
d x .

This identity allows us to identify the smooth stationary solutions as the solutions of

ρs =
(
C + (Wλ∗ρs)

)− 1
1−q

where C is a constant which has to be determined by the mass constraint. Thanks to the
gradient flow structure, minimizers of the free energy F are stationary states of Eq. (3).
When dealing with solutions of (3) or with minimizers of the free energy, without loss of
generality we can normalize the mass to 1 in order to work in the space of probability
measures P (RN ). The general case of a bounded measure with an arbitrary mass can be
recovered by an appropriate change of variables. Considering the lower semicontinuous
extension of the free energy to P (RN ) denoted by FΓ, we obtain counterparts to Theo-
rems 1 and 2 in terms of FΓ.

Theorem 3. The free energy FΓ is bounded from below on P (RN ) if and only if q >
N /(N +λ). If q > N /(N +λ), then there exists a global minimizer µ∗ ∈P (RN ) and, modulo
translations, it has the form

µ∗ = ρ∗+M∗δ0

for some M∗ ∈ [0,1). Moreover ρ∗ ∈ L1+∩Lq (RN ) is radially symmetric, non-increasing and
supported on RN .

If M∗ = 0, then ρ∗ is an optimizer of (1). Conversely, if ρ ∈ L1+∩Lq (RN ) is an optimizer
of (1) with mass M > 0, then ρ/M is a global minimizer of FΓ on P (RN ).

Finally, if N /(N +λ) < q < 1 and either q ≥ 1− 1/N and λ ≥ 1, or 2 ≤ λ ≤ 4, then the
global minimizer µ∗ of FΓ on P (RN ) is unique up to translation.

In the region of the parameters of Theorem 1 for which (1) is achieved by a radial func-
tion, this optimizer is also a minimizer of F . If the minimizer µ∗ of FΓ has a singular
part, then the constant CN ,λ,q is also achieved by µ∗ in (2), up to a translation. Hence the
results of Theorem 3 are equivalent to the results of Theorems 1 and 2.

The use of free energies to understand the long-time asymptotics of gradient flow
equations like (3) and various related models with other interaction potentials than Wλ

or more general pressure variables than ρq−1 has already been studied in some cases: see
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for instance [1, 13, 14, 38]. The connection to Hardy–Littlewood–Sobolev type functional
inequalities [8, 3, 7] is well-known for the range λ ∈ (−N ,0]. However, the case of Wλ with
λ> 0 is as far as we know entirely new.

This paper results from the merging of two earlier preprints, [15] and [11], correspond-
ing to two research projects that were investigated independently.

Section 2 is devoted to the proof of the reverse HLS inequality (1) and also of the op-
timal constant in the case λ= 2. In Section 3 we study the existence of optimizers of the
reverse HLS inequality via the relaxed variational problem associated with (2). The regu-
larity properties of these optimizers are analysed in Section 4, with the goal of providing
some additional results of no-concentration. Section 5 is devoted to the equivalence of
the reverse HLS inequalities and the existence of a lower bound of FΓ on P (RN ). The rel-
ative compactness of minimizing sequences of probability measures is also established
as well as the uniqueness of the measure valued minimizers of FΓ, in the same range of
the parameters as in Theorem 2. We conclude this paper by an appendix on a toy model
for concentration which sheds some light on the threshold value q = 1−2/N .

2. REVERSE HLS INEQUALITY

The following proposition gives a necessary and sufficient condition for inequality (1).

Proposition 4. Let λ> 0.

(1) If 0 < q ≤ N /(N +λ), then CN ,λ,q = 0.
(2) If N /(N +λ) < q < 1, then CN ,λ,q > 0.

The result for q < N /(N +λ) was obtained in [12] using a different method. The result
for q = N /(N +λ), as well as the result for 2 N /(2 N +λ) 6= q > N /(N +λ), are new.

Proof of Proposition 4. Part (1). Let ρ ≥ 0 be bounded with compact support and letσ≥ 0
be a smooth function with

∫
RN σ(x)d x = 1. With another parameter M > 0 we consider

ρε(x) = ρ(x)+M ε−N σ(x/ε) ,

where ε > 0 is a small parameter. Then
∫
RN ρε(x)d x = ∫

RN ρ(x)d x + M and, by simple
estimates, ∫

RN
ρε(x)q d x →

∫
RN
ρ(x)q d x as ε→ 0+ (4)

and

Iλ[ρε] → Iλ[ρ]+2M
∫
RN

|x|λρ(x)d x as ε→ 0+ .

Thus, taking ρε as a trial function,

CN ,λ,q ≤ Iλ[ρ]+2M
∫
RN |x|λρ(x)d x(∫

RN ρ(x)d x +M
)α (∫

RN ρ(x)q d x
)(2−α)/q

=: Q[ρ, M ] . (5)

This inequality is valid for any M and therefore we can let M →+∞. Ifα> 1, which is the
same as q < N /(N +λ), we immediately obtain CN ,λ,q = 0 by letting M →+∞. If α = 1,
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i.e., q = N /(N +λ), by taking the limit as M →+∞, we obtain

CN ,λ,q ≤ 2
∫
RN |x|λρ(x)d x(∫

RN ρ(x)q d x
)(2−α)/q

.

Let us show that by a suitable choice of ρ the right side can be made arbitrarily small. For
any R > 1, we take

ρR (x) := |x|−(N+λ)
11≤|x|≤R (x) .

Then ∫
RN

|x|λρR d x =
∫
RN
ρ

q
R d x = ∣∣SN−1

∣∣ logR

and, as a consequence,∫
RN |x|λρR (x)d x(∫

RN ρ
N /(N+λ)
R d x

)(N+λ)/N
=

(∣∣SN−1
∣∣ logR

)−λ/N → 0 as R →∞ .

This proves that CN ,λ,q = 0 for q = N /(N +λ). �

In order to prove that CN ,λ,q > 0 in the remaining cases, we need the following simple
bound, which is known as a Carlson type inequality in the literature after [10] and whose
sharp form can be found in [27]. For completeness, we give a statement and a proof.

Lemma 5. Let λ> 0 and N /(N +λ) < q < 1. Then there is a constant cN ,λ,q > 0 such that
for all ρ ≥ 0,(∫

RN
ρd x

)1−N (1−q)
λq

(∫
RN

|x|λρ(x)d x

) N (1−q)
λq ≥ cN ,λ,q

(∫
RN
ρq d x

)1/q

.

Equality is achieved if and only if

ρ(x) =
(
1+|x|λ

)− 1
1−q

up to translations, dilations and constant multiples, and one has

cN ,λ,q = 1

λ

(
(N +λ) q −N

q

) 1
q
(

N (1−q)

(N +λ) q −N

) N
λ

1−q
q

 Γ
(N

2

)
Γ

(
1

1−q

)
2π

N
2 Γ

(
1

1−q − N
λ

)
Γ

(N
λ

)


1−q
q

.

Proof. Let R > 0. Using Hölder’s inequality in two different ways, we obtain∫
{|x|<R}

ρq d x ≤
(∫
RN
ρd x

)q

|BR |1−q =C1

(∫
RN
ρd x

)q

RN (1−q)

and ∫
{|x|≥R}

ρq d x ≤
(∫
RN

|x|λρ(x)d x

)q (∫
{|x|≥R}

|x|−
λq

1−q d x

)1−q

=C2

(∫
RN

|x|λρ(x)d x

)q

R−λq+N (1−q) .
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The fact that C2 < ∞ comes from the assumption q > N /(N +λ), which is the same as
λq/(1−q) > N . To conclude, we add these two inequalities and optimize over R.

The existence of a radial monotone non-increasing optimal function follows by stan-
dard variational methods; the expression for the optimal functions is a consequence of
the Euler-Lagrange equations. The expression of cN ,λ,q is then straightforward. �

Proof of Proposition 4. Part (2). By rearrangement inequalities it suffices to prove the in-
equality for symmetric non-increasing ρ’s. For such functions, by the simplest rearrange-
ment inequality, ∫

RN
|x − y |λρ(y)d x ≥

∫
RN

|x|λρ(x)d x for all x ∈RN .

Thus,

Iλ[ρ] ≥
∫
RN

|x|λρ(x)d x
∫
RN
ρd x . (6)

In the range N
N+λ < q < 1 (for which α< 1), we recall that by Lemma 5, for any symmetric

non-increasing function ρ, we have

Iλ[ρ](∫
RN ρ(x)d x

)α ≥
(∫
RN
ρd x d x

)1−α ∫
RN

|x|λρ(x)d x ≥ c2−α
N ,λ,q

(∫
RN
ρq d x

) 2−α
q

because 2−α= λq
N (1−q) . As a consequence, we obtain that

CN ,λ,q ≥ c2−α
N ,λ,q > 0.

�

Corollary 6. Let λ = 2 and N /(N + 2) < q < 1. Then the optimizers for (1) are given by
translations, dilations and constant multiples of

ρ(x) = (
1+|x|2)− 1

1−q

and the optimal constant is

CN ,2,q = 2c
2 q

N (1−q)

N ,2,q .

