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Heterosis, the superiority of hybrids over their parents for quantitative traits, represents

a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis

has given rise to countless genetic, genomic and molecular studies, but has rarely been

investigated from the point of view of systems biology. We hypothesized that heterosis

is an emergent property of living systems resulting from frequent concave relationships

between genotypic variables and phenotypes, or between different phenotypic levels. We

chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP)

relationship, and showed that heterosis can be easily created in the laboratory. First,

we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability

of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content

of “parental” tubes resulted in “hybrids,” whose fluxes were compared to the parental

fluxes. Frequent heterotic fluxes were observed, under conditions that were determined

analytically and confirmed by computer simulation. Second, to test this model in a

more realistic situation, we modeled the glycolysis/fermentation network in yeast by

considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde.

We simulated genetic variability by randomly drawing parental enzyme concentrations

under various conditions, and computed the parental and hybrid fluxes using a system

of differential equations. Again we found that a majority of hybrids exhibited positive

heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity

between certain enzyme concentrations and fluxes. In both approaches, heterosis was

maximized when the parents were phenotypically close and when the distributions of

parental enzyme concentrations were contrasted and constrained. These conclusions

are not restricted to metabolic systems: they only depend on the concavity of the GP

relationship, which is commonly observed at various levels of the phenotypic hierarchy,

and could account for the pervasiveness of heterosis.

Keywords: heterosis, genotype-phenotype map, metabolic network, enzyme variability, non-linear processes,

mathematical modeling

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00159
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00159&domain=pdf&date_stamp=2018-05-15
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dominique.de-vienne@inra.fr
https://doi.org/10.3389/fgene.2018.00159
https://www.frontiersin.org/articles/10.3389/fgene.2018.00159/full
http://loop.frontiersin.org/people/497393/overview
http://loop.frontiersin.org/people/492999/overview
http://loop.frontiersin.org/people/557529/overview
http://loop.frontiersin.org/people/491151/overview


Fiévet et al. A Conceptual Framework for Investigating Hybrid Vigour

INTRODUCTION

The relationship between genetic polymorphism and phenotypic
variation is amajor issue inmany branches of biology. It is usually
referred to as the genotype-phenotype (GP) relationship, GP
correlation or GP map (Lewontin, 1974). Strictly speaking, the
genotype corresponds to the DNA level, whereas the phenotype
can correspond to any trait observed or measured at any
organizational level from transcription rate to fitness. In fact,
following S. Wright (Wright, 1934), the GP relationship can also
refer to the relationship between genetically variable phenotypic
traits (e.g., enzyme activities) and more integrated phenotypic
traits, i.e., traits measured at higher levels of the biological
hierarchy (e.g., fluxes through networks).

Almost inevitably, the relationship between parameters at
different organizational levels is non-linear, because the cellular
processes that shape biological functions and structures are
highly intertwined. The kinetics of biochemical and molecular
reactions, transport and signaling mechanisms, positive and
negative feedbacks, growth kinetics, etc., are intrinsically non-
linear. Thus, from allosteric regulation to fitness landscapes,
from genetic regulatory circuits to developmental processes,
there are myriads of examples showing complex relationships
between genotype and phenotypes, or between phenotypic levels
(Kauffman, 1993; Heinrich and Schuster, 1996). These GP
relationships display a large diversity of shapes (Rendel, 1962;
Pryciak, 2008; Felix and Barkoulas, 2015), but two prevail to a
large extent:

(i) The sigmoidal relationship (Figure 1A). Cooperativity and
synergy underlie such behavior (Carey, 1998; Kazemian
et al., 2013), which is classically modeled using Hill
functions. For instance in Drosophila, transcription of the
hunchback gene in response to the gradient of Bicoid
transcription factor concentration follows a typical S-shaped
curve (Perry et al., 2012). Examples at other phenotypic
levels exist, such as the relationship between the expression
level of various genes and growth rate, a proxy for fitness, in
Escherichia coli (Perfeito et al., 2011; Rodrigues et al., 2016)
and in Saccharomyces cerevisiae (Rest et al., 2013).

(ii) The concave relationship (Figure 1B), the archetype
of which is the enzyme-flux relationship. The long-
standing Metabolic Control Theory (MCT; reviewed in
Fell, 2007) is probably the most elaborated corpus to
describe this particular, but essential, case of genotype-
phenotype relationship. Both theoretical developments and
experimental observations show that increasing from zero
the value of an enzyme parameter usually results first in
an increase of the flux value, then in attenuation of the
response and finally in saturation. The phenotypic response
resembles a rectangular hyperbola, and at the asymptotic
upper limit there is robustness of the phenotype toward
genotypic variation.

Such concave relationships are common at other organizational
levels. For instance, it is observed during transcriptional
regulation when transcription factors do not bind to DNA
cooperatively (Giorgetti et al., 2010). In yeast, the rate of

protein synthesis in response to variation in abundance of
some 20 different translation factors is concave in most cases
(Firczuk et al., 2013), and can be modeled using a deterministic
model (Poker et al., 2014; Zarai et al., 2014). Other examples
show the effects of variable gene/protein expression on the
fitness of an organism. Izard et al. (2015), by engineering the
control of RNA polymerase expression in E. coli, consistently
observed a saturation curve for growth rate in diverse media. In
mitochondrial diseases, the relationship between the proportion
of mtDNA carrying pathogenic mutations and various cellular
responses—mitochondrial protein synthesis rate, respiratory
chain complex activity, mitochondrial respiration or ATP
synthesis and growth rate—is concave, with a large plateau.
Thus, an effect will only be detectable above a threshold value
of the proportion of deleterious mtDNA (reviewed in Rossignol
et al., 2003). In Parkinson’s disease, the symptoms do not begin
to appear until about 80% of neurons in the substantia nigra,
which produce dopamine, have died. This is consistent with
the hyperbola-shaped relationship between the proportion of
alive neurons and the concentration of extra-cellular dopamine
(Nijhout et al., 2015). In a wide range of species, allometry also
provides relevant examples of non-linear relationships, such as
between organismal mass and whole-organism metabolic rate,
but also life span, tree trunk diameter, blood circulation time,
etc. (West et al., 1999). Allometric equations are power laws
whose scaling exponents are lower than 1, resulting in concave
relationships.

In the above-mentioned studies, only one genotypic (or
phenotypic) parameter is assumed to be variable. In fact,
most integrated phenotypic traits are polygenic, i.e., they are
potentially affected by a very large number of parameters,
giving rise to complex and rugged phenotypic landscapes.
However, from the previous considerations, one can expect
global concavity of these multi-dimensional surface responses.
Indeed, within the MCT framework, Dykhuizen et al. (1987)
showed that the fitness response of E. coli to variation of both
β-galactoside permease and β-galactosidase activity is a two-
dimensional hyperbolic-like surface. Similarly, Nijhout et al.
(2003) analyzed quantitatively the pairwise effects of various
components of the MAPK signaling cascade on the MAPK-
PP output and observed largely concave response surfaces with
saturation. MacLean (2010) also found a concave relationship
between growth rate and the joint variation of transcription
and translation mediated by streptomycin and rifampicin,
respectively, in Pseudomonas aeruginosa. Another interesting
example is the allometric relationship described in a population
of recombinant inbred lines of Arabidopsis thaliana between, on
the one hand, photosynthetic rate and, on the other hand, dry
mass per area and age at flowering (Vasseur et al., 2012).

Whether the phenotypic response is sigmoidal or concave,
there is often a horizontal asymptote which accounts for
the strong asymmetry of the phenotypic response, depending
on whether the value of the genotypic variable is increased
or decreased. Thus, in metabolic engineering it is usually
much easier to decrease than to increase flux and metabolite
concentrations (Moreno-Sanchez et al., 2008). At the genome-
wide level, this asymmetry was recognized early on through the
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FIGURE 1 | The two most common types of GP relationships with possible inheritance. (A) The S-shaped relationship. There is convexity below the abscissa of the

inflection point (red point) and concavity above. The three phenotypes P1, F1, and P2 are associated with the three genotypes A1A1, A1A2, and A2A2, respectively.

MP: mid-parental value. In the convex region of the curve (mauve background), the low allele is dominant over the high allele (negative dominance), while in the

concave region of the curve (yellow background) the high allele is dominant over the low allele (positive dominance). (B) The hyperbolic concave relationship. Whatever

the genotypic values, there is positive dominance. In all cases there is additive inheritance of the genotypic parameters.

classical work of Lindsley et al. (1972) on the effects of segmental
aneuploidy in Drosophila. Using Y-autosome translocations with
defined breakpoints, the authors produced a large number of
small duplications and deficiencies spanning chromosomes 2
and 3. Examining the phenotypic effects of having the same
chromosomal region present in one, two or three copies, the
authors found that monosomy had a much greater effect on
viability than trisomy, revealing a strong asymmetry of the
response to gene dosage. “The pervasive robustness in biological
systems” (Felix and Barkoulas, 2015), which has been observed
at all phenotypic levels (transcript, protein and metabolic
abundance, metabolic flux, chemotaxis, cell cycle period, cell
fate patterning, cell survival, etc.), most likely stems from this
saturation effect. In some cases the mechanisms of robustness
have been unraveled (Barkai and Leibler, 1997; Eldar et al., 2004;
Wagner, 2013), and a widespread link is thought to exist between
robustness and network complexity (Martin and Wagner, 2008;
Whitacre, 2012), even though robustness could be partly adaptive
(Ho and Zhang, 2016).

In addition to robustness, the “diminishing return” curves
could account for various fundamental and apparently unrelated
observations. The best-known example is the dominance of
“high” over “low” alleles for metabolic genes, which was first
pointed out byWright (1934), then formalized in detail by Kacser
and Burns (1981) in a seminal paper. Due to concavity, the
phenotypic value of the heterozygote exceeds the homozygote
mean value, and alleles with large deleterious homozygous effects
are more recessive than alleles of weaker effect (Figure 1).
The metabolic concave relationship also has major implications
regarding the evolution of selective neutrality (Hartl et al., 1985),
the variability of enzyme activity in populations under mutation-
selection balance (Clark, 1991), the relationship between flux and
fitness (Dykhuizen et al., 1987), the epistasis between deleterious
mutations (Szathmary, 1993), the response to directional
selection (Keightley, 1996), the distribution of QTL effects (Bost
et al., 1999, 2001), the dynamics of retention/loss of metabolic

genes after whole genome duplications (Gout et al., 2009) and
the evolution of genes in branched pathways (Rausher, 2013).