Proof. By rearrangement inequalities it is enough to prove (1) for symmetric non-increa-
sing ρ’s, and so

∫
RN xρ(x)d x = 0. Therefore

I2[ρ] = 2
∫
RN
ρ(x)d x

∫
RN

|x|2ρ(x)d x

and the optimal function is the one of the Carlson type inequality of Lemma 5. �

By taking into account the fact that

cN ,2,q = 1

2

(
(N +2) q −N

q

) 1
q
(

N (1−q)

(N +2) q −N

) N
2

1−q
q

 Γ
(

1
1−q

)
2π

N
2 Γ

(
1

1−q − N
2

)


1−q
q

,

we recover the expression of CN ,2,q given in the introduction.
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Remark 7. We can now make a few observations on the reverse HLS inequality (1) and its
optimal constant CN ,λ,q .

(i) The computation in the proof of Proposition 4, Part (2) explains a surprising feature
of (1): Iλ[ρ] controls a product of two terms. However, in the range N /(N +λ) < q <
2 N /(2 N+λ) which corresponds toα ∈ (0,1), the problem is actually reduced (with a non-
optimal constant) to the interpolation of

∫
RN ρq d x between

∫
RN ρd x and

∫
RN |x|λρ(x)d x,

which has a more classical structure.

(ii) There is an alternative way to prove (1) in the range 2 N /(2 N +λ) < q < 1 using the
results from [16, 32]. We can indeed rely on Hölder’s inequality to get that(∫

RN
ρ(x)q d x

)1/q

≤
(∫
RN
ρ(x)

2 N
2 N+λ d x

)η 2 N+λ
2 N

(∫
RN
ρd x

)1−η

with η := 2 N (1−q)
λq . By applying the conformally invariant inequality

Iλ[ρ] ≥CN ,λ, 2 N
2 N+λ

(∫
RN
ρ(x)

2 N
2 N+λ d x

) 2 N+λ
N

shown in [16, 32], we obtain that

CN ,λ,q ≥CN ,λ, 2 N
2 N+λ

=π−λ
2
Γ
(N

2 + λ
2

)
Γ
(
N + λ

2

) (
Γ(N )

Γ
(N

2

))1+ λ
N

.

We notice that α=−2(1−η)/η is negative in the range 2 N /(2 N +λ) < q < 1.

(iii) We have
lim

q→N /(N+λ)+
CN ,λ,q = 0

because the map (λ, q) 7→CN ,λ,q is upper semi-continuous. The proof of this last property
goes as follows. Let us rewrite Q[ρ,0] defined in (5) as

Qq,λ[ρ] := Iλ[ρ](∫
RN ρ(x)d x

)α (∫
RN ρ(x)q d x

)(2−α)/q
. (7)

In this expression of the energy quotient, we emphasize the dependence in q and λ. As
before, the infimum of Qq,λ over L1+ ∩ Lq (RN ) is CN ,λ,q . Let (q,λ) be a given point in
(0,1)× (0,∞) and let (qn ,λn)n∈N be a sequence converging to (q,λ). Let ε> 0 and choose
aρ which is bounded, has compact support and is such thatQq,λ[ρ] ≤CN ,λ,q+ε. Then, by
the definition as an infimum, CN ,qn ,λn ≤Qqn ,λn [ρ]. On the other hand, the assumptions
on ρ imply that limn→∞Qqn ,λn [ρ] = Qq,λ[ρ]. We conclude that limsupn→∞CN ,qn ,λn ≤
CN ,λ,q +ε. Since ε is arbitrary, we obtain the claimed upper semi-continuity property.

3. EXISTENCE OF MINIMIZERS AND RELAXATION

We now investigate whether there are minimizers in L1+∩Lq (RN ) for CN ,λ,q if N /(N +
λ) < q < 1. As mentioned before, the conformally invariant case q = 2 N /(2 N +λ) has
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been dealt with before and will be excluded from our considerations. We start with the
simpler case 2 N /(2 N +λ) < q < 1, which corresponds to α< 0.

Proposition 8. Let λ> 0 and 2 N /(2 N +λ) < q < 1. Then there is a minimizer for CN ,λ,q .

Proof. Let (ρ j ) j∈N be a minimizing sequence. By rearrangement inequalities we may as-
sume that the ρ j are symmetric non-increasing. By scaling and homogeneity, we may
also assume that ∫

RN
ρ j (x)d x =

∫
RN
ρ j (x)q d x = 1 for all j ∈N .

This together with the symmetric non-increasing character of ρ j implies that

ρ j (x) ≤C min
{|x|−N , |x|−N /q}

with C independent of j . By Helly’s selection theorem we may assume, after passing to a
subsequence if necessary, that ρ j → ρ almost everywhere. The function ρ is symmetric
non-increasing and satisfies the same upper bound as ρ j .

By Fatou’s lemma we have

liminf
j→∞

Iλ[ρ j ] ≥ Iλ[ρ] and 1 ≥
∫
RN
ρ(x)d x .

To complete the proof we need to show that
∫
RN ρ(x)q d x = 1 (which implies, in particu-

lar, that ρ 6≡ 0) and then ρ will be an optimizer.
Modifying an idea from [2] we pick p ∈ (

N /(N +λ), q
)

and apply (1) with the same λ
and α(p) = (

2 N −p (2 N +λ)
)/(

N (1−p)
)

to get

Iλ[ρ j ] ≥CN ,λ,p

(∫
RN
ρ

p
j d x

)(2−α(p))/p

.

Since the left side converges to a finite limit, namely CN ,λ,q , we find that the ρ j are uni-
formly bounded in Lp (RN ) and therefore we have as before

ρ j (x) ≤C ′ |x|−N /p .

Since min
{|x|−N , |x|−N /p

} ∈ Lq (RN ), we obtain by dominated convergence∫
RN
ρ

q
j d x →

∫
RN
ρq d x ,

which, in view of the normalization, implies that
∫
RN ρ(x)q d x = 1, as claimed. �

Next, we prove the existence of minimizers in the range N /(N +λ) < q < 2 N /(2 N +λ)
by considering the minimization of the relaxed problem (2). The idea behind this relax-
ation is to allow ρ to contain a Dirac function at the origin. The motivation comes from
the proof of the first part of Proposition 4. The expression of Q[ρ, M ] as defined in (5)
arises precisely from a measurable function ρ together with a Dirac function of strength
M at the origin. We have seen that in the regime q ≤ N /(N+λ) (that is,α≥ 1) it is advanta-
geous to increase M to infinity. This is no longer so if N /(N+λ) < q < 2 N /(2 N+λ). While
it is certainly disadvantageous to move M to infinity, it has to be investigated whether the
optimum M is 0 or a positive finite value.
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Let
C rel

N ,λ,q := inf
{
Q[ρ, M ] : 0 ≤ ρ ∈ L1 ∩Lq (RN ) , ρ 6≡ 0, M ≥ 0

}
where Q[ρ, M ] is defined by (5). We know that C rel

N ,λ,q ≤ CN ,λ,q by restricting the mini-

mization to M = 0. On the other hand, (5) gives C rel
N ,λ,q ≥CN ,λ,q . Therefore,

C rel
N ,λ,q =CN ,λ,q ,

which justifies our interpretation of C rel
N ,λ,q as a relaxed minimization problem. Let us

start with a preliminary observation.

Lemma 9. Letλ> 0 and N /(N+λ) < q < 1. If ρ ≥ 0 is an optimal function for either C rel
N ,λ,q

(for an M ≥ 0) or CN ,λ,q (with M = 0), then ρ is radial (up to a translation), monotone
non-increasing and positive almost everywhere on RN .

Proof. Since CN ,λ,q is positive, we observe that ρ is not identically 0. By rearrangement
inequalities and up to a translation, we know that ρ is radial and monotone non-increa-
sing. Assume by contradiction that ρ vanishes on a set E ⊂RN of finite, positive measure.
Then

Q
[
ρ, M +ε1E

]=Q[ρ, M ]

(
1− 2−α

q

|E |∫
RN ρ(x)q d x

εq +o(εq )

)
as ε→ 0+, a contradiction to the minimality for sufficiently small ε> 0. �

Varying Q[ρ, M ] with respect to ρ, we obtain the Euler–Lagrange equation on RN for
any minimizer (ρ∗, M∗) for C rel

N ,λ,q :

2

∫
RN |x − y |λρ∗(y)d y +M∗|x|λ

Iλ[ρ∗]+2M∗
∫
RN |y |λρ∗(y)d y

− α∫
RN ρ∗ d y +M∗

− (2−α)
ρ∗(x)−1+q∫
RN ρ∗(y)q d y

= 0. (8)

This equation follows from the fact that ρ∗ is positive almost everywhere according to
Lemma 9.

Proposition 10. Let λ > 0 and N /(N +λ) < q < 2 N /(2 N +λ). Then there is a minimizer
for C rel

N ,λ,q .

We will later show that for N = 1 and N = 2 there is a minimizer for the original problem
CN ,λ,q in the full range of λ’s and q’s covered by Proposition 10. If N ≥ 3, the same is true
under additional restrictions.

Proof of Proposition 10. The beginning of the proof is similar to that of Proposition 8. Let
(ρ j , M j ) j∈N be a minimizing sequence. By rearrangement inequalities we may assume
that ρ j is symmetric non-increasing. Moreover, by scaling and homogeneity, we may
assume that ∫

RN
ρ j d x +M j =

∫
RN
ρ

q
j = 1.

In a standard way this implies that

ρ j (x) ≤C min
{|x|−N , |x|−N /q}
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with C independent of j . By Helly’s selection theorem we may assume, after passing
to a subsequence if necessary, that ρ j → ρ almost everywhere. The function ρ is sym-
metric non-increasing and satisfies the same upper bound as ρ j . Passing to a further
subsequence, we can also assume that (M j ) j∈N and

(∫
RN ρ j d x

)
j∈N converge and define

M := L + lim j→∞ M j where L = lim j→∞
∫
RN ρ j d x − ∫

RN ρd x, so that
∫
RN ρd x +M = 1. In

the same way as before, we show that∫
RN
ρ(x)q d x = 1.

We now turn our attention to the L1-term. We cannot invoke Fatou’s lemma because
α ∈ (0,1) and therefore this term appears in Q with a positive exponent in the denomina-
tor. The problem with this term is that |x|−N is not integrable at the origin and we cannot
get a better bound there. We have to argue via measures, so let dµ j (x) := ρ j (x)d x. Be-
cause of the upper bound on ρ j we have

µ j
(
RN \ BR (0)

)= ∫
{|x|≥R}

ρ j (x)d x ≤C
∫

{|x|≥R}

d x

|x|N /q
=C ′ R−N (1−q)/q .

This means that the measures are tight. After passing to a subsequence if necessary, we
may assume that µ j →µ weak * in the space of measures on RN . Tightness implies that

µ(RN ) = lim
j→∞

∫
RN
ρ j d x = L+

∫
RN
ρd x .

Moreover, since the bound C |x|−N /q is integrable away from any neighborhood of the
origin, we see that µ is absolutely continuous on RN \ {0} and dµ/d x = ρ. In other words,

dµ= ρd x +Lδ .

Using weak convergence in the space of measures one can show that

liminf
j→∞

Iλ[ρ j ] ≥ Iλ[ρ]+2M
∫
RN

|x|λρ(x)d x .

Finally, by Fatou’s lemma,

liminf
j→∞

∫
RN

|x|λρ j (x)d x ≥
∫
RN

|x|λ (
ρ(x)d x +Lδ

)= ∫
RN

|x|λρ(x)d x .

Hence
liminf

j→∞
Q[ρ j , M j ] ≥Q[ρ, M ] .

By definition of C rel
N ,λ,q the right side is bounded from below by C rel

N ,λ,q . On the other

hand, by choice of ρ j and M j the left side is equal to C rel
N ,λ,q . This proves that (ρ, M) is a

minimizer for C rel
N ,λ,q . �

Next, we show that under certain assumptions a minimizer (ρ∗, M∗) for the relaxed
problem must, in fact, have M∗ = 0 and is therefore a minimizer of the original problem.
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Proposition 11. Let N ≥ 1, λ > 0 and N /(N +λ) < q < 2 N /(2 N +λ). If N ≥ 3 and λ >
2 N /(N−2), then assume in addition that q ≥ 1−2/N . If (ρ∗, M∗) is a minimizer for C rel

N ,λ,q ,
then M∗ = 0. In particular, there is a minimizer for CN ,λ,q .

Note that for N ≥ 3, we are implicitly assuming λ< 4N /(N −2) since otherwise the two
assumptions q < 2 N /(2 N +λ) and q ≥ 1−2/N cannot be simultaneously satisfied. For
the proof of Proposition 11 we need the following lemma which identifies the sub-leading
term in (4).

Lemma 12. Let 0 < q < p, let f ∈ Lp ∩Lq (RN ) be a symmetric non-increasing function and
let g ∈ Lq (RN ). Then, for any τ> 0, as ε→ 0+,∫
RN

∣∣ f (x)+ε−N /p τg (x/ε)
∣∣q

d x =
∫
RN

f q d x +εN (1−q/p)τq
∫
RN

|g |q d x +o
(
εN (1−q/p)τq)

.

Proof of Lemma 12. We first note that

f (x) = o
(|x|−N /p)

as x → 0 (9)

in the sense that for any c > 0 there is an r > 0 such that for all x ∈RN with |x| ≤ r one has
f (x) ≤ c |x|−N /p . To see this, we note that, since f is symmetric non-increasing,

f (x)p ≤ 1∣∣{y ∈RN : |y | ≤ |x|}∣∣
∫
|y |≤|x|

f (y)p d y .

The bound (9) now follows by dominated convergence.
It follows from (9) that, as ε→ 0+,

εN /p f (εx) → 0 for any x ∈RN ,

and therefore, in particular, τg (x)+εN /p f (εx) → τg (x) for any x ∈RN . From the Brézis–
Lieb lemma (see [5]) we know that∫

RN

∣∣τg (x)+εN /p f (εx)
∣∣q

d x = τq
∫
RN

|g (x)|q d x +
∫
RN

(
εN /p f (εx)

)q
d x +o(1) .

By scaling this is equivalent to the assertion of the lemma. �

Proof of Proposition 11. We argue by contradiction and assume that M∗ > 0. Let 0 ≤ σ ∈(
L1 ∩Lq

(
RN

))∩L1
(
RN , |x|λd x

)
with

∫
RN σd x = 1. We compute the value of Q[ρ, M ] for

the family (ρ, M) = (
ρ∗+ε−Nτσ(·/ε), M∗−τ) with a parameter τ< M∗.

1) We have

Iλ
[
ρ∗+ε−Nτσ(·/ε)

]+2(M∗−τ)
∫
RN

|x|λ (
ρ∗(x)+ε−Nτσ(x/ε)

)
d x

= Iλ[ρ∗]+2 M∗
∫
RN

|x|λρ∗(x)d x +R1
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with

R1 = 2τ
Ï
RN×RN

ρ∗(x)
(
|x − y |λ−|x|λ

)
ε−Nσ(y/ε)d x d y

+ελτ2 Iλ[σ]+2(M∗−τ)τελ
∫
RN

|x|λσ(x)d x .

Let us show that R1 =O
(
εβτ

)
withβ := min{2,λ}. This is clear for the last two terms in the

definition of R1, so it remains to consider the double integral. If λ≤ 1 we use the simple
inequality |x − y |λ−|x|λ ≤ |y |λ to conclude thatÏ

RN×RN
ρ∗(x)

(
|x − y |λ−|x|λ

)
ε−Nσ(y/ε)d x d y ≤ ελ

∫
RN

|x|λσ(x)d x
∫
RN
ρ∗ d x .

If λ> 1 we use the fact that, with a constant C depending only on λ,

|x − y |λ−|x|λ ≤−λ|x|λ−2x · y +C
(
|x|(2−λ)+ |y |β+|y |λ

)
. (10)

Since ρ∗ is radial, we obtainÏ
RN×RN

ρ∗(x)
(
|x − y |λ−|x|λ

)
ε−Nσ(y/ε)d x d y

≤C

(
εβ

∫
RN

|x|(2−λ)+ρ∗(x)d x
∫
RN

|y |βσ(y)d y +ελ
∫
RN

|x|λσ(x)d x
∫
RN
ρ∗(x)d x

)
.

Using Hölder’s inequality and the fact that ρ∗, σ ∈ L1
(
RN

)∩L1
(
RN , |x|λd x

)
it is easy to

see that the integrals on the right side are finite, so indeed R1 =O
(
εβτ

)
.

2) For the terms in the denominator of Q[ρ, M ] we note that∫
RN

(
ρ∗(x)+ε−Nτσ(x/ε)

)
d x + (M∗−τ) =

∫
RN
ρ∗ d x +M∗

and, by Lemma 12 applied with p = 1,∫
RN

(
ρ∗(x)+ε−Nτσ(x/ε)

)q
d x =

∫
RN
ρ

q
∗ d x +εN (1−q)τq

∫
RN
σq d x +o

(
εN (1−q)τq)

.

Thus,(∫
RN

(
ρ∗(x)+ε−Nτσ(x/ε)

)q
d x

)− 2−α
q

=
(∫
RN
ρ

q
∗ d x

)− 2−α
q

(
1− 2−α

q
εN (1−q)τq

∫
RN σq d x∫
RN ρ

q
∗ d x

+R2

)
with R2 = o

(
εN (1−q)τq

)
.

Now we collect the estimates. Since (ρ∗, M∗) is a minimizer, we obtain that

Q
[
ρ∗+ε−Nτσ(·/ε), M∗−τ

]=CN ,λ,q

(
1− 2−α

q
εN (1−q)τq

∫
RN σq d x∫
RN ρ

q
∗ d x

+R2

)

+R1

(∫
RN
ρ∗ d x +M∗

)−α (∫
RN

(
ρ∗(x)+ε−Nτσ(x/ε)

)q
d x

)− 2−α
q

.
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If β = min{2,λ} > N (1 − q), we can choose τ to be a fixed number in (0, M∗), so that
R1 = o

(
εN (1−q)

)
and therefore

Q
[
ρ∗+ε−Nτσ(·/ε), M∗−τ

]≤CN ,λ,q

(
1− 2−α

q
εN (1−q)τq

∫
RN σq d x∫
RN ρ

q
∗ d x

+o
(
εN (1−q))) .

Since α< 2, this is strictly less than CN ,λ,q for ε> 0 small enough, contradicting the defi-
nition of CN ,λ,q as an infimum. Thus, M∗ = 0.