Themodel of positive dominance ofWright, Kacser and Burns
is not restricted to metabolic genes, since it is valid whenever
there is concavity of the GP relationship. In the case of a
sigmoidal response, dominance of deleterious mutations may
occur, depending on the allelic values relative to the inflection
point of the curve (Gilchrist and Nijhout, 2001; Bost and Veitia,
2014) (Figure 1A). It would be quite a laborious task to try
to estimate the respective proportions of positive and negative
dominance in the literature. Nevertheless, the fact remains that
there is a marked bias toward the dominance of “high” alleles.
As early as 1928, Fisher (1928) noted that, in Drosophila, 208
out of 221 autosomal or sex-linked deleterious mutations were
recessive. Similar proportions have been observed in all species
studied to date, including in artificial diploids of the normally
haploid Chlamydomonas (Orr, 1991). More recently, genome-
wide estimates from collections of deletion strains in yeast have
been published (Steinmetz et al., 2002a; Deutschbauer et al.,
2005). Whereas, 891 genes (20% of the genome) contributed to
slow growth as homozygotes, only 184 (3% of the genome) were
haploinsufficient (Deutschbauer et al., 2005). The mean values of
the dominance coefficients were found to be h = 0.25 or less,
which means that null alleles were on average recessive (Agrawal
and Whitlock, 2011; Manna et al., 2011). Finally, predominant
recessivity of deleterious mutations is fully consistent with
common observations in population genetics, such as inbreeding
depression (Charlesworth and Willis, 2009).

In this paper, we show that generalizing this dominance
model to the multilocus case directly leads to a simple model of
heterosis, i.e., a model that accounts for the common superiority
of hybrids over their parents for quantitative traits (Shull, 1914;
Jones, 1918; Gowen, 1952). Described more than 250 years ago
(cited in Roberts, 1965) and studied in detail by Darwin (1876),
hybrid vigor is of great importance for food production because
it affects complex traits such as growth rate, biomass, fertility,
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disease resistance, drought tolerance, etc. In crops, it is currently
used to derive hybrid varieties with exceptional performances.
For instance in maize, the hybrid grain yield can exceed by
more than 100% the mean parental yield (Sprague, 1983; Duvick,
2001). In rice, heterosis is about 20% for grain yield and about
10% for plant height (Xiao et al., 1995). In livestock and farms
animals, such as cattle, swine, sheep and poultry, heterosis is
also present and commonly exploited (Dickerson, 1973; Yang
et al., 1999). This phenomenon is not restricted to species of
agronomic interest. In the model plant A. thaliana, there is
heterosis for biomass, rosette diameter and flowering date (Barth
et al., 2003; Rohde et al., 2004; Ni et al., 2009). In animals, it
has been described for diverse traits in drosophila (Houle, 1989),
frog (Hotz et al., 1999), Pacific oyster (Launey and Hedgecock,
2001), owned dogs (O’Neill et al., 2013), etc. Heterosis has also
been found in microorganisms, for instance for growth rate in
Neurospora (Emerson et al., 1952) and S. cerevisiae (Steinmetz
et al., 2002b). In the latter case it may be spectacular, with growth
rate one order of magnitude higher in the hybrid than in the best
parent.

Theoretical models of heterosis have been proposed based
on the functioning of gene circuits (Omholt et al., 2000) or
metabolic systems (de Vienne et al., 2001; Fiévet et al., 2010). In
the latter case the authors unraveled the links between heterosis,
dominance and epistasis within the MCT framework. In support
of this model, we show here that heterosis can easily be created
in the laboratory. We relied on two complementary approaches:
(i) Test-tube genetic experiments. We crossed in vitro “parents”
that differed in the concentration of four successive glycolysis
enzymes, and obtained “hybrids” displaying heterosis for flux
through the pathway; (ii) In silico genetics. We crossed parents
that differed in the concentration of 11 enzymes from the
carbon metabolism network in S. cerevisiae, and we computed
the input flux and two output fluxes in parents and hybrids
using a system of differential equations. Heterotic fluxes were
frequently observed. The conditions for having heterosis were
analyzed using computer simulations and mathematically using
the theory of concave functions. Small phenotypic difference
between parents, together with contrasted and constrained
parental enzyme concentrations, proved to be reliable predictors
of heterosis. These conclusions are qualitatively valid beyond
metabolic networks because they only depend on the shape of the
GP relationship. Thus, the so-called “mysterious” phenomenon
of heterosis appears to be a systemic property emerging from
the non-linearity that exists at various levels of the biological
hierarchy.

MATERIALS AND METHODS

Theoretical Background
Heterosis Indices
Let the relationship between a phenotypic variable z and a series
of n genotypic variables xj:

z = f (x1, ..., xn).

Consider two individuals P1 and P2 with distributions of
genotypic values {xj1}j = 1,..., n and {xj2}j = 1,...,n, respectively, and
their corresponding phenotypic values:

z1 = f (x11, ..., xn1) and z2 = f (x12, ..., xn2)

The hybrid P1*P2 has the genotypic distribution {xj,1∗2}j = 1,..., n

and the phenotypic value:

z1∗2 = f (x1,1∗2, ..., xn,1∗2).

When comparing z1∗2 with the mean of z1 and z2, heterosis
can be observed. In its most common definition, heterosis
corresponds to a positive departure of the hybrid value from the
mean parental value for quantitative traits. However, negative
heterosis (hybrid inferiority) also exists, and thus five situations
of inheritance can be defined (Stupar et al., 2008; Zorgo et al.,
2012; Blein-Nicolas et al., 2015) (Supplementary material, Figure
S1). Following our notations, we have:

– Best-Parent Heterosis (BPH): z1∗2 > max(z1, z2)
– positive Mid-Parent Heterosis (+MPH): (z1+ z2)/2 < z1∗2 ≤
max(z1, z2)

– Additivity (ADD): z1∗2 = (z1 + z2)/2
– negative Mid-Parent Heterosis (–MPH): min(z1, z2) ≤ z1∗2 <

(z1 + z2)/2
– Worst-Parent Heterosis (WPH): z1∗2 < min(z1, z2).

A common index of heterosis, the potence ratio (Mather, 1949):

HPR =
z1∗2 − z1+ z2

2

| z1− z2
2 |

,

directly gives the type of inheritance:

– If HPR > 1, there is BPH.
– If 0 < HPR ≤ 1, there is +MPH.
– If HPR = 0, there is ADD.
– If−1 ≤ HPR < 0, there is –MPH.
– If HPR < −1, there is WPH.

We frequently used in this study the index of best-parent
heterosis:

HBP =
z1∗2 −max (z1, z2)

max (z1, z2)
.

– If HBP > 0, there is BPH.
– If HBP ≤ 0, there can be +MPH, ADD, –MPH or WPH.

The mean of the positive HBP values was noted H+
BP.

We also defined an index of worst-parent heterosis:

HWP =
z1∗2 −min (z1, z2)

min (z1, z2)
.

– If HWP < 0, there is WPH.
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– If HWP ≥ 0, there can be –MPH, ADD, +MPH or BPH.

The mean of the negative HWP values was noted H−
WP.

Finally, we used in some instances the index of mid-parent
heterosis:

HMP =
z1∗2 − z1 + z2

2
z1 + z2

2

.

– If HMP > 0, there is BPH or +MPH.
– If HMP = 0, there is ADD.
– If HMP < 0, there is –MPH or WPH.

Note that in this context, various authors wrongly refer to
heterosis as overdominance, complete dominance, partial
dominance, and use various circumlocutions for negative
heterosis. Strictly speaking, the words “dominance” and
overdominance only apply to monogenic traits.

The Concave (Resp. Convex) Genotype-Phenotype

Relationship Results in Positive (Resp. Negative)

Heterosis
Consider z̃ = f̃ (xi) = f (x◦1 , ..., xi, ..., x

◦
n), defined as the function

obtained by fixing xj = x◦j ,∀j 6= i, and letting xi be variable.

Assume that ∀i, z̃ = f̃ (xi) is strictly concave. Following the
standard concavity argument, we can write:

f̃ (txi1 + (1− t) xi2) > tf̃ (xi1)+ (1− t)f̃ (xi2),

where 0 < t < 1. The additivity of genotypic variables
corresponds to t = 1/2 for all i, so we have:

f̃

(

xi1 + xi2

2

)

>
f̃ (xi1)+ f̃ (xi2)

2
.

Hence

z1∗2 >
z1 + z2

2
, (1)

which means that +MPH or BPH necessarily holds, and that:

HBP ∈]− 0.5,+∞[.

Note that if the parents have the same phenotypic value (z1 = z2),
it comes from Equation (1) that there is necessarily BPH.

If ∀i, z̃ = f̃ (xi) were strictly convex, Equation (1) would
become:

z1∗2 <
z1 + z2

2
,

and there would be necessarily –MPH or WPH.