Note that if either N = 1, 2 or if N ≥ 3 and λ ≤ 2 N /(N −2), then the assumption q >
N /(N +λ) implies that β> N (1−q). If N ≥ 3 and λ> 2 N /(N −2), then β= 2 ≥ N (1−q)
by assumption. Thus, it remains to deal with the case where N ≥ 3, λ > 2 N /(N −2) and
2 = N (1−q). In this case we have R1 =O

(
ε2τ

)
and therefore

Q
[
ρ∗+ε−Nτσ(·/ε), M∗−τ

]≤CN ,λ,q

(
1− 2−α

q
ε2τq

∫
RN σq d x∫
RN ρ

q
∗ d x

+O
(
ε2τ

))
.

By choosing τ small (but independent of ε) we obtain a contradiction as before. This
completes the proof of the proposition. �

Remark 13. The extra assumption q ≥ 1−2/N for N ≥ 3 and λ > 2 N /(N −2) is dictated
by the ε2 bound on R1. We claim that for any λ ≥ 2, this bound is optimal. Namely, one
hasÏ

RN×RN
ρ∗(x)

(
|x − y |λ−|x|λ

)
ε−Nσ(y/ε)d x d y

= ε2 λ

2

(
1+ λ−2

N

)∫
RN

|x|λ−2ρ∗(x)d x
∫
RN

|y |2σ(y)d y +o
(
ε2)

for λ≥ 2. This follows from the fact that, for any given x 6= 0,

|x − y |λ−|x|λ =−λ |x|λ−2x · y + λ

2
|x|λ−2

(
|y |2 + (λ−2)

(x · y)2

|x|2
)
+O

(
|y |min{3,λ} +|y |λ

)
.

4. FURTHER RESULTS OF REGULARITY

In this section we discuss the existence of a minimizer for CN ,λ,q in the regime that is
not covered by Proposition 11. In particular, we will establish a connection between the
regularity of minimizers for the relaxed problem C rel

N ,λ,q and the presence or absence of
a Dirac delta. This will allow us to establish existence of minimizers for CN ,λ,q in certain
parameter regions which are not covered by Proposition 11.

Proposition 14. Let N ≥ 3, λ> 2 N /(N −2) and N /(N +λ) < q < min
{
1−2/N , 2 N /(2 N +

λ)
}
. If (ρ∗, M∗) is a minimizer for C rel

N ,λ,q such that (ρ∗, M∗) ∈ LN (1−q)/2(RN )×[0,+∞), then
M∗ = 0.

The condition that the minimizer (ρ∗, M∗) of C rel
N ,λ,q belongs to LN (1−q)/2(RN )×[0,+∞)

has to be understood as a regularity condition on ρ∗.

Proof. We argue by contradiction assuming that M∗ > 0 and consider a test function(
ρ∗+ε−Nτεσ(·/ε), M∗−τε

)
such that

∫
RN σd x = 1. We choose τε = τ1ε

N−2/(1−q) with a



REVERSE HLS — July 12, 2018 15

constant τ1 to be determined below. As in the proof of Proposition 11, one has

Iλ
[
ρ∗+ε−Nτεσ(·/ε)

]+2(M∗−τε)
∫
RN

|x|λ (
ρ∗(x)+ε−Nσ(x/ε)

)
d x

= Iλ[ρ∗]+2M∗
∫
RN

|x|λρ∗(x)d x +R1

with R1 = O
(
ε2τε

)
. Note here that we have λ ≥ 2. For the terms in the denominator we

note that ∫
RN

(
ρ∗(x)+ε−Nτεσ(x/ε)

)
d x + (M∗−τε) =

∫
RN
ρ∗ d x +M∗

and, by Lemma 12 applied with p = N (1−q)/2 and τ= τε, i.e., ε−Nτε = ε−N /pτ1, we have∫
RN

(
ρ∗(x)+ε−Nτεσ(x/ε)

)q
d x =

∫
RN
ρ

q
∗ d x +εN (1−q)τ

q
ε

∫
RN
σq d x +o

(
εN (1−q)τ

q
ε

)
.

Because of the choice of τε we have

εN (1−q)τ
q
ε = εγτq

1 and ε2τε = εγτ1 with γ := N −q (N +2)

1−q
> 0

and thus

Q
[
ρ∗+ε−Nτεσ(·/ε), M∗−τε

]≤CN ,λ,q

(
1− 2−α

q
εγτ

q
1

∫
RN σq d x∫
RN ρ

q
∗ d x

+O
(
εγτ1

))
.

By choosing τ1 small (but independent of ε) we obtain a contradiction as before. �

Proposition 14 motivates the study of the regularity of the minimizer (ρ∗, M∗) of C rel
N ,λ,q .

We are not able to prove the regularity required in Proposition 14, but we can state a di-
chotomy result which is interesting by itself, and allows to deduce the existence of mini-
mizers for CN ,λ,q in parameter regions not covered in Proposition 11.

Proposition 15. Let N ≥ 1, λ > 0 and N /(N +λ) < q < 2 N /(2 N +λ). Let (ρ∗, M∗) be a
minimizer for C rel

N ,λ,q . Then the following holds:

(1) If
∫
RN ρ∗ d x > α

2
Iλ[ρ∗]∫

RN |x|λρ∗(x)d x
, then M∗ = 0 and ρ∗ is bounded with

ρ∗(0) =
(

(2−α)Iλ[ρ∗]
∫
RN ρ∗ d x(∫

RN ρ
q
∗ d x

)(
2
∫
RN |x|λρ∗(x)d x

∫
RN ρ∗ d x −αIλ[ρ∗]

))1/(1−q)

.

(2) If
∫
RN ρ∗ d x = α

2
Iλ[ρ∗]∫

RN |x|λρ∗(x)d x
, then M∗ = 0 and ρ∗ is unbounded.

(3) If
∫
RN ρ∗ d x < α

2
Iλ[ρ∗]∫

RN |x|λρ∗(x)d x
, then ρ∗ is unbounded and

M∗ =
αIλ[ρ∗]−2

∫
RN |x|λρ∗(x)d x

∫
RN ρ∗ d x

2(1−α)
∫
RN |x|λρ∗(x)d x

> 0.

To prove Proposition 15, let us begin with an elementary lemma.

Lemma 16. For constants A, B > 0 and 0 <α< 1, define

f (M) := A+M

(B +M)α
for any M ≥ 0.
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Then f attains its minimum on [0,∞) at M = 0 if αA ≤ B and at M = (αA−B)/(1−α) > 0
if αA > B.

Proof. We consider the function on the larger interval (−B ,∞). Let us compute

f ′(M) = (B +M)−α(A+M)

(B +M)α+1
= B −αA+ (1−α)M

(B +M)α+1
.

Note that the denominator of the right side vanishes exactly at M = (αA −B)/(1−α),
except possibly if this number coincides with −B .

We distinguish two cases. If A ≤ B , which is the same as (αA−B)/(1−α) ≤−B , then f
is increasing on (−B ,∞) and then f indeed attains its minimum on [0,∞) at 0. Thus it
remains to deal with the other case, A > B . Then f is decreasing on

(−B , (αA−B)/(1−α)
]

and increasing on
[
(αA−B)/(1−α),∞)

. Therefore, if αA−B ≤ 0, then f is increasing on
[0,∞) and again the minimum is attained at 0. On the other hand, if αA −B > 0, then f
has a minimum at the positive number M = (αA−B)/(1−α). �

Proof of Proposition 15. Step 1. We vary Q[ρ∗, M ] with respect to M . By the minimizing
property of M∗ the function

M 7→Q[ρ∗, M ] = 2
∫
RN |x|λρ∗(x)d x(∫
RN ρ

q
∗ d x

)(2−α)/q

A+M

(B +M)α

with

A := Iλ[ρ∗]

2
∫
RN |x|λρ∗(x)d x

and B :=
∫
RN
ρ∗(x)d x

attains its minimum on [0,∞) at M∗. From Lemma 16 we infer that

M∗ = 0 if and only if
α

2

Iλ[ρ∗]∫
RN |x|λρ∗(x)d x

≤
∫
RN
ρ∗(x)d x ,

and that M∗ = αIλ[ρ∗]−2
(∫
RN |x|λρ∗(x)d x

)(∫
RN ρ∗(y)d y

)
2(1−α)

∫
RN |x|λρ∗(x)d x

if α2
Iλ[ρ∗]∫

RN |x|λρ∗(x)d x
> ∫

RN ρ∗(x)d x.

Step 2. We vary Q[ρ, M∗] with respect to ρ. Letting x → 0 in the Euler–Lagrange equa-
tion (8), we find that

2

∫
RN |y |λρ∗(y)d y

Iλ[ρ∗]+2M∗
∫
RN |y |λρ∗(y)d y

−α 1∫
RN ρ∗(y)d y +M∗

= (2−α)
ρ∗(0)−1+q∫
RN ρ∗(y)q d y

≥ 0,

with the convention that the last inequality is an equality if and only if ρ∗ is unbounded.
Consistently, we shall write that ρ∗(0) = +∞ in that case. We can rewrite our inequality
as

M∗ ≥
αIλ[ρ∗]−2

(∫
RN |y |λρ∗(y)d y

)(∫
RN ρ∗ d y

)
2(1−α)

∫
RN |y |λρ∗(y)d y

with equality if and only if ρ∗ is unbounded. This completes the proof of Proposition 15.
�
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Next, we focus on matching ranges of the parameters (N ,λ, q) with the cases (1), (2)
and (3) in Proposition 15. For any λ≥ 1 we deduce from

|x − y |λ ≤ (|x|+ |y |)λ ≤ 2λ−1 (|x|λ+|y |λ) (11)

that

Iλ[ρ] < 2λ
∫
RN

|x|λρ(x)d x
∫
RN
ρ(x)d x .

For all α≤ 2−λ+1, which can be translated into

q ≥ 2 N
(
1−2−λ)

2 N
(
1−2−λ)+λ ,

that is, ∫
RN
ρ∗ d x ≥ α

2

Iλ[ρ∗]∫
RN |x|λρ∗(x)d x

,

so that Cases (1) and (2) of Proposition 15 apply and we infer that M∗ = 0. Note that this
bound for q is in the range

(
N /(N +λ) , 2 N /(2 N +λ)

)
for all λ≥ 1. See Fig. 1.

A better range for which M∗ = 0 can be obtained for N ≥ 3 using the fact that superlevel
sets of a symmetric non-increasing function are balls. From the layer cake representation
we deduce that

Iλ[ρ] ≤ 2 AN ,λ

∫
RN

|x|λρ(x)d x
∫
RN
ρ(x)d x , AN ,λ := sup

0≤R,S<∞
F (R,S) ,

where

F (R,S) :=
Î

BR×BS
|x − y |λd x d y

|BR |
∫

BS
|x|λd x +|BS |

∫
BR

|y |λd y
.

For any λ ≥ 1, we have 2 AN ,λ ≤ 2λ by (11), and also AN ,λ ≥ 1/2 because by (6) Iλ[1B1 ] ≥
|B1|

∫
B1

|y |λd y . The bound AN ,λ ≥ 1/2 can be improved to AN ,λ > 1 for any λ > 2 as fol-
lows. We know that

AN ,λ ≥ F (1,1) = N (N +λ)

2

Ï
0≤r, s≤1

r N−1 sN−1
(∫ π

0

(
r 2 + s2 −2r s cosϕ

)λ/2 (sinϕ)N−2

WN
dϕ

)
dr d s

with the Wallis integral WN := ∫ π
0 (sinϕ)N−2 dϕ. For any λ > 2, we can apply Jensen’s

inequality twice and obtain∫ π

0

(
r 2 + s2 −2r s cosϕ

)λ/2 (sinϕ)N−2 dϕ

WN

≥
(∫ π

0

(
r 2 + s2 −2r s cosϕ

) (sinϕ)N−2 dϕ

WN

)λ/2

= (
r 2 + s2)λ/2

andÏ
0≤r, s≤1

r N−1 sN−1 (
r 2 + s2)λ/2

dr d s

≥ 1

N 2

(Ï
0≤r, s≤1

r N−1 sN−1 (
r 2 + s2)N 2 dr d s

)λ/2

= 1

N 2

(
2 N

N +2

)λ/2

.
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Hence

AN ,λ ≥
N +λ

2 N

(
2 N

N +2

)λ/2

=: BN ,λ

where λ 7→ BN ,λ is monotone increasing, so that AN ,λ ≥ BN ,λ > BN ,2 = 1 for any λ> 2. In
this range we can therefore define

q̄(λ, N ) :=
2 N

(
1− A−1

N ,λ

)
2 N

(
1− A−1

N ,λ

)+λ . (12)

Based on a numerical computation, the curve λ 7→ q̄(λ, N ) is shown on Fig. 1. The next
result summarizes our considerations above.

Proposition 17. Assume that N ≥ 3 and λ> 2 N
N−2 . Then q̄ defined by (12) is such that

q̄(λ, N ) ≤ 2 N
(
1−2−λ)

2 N
(
1−2−λ)+λ < 2 N

2 N +λ and q̄(λ, N ) > N

N +λ forλ> 2 large enough .

If (ρ∗, M∗) is a minimizer for C rel
N ,λ,q and if max

{
q̄(λ, N ), N

N+λ
}< q < N−2

N , then M∗ = 0 and
ρ∗ is bounded.

Proof. We recall that q > q̄(λ, N ) defined by (12) means that∫
RN
ρ∗ d x ≥ α

2

Iλ[ρ∗]∫
RN |x|λρ∗(x)d x

,

so that Case (1) of Proposition 15 applies. The estimates on q̄ follow from elementary
computations. �

Next we consider the singularity of ρ∗ at the origin in the unbounded case in more
detail, in the cases which are not already covered by Propositions 8, 11 and 17.

Lemma 18. Let N ≥ 3, λ > 2 N /(N −2) and N /(N +λ) < q < min
{
1−N /2, q̄(λ, N )

}
. Let

(ρ∗, M∗) be a minimizer for C rel
N ,λ,q and assume that it is unbounded. Then there is a con-

stant C > 0 such that

ρ∗(x) =C |x|−2/(1−q) (1+o(1)
)

as x → 0.

Proof. Since ρ∗(x) →∞ as x → 0 we can rewrite the Euler–Lagrange equation (8) as

2

∫
RN

(|x − y |λ−|y |λ)ρ∗(y)d y +M∗|x|λ
Iλ[ρ∗]+2M∗

∫
RN |y |λρ∗(y)d y

− (2−α)
ρ∗(x)−1+q∫
RN ρ∗(y)q d y

= 0.

By Taylor expanding we have∫
RN

(
|x − y |λ−|y |λ

)
ρ∗(y)d y +M∗ |x|λ =C1 |x|2

(
1+o(1)

)
as x → 0

with C1 = 1
2 λ (λ− 1)

∫
RN |y |λ−2ρ∗(y)d y , which is finite according to (6). This gives the

claimed behavior for ρ∗ at the origin. �

The proof of Lemma 18 relies only on (8). For this reason, we can also state the follow-
ing result.
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Proposition 19. Let N ≥ 1, λ > 0 and N /(N +λ) < q < 1. If N ≥ 3 and λ > 2 N /(N −
2) we assume in addition that q ≥ min

{
1−N /2, q̄(λ, N )

}
. If (ρ∗, M∗) ∈ L1 ∩ Lq

(
RN

)∩
L1

(
RN , |x|λd x

)×R+ solves (8), then M∗ = 0 and ρ∗ is bounded.

As a consequence, under the assumptions of Proposition 19, we recover that any min-
imizer (ρ∗, M∗) of C rel

N ,λ,q is such that M∗ = 0 and ρ∗ is bounded. Notice that the range
q̄(λ, N ) < 1−2/N is covered in Proposition 17 but not here.

Proof. Assume by contradiction that ρ∗ is unbounded. If λ ≥ 2, the proof of Lemma 18
applies and we know that ρ∗(x) ∼ |x|−2/(1−q) as x → 0. For any λ ∈ (0,1] we have that |x −
y |λ ≤ |x|λ+|y |λ. If λ ∈ (1,2), using inequality (10) with the roles of x and y interchanged,
we find that

∫
RN

(|x − y |λ−|y |λ)ρ∗(y)d y ≤C |x|λ for some C > 0. Hence, for some c > 0,

ρ∗(x) ≥ c |x|−min{λ,2}/(1−q)

for any x ∈ RN with |x| > 0 small enough. We claim that min{λ,2}/(1− q) ≥ N , which
contradicts

∫
RN ρ∗ d x <∞. �

By recalling the results of [16] in the conformally invariant case q = 2N /(2N +λ), and
the results of Propositions 4, 8, 11, 19 and Lemma 9, we have completed the proof of
Theorem 1.

5. FREE ENERGY

In this section, we discuss the relation between the reverse HLS inequalities (1) and
the free energy functional

F [ρ] :=− 1

1−q

∫
RN
ρq d x + 1

2λ
Iλ[ρ] .

We also extend the free energy functional to the set of probability measures and prove a
uniqueness result in this framework.

5.1. Relaxation and extension of the free energy functional. The kernel |x − y |λ is pos-
itive and continuous, so there is no ambiguity with the extension of Iλ to P (RN ), which
is simply given by

Iλ[µ] =
Ï
RN×RN

|x − y |λdµ(x)dµ(y) .

In this section we use the notion of weak convergence in the sense of probability theory:
if µn and µ are probability measures on RN then µn *µ means

∫
RN ϕdµn → ∫

RN ϕdµ for
all bounded continuous functions ϕ on RN . We define the extension of F to P (RN ) by

FΓ[µ] := inf
(ρn )n∈N⊂C∞

c ∩P (RN )
s.t. ρn*µ

liminf
n→∞ F [ρn] .

We also define a relaxed free energy by

F rel[ρ, M ] :=− 1

1−q

∫
RN
ρ(x)q d x + 1

2λ
Iλ[ρ]+ M

λ

∫
RN

|x|λρ(x)d x .
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The functional F rel can be characterized as the restriction of FΓ to the subset of proba-
bility measures whose singular part is a multiple of a δ at the origin.

5.2. Equivalence of the optimization problems and consequences. According to Propo-
sition 4, we know that CN ,λ,q = 0 if 0 < q ≤ N /(N +λ), so that one can find test functions
ρn ∈ L1+∩Lq (RN ) such that

‖ρn‖L1(RN ) = Iλ[ρn] = 1 and
∫
RN
ρn(x)q d x ≥ n ∈N .