Application of These Theoretical Models to the Case

of the Enzyme-Flux Relationship
Since Wright (1934), the enzyme-flux relationship is considered
the archetype of the concave genotype-phenotype (GP)

relationship. Using a simple system of differential equations, he
relied on the concavity of the GP curve to propose his famous
model of dominance. Kacser and Burns (1981) refined his
approach using a formalism in which the relationship between
enzyme concentrations and the flux through ametabolic pathway
is described by a heuristic equation which is at the heart of the
metabolic control theory (Kacser and Burns, 1981; Heinrich and
Schuster, 1996; Fell, 2007). Similarly, but more generally, Fiévet
et al. (2006, 2010) expressed the relationship between the overall
flux J (M−1.s−1) through a metabolic network and n enzyme
concentrations {Ej}j = 1,...,n in the following way:

J = f (E1, ...,En) =
1

n
∑

j = 1

1

XAjEj + XdjEtot

, (2)

where Ej is the concentration of enzyme j,X is a positive constant,
Aj and dj are systemic parameters (unitM−1.s−1) that account for
the kinetic behavior of enzyme Ej in the network, and Etot is the

total enzyme amount:
n
∑

j = 1
Ej = Etot. Because in the standard

case Aj and dj are positive, the flux is an ascending function of
Ej, for all j. We will consider that Aj and dj are not genetically
variable, so that variation in enzyme activity will only be due
to the variability of the enzyme concentration Ej. Nevertheless
formal developments with variable Aj’s would also be possible
since Aj and Ej play a similar role in the relationship.

Flux heterosis
The variables and parameters of Equation (2) are all positive,
and the function J = f (E1, ...,En) has a negative partial second
derivative with respect to Ej, for all j. Therefore, the function
is strictly concave, and the previous developments apply. In
particular, consider two individuals P1 and P2 that differ in their
distribution of enzyme concentrations, respectively {Ej1}j = 1,..., n

and {Ej2}j = 1,..., n. Assuming additive inheritance of enzyme
concentrations, the distribution of enzyme concentrations of the
P1*P2 hybrid is:

{

Ej1 + Ej2

2

}

j = 1,..., n

and its flux is:

J1∗2 =
1

n
∑

j = 1









1

XAj

(

Ej1 + Ej2

2

)

+ Xdj

(

Etot1 + Etot2

2

)









. (3)

Due to concavity, we have for all j:

f̃

(

Ej1 + Ej2

2

)

>
f̃ (Ej1)+ f̃ (Ej2)

2
,

so

J1∗2 >
J1 + J2

2
.
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Thus, either +MPH or BPH are expected in this GP relationship,
and if the parents have the same flux value (J1 = J2) there is
necessarily BPH.

Conditions for best-parent heterosis
In the particular case where there is only one variable enzyme,
BPH cannot occur, as can be shown from Equation (2).
Otherwise, with J2 > J1, the condition for having BPH is J1∗2 >

J2, i.e.,

1

n
∑

j = 1









1

XAj

(

Ej1 + Ej2

2

)

+ Xdj

(

Etot1 + Etot2

2

)









>
1

n
∑

j = 1

(

1

XAjEj2 + XdjEtot2

) ,

or

n
∑

j = 1

1

XAjEj2 + XdjEtot2

>

n
∑

j = 1

1

XAj

(

Ej1 + Ej2

2

)

+ Xdj

(

Etot1 + Etot2

2

) .

After rearrangements, we get:

n
∑

j = 1

(

aj(Ej1 − Ej2)+ bj(Etot1 − Etot2)

)

> 0, (4)

where

aj =
XAj

(XAjEj2 + XdjEtot2)

(

XAj(Ej1 + Ej2)+ Xdj(Etot1 + Etot2)

)

and

bj =
Xdj

(XAjEj2 + XdjEtot2)

(

XAj(Ej1 + Ej2)+ Xdj(Etot1 + Etot2)

) .

Note that ∀j, aj and bj are positive.

If the total enzyme concentration does not vary between
individuals due to global cellular constraints of space and energy,
we have Etot1 = Etot2, and the condition for BPH is simplified:

n
∑

j = 1

aj(Ej1 − Ej2) > 0. (5)

In this case, enzyme concentrations do not vary independently,
and this covariation will increase heterosis because the concavity
of the flux-enzyme relationship is higher. This can be shown

by comparing the flux control coefficient (CJ
k
) (Kacser and

Burns, 1981) to the combined response coefficient (RJ
k
) (Lion

et al., 2004). Both coefficients measure the sensitivity of the
flux to variations in enzyme concentration k, but the former
applies when concentrations vary independently whereas the
latter applies when there is a constraint on the total enzyme
concentration. Following (Lion et al., 2004), we have:

RJ
k
= CJ

k
+ Ek

n
∑

j 6= k

CJ
j

αkj

Ej
,

where αkj = ∂Ej
∂Ek

= − Ej
Etot

/(

1− Ek
Etot

)

is the redistribution

coefficient, i.e., the ratio of an infinitesimal change in
concentration Ej to an infinitesimal change in concentration Ek.

As ∀j,CJ
j > 0 and ∀(k, j),αkj < 0, we have RJ

k
< C

J
k
, which means

that constraint on Etot increases concavity.

Optimal distribution of enzyme concentrations
The optimal distribution of enzyme concentrations is the one
that maximizes the flux through the network for a given Etot
value. The relevant unit of measure here is g.L−1 and not M.L−1,
because it is the total weight that matters in terms of energy and
crowding in the cell. So we re-wrote Equation (2):

J =
1

n
∑

j = 1

1

XA′
j.gEj + Xdj

n
∑

j = 1

gEj

Mj

, (6)

where A′
j = Aj/Mj, with Mj the molecular weight of enzyme

j, and where gEj is the concentration of enzyme j in g.L−1.

The constraint is on
n
∑

j = 1
gEj = gEtot, which is different

from a constraint on
n
∑

j = 1

gEj

Mj
= Etot. We derived the optimal

distribution of enzyme concentrations, {gE∗i }i = 1,..., n, using the
Lagrange multiplier method (see Fiévet et al., 2006 for details):

ge
∗
i = gE

∗
i

gEtot
=

√
Mi/Ai

∑

j
1/
√

MjAj

(

1+
∑

j

dj

Aj

)

−
Midi

Ai

∑

k







√
Mk/Ak

∑

j
1/
√

MjAj
(1+

∑

j

dj

Aj
)−

Mkdk

Ai







. (7)

In Vitro and in Silico Genetics
In Vitro Crosses
The in vitro system based on the upstream part of glycolysis
is described in Fiévet et al. (2006). It includes the following
enzymes (see Figure 2): HK, hexokinase (E.C. 2.7.1.1);
PGI, phosphoglucose isomerase (E.C. 5.3.1.9); PFK,
phosphofructokinase (E.C. 2.7.1.11); FBA, fructose-1,6-
bisphosphate aldolase (E.C. 4.1.2.13); TPI, triosephosphate
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isomerase (E.C. 5.3.1.1); G3PDH, glycerol 3-phosphate
dehydrogenase (E.C. 1.1.1.8) and CK, creatine phosphokinase
(E.C. 2.7.3.2). All assays were carried out at 25◦C in 50 mM
Pipes buffer pH 7.5 containing 100 mM glucose, 100 mM KCl,
20 mM phosphocreatine, 3 mM NADH and 5 mM Mg-acetate.
The reaction was started by the addition of 1 mM ATP. The ATP
pool was kept constant via the regeneration reaction catalyzed
by creatine phosphokinase. The high concentration of G3PDH
(1 mM) allowed us to measure the flux through the pathway as
the rate of NADH consumption at 390 nm, using an Uvikon 850
spectrophotometer.

In order to mimic genetic variability in enzyme activity,
we varied the concentrations of PGI, PFK, FBA and TPI
in test tubes to create “parents,” each parent being defined
by a particular vector of concentrations. HK concentration

J =
103

1

499.4
gEPGI

MPGI

+
1

115.5
gEPFK

MPFK

+
1

22.5
gEFBA

MFBA

+
1

22940
gETPI

MTPI
+ 21.9

n
∑

j = 1

gEj

Mj

,

was fixed at 5.37 mg.L−1. The total enzyme concentration of
the four variable enzymes in the parental tubes was fixed at
E

ϕ
tot = 101.9 mg.L−1, a value chosen from the physiological

concentrations estimated in yeast strain S288C (Fiévet et al.,
2004) (PGI: 9.1mg.L−1, PFK: 10.4mg.L−1, FBA: 60.1mg.L−1 and
TPI: 22.3 mg.L−1). To have parental genotypes covering a large
range of enzyme concentrations, we varied the concentration of
FBA (the most abundant enzyme) from 0 to Eϕ

tot, taking 10 values
evenly distributed across this range (excluding of course the
two extreme values). The proportions of the remaining enzymes
(PGI, PFK and TPI) were drawn from beta distributions with
shape parameter α = 1 and scale parameter β = (1−e

ϕ
i )/e

ϕ
i , with

e
ϕ
i the physiological proportion of enzyme i. We thus created 58
parental distributions.

“Hybrids” were produced by mixing 1:1 the content of
the parental tubes, which corresponds to additivity of enzyme
concentrations. In order to have hybrids derived from a large
range of parental values, we defined four classes of parental
flux values (< 5 µM.s−1, 5–8 µM.s−1, 8–11 µM.s−1 and >

11 µM.s−1), and we performed “crosses” within and between
classes. We created 61 hybrids using 36 different parents (Table
S1). For each of the 97 genotypes (61 hybrids + 36 parents), three
flux measurements were performed (Fiévet et al., 2006), with the
exception of two parents and four hybrids for which there were
only two replicates (Table S2).

Two statistical tests were performed for every cross: (i) a
Student’s t-test to compare hybrid andmean parental fluxes; (ii) a
one-way ANOVAwith the genotype as factor (three levels: parent
1, parent 2 and hybrid) followed by a Tukey’s test to classify
observed inheritance as either BPH, +MPH, ADD, –MPH or
WPH. For both, p-values were adjusted for multiple tests using
the conservative Holm’s method.

Computer Simulations of the in Vitro System
We simulated the in vitro system using the parameter values
published by Fiévet et al. (2006), who estimated XAj and

Xdj by hyperbolic fitting of the titration curves obtained by
varying the concentration of each enzyme in turn. The values
were XAPGI = 499.4 s−1,XAPFK = 115.5 s−1,XAFBA =
22.5 s−1,XATPI = 22940 s−1,XdPGI = 0,XdPFK = 0,XdFBA = 0
and XdTPI = 21.9 s−1. Thus, for any set of Ej values, i.e., for
any virtual genotype, the flux value could be computed from the
equation:

J =
1

1

499.4EPGI
+

1

115.5EPFK
+

1

22.5EFBA
+

1

22940ETPI + 21.9Etot

,

where Etot = EPGI + EPFK + EFBA + ETPI. Because enzyme
concentrations in the simulations were in mg.L−1 and flux is
expressed in µM.s−1, we used the equation:

with the molecular masses MPGI = 61128, MPFK = 36000,
MFBA = 39211 andMTPI = 26700.