As a consequence, limn→∞F [ρn] =−∞.
Next, let us consider the case N /(N +λ) < q < 1. Assume that ρ ∈ L1+∩Lq (RN ) is such

that Iλ[ρ] is finite. For any `> 0 we define ρ`(x) := `−N ρ(x/`)/‖ρ‖L1(RN ) and compute

F [ρ`] =−`(1−q) N A+`λB
whereA= 1

1−q

∫
RN ρ(x)q d x/‖ρ‖q

L1(RN )
andB= 1

2λ Iλ[ρ]/‖ρ‖2
L1(RN )

. The function` 7→F [ρ`]

has a minimum which is achieved at `= `? where

`? :=
(

N (1−q)A
λB

) 1
λ−N (1−q)

and, with Qq,λ as defined in (7), we obtain that

F [ρ] ≥F [ρ`?] =−κ?
(
Qq,λ[ρ]

)− N (1−q)
λ−N (1−q) where κ? := λ−N (1−q)

(1−q)λ (2 N )
N (1−q)

λ−N (1−q) .

As a consequence, we have the following result.

Proposition 20. With the notations of Section 5.1, for any q ∈ (0,1) and λ> 0, we have

FN ,λ,q := inf
ρ

F [ρ] = inf
ρ,M

F rel[ρ, M ] = inf
µ

FΓ[µ]

where the infima are taken on L1+∩Lq (RN ),
(
L1+∩Lq (RN )

)× [0,∞) and P (RN ) in case of,
respectively, F , F rel and FΓ. Moreover FN ,λ,q > −∞ if and only if CN ,λ,q > 0, that is, if
N /(N +λ) < q < 1 and, in this case,

FN ,λ,q =−κ?C
− N (1−q)
λ−N (1−q)

N ,λ,q =F rel[ρ∗, M∗] =FΓ[µ∗]

for some µ∗ = M∗δ+ρ∗, (ρ∗, M∗) ∈ (
L1+∩Lq (RN )

)× [0,1) such that
∫
RN ρ∗(x)d x +M∗ = 1.

Additionally, we have that

Iλ[ρ∗]+2 M∗
∫
RN

|x|λρ∗(x)d x = 2 N
∫
RN
ρ∗(x)q d x .

Since (ρ∗, M∗) is also a minimizer for C rel
N ,λ,q , it satisfies all properties of Lemma 9 and

Propositions 11, 15 and 17.

Proof. This result is a simple consequence of the definitions of F rel and FΓ. The exis-
tence of the minimizer is a consequence of Propositions 8 and 10. If ρ ∈ L1+∩Lq (RN ) is a
minimizer for FN ,λ,q , then Iλ[ρ] = 2 N

∫
RN ρ(x)q d x because `? = 1, and ρ is also an opti-

mizer for CN ,λ,q . Conversely, if ρ ∈ L1+∩Lq (RN ) is an optimizer for CN ,λ,q , then there is an
`> 0 such that `−N ρ(·/`)/‖ρ‖L1(RN ) is an optimizer for FN ,λ,q . �



REVERSE HLS — July 12, 2018 21

The discussion of whether M∗ = 0 or not in the statement of Proposition 20 is the same
as in the discussion of the reverse Hardy–Littlewood–Sobolev inequality in Section 3. Ex-
cept for the question of uniqueness, this completes the proof of Theorem 3.

5.3. Properties of the free energy extended to probability measures. From now on, un-
less it is explicitly specified, we shall denote by ρ the absolutely continuous part of the
measure µ ∈P (RN ). On P (RN ), let us define

G [µ] := 1

2λ
Iλ[µ]− 1

1−q

∫
RN
ρ(x)q d x (13)

if Iλ[µ] < +∞ and extend it with the convention that G [µ] = +∞ if Iλ[µ] = +∞. Notice
that

∫
RN ρ(x)q d x is finite by Lemma 5 and Eq. (6) whenever Iλ[ρ] ≤ Iλ[µ] is finite. Let us

start with some technical estimates. The following is a variation of [12, Lemma 2.7].

Lemma 21. Let N ≥ 1 and λ> 0, then for any a ∈RN , r > 0 and µ ∈P (RN ) we have

Iλ[µ] ≥ 21−(λ−1)+ µ
(
Br (a)

)(∫
RN

|y −a|λdµ(y)−2(λ−1)+ rλ
)

.

As a consequence, if Iλ[µ] < ∞, then
∫
RN |y − a|λdµ(y) is finite for any a ∈ RN and the

infimum with respect to a is achieved.

Proof. If x ∈ Br (a) and y ∈ Br (a)c , then

|x − y |λ ≥ (|y −a|− |x −a|)λ ≥ (|y −a|− r
)λ ≥ 2−(λ−1)+ |y −a|λ− rλ .

We can therefore bound Iλ[µ] from below by

2
Ï

Br (a)×Br (a)c
|x − y |λdµ(x)dµ(y)

≥ 2µ
(
Br (a)

)(
2−(λ−1)+

∫
Br (a)c

|y −a|λdµ(y)− rλµ
(
Br (a)c))

= 21−(λ−1)+ µ
(
Br (a)

)(∫
RN

|y −a|λdµ(y)−
∫

Br (a)
|y −a|λdµ(y)−2(λ−1)+ rλµ

(
Br (a)c))

≥ 21−(λ−1)+ µ
(
Br (a)

)(∫
RN

|y −a|λdµ(y)− rλµ
(
Br (a)

)−2(λ−1)+ rλµ
(
Br (a)c))

≥ 21−(λ−1)+ µn
(
Br (a)

)(∫
RN

|y −a|λdµn(y)−2(λ−1)+ rλ
)

.

This proves the claimed inequality.
Let R > 0 be such that µ

(
BR (0)

) ≥ 1/2 and consider a ∈ BR (0)c , so that |y −a| > |a|−R
for any y ∈ BR (0). From the estimate∫

RN
|y −a|λdµ(y) ≥

∫
BR (0)

|y −a|λdµ(y) ≥ 1

2

(|a|−R
)λ ,

we deduce that in infa∈RN

∫
RN |y−a|λdµ(y), a can be restricted to a compact region ofRN .

Since the map a 7→ ∫
RN |y −a|λdµ(y) is lower semi-continuous, the infimum is achieved.

�
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Corollary 22. Let λ> 0 and N /(N +λ) < q < 1. Then there is a constant C > 0 such that

G [µ] ≥ Iλ[µ]

4λ
−C ≥ 1

4λ
inf

a∈RN

∫
RN

|x −a|λdµ(x)−C ∀µ ∈P (RN ) .

Proof. Let µ ∈ P (RN ) and let ρ be its absolutely continuous part with respect to Lebes-
gue’s measure. By Theorem 1, we know that∫

RN
ρ(x)q d x ≤

(
Iλ[ρ]

CN ,λ,q

) N (1−q)
λ

because
∫
RN ρd x ≤µ(RN ) = 1. Hence we obtain that

G [µ] ≥ Iλ[µ]

4λ
−C with C = min

{
X

4λ
−

(
X

CN ,λ,q

) N (1−q)
λ

: X > 0

}
.

As µ is a probability measure, the proof is completed using the inequality

inf
a∈RN

∫
RN

|x −a|λdµ(x) ≤
Ï
RN×RN

|x −a|λdµ(x)dµ(a) = Iλ[µ] .

�

Lemma 23. If λ> 0 and N /(N +λ) < q < 1, then G is lower semi-continuous.

Proof. Let (µn) ⊂P (RN ) with µn * µ. We denote by ρn and ρ the absolutely continuous
part of µn and µ, respectively. We have to prove that liminfn→∞G [µn] ≥ G [µ]. Either
liminfn→∞G [µn] =+∞, or it is finite and then, up to the extraction of a subsequence, we
know from Corollary 22 that K := supn∈N Iλ[µn] is finite. According to [33, Proposition
7.2], we also know that

liminf
n→∞ Iλ[µn] ≥ Iλ[µ] .

According to [33, Theorem 7.7] or [4, Theorem 4], for any r > 0 we have

liminf
n→∞

(
−

∫
Br

ρn(x)q d x

)
≥−

∫
Br

ρ(x)q d x .

Notice that the absolutely continuous part of the limit of µn
¬
Br coincides with the abso-

lutely continuous part of µ
¬
Br as the difference is supported on ∂Br .

We choose r0 > 0 to be a number such that µ(Br0 ) ≥ 1/2 and find n0 ∈N such that for
any n ≥ n0 we have µn(Br0 ) ≥ 1/4. By applying Lemma 21, we obtain that∫

RN
|x|λdµn(x) ≤ 2(λ−1)+

(
rλ0 +2 Iλ[µn]

)
≤ 2(λ−1)+(

rλ0 +2K
)

for any n ≥ n0. We apply Lemma 5 to ρ = ρn 1B c
r∫

B c
r

ρn(x)q d x ≤ c−q
N ,λ,q

(∫
B c

r

ρn d x

)q−N (1−q)
λ

(∫
B c

r

|x|λρn d x

) N (1−q)
λ

and conclude that

liminf
n→∞

(
−

∫
B c

r

ρn(x)q d x

)
≥−c−q

N ,λ,q

(
µ
(
B c

r

))q−N (1−q)
λ

(
2(λ−1)+(

rλ0 +2K
)) N (1−q)

λ
.
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The right hand side vanishes as r →∞, which proves the claimed lower semi-continuity.
�

After these preliminaries, we can now prove that G , defined in (13), is the lower-semi-
continuous envelope of F . The precise statement goes as follows.