We analyzed the effects of three factors on heterosis: (i)
mean parental enzyme concentrations: either equidistributed
or centered on their optima; (ii) constraint on total enzyme
concentrations: either free Etot or fixed Etot; (iii) changes in
enzyme concentrations, by varying their coefficients of variation.
For equidistributed enzyme concentrations, the means of the
gamma distributions were µ = 25.475 mg.L−1 (i.e., Eϕ

tot/4)
whatever the enzyme. For the optimum-centered distributions,
the means were µ = 15.768 mg.L−1, µ = 25.162 mg.L−1,
µ = 59.497 mg.L−1 and µ = 1.473 mg.L−1 for PGI, PFK,
FBA and TPI, respectively, computed from Equation (7). In
all cases we varied the coefficients of variation from cv =
0.1 to cv = 1.2, within the range of observed cv’s for these
enzymes (Albertin et al., 2013). The shape and scale parameters
of the gamma distributions were respectively k = 1/c2v
and θ = µc2v.

To apply a strict constraint on the total amount of enzymes
allocated to the system, we assumed that for each parent i the total
enzyme amount,

∑

j
gEji = gEtoti, was 101.9 mg.L−1, namely the

physiological total enzyme concentration. After drawing enzyme
concentrations under the different conditions described above
(equidistributed/centered on the optima for different cv values),
the concentration gEki of enzyme k in individual i was computed
as:

gEki = 101.9
xki
∑

j
xji

, (8)

where xki was the result of the draw. Thus, the total enzyme
concentration was 101.9 mg.L−1 for every individual. It is worth
noting that the constraint on Etot changes the cv’s in an inverse
relation to enzyme concentrations: the cv’s of the most (resp.
the less) abundant enzymes will decrease (resp. increase) under
constraint (see Appendix S1).
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FIGURE 2 | The upstream part of glycolysis reconstructed in vitro. HK, hexokinase (E.C. 2.7.1.1); PGI, phosphoglucose isomerase (E.C. 5.3.1.9); PFK,

phosphofructokinase (E.C. 2.7.1.11); FBA, fructose-1,6-bisphosphate aldolase (E.C. 4.1.2.13); TPI, triosephosphate isomerase (E.C. 5.3.1.1); G3PDH, glycerol

3-phosphate dehydrogenase (E.C. 1.1.1.8); CK, creatine phosphokinase (E.C. 2.7.3.2). Variable enzymes are in red. Reaction rate was measured from the decrease in

NADH concentration.

For every simulation condition, we drew two series of 10,000
parents which were “crossed” to get 10,000 hybrids. Parent
and hybrid fluxes were computed according to Equation (6),
assuming additivity of enzyme concentrations.

Computer Simulations of the Glycolysis and

Fermentation Network in Yeast
We modeled the glycolysis and fermentation network in yeast
using a simplified topology in which there was one input flux,
the rate of glucose consumption, and two output fluxes, the rate
of glycerol production and the rate of transformation of pyruvate
into acetaldehyde (Figure 3). The system of ordinary differential
equations we used was derived from Conant & Wolfe’s model
(Conant andWolfe, 2007) obtained from the Biomodels database
(http://www.ebi.ac.uk/biomodels-main/). This model is a slightly
different version of a previously published model (Teusink et al.,
2000). We modified this model in order to increase the range
of enzyme concentrations that can lead to a steady state. First,
we excluded the reactions producing trehalose and glycogen
because, due to their constant rates, they caused incompatibility
when the entry of glucose decreased. Second we suppressed
mitochondrial shuttling, which is a composite reaction, because
it is not associated with any enzyme. Thus, our model included
17 reactions and 22 metabolites, including 6 cofactors (ATP,
ADP, AMP, NAD, NADH, and Fru-2,6-BP) (Figure 3). For
all simulation conditions (see below), we solved the system
of ordinary differential equations numerically using solvers
(deSolve package) of the Runge-Kutta family (Hindmarsh, 1983)
implemented within the R software tool (R Core Team, 2013).
We considered that the steady state was reached when metabolite
concentrations varied less than 10−4 between two successive time
steps.

Conant & Wolfe’s model uses the maximal enzymatic
rate Vmax, i.e., there is no explicit expression of enzyme
concentration and catalytic constant kcat. To simulate variation
in enzyme concentrations we needed to know the kcat
values and molecular weights of the enzymes. We found
most kcat values in the Brenda database (http://www.brenda-
enzymes.info/). When they were not known in yeast (in
two cases), we used data from other organisms. Thus, we

got kcat values for 11 enzymes (Table S3): HK, hexokinase
(S. cerevisiae); PGI, phosphoglucose isomerase (S. cerevisiae);
PFK, phosphofructokinase (Schizosaccharomyces pombe); FBA,
fructose-1,6-bisphosphate aldolase (S. cerevisiae); PGK, 3-
phosphoglycerate kinase (S. cerevisiae); PGM, phosphoglycerate
mutase (S. cerevisiae); ENO, enolase (S. cerevisiae); PYK,
pyruvate kinase (S. cerevisiae); PDC, pyruvate decarboxylase
(S. cerevisiae); ADH, alcohol dehydrogenase (Flavobacterium
frigidimaris) and G3PDH, glycerol 3-phosphate dehydrogenase
(Oryctolagus cuniculus). For these enzymes, we determined the
reference concentrations Eref of the model from the equation:

Eref =
VmaxMr

kcat
,

whereMr is the molecular weight of the enzyme (Table S3).
As expected, the flux response to variation in concentration of

each enzyme, with the other 10 concentrations being maintained
at their reference values, displayed saturation curves in most
cases. However, for certain enzymes the reference concentration
was far or very far along the plateau, so that varying the
concentration was almost without effect on the fluxes. Therefore,
we tried to arbitrarily decrease the reference values of these
enzymes, but as a consequence the rate of successful simulations
decreased dramatically. In the end, we solved this problem by
decreasing the 11 reference concentrations by the same factor,
which was empirically fixed at 5. Thus, we simulated the genetic
variability of parental enzyme concentrations by drawing values
from gamma distributions with parameters k = 1/c2v and
θ = Erefc

2
v/5. Variances were set to have seven cv’s ranging

from 0.1 to 0.7. With higher cv’s the steady state was frequently
not reached, and cv’s smaller than 0.1 produced results similar to
those obtained with cv = 0.1. For each cv value, we drew 10,000
pairs of parents. The enzyme concentrations of their hybrids
were computed assuming additive inheritance. We considered
two situations, free Etot and fixed Etot. For free Etot, we used the
concentration values drawn as described above. For fixed Etot,
the concentrations were scaled to make their sum equal to the
sum of the reference enzyme concentrations (31833.97 mg), as
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FIGURE 3 | The simplified yeast glycolysis/fermentation network. Variable

enzymes are in orange. Blue arrows point to the input flux, glucose, and to the

output fluxes, glycerol and acetaldehyde.

previously explained (Equation 8): gEki = 31833.97
xki
∑

j
xji

. We

checked that the input flux (glucose) was equal to the sum of the
output fluxes (glycerol and acetaldehyde), indicating that there
was no “leak” in the system.

For each parent-hybrid triplet we computed the fluxes of
glucose, glycerol and acetaldehyde at the steady state. There were

two possible sources of bias on the a posteriori cv’s. First, if one
member of the triplet did not reach a steady state, the triplet was
excluded. Thus, to get 10,000 simulations,≈ 10, 060 to≈ 36, 200
simulations were necessary, depending on the cv and the presence
of constraint on Etot. Second, even if a steady state was reached,
the glucose flux could be null, and we obviously eliminated
the corresponding triplets. An analysis of the resulting biases
is presented in Appendix S2. Overall, the differences between
a priori and a posteriori cv values were insignificant or moderate
when initial cv’s were small to medium, and were significant
only for certain enzymes with high initial cv’s. In any case, these
differences maintained the wide range of cv’s, making it possible
to study the effects of variability in enzyme concentrations on
heterosis.

Flux Differences and Enzymatic Distances Between

Parents
The relationship between parental flux values and heterosis was
analyzed using the absolute value of the flux difference between
parents i and i′:

Dfluxii′ = |Ji − Ji′ |,

where Ji (resp. Ji′ ) is the mean flux of parent i (resp. i′).
The relationship between parental enzyme concentrations and

heterosis was analyzed using the weighted normalized Euclidean
distance between parents i and i′:

Denzii′ =

√

√

√

√

√

√

n
∑

j = 1

(

gEji −g Eji′

gEji +g Eji′

)2

n
,

where n is the number of enzymes. With normalization, we have
0 ≤ Denzii′ ≤ 1.

To examine the relationships between the heterosis indices
and the distances, we used – when applicable – the Pearson
correlation coefficient (r) and/or the coefficient of determination
(R2). Otherwise we used dedicated graphical representation
methods (see Results section).

RESULTS

In order to analyze the way the genotype-phenotype
(GP) relationship shapes heterosis, we used theoretical
developments, in vitro genetics and computer simulations
of the glycolytic/fermentation flux.