Proposition 24. Let 0 < q < 1 and λ> 0.Let µ ∈P (RN )

(1) If q ≤ N /(N +λ), then FΓ[µ] =−∞.
(2) If q > N /(N +λ), then FΓ[µ] =G [µ].

Proof. Assume that q ≤ N /(N +λ). Using the function ν(x) = |x|−N−λ (
log |x|))−1/q , let us

construct an approximation of any measure in µ ∈P (RN ) given by a sequence (ρn)n∈N of
functions in C∞

c ∩P (RN ) such that limn→∞F [ρn] =−∞.
Let η ∈C∞

c (B1) be a positive mollifier with unit mass and ζ ∈C∞
c (B2) be a cutoff func-

tion such that 1B1 ≤ ζ ≤ 1. Given any natural numbers i , j and k, we define ηi (y) :=
i N η(i y), ζ j (y) := ζ(y/ j ) and

fi , j ,k := (
1− 1

k

)(
µ∗ηi

)
ζi + 1

k Ci , j ,k (1−ζi )ζ j ν

where Ci , j ,k is a positive constant that has been picked so that fi , j ,k ∈P (RN ). We choose
i = n, j = en and k = k(n) such that

lim
n→∞k(n) =+∞ and lim

n→∞k(n)−N q log(n/logn) =+∞ .

By construction, ρn := fn, j (n),k(n) * µ as n → ∞ and limn→∞F [ρn] = −∞, so FΓ[µ] =
−∞.

Assume that q > N /(N +λ) and consider a sequence of functions in C∞
c ∩P (RN ) such

that ρn * µ and limn→∞F [ρn] =FΓ[µ]. If Iλ[µ] =∞, by the lower-semicontinuity of Iλ
(see for instance [33, Proposition 7.2]), we know that limn→∞ Iλ[ρn] = ∞ and deduce
from Corollary 22 that 1

4λ Iλ[ρn]−C ≤F [ρn] diverges, so that FΓ[µ] =∞=G [µ].
Next, we assume that Iλ[µ] <∞. According to Lemma 23, we deduce from the lower

semi-continuity of G that

FΓ[µ] = lim
n→∞F [ρn] = lim

n→∞G [ρn] ≥G [µ] .

It remains to show the inequality FΓ[µ] ≤ G [µ]. Let µR := µ(BR )−1µ
¬
BR . We have that

µR *µ as R →∞ and, by monotone convergence,

lim
R→∞

G [µR ] =G [µ] .

Let ηε(x) := ε−N η(x/ε) for a sufficiently regular, compactly supported, nonnegative func-
tion η such that

∫
RN ηd x = 1. Then µR ∗ηε ∈C∞

c ∩P (RN ) and µR ∗ηε*µR as ε→ 0. Here
we are using implicitly the metrizability of weak convergence. Since µR ∗ηε→ ρR almost
everywhere, Fatou’s lemma implies that

liminf
ε→0

∫
RN

(µR ∗ηε)q d x ≥
∫
RN
ρ

q
R d x .
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Moreover, sinceµR has compact support, the support ofµR∗ηε is contained in a bounded
set independent of ε and therefore the interaction term is, in fact, continuous under weak
convergence (see, e.g., [33, Proposition 7.2]), that is,

liminf
ε→0

Iλ[µR ∗ηε] = Iλ[µR ] .

Thus, we have shown that
liminf
ε→0

F [µR ∗ηε] ≤G [µR ] .

Hence for any R = n ∈N, we can find an εn > 0, small enough, such that µn ∗ηεn *µ and
finally obtain that

FΓ[µ] ≤ lim
n→∞F [µn ∗ηεn ] ≤G [µ] .

�

In Section 3, using symmetric decreasing rearrangements, we proved that there is a
minimizing sequence which converges to a minimizer. Here we have a stronger property.

Proposition 25. Let N /(N+λ) < q < 1. Then any minimizing sequence for FΓ is relatively
compact, up to translations, with respect to weak convergence. In particular, there is a
minimizer for FΓ.

Proof. Let (µn)n∈N be a minimizing sequence for FΓ in P (RN ). After an n-dependent
translation we may assume that for any n ∈N,∫

RN
|x|λdµn(x) = inf

a∈RN

∫
RN

|x −a|λdµn(x)

according to Lemma 21. Corollary 22 applies∫
RN

|x|λdµn(x) ≤ 4λ

(
sup

n
FΓ[µn]+C

)
,

which implies that (µn)n∈N is tight. By Prokhorov’s theorem and after passing to a sub-
sequence if necessary, (µn)n∈N converges weakly to some µ∗ ∈ P (RN ). By the lower-
semicontinuity property of Lemma 23, we obtain that

inf
µ∈P (RN )

FΓ[µ] = lim
n→∞FΓ[µn] ≥ inf

µ∈P (RN )
FΓ[µ] ,

which concludes the proof. �

Remark 26. By symmetrization, Lemma 9 and Proposition 20, we learn that, up to trans-
lations, any minimizer µ of FΓ is of the form µ = ρ+ M δ, with M ∈ [0,1) and ρ ∈ L1+∩
Lq (RN ). Moreover, ρ is radially symmetric non-increasing and strictly positive. The min-
imizers of FΓ satisfy the Euler-Lagrange conditions given by (8). This can be also shown
by taking variations directly on FΓ as in [11].

5.4. Uniqueness.

Theorem 27. Let N /(N +λ) < q < 1 and assume either that 1−1/N ≤ q < 1 and λ≥ 1, or
2 ≤λ≤ 4. Then the minimizer of FΓ on P (RN ) is unique up to translation.
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Notice that Theorem 2 is a special case of Theorem 27. Theorem 3 is a direct conse-
quence of Proposition 20 and Theorem 27.

Proof. The proof relies on the notion of displacement convexity by mass transport in
the range 1−1/N ≤ q < 1, λ ≥ 1 and on a recent convexity result, [30, Theorem 2.4], of
O. Lopes in the case 2 ≤ λ ≤ 4. Since N /(N +4) < 1−1/N for N ≥ 2, there is a range of
parameters q and λ such that N /(N +λ) < q < 1−1/N and 2 ≤λ≤ 4, which is not covered
by mass transport. Ranges of the parameters are shown in Fig. 2.

• Displacement convexity and mass transport. We assume that 1−1/N ≤ q < 1 and λ≥ 1.
Under these hypothesis, [31, Theorem 2.2] and [1, Theorem 9.4.12, p. 224] imply that the
functional FΓ restricted to the set of absolutely continuous measures is strictly geodesi-
cally convex with respect to the Wasserstein-2 metric. As the minimizers might not be ab-
solutely continuous, we cannot apply these results directly but we can adapt their proofs.
We shall say that the mesurable map T :RN −→RN pushes forward the measureµ onto ν,
or that T transports µ onto ν, if and only if∫

RN
ϕ

(
T (x)

)
dµ(x) =

∫
RN
ϕ(x)dν(x)

for all bounded and continuous functions ϕ on RN . This will be written as ν= T #µ.
Let us argue by contradiction and assume that there are two distinct radial minimizers

µ0 = ρ0 +M0δ and µ1 = ρ1 +M1δ, with M1 ≥ M0. We define

F (s) =µ0(Bs) and G(s) =µ1(Bs)

on (0,∞). Both functions are monotone increasing according to Lemma 9 and Propo-
sition 20, so that they admit well defined inverses F−1 : [0,1) → [0,∞) and G−1 : [0,1) →
[0,∞). Let T :RN →RN with

T (x) :=G−1(F (|x|)) x

|x|
be the optimal transport map pushing µ0 forward onto µ1 according, e.g., [38], which is
noted as T #µ0 = µ1. With s∗ := F−1(M1 −M0), we note that G−1

(
F (s)

) = 0 for any s ≤ s∗
and s 7→ G−1

(
F (s)

)
is strictly increasing on (s∗,1). This implies that T : B c

s∗ → RN \ {0} is
invertible and ∇T is positive semi-definite. We consider the midpoint of the nonlinear
interpolant which is given by

µ1/2 = 1
2 (I +T )#µ0

where I (x) = x denotes the identity map. For any λ≥ 1, we have that

Iλ[µ1/2] =
Ï
RN×RN

∣∣1
2

(
x +T (x)

)− 1
2

(
y +T (y)

)∣∣λdµ0(x)dµ0(y)

<
Ï
RN×RN

(
1
2 |x − y |λ+ 1

2

∣∣T (x)−T (y)
∣∣λ) dµ0(x)dµ0(y) = 1

2

(
Iλ[µ0]+ Iλ[µ1]

)
.
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Let Id be the identity matrix. By the change of variable formula as in [31], we obtain that

− 1

1−q

∫
RN
ρ1/2(x)q d x =− 1

1−q

∫
RN

(
ρ0(x)

det
(1

2

(
Id+∇T (x)

)))q

det
(1

2

(
Id+∇T (x)

))
d x .

Using q ≥ 1− 1/N , the fact that ∇T is positive semi-definite and the concavity of s 7→
det

(
(1− s) Id+ s∇T

)1−q , we obtain that

− det
(1

2

(
Id+∇T

))1−q ≤−1
2 det(Id)− 1

2 det
(∇T

)1−q .