A Geometrical Approach: The Concavity of
the GP Relationship Results in Heterosis
As an archetype of the concave GP relationship, we first chose a
hyperbolic function relating the flux Ji of individual i to enzyme
concentrations in a n-enzyme metabolic system:

Ji =
1

n
∑

j = 1

1

XAjEji + XdjEtoti

, (9)
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where X is a positive constant, Aj and dj are systemic positive
parameters accounting for the kinetic behavior of enzyme Ej in
the network, and Eji and Etoti are respectively the concentration
of enzyme Ej and the total enzyme concentration in individual i
(Fiévet et al., 2006, 2010; Fell, 2007). Because we assumed in this
study that there was additivity of enzyme concentrations, the
flux of the hybrid of parents P1 and P2, with fluxes J1 and J2
respectively, was written:

J1∗2 =
1

n
∑

j = 1

1

XAjĒj + XdjĒtot

. (10)

where Ēj = (Ej1 + Ej2)/2 and Ētot = (Etot1 + Etot2)/2. Since
the relationship between enzyme concentrations and flux is a
rectangular multivariate hyperbolic function, the concavity of
the surface results in positive heterosis for the flux (J1∗2 >
J1 + J2

2
), i.e., either positive Mid-Parent Heterosis (+MPH) or

Best-Parent Heterosis (BPH) (see Figure S1 for definitions of
the types of heterosis). This has been shown analytically (see
Theoretical background), and is illustrated geometrically on the
two-dimensional hyperbolic flux response surface obtained with
two variable enzymes (Figure 4A). Interestingly, it is possible to
show that there is BPH, i.e., J1∗2 > J2 (for J2 > J1), whenever:

n
∑

j = 1

(

aj(Ej1 − Ej2)+ bj(Etot1 − Etot2 )

)

> 0, (11)

where aj and bj are positive terms (see Theoretical background).
This equation predicts that heterosis will be observed only if
a sufficient number of enzymes have a lower concentration in
the parent displaying the highest flux than in the other parent,
making (Ej1 − Ej2) positive, and this effect is strengthened if
Etot is smaller in the parent that has the highest flux. These
conditions are more likely to arise when parental fluxes are
similar (Figure 4A). In other words, a condition for observing
BPH is that parents display contrasted distributions of enzyme
concentrations, i.e., with complementary “high” and “low” alleles.

In the case of constrained resources, i.e., if the total enzyme
amount allocated to the system is limited, which is biologically
realistic, the flux-enzyme relationship is no longer a multivariate
hyperbolic function but exhibits a hump-shaped response
surface because enzyme concentrations are negatively correlated
(Figure 4B). Increasing the concentration of certain enzymes
leads to decreasing the concentration of other enzymes (Heinrich
and Schuster, 1998; Lion et al., 2004; Malmstroem et al., 2009).
The constraint on Etot increases the concavity of the surface,
which reinforces the incidence of heterosis (see Theoretical
background). If Etot is the same in the two parents, the condition
for BPH is simply written as:

n
∑

j = 1

aj(Ej1 − Ej2) > 0.

Note that when Etot is constant, BPH cannot be observed if a
parent has optimal enzyme concentrations, because no offspring
can exceed the maximal flux value.

In Vitro and in Silico Heterosis in a
Four-Enzyme Pathway
In order to assess these predictions, we performed in vitro
genetic experiments. We reconstructed the first part of glycolysis
(Figure 2), and created 61 “hybrid” tubes by mixing 1:1 the
content of “parental” tubes that differed in their distribution of
the concentrations of four enzymes, PGI, PFK, FBA and TPI,
with total enzyme concentration being constant (see Materials
and Methods).

Inheritance was clearly biased toward high hybrid values
(Figure 5). Among the 61 hybrids, 27 (≈ 44.3 %) exhibited
a significantly higher flux value than the mid-parental value:
seven (≈ 11.5%) displayed BPH and 20 (≈ 32.8%) displayed
+MPH (p-values < 0.05). The maximum BPH value, quantified

with the index HBP = J1∗2−max(J1,J2)
max(J1,J2)

, was HBP = 0.37, i.e.,
the hybrid displayed a flux that was 37% higher than the
best parental flux. By contrast, only eight hybrids had a flux
value that was significantly lower than their mid-parental value
(negative Mid-Parent Heterosis, or –MPH), with no case found
of significant Worst-Parent Heterosis (WPH) (Figure 5 and
Table S1).

Examining enzyme concentrations in the parents confirmed
that high values of BPH were likely to occur when parental
distributions were contrasted and when neither parent had
enzyme concentrations close to the optimal distribution
(Figures 5D,E). However, as shown in Figure 6A, this
relationship is not straightforward, with large distances
being necessary but not sufficient to get high HBP values, which
resulted in a non-significant correlation between HBP and Denz,
the Euclidean distance between parental enzyme concentrations.

To test the prediction that a cross between parents with similar
fluxes is more likely to give heterosis than a cross between parents
with contrasted fluxes, we computed the correlation coefficient
between HBP and Dflux, the difference between parental fluxes
(| J1 − J2 |), and found a highly negative significant value
(r = − 0.33, p < 0.01) (Figure 6B).

Interestingly, even though HBP and Denz were not correlated,
the heterosis value Hreg, computed from the equation of the
multiple linear regression performed with both Denz and Dflux

as predictor variables, was better correlated with HBP than Dflux

alone: r = 0.46 (p < 1.8.10−4) (Figure 6C).
Finally, in order to know if the instances of heterosis we

observed in vitro were consistent with our heuristic model of
flux-enzyme relationship, we computed from Equations (9) and
(10) the theoretical fluxes of the 61 hybrids and their parents,
using the values of enzyme concentrations of the parental tubes
and the values of parameters XAj and Xdj estimated in an
independent experiment (see Materials and Methods). Then, for
each virtual cross, we calculated the heterosis that would be
expected from the model, HBPmod. As shown in Figure 6D, the
correlation between HBPmod and HBP is very highly significant
(r = 0.77, p < 2.5.10−13).
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FIGURE 4 | Flux response upon variation of two enzymes in a hyperbolic GP relationship. The two enzymes have the same arbitrary values of their kinetic parameters.

Red and blue curves show two types of crosses between parents P1 and P2, or P3 and P4, respectively (from Fiévet et al., 2010). The positions of hybrids F1 (light

blue and orange points) were determined assuming additivity of enzyme concentrations. (A) In the “red” cross, where parent P2 has a flux close to the maximum (high

concentration of both enzymes), there is positive mid-parent heterosis (+MPH) for the flux. In the “blue” cross, where parents have low flux values due to low

concentrations of enzyme 1 (parent P3) or enzyme 2 (parent P4), the hybrid displays best-parent heterosis (BPH). (B) If there is a constraint on the total enzyme

amount, the “red” cross also displays BPH because the concavity of the surface is increased.

As Equations (9) and (10) resulted in quite reliable predictions
of flux heterosis, we used them to simulate a large series of
crosses. The parental enzyme concentrations were drawn to
be centered on their optimum or equidistributed, and their
coefficients of variation (cv) varied from 0.1 to 1.2. In every
case we considered two situations, free and fixed Etot. For every
simulation condition, 10,000 crosses were performed and the
parental and hybrid values were computed.

The percentage of BPH and the mean of positive HBP values

(H+
BP) were compared over the range of cv’s. Figure 7 shows that:

(i) in all conditions, the values of these two variables increased,
usually to a large extent, when enzyme variability increased; (ii)
by far the highest % BPH (about 50%)was observedwhen enzyme
concentrations were constrained (fixed Etot) and centered on

their optimum (Figure 7A); (iii) H+
BP was highly dependent on

the cv values (varying from≈ 0 to≈ 1.4), but was barely affected
by the other simulation conditions (Figure 7B).

The typical influence of Dflux on HBP is illustrated Figure 8

for cv = 0.6. BPH was observed when the parental fluxes
were close to each other, as the hybrids displaying BPH were
distributed around the diagonal of the parental flux space. This
pattern is consistent with the negative relationship between Dflux

and HBP (Figure 9A). The highest Dflux never resulted in BPH,
while small Dflux could result in high HBP values. The weakest
correlation between Dflux and HBP was observed when both
enzyme concentrations were centered on their optimum and Etot
was fixed (r = −0.35 instead of r > −0.66 in other conditions).

The graphs showing the relationship between Denz and
HBP revealed a typical triangular relationship, regardless of the
simulation conditions: BPHwas never observed with the smallest
distances, and large distances were necessary but not sufficient to
get high HBP values (Figure 9B).

To assess the joint influence of Dflux and Denz on heterosis, we
divided the crosses into 16 classes according to a 4×4 grid ofDflux

andDenz values, and computed for each class the%BPH andH+
BP.

In all conditions, the highest values of these two variables were
observed with both small Dflux and large Denz (Figures 9C,D).
As expected, constraint on Etot resulted in more heterosis,
with almost 100% BPH when: (i) enzyme concentrations were
centered on their optimum; (ii) Denz values were maximal; (iii)

Dflux values were minimal (Figure 9C). In these conditions, H+
BP

increased to 0.37, i.e., hybrids had on average a flux that was 37%
higher than the best parental flux (Figure 9D).

In Silico Heterosis in the Yeast
Glycolysis/Fermentation Network
To simulate heterosis in a larger system, we modeled the
glycolysis and fermentation network in yeast using a simplified
topology in which there was one input flux, the rate of glucose
consumption, and two output fluxes, the production rates of
glycerol and acetaldehyde (Figure 3). We used a system of
differential equations derived fromConant andWolfe (2007) and
varied the concentration of 11 enzymes.

We first examined how varying the concentration of one
enzyme at a time, the other concentrations being maintained at
their reference values (see Material and methods), affected flux
variation.When Etot was free, the enzyme-flux relationships were
concave with a horizontal asymptote in most cases, although
a slight convexity was visible in two instances (Figure S2):
(i) sigmoidal curves were observed upon variation of HK, an
allosteric enzyme that is by far the most abundant in the system
(Table S3); (ii) due to the balance between the acetaldehyde and
glycerol branches, increasing the concentration of an enzyme
in one branch convexly decreases the flux of the other branch
(except for enzyme at low concentrations). The decrease of the
glucose flux upon G3PDH increase is likely to be due to the
related reduction of the acetaldehyde flux, which dampens ATP
production and in turn reduces the glucose flux.

When Etot was fixed, these observations remain qualitatively
valid, however we no longer found horizontal asymptotes:
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FIGURE 5 | In vitro heterosis. Hybrids were created by mixing 1:1 the content of parental tubes. #cross refers to the cross numbers of Table S1. (A) Parental flux

values (blue and orange points) relative to the hybrid flux value used as a reference (vertical red line) for the 61 crosses (in µM.s−1). Gray points indicate the

mid-parental values. Crosses were ranked by decreasing HBP values, the index of best parent heterosis. (B) HBP values. (C) Inheritance: BPH, Best-Parent Heterosis;

+MPH, positive Mid-Parent Heterosis; ADD, additivity; –MPH, negative Mid-Parent Heterosis. (D,E) Parental (blue and orange bars) and hybrid (gray bars) flux values,

alongside the corresponding parental enzyme concentrations for six crosses, identified by broken lines, displaying different types of inheritance. From top to bottom:

the two crosses with the highest significant BPH values, the two crosses that are the closest to additivity and the two crosses with the smallest significant –MPH

values. Red points correspond to the optimal enzyme concentrations.
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FIGURE 6 | In vitro heterosis predictors. (A) Relationship between HBP and Denz, the Euclidean distance between parents computed from enzyme concentrations

(r = 0.15, p < 0.25). (B) Relationship between HBP and Dflux, the flux difference between parents (r = −0.33, p < 0.01). (C) Relationship between HBP and Hreg, the

heterosis value computed from the equation of the multiple linear regression performed with Denz and Dflux as predictor variables (r = 0.46, p < 0.001). (D)

Relationship between HBP and HBPmod, the expected heterosis value computed from the model (see text) (r = 0.77,p < 2.5.10−13). Red points correspond to

positive HBP, i.e., to BPH.

FIGURE 7 | Effect of the coefficient of variation (cv) of enzyme concentrations on heterosis. (A) Percentage of BPH; (B) Mean of the positive HBP values (H+
BP) over a

range of cv’s of parental enzyme concentrations, from 0.1 to 1.2. –/–: equidistributed mean enzyme concentrations and free Etot, –/+: equidistributed and fixed Etot,

+/–: mean enzyme concentrations centered on their optimum and free Etot, +/+: optimum centered means and fixed Etot.

due to this constraint, flux values decreased when enzyme
concentrations were high (Figure S3). This effect was marked for
the most abundant enzymes (particularly HK and PYK) but was
imperceptible for less abundant ones (e.g., PFK). Note that in all
situations the three fluxes are null when enzyme concentrations
are null, even for enzymes downstream of the bifurcation.
Cofactor availability probably explains this observation.

We then simulated 10,000 crosses between parents that
differed in their concentrations of the 11 variable enzymes.
Parental concentrations were drawn from gamma distributions,
the means of which were the reference values. Variances were
chosen within the range of seven cv’s, from 0.1 to 0.7, with free
or fixed Etot. Hybrid fluxes and inheritance were computed for
each cross (see Materials and Methods). Unlike the previous
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FIGURE 8 | Relationship between parental fluxes J1 and J2 and hybrid fluxes under four simulation conditions. Each point corresponds to a hybrid, with warm colors

when there is BPH (HBP > 0). +/+, +/–, –/+, and –/– have the same meaning as in Figure 7. Note that when Etot is fixed, the flux value is limited. (cv = 0.6).

four-enzyme model, where the enzyme-flux relationship was
concave by design and could only produce BPH or positiveMPH,
we observed the four possible types of inheritance, BPH, +MPH,
–MPH and WPH. For the glucose and acetaldehyde fluxes,
inheritance was very biased toward positive heterosis whatever
the cv, since the sum of the percentages of +MPH and BPH varied
from 69.4 to 96.9%, and there was no or very few cases of WPH.
The highest percentage ofWPH, observed for acetaldehyde when
cv = 0.7 with free Etot, was only 0.09%, with a very small

mean of the negative HWP values (H−
WP = −0.024) (Tables 1, 2

and Figure 10). The one-step glycerol branch, which is convexly
related to the six enzymes of the acetaldehyde branch, had higher
percentages of negative heterosis (from ≈ 65% when cv=0.1 to
≈ 43% when cv = 0.7 with fixed Etot), but WPH remained quite
low: 1.23 and 3.02% for free and fixed Etot, respectively, with

H−
WP ≈ −0.04 in both cases (cv = 0.7). For all fluxes, constraint

on Etot decreased the percentage of –MPH in favor of BPH and/or
+MPH, depending on the cv value (Tables 1, 2 and Figure 10).

We hypothesized that negative heterosis can occur only
when the enzyme-flux relationship is convex, as exemplified
for negative dominance (Figure 1A). To verify this, we ran

simulations where HK concentration was maintained at its
reference value and/or the glycerol branch was deleted. When
both sources of convexity were removed, no case of negative
heterosis was observed (Table S4 and Figure S4).

As previously, both % BPH and H+
BP increased as the cv

increased (Tables 1–3, Figures 11A,B). This effect was larger for
glucose and acetaldehyde than for glycerol. For instance, for
glucose the % BPH varied from 3.76 to 35.12% with free Etot and
from 11.96 to 42.46% with fixed Etot, while for glycerol it varied
from 2.92 to 18.84% with free Etot and from 3.71 to 24.10% with
fixed Etot. For the three fluxes, constraint on Etot increased the

% BPH, as expected, but decreased H+
BP. The latter observation is

explained by the fact that this constraint decreases the variance
of the concentrations, which in turn decreases the flux variance
and hence both HBP variance and H+

BP (see Appendix S1 and
Appendix S2).

Whatever the cv, BPH was usually observed when parental
fluxes were similar, with heterotic hybrids roughly distributed
around the diagonal of the parental flux space, and this was valid
for the three fluxes (Figure S5). The correlations betweenHBP and
Dflux were consistent with these observations. They were negative
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FIGURE 9 | Heterosis predictors. Relationship between HBP and Dflux (A), and between HBP and Denz (B) when cv = 0.6. Red points: positive HBP values. (C)

Square grid of percentages of BPH as a function of Denz (x-axis) and Dflux (y-axis). Colors range from blue (minimum % BPH) to yellow (maximum % BPH). Empty

squares are white. (D) Same as (C) with H+
BP values. The additional white squares correspond to cases where there was no BPH (0 in C). –/–, –/+, +/–, and +/+

have the same meaning as in Figure 7.

and highly significant, although slightly smaller when Etot was
fixed (r = −0.60,−0.69 and −0.61 for glucose, glycerol and
acetaldehyde, resp.) than when Etot was free (r = −0.55,−0.59
and−0.54, resp.) (Figures 12A,C).

The triangular relationship betweenHBP andDenz was slightly
less apparent with free Etot than in the four-enzyme model,
but was obvious with fixed Etot. Again high HBP values were
never observed with small distances, and the highest HBP

values could only be observed with medium or large distances
(Figures 12B,D).

As previously, we assessed the joint influence ofDflux andDenz

on % BPH and H+
BP using 4 × 4 grids (Figure 13, for cv = 0.4).

Results were very similar: both variables were positively related to
Denz and negatively related to Dflux, whatever the flux. High Denz

associated with small Dflux could result in about 50% BPH and

H+
BP ≈ 0.25 when Etot was free and almost 100% BPH andH+

BP ≈
0.40 when Etot was fixed. The positive effect of the constraint on

H+
BP is not in contradiction with the above-mentioned argument:

H+
BP was computed here for each square of the grid, and its
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TABLE 1 | Percentage of occurrence of the four types of inheritance for the glucose, glycerol and acetaldehyde fluxes over the range of cv values when Etot is free.

cv 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Glucose BPH 3.76 13.80 19.77 23.25 25.44 29.97 35.14

+MPH 65.67 59.44 55.89 56.12 56.04 54.09 50.35

−MPH 30.57 26.76 24.34 20.64 18.51 15.94 14.52

WPH 0.00 0.00 0.00 0.00 0.01 0.04 0.00

Glycerol BPH 2.92 10.84 14.92 16.94 16.99 18.39 18.85

+MPH 31.77 33.61 33.49 35.12 38.38 37.41 38.27

−MPH 64.83 54.85 50.66 47.01 43.40 43.14 41.65

WPH 0.48 0.70 0.93 0.93 1.23 1.06 1.23

Acetaldehyde BPH 4.05 14.63 21.23 24.88 28.05 32.71 37.76

+MPH 68.10 60.42 56.15 55.79 53.92 52.49 48.45

−MPH 27.86 24.93 22.62 19.32 18.03 14.80 13.69

WPH 0.00 0.01 0.00 0.01 0.00 0.00 0.09

TABLE 2 | Percentage of occurrence of the four types of inheritance for the glucose, glycerol and acetaldehyde fluxes over the range of cv values when Etot is fixed.

cv 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Glucose BPH 11.96 25.86 32.89 35.58 37.57 39.14 42.46

+MPH 84.92 70.44 62.00 58.60 54.89 52.90 49.29

−MPH 3.12 3.70 5.11 5.82 7.53 7.95 8.25

WPH 0.00 0.00 0.00 0.00 0.01 0.01 0.00

Glycerol BPH 3.71 13.64 18.72 20.07 21.57 23.19 24.10

+MPH 31.03 30.33 31.54 33.10 34.36 34.46 35.78

−MPH 64.16 53.74 46.95 43.98 41.12 39.51 37.09

WPH 1.10 2.28 2.79 2.84 2.94 2.84 3.02

Acetaldehyde BPH 12.61 26.93 33.77 36.83 38.91 41.01 44.40

+MPH 83.23 68.28 60.07 56.40 52.63 50.62 46.71

−MPH 4.16 4.80 6.16 6.77 8.46 8.35 8.89

WPH 0.00 0.00 0.00 0.00 0.00 0.01 0.00

distribution was more uneven under constraint. On average H+
BP

was lower under constraint, but reached higher values when there
was both small Dflux and high Denz.