Hence

− 1

1−q

∫
RN
ρ

q
1/2 d x ≤ 1

2

(
− 1

1−q

∫
RN
ρ

q
0 d x − 1

1−q

∫
RN

(
ρ0

det
(∇T

))q

det
(∇T

)
d x

)
.

Since T : B c
s∗ →RN is invertible and T #ρ0

¬
B c

s∗ = ρ1, we can undo the change of variables:

− 1

1−q

∫
RN

(
ρ0

det
(∇T

))q

det
(∇T

)
d x =− 1

1−q

∫
B c

s∗

(
ρ0

det
(∇T

))q

det
(∇T

)
d x

=− 1

1−q

∫
RN
ρ

q
1 d x .

Altogether, we have shown that FΓ[µ1/2] < 1
2

(
FΓ[µ0]+FΓ[µ1]

)
, which contradicts the

assumption that µ0 and µ1 are two distinct minimizers. Notice that displacement con-
vexity is shown only in the set of radially decreasing probability measures of the form
µ= ρ+M δ.

• Linear convexity of the functional FΓ. We assume that 2 ≤λ≤ 4. Let µ0 = ρ0 +M0δ and
µ1 = ρ1 +M1δ be two radial minimizers and consider the function

[0,1] 3 t 7→FΓ
[
(1− t )µ0 + t µ1] =: f (t ) .

We shall prove that f is strictly convex if µ0 6≡µ1. In this case, since µ0 is a minimizer, we
have f (t ) ≥ f (0) for all 0 ≤ t ≤ 1 and therefore f ′(0) ≥ 0. Together with the strict convexity
this implies f (1) > f (0), which contradicts the fact that µ1 is a minimizer. This is why we
compute

f ′′(t ) = 1

λ
Iλ[µ0 −µ1]+q

∫
RN

(
(1− t )ρ0 + t ρ1

)q−2(ρ1 −ρ0)2 d x .

According to [30, Theorem 2.4], we have that Iλ[h] ≥ 0 under the assumption 2 ≤λ≤ 4, for
all h such that that

∫
RN

(
1+|x|λ) |h|d x <∞ with

∫
RN h d x = 0 and

∫
RN x h d x = 0. Applied

with h = ρ0−ρ1, this proves the strict convexity if M0 = M1 = 0. We have now to adapt the
result of O. Lopes to the measure valued setting, i.e., (M0, M1) 6= (0,0).

Some care is needed with the second term as the power q −2 is negative, but since we
know that the optimizers are positive a.e. in RN the last term in the expression of f ′′(t ) is
strictly positive if ρ1 6≡ ρ0, or eventually +∞.

We have to show that Iλ[µ0−µ1] > 0. If λ= 2 or λ= 4, the convexity follows by expand-
ing |x − y |λ, so we can restrict our study to 2 < λ < 4. By Plancherel’s identity we obtain
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that

Iλ[µ0 −µ1] = (2π)
N
2 2λ+

N
2

Γ
(
λ+N

2

)
Γ

(
−λ

2

) 〈
H−(N+λ), |µ̂0 − µ̂1|2

〉
where H−(N+λ) ∈ S ′(RN ) is a radial tempered distribution of homogeneity −(N +λ). In
particular, for any ϕ ∈S (RN ) we have

〈H−(N+λ),ϕ〉 =
∫
RN

1

|ξ|N+λ

(
ϕ(ξ)− ∑

|α|≤[λ]

ξα

α!
∂αϕ(0)

)
dξ

where [λ] denotes the integer part ofλ: see [30, 19]. These identities extend by continuity
to all bounded functions ϕ ∈C 2(RN ) if λ< 3 and C 3(RN ) if λ< 4.

By Lemma 21, we know that
∫
RN |x|λdµi (x) is finite for i = 0, 1, so that µ̂i is of class C 2

if λ< 3 and of class C 3 if λ< 4. Since µi (RN ) = 1 and
∫
RN x dµi = 0, we infer µ̂i (0) = 1 and

∇µ̂i (0) = 0. This implies that ∂α|µ̂0 − µ̂1|2(0) = 0 for |α| ≤ 2 if λ< 3 and for |α| ≤ 3 if λ< 4.
We conclude that

Iλ[µ0 −µ1] ≥ 0

with strict inequality unless µ0 =µ1. Thus, we have shown that f ′′(t ) > 0 as claimed. �

APPENDIX A. TOY MODEL FOR CONCENTRATION

Eq. (3) is a mean field-type equation, in which the drift term is an average of a spring
force ∇Wλ(x) for any λ> 0. The case λ= 2 corresponds to linear springs obeying Hooke’s
law, while large λ reflect a force which is small at small distances, but becomes very large
for large values of |x|. In this sense, it is a strongly confining force term. By expanding
the diffusion term as ∆ρq = q ρq−1

(
∆ρ+ (q −1)ρ−1 |∇ρ|2) and considering ρq−1 as a dif-

fusion coefficient, it is obvious that this fast diffusion coefficient is large for small values
of ρ and has to be balanced by a very large drift term to avoid a runaway phenomenon
in which no stationary solutions may exist in L1(RN ). In the case of a drift term with
linear growth as |x| → +∞, it is well known that the threshold is given by the exponent
q = 1−2/N and it is also known according to, e.g., [23] for the pure fast diffusion case (no
drift) that q = 1−2/N is the threshold for the global existence of nonnegative solutions
in L1(RN ), with constant mass.

In the regime q < 1−2/N , a new phenomenon appears which is not present in linear
diffusions. As emphasized in [37], the diffusion coefficient ρq−1 becomes small for large
values of ρ and does not prevent the appearance of singularities. Let us observe that Wλ

is a convolution kernel which averages the solution and can be expected to give rise to
a smooth effective potential term Vλ = Wλ∗ρ at x = 0 if we consider a radial function ρ.
This is why we expect that Vλ(x) = Vλ(0)+O

(|x|2) for |x| small, at least for λ ≥ 1. With
these considerations at hand, let us illustrate some consequences with a simpler model
involving only a given, external potential V . Assume that u solves the fast diffusion with
external drift given by

∂t u =∆uq + ∇· (u∇V
)

.
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To fix ideas, we shall take V (x) = 1
2 |x|2+ 1

λ
|x|λ, which is expected to capture the behavior

of the potential Wλ∗ρ at x = 0 and as |x| → +∞ when λ≥ 2. Such an equation admits a
free energy functional

u 7→
∫
RN

V u d x − 1

1−q

∫
RN

uq d x ,

whose bounded minimizers under a mass constraint on
∫
RN u d x are, if they exist, given

by

uh(x) = (h +V (x))−
1

1−q ∀x ∈RN .

A linear spring would simply correspond to a fast diffusion Fokker–Planck equation when
V (x) = |x|2, i.e., λ = 2. One can for instance refer to [26] for a general account on this
topic. In that case, it is straightforward to observe that the so-called Barenblatt profile uh

has finite mass if and only if q > 1−2/N . For a general parameterλ≥ 2, the corresponding
integrability condition for uh is q > 1−λ/N . But q = 1− 2/N is also a threshold value
for the regularity. Let us assume that λ > 2 and 1−λ/N < q < 1− 2/N , and consider
the stationary solution uh , which depends on the parameter h. The mass of uh can be
computed for any h ≥ 0 as

mλ(h) :=
∫
RN

(h +V (x))−
1

1−q d x ≤ mλ(0) =
∫
RN

(
1
2 |x|2 + 1

λ |x|λ
)− 1

1−q
d x .

Now, if one tries to minimize the free energy under the mass contraint
∫
RN u d x = m, it is

left to the reader to check that the limit of a minimizing sequence is simply the measure(
m −mλ(0)

)
δ+u0 for any m > mλ(0). For the model described by Eq. (3), the situation

is by far more complicated because the mean field potential Vλ = Wλ ∗ρ depends on
the regular part ρ and we have no simple estimate on a critical mass as in the case of an
external potential V .
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FIGURE 1. Main regions of the parameters (here N = 4). The case q = 2 N /(2 N+λ) correspond-
ing toα= 0 has already been treated in [16, 32]. Inequality (1) holds with a positive constant CN ,λ,q
if q > N /(N +λ), i.e., α< 1, which determines the admissible range corresponding to the grey area,
and it is achieved by a function ρ (without any Dirac mass) in the light grey area. The dotted line
is q = 1−λ/N : it is tangent to the admissible range of parameters at (λ, q) = (0,1), and it is also the
threshold line for integrable stationary solutions in the toy model in the Appendix. In the dark grey
region, Dirac masses with M∗ > 0 are not excluded. The dashed curve corresponds to the curve
q = 2 N

(
1−2−λ

)/(
2 N

(
1−2−λ

)+λ)
and can hardly be distinguished from q = 2 N /(2 N +λ) when q

is below 1−2/N . The curve q = q̄(λ, N ) of Corollary 17 is also represented. Above this curve, no
Dirac mass appears when minimizing the relaxed problem corresponding to (1). Whether Dirac
masses appear in the region which is not covered by Corollary 17 is an open question.
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FIGURE 2. Darker grey areas correspond to regions of the parameters (λ, q) ∈ (0,+∞)× [0,1) for
which there is uniqueness of the measure-valued minimizer, with N = 4 (left) and N = 10 (right).
The dashed curve is q = q̄(λ, N ), above which minimizers are bounded, with no Dirac singularity.
Horizontal lines correspond to q = 0, 1−2/N , 1−1/N and 1.
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