Figure S6 shows that contrasted distributions of enzyme
concentrations can lead to BPH whereas close distributions favor
additivity. Indeed, the cross that is the most heterotic for both
glucose and acetaldehyde (HBP = 4.23 and HBP = 5.55, resp.)
had divergent enzyme concentrations (Denz = 0.68) (Figures
S6A,B); this was also observed for the most heterotic cross
for glycerol (Denz = 0.66) (Figures S6C,D). These enzymatic
distances are close to the highest distance observed (Denz =
0.71), which also corresponded to large heterosis for glucose and
acetaldhyde (HBP = 0.69 andHBP = 1.09, resp.) (Figures S6E,F).
By contrast, the cross with the minimum enzymatic distance
(Denz = 0.16) exhibited additivity or near additivity for the three
fluxes (HMP = 0, HMP = 0.02 and HMP = −0.01 for glucose,
glycerol and acetaldehyde, resp.) (Figures S6G,H).

The geometric models of Figure 14 and Figure S7 show a
relationship between Denz, Dflux and HBP that is fully consistent

with all our observations. For a given value of Denz, HBP

can be positive or negative depending on the position of the
parents in the enzyme concentration space, with quite complex
relationships between these two variables. BPH is observed when
parents have complementary enzyme concentrations, with the
highest HBP values observed when Dflux is small. Of note, Dflux

and HMP are roughly positively related, because the reference
for this index is the mid-parent and not the best parent
(Figures 14E,F). Regarding the constraint on Etot, comparison of
Figure 14A and Figure S8 shows how greater surface curvature
increases the incidence of heterosis.

DISCUSSION

The So-Called Mystery of Heterosis
Nearly all papers on heterosis mention in their introduction that
is it an elusive, enigmatic or even magical phenomenon, whose
molecular (or physiological, or biochemical) bases are not known
or not well understood, and which would be the “lasting mystery
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FIGURE 10 | Heterosis for the three fluxes in the glycolytic/fermentation network. Percentages of different types of inheritance over the 0.1–0.7 cv range of parental

enzyme concentrations, for free and fixed Etot.

TABLE 3 | Mean of positive HBP values (H+
BP) for the glucose, glycerol and acetaldehyde fluxes over the range of cv values.

cv 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Free Etot Glucose 0.02 0.08 0.14 0.17 0.22 0.24 0.32

Glycerol 0.03 0.09 0.15 0.17 0.19 0.20 0.24

Acetaldehyde 0.02 0.09 0.14 0.18 0.23 0.28 0.38

Fixed Etot Glucose 0.01 0.04 0.08 0.12 0.16 0.21 0.25

Glycerol 0.02 0.05 0.09 0.10 0.13 0.14 0.17

Acetaldehyde 0.01 0.04 0.09 0.13 0.18 0.24 0.29

in biology.” Yet, this “fascination with the idea that standard
genetic models are not sufficient to explain heterosis” (Kaeppler,
2011) is quite surprising given the literature on this phenomenon.

First, regardless of any genetic or molecular basis, it
was recognized early on (Richey, 1942; Grafius, 1961) that
multiplicative traits, i.e., traits determined as the product of
two or more components, display commonly predictable levels
of heterosis. For instance, heterosis for plant height in bean
is quite well explained by multiplying internode length by
internode number (Coyne, 1965); similarly, yield heterosis in
barley is predicted by the product of ears/plant, kernels/ear and
average kernel weight (Grafius, 1959), etc. It is worth noting

that this cause of heterosis does not even require non-additive
inheritance of the components of the trait (reviewed in Schnell
and Cockerham, 1992).

Second, heterosis has been explained at the genetic and/or
molecular level for various traits in various species. Paradoxically,
the best understood cases of heterosis are certainly the least
common, since they involve only one locus, which makes them
easier to study. Here, heterosis is due to overdominance, i.e., the
inherent superiority of the heterozygote over both homozygotes
(East, 1936; Hull, 1946). Relative to the innumerable examples
of complete or partial dominance, well-attested overdominance
remains quite rare, with probably less than 20 cases described
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FIGURE 11 | Effect of the coefficient of variation (cv) of enzyme concentrations on heterosis in the glycolysis/fermentation network. Percentage of BPH (A) and H+
BP

(B) over the cv range of parental enzyme concentrations.

over more than one century of genetics. The bases of
overdominance are diverse: (i) Pleiotropy. The individual traits
controlled by the gene harbor only dominance, but the direction
of dominance is reversed between the traits, which results in
increased viability or fitness of heterozygotes compared to the
parental homozygotes (Allison, 1954; Vrebalov et al., 2002;
Lippman and Zamir, 2007); (ii) Dosage effects. When there is
an optimal expression level of the gene controlling the trait, the
hybrid will be heterotic whenever its expression level will be
closer to the optimum than that of its parents (Hall and Wills,
1987; Flintham et al., 1997; Krieger et al., 2010); (iii) Formation
of favorable oligomers in the hybrids (Tahiri-Alaoui et al., 2006;
Singh et al., 2013).

Understanding heterosis when several—possibly a wealth of—
polymorphic genes control the trait is challenging. However, this
has been done when a limited number of genes are involved.
As early as 1910, an example of heterosis accounted for by
complementary dominance at two loci L (controlling internode
length) and T (controlling stem thickness) was found in garden
pea (Keeble and Pellew, 1910), in line with Davenport’s model
(Davenport, 1908), which stated that heterosis was due to
recessive unfavorable alleles being masked at loci in repulsion.
Since then, similar examples have been described (e.g., Warner
et al., 1969). It is worth noting that many alleged overdominant
QTLs (Quantitative Trait Loci) could actually correspond to
pseudo-overdominance, where two (or more) linked dominant
QTLs are in repulsion (Eshed and Zamir, 1995; Graham et al.,
1997; Lariepe et al., 2012; Martí-Raga et al., 2017). Epistasis also
accounts for heterosis through favorable intergenic interactions
created in the hybrids (Powers, 1944). The textbook case (Sinnott
et al., 1950), which involves both dominance and epistasis,
was recognized very early on (Bateson and Gregory, 1905) and
was illustrated in various plants: crossing two individuals with
colorless flowers may produce hybrids with colored flowers
because the parents each have amutation inactivating a particular
step of the pigment biosynthesis pathway, which disrupts the
flux, and the flux is restored in the hybrid because both steps are
active (e.g., Dooner et al., 1991 for anthocyanins in maize). Other
cases of heterosis that have been elucidated at the molecular
level also combine more than one genetic effect. For instance

in yeast, heterosis for growth at high temperature involved both
dominance and epistasis at three genesMKT1, END3, and RHO2
(Steinmetz et al., 2002b; Sinha et al., 2006), and heterosis for
fermentation performance proved to be partially explained by
dominance and pseudo-overdominance at four genes VMA13,
PDR1, PMA1, and MSB2 (Martí-Raga et al., 2017). Similar
complex effects were found in the circadian clock genes CCA1
and LHY , which play a central role in heterosis for chlorophyll
and starch content in A. thaliana (Ni et al., 2009). In tomato,
epistasis and overdominance at the SFT gene account for yield
heterosis (Krieger et al., 2010).

Third, given the pervasiveness of non-additive genetic effects
(Veitia, 2006; Phillips, 2008), it is the lack of heterosis that
would be a mystery. Whenever there is dominance, and/or
overdominance and/or epistasis at loci governing a quantitative
trait, heterosis can arise. Any one of these three genetic effects
is necessary, but also sufficient, to generate heterosis. Besides,
their respective importance in producing heterosis is variable,
and depends on the mating system, the traits under study
and the genetic material used, as shown from QTL/association
mapping analyses and other approaches. In maize, dominance
seems to be the main factor producing heterosis for grain yield
and its components, with a modest role of overdominance and
possibly epistasis (Garcia et al., 2008; Guo et al., 2014; Mezmouk
and Ross-Ibarra, 2014). In rice, dominance was first invoked
as the main factor for heterosis of grain yield and its various
components (Xiao et al., 1995), but subsequently overdominance
and additive x additive or dominance x dominance epistasis have
been repeatedly found for various yield-related traits (Yu et al.,
1997; Li et al., 2001; Luo et al., 2001; Hua et al., 2003; Mei et al.,
2005; Garcia et al., 2008; Huang et al., 2016). In Arabidopsis
the main factor was claimed to be epistasis for seven growth-
related traits (Melchinger et al., 2007), however, for biomass
the three genetic effects seemed to be involved (Meyer et al.,
2010), and a recent study showed the role of dominance and
overdominance for flowering date, rosette diameter and rosette
biomass (Seymour et al., 2016). In upland cotton, the three
effects contribute to heterosis for yield and yield components
(Shang et al., 2016). In yeast, the three effects also play a role
in heterosis for growth rate measured in five different culture
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FIGURE 12 | Heterosis predictors in the glycolysis/fermentation network: scatter plots. Relationships between HBP and Dflux (A,C) and between HBP and Denz (B,D)

with free Etot (A,B) and fixed Etot (C,D) for the glucose flux (A1–D1), glycerol flux (A2–D2) and acetaldehyde flux (A3—D3) (cv = 0.4).

media (Shapira et al., 2014), while overdominance and synergistic
epistasis seem mainly involved in growth at high temperature
(Shapira and David, 2016). It is worth noting that in most
cases it is not possible to distinguish true overdominance from
pseudo-overdominance, even if indirect arguments suggest true
overdominance (Semel et al., 2006).

Despite the multiple cases where the bases of heterosis
have been clarified, some authors have been searching for a
“unifying principle” (Birchler et al., 2003), such as genome-
wide changes in DNA methylation (Tsaftaris and Polidoros,
1999; Shen et al., 2012), small RNA expression and epigenetic
regulation (Ha et al., 2009; Groszmann et al., 2011; Chen,
2013), reduced metabolic cost of protein recycling in hybrids
(Goff, 2011), gene dosage effects in macro-molecular complexes

(Veitia and Vaiman, 2011) , enhanced metabolic efficiency due to
weak co-aggregation of allozymes (Ginn, 2017), mitochondrial
complementation (McDaniel and Sarkissian, 1966; Srivastava,
1981) and phytohormonal expression (Rood et al., 1988). These
molecular processes may indeed distinguish heterozygotes from
homozygotes, but if they were the general hidden causes of
heterosis, correlations between levels of heterosis for different
traits would be observed, and this has never been reported
so far (Flint-Garcia et al., 2009; Kaeppler, 2012). In fact,
searching for the mechanistic bases of heterosis of a certain
trait in a certain cross is equivalent to searching for the
bases of its underlying genetic effects, and dominance, epistasis
and overdominance have never been considered “mysterious”
phenomena.
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FIGURE 13 | Heterosis predictors in the glycolysis/fermentation network: square grids. (A,B) Square grid with % BPH (A) and H+
BP (B) as a function of Denz (x-axis)

and Dflux (y-axis) for glucose (1st row), glycerol (2nd row) and acetaldehyde (3rd row) when Etot is free. (C,D) Same as (A,B) with fixed Etot.

Curvature of the Genotype-Phenotype
Relationship and Heterosis
The “unifying principle” proposed in this paper is not
mechanistic. It is a general framework built on the common
observation of the concavity of the GP relationship. The two
genetic consequences of this non-linearity — dominance and
epistasis — have been known for a long time in the context of the
metabolic control theory (Wright, 1934; Kacser and Burns, 1981).
More recently, modeling gene andmetabolic networks have led to
the idea that heterosis could also be a systemic property emerging
from non-linear processes in the cell (Omholt et al., 2000; Fiévet
et al., 2010). We provide strong arguments in support of this
proposition by taking advantage of theoretical developments, and
using both experimental approaches and computer simulations.

Experimentally, we performed in vitro 61 crosses between
“parents” that differ in the concentrations of four enzymes
from the upstream part of the glycolysis pathway, and observed
inheritance that was biased toward positive heterosis despite
additivity of enzyme concentrations in the hybrid tubes: about
44% of hybrids displayed positive MPH or BPH, whereas only
13% displayed negative MPH and none WPH. In addition,
the HBP index could increase up to ≈ 0.37, which means

that with enzyme concentrations half-way between the parents,
the hybrid had a flux that was 37% higher than the best
parental flux. From a geometrical standpoint, these results
indicate that the GP hypersurface in this in vitro system
is globally concave, accounting for the predominance of
positive heterosis, the cases of negative heterosis revealing
local unevenness of the surface. We did not explore further
the possible causes — metabolic and/or technical — of these
irregularities.

Computer simulations based on the previous system and
using a hyperbolic GP relationship allowed us to perform a
large number of crosses. Enzyme concentrations were drawn,
varying means and coefficients of variation, and total enzyme
concentrations were either free or fixed. In all conditions only
+MPH and BPH were observed, which was expected due to the
concavity of the GP relationship. The results of the simulations
together with our theoretical developments allowed us to identify
the factors favoring heterosis:

– A contrast between parental enzyme concentrations. A high
positive HBP could only be observed when Denz was large.
Accordingly high cv’s resulted in the highest % BPH and
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FIGURE 14 | The geometry of heterosis when the enzymatic distance between parents is constant. (A) Parental enzyme concentrations are on a circle of diameter

Denz = 76 centered on the hybrid point, the coordinates of which are x = y = 40. Four pairs of parents are highlighted by yellow, blue, red and green diameters. The

closed curve on the surface shows the flux values corresponding to the circle of concentrations. The equation of the flux surface is J = 1/( 1
E1

+ 1
E2

+ 0.2), in arbitrary

units. (B) Same as (A), except that Denz = 50 and hybrid coordinates are x = 30 and y = 70. (C) Variation of parental fluxes J1 and J2 (dotted and long-dashed gray

curves), of Dflux (blue curve) and of HBP (orange curve) over the rotation of a segment joining the parents from α = 0 (parallel to the x-axis, yellow case) to α = π

(reversed positions of the parents). The two-dashed horizontal gray line corresponds to the constant hybrid flux value. The yellow, blue, red, and green vertical lines

correspond to the pairs of parents of the 3D vignette in (A), with barplots showing corresponding heterosis. (D) Same representation as in (C), for the case shown in

(B). (E,F): Same as in (C,D), with HMP instead of HBP.

H+
BP. However, high Denz is necessary but not sufficient to

get BPH: the position of the parents in concentration space
is also a key factor (Figure 14 and Figure S7). If a parent

contains most of the high alleles and the other most of the
low alleles, BPH is unlikely because the hybrid can hardly
exceed the best parent, while if the parents are complementary
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for the high and low alleles, the hybrid is expected to
display BPH.

– Phenotypic proximity between parents. In the case of strict
concavity, BPH is very likely when the parents have close
phenotypic values, and the % BPH decreases as the parental
fluxes diverge. If a parental value is close to the maximum,
MPH alone will be observed (Figure 14).

– Constraint on total enzyme concentration allocated to the
system. All other things being equal, the % BPH is higher when
Etot is fixed, due to increased concavity of the flux response
surface (Figure 4B).

Combining fixed Etot, a large enzymatic distance and a small
phenotypic difference makes BPH almost inevitable, particularly
when mean enzyme concentrations are centered on their optimal
values. This is consistent in geometric terms: when these
conditions are met, the hybrids are closer to the “top of the hill”
than their parents (Figure S8).

We performed similar simulations from a branched network
based on glycolysis and fermentation in yeast, modeled with a
system of differential equations. Three fluxes were considered:
glucose input and glycerol and acetaldehyde outputs. Again
BPH could only arise when the parents were phenotypically
close to each other, but due to some convex enzyme-flux
relations in this system, negative heterosis was also observed.
For glucose and acetaldehyde fluxes, positive MPH and BPH
prevailed to a large extent, since the percentage of positive
heterosis varied from 69.5 to 96.9%, and for all fluxes and
conditions the % BPH increased with the cv, up to ≈ 44%
when Etot was fixed. For glycerol, positive heterosis was
predominant only for medium and high cv’s. In all cases
WPH remained very rare. Thus, the three fluxes, even though
they are pleiotropically related, do not have the same type
of inheritance. However, the factors favoring BPH are the
same as before for the three fluxes, namely constraint on
Etot and a large enzymatic distance together with a small
phenotypic divergence. Therefore, these factors do not depend
on a particular flux-enzyme function, but only on the shape
of the GP relationship. In addition we see that heterosis is a
systemic property which enables a better exploitation of cell
resources, since with a distribution of enzyme concentrations
closer to the optimum distribution than both parents, a hybrid
can “do more with less,” i.e., exceeds the best parent with a lower
total enzyme concentration. In epistemological terms, it is an
emergent property, in the sense that the individual properties
of the molecular components (transcription/translation factors,
mRNAs, proteins/enzymes, metabolites, etc.) cannot alone
account for the phenomenon.

In order to avoid confounding effects, in particular in the
glycolysis/fermentation system, we did not consider in this study
possible non-additive inheritance of enzyme concentrations.
Non-additivity of genetic variables has logical consequences: if
it is positive, there is a higher occurrence of positive heterosis,
while negative non-additivity can result in negative heterosis
even in the case of a strictly concave GP relationship (Fiévet
et al., 2010; Blein-Nicolas et al., 2015). In actual fact, transcripts
and proteins display mostly additive inheritance (Stupar et al.,

2008), and in the case of non-additivity it is usually biased toward
positive values (Swanson-Wagner et al., 2006; Hedgecock et al.,
2007; Shen et al., 2012; Chen, 2013; Blein-Nicolas et al., 2015;
Xing et al., 2016; Guo et al., 2017), which will reinforce positive
heterosis. For certain gene/protein categories that are found to
be non-additive (histone modifications, small RNAs, protein and
carbon metabolism, ribosome proteins, photosynthesis, stress
response and energy production), a causal link with heterosis
has been suggested or evidenced (Chen, 2013; Xing et al.,
2016). Incidentally, positive non-additivity at the molecular level
also reflects concave GP relationships: transcript, protein and
metabolite abundances are polygenic traits (Damerval et al.,
1994; Brem et al., 2002; Kliebenstein, 2009) that behave like any
quantitative trait and can display non-additive inheritance.

How can our results be applied to whole-cell metabolism?
Crowding (Ellis, 2001) and energy cost (Dekel and Alon,
2005; Vilaprinyo et al., 2010) create constraints on the total
content of cell components. For instance in yeast, Albertin
et al. (2013) showed that the enzymatic pool allocated to
the glycolysis, glycerol, acetate, and ethanol pathways was
invariant regardless of the culture medium and strain considered.
When some proteins are overexpressed, this constancy can
sometimes lead to burden effects, which causes a decline in
flux (Snoep et al., 1995), as we found under constrained Etot.
However, due to the huge number of molecular species in a
cell, the increase of particular components does not usually
impair the whole system. Similarly, situations of convexity
within cell networks are expected to be buffered at the
scale of the whole flux of matter and energy through the
system. Thus, despite global constraints and local convexity,
plateaued GP relationships, either S-shaped or more often
concave, are commonly observed at integrated levels of cell
organization, up to fitness, and most likely account for the
pervasiveness of positive heterosis. Therefore, heterosis could
almost be viewed as the measurement of the curvature of the
GP relationship.

Our results may have practical consequences for heterosis
prediction, a major issue in plant and animal breeding. A classical
predictor of heterosis is the genetic distance between the parents,
but the quality of the prediction depends markedly on the traits,
on the genetic history of the material and on the range of
genetic distances considered (Moll et al., 1965; Melchinger et al.,
1992; Charcosset and Essioux, 1994; Flint-Garcia et al., 2009;
Seymour et al., 2016). Our results show that better predictions of
heterosis could be achieved by combining parental information
at two (or more) phenotypic levels, namely the level of the trait
of interest and the level (or levels) of underlying components.
Omics methods allow thousands of transcripts, proteins and
metabolites to be identified and quantified. Thus, we now have
access to a plethora of putative predictors (Riedelsheimer et al.,
2012) to be incorporated in non-linear statistical models. The
high-dimensionality is challenging, but relevant variables could
be selected by using both biological knowledge of the trait
under study (e.g., Miller et al., 2015) and recently developed
regularization methods (Dalalyan and Tsybakov, 2012; Heinzl
and Tutz, 2014).
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