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Abstract

Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including
Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present
the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of
these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of
these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array
hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any
large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the
genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast
population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster
of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different
adaptive changes can lead to an increase of hydrophobicity and affect velum formation.
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Introduction

Numerous fermented beverages have been developed all over

the world during history. In addition to alcoholic fermentation,

some beverages are obtained through a specific aging process

called flor wine aging. During this process, which takes place only

after the completion of alcoholic fermentation, a biofilm called

velum is formed by yeast at the surface of the wine leading to the

progressive oxidation of alcohol and remaining carbohydrates.

This yeast oxidative metabolism generates many aromatic

compounds (ethanal, sotolon, solerone…)[1–3], which give these

wines their unique flavor.

Flor aging (or biological aging) is performed traditionally in

several vineyards in Europe, including Hungary (Tokaj Hegyalja)

to produce Szamorodni, Italy (Sardinia) to produce Vernaccia di

Oristano, Spain (Jerez area) to produce Xeres, and France (Jura) to

produce Vin Jaune. The apparition of the velum is generally

spontaneous [4] but some French wine makers use selected flor

starters. Flor yeast belong to the species Saccharomyces cerevisiae
[5], and the population of flor yeast isolated from the velum

of Sherry wines differs from the population of strains that per-

form alcoholic fermentation [5,6]. These two populations are

genetically isolated [7], as shown by the ITS1 region in Spanish

and Jura flor strains, which have specific alleles of ITS1 caused by

a 24 bp deletion [5] and a G insertion [8], respectively.

Furthermore, various molecular techniques used to explore the

diversity of flor yeast populations in several countries suggest a

large genetic diversity [8–11].

Yeast strains adopt a specific lifestyle during flor aging, and

adaptation to this ecological niche has long remained the focus of

many investigations. Aneuploidies have been described [12,13] as

a major genetic feature of Spanish flor strains and were

hypothesized to explain adaptation to flor aging. Indeed, yeast

are able to adapt to stressful conditions due to the amplification of

specific regions of their genome [14,15]. The main adaptive

feature of flor yeast is their ability to develop a velum on wine

when sugars are depleted, which is an activity that is carried out

only by some yeast strains [16]. The build-up of the biofilm is

obtained by the aggregation of single cells, permitted by their high

hydrophobicity. The high hydrophobicity of flor cells results from

modifications of the lipid content and the activation of FLO11
[17], which encodes a GPI anchored protein with a serine and

threonine rich central region. Flor strains carry specific FLO11
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alleles that encode a protein with an expanded central hydropho-

bic core, which facilitates the adaptation of yeast cells to the velum

environment [18,19]. In addition, sherry flor strains have a

deletion in the long noncoding RNA ICR1 located upstream from

FLO11. ICR1 functions as a switch that regulates the expression

of FLO11 and its disruption stimulates the expression of FLO11
[18,20].

Flor aging is encountered in highly distant vineyards, which

raises the question of the relatedness and origin of these strains.

The similar conditions faced by various strains in European

vineyards implies that these strains share a similar genomic

makeup and features of aneuploidy. In this paper, we compared

flor yeast populations from Hungary (Tokaj), France (Jura), Italy

(Sardinia) and Spain (Jerez). We used various molecular genetic

techniques to investigate the genetic composition of these strains.

The polymorphism of microsatellite markers allowed us to infer

the structure of the flor yeast population. We measured the ploidy

of strains and compared the genomes of several flor strains by

CGH on array, which enabled us to detect aneuploidies specific to

flor strains. Finally, we also examined polymorphisms within the

promoter and protein central core region of FLO11 and link these

polymorphisms to the ability to grow on velum media.

Material and Methods

1. Strains and growth conditions
The strains of this study originated from several laboratories in

Spain, Hungary, Italy and France. They are described in detail in

Table S1. The two first letters of Jura strains indicate the cellar

from which each strain was isolated.

Yeast cells were cultivated in 10 ml of YPD medium (36 h,

28uC, 160 rpm). Velum growth was verified on Fornachon

medium [21] (Yeast extract 1 g.l21, (NH4)2SO4 0.5 g.l21, MgSO4

1 g.l21, CaCl2 0.5 g.l21, pH adjusted to 3.2 with HCl, autoclaved

35 minutes at 110uC, following which 4% (v/v) ethanol was added

aseptically after cooling), after 8 days of incubation at 28uC.

2. Microsatellite typing and determination of population
structure

S. cerevisiae microsatellite loci were amplified as described

previously [22]. Genomic DNA was isolated by phenol/chloro-

form extraction, after cell grinding with glass beads, and

isopropanol precipitation as described previously [23]. Allelic

variation at 12 microsatellite loci was examined in 142 strains as

described previously [22]. The chord distance Dc [24] matrix was

calculated for each couple of strains with a laboratory-made

program. The tree was obtained from the distance matrices with

the Neighbor program of the Phylip 3.67 package, and drawn with

MEGA5.22 [25]. The tree was rooted by the midpoint method.

To assess the assignment of flor strains to a particular origin,

InStruct [26] was used to evaluate the number of populations in

the set of strains and a graphical display was obtained with R

software version 2.15.1 [27].

3. Analysis of FLO11 polymorphisms and cell
hydrophobicity

The polymorphism of the length of Flo11p was measured from

the amplification of FLO11 alleles with a pair of primers located 2

Figure 1. Neighbor joining tree presenting the diversity of flor
strains evaluated at 12 microsatellite loci, in comparison with
strains of other origins. The tree was built from the Dc chord
distance and drawn with MEGA5.22. The wine cluster has been

condensed due to its large size. Red dots indicate the presence of a
111 bp deletion in the FLO11 promoter, and a green dot indicates that
this deletion is missing.
doi:10.1371/journal.pone.0108089.g001
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53 bp in the 59 of FLO11 (Flo11IntFw CTCCCTCATCA-

TGTTGTGGTTC), and +3126 bp in the terminal part of FLO11
(Flo11IntRv AACGACGGTGGTTGAGACAA). ExTaq DNA

polymerase (TaKaRa) was used to amplify this long DNA

fragment. The PCR temperature program was 95uC for 5 min,

followed by 30 cycles with an initial denaturation step of 95uC for

30 sec, annealing at 61uC for 30 sec, and elongation at 72uC for

6 min.

The presence of the 111 bp deletion in ICR1 ncRNA was

examined by the amplification of this region with the primer pair

Flo11promFw CAGCCCCAGAGTATGTTCTCACAG and

Flo11promRv AATCACCTTCTAAACGCTCGGA. This PCR

was performed with regular MBI Fermentas Taq DNA polymer-

ase. The PCR temperature program was 95uC for 5 min, followed

by 30 cycles with a first denaturation step 95uC for 30 sec,

annealing at 56uC for 45 sec, and elongation at 72uC for 1 min.

The presence of the deletion was detected from the band size of

the amplified fragment in gel electrophoresis.

For 5 strains (CAV21, LRJura, CECT11758, TR05CUB,

T8CUB), the amplified fragment was sequenced with the same

primers. These five sequences are available in GenBank under the

accession number (HG965200–HG965204).

Cell hydrophobicity was evaluated following the procedure of

Ishigami et al. [17], which relies on the measure of the partition of

yeast cells between a buffer solution and an organic solvent. Yeasts

strains were cultivated for 48 h with shaking in Fornachon’s media

containing 4% ethanol, and then harvested, washed three times

with water and suspended in 4 ml of McIlvaine buffer, pH 3.5.

The cell population was adjusted to an optical density of

approximately 0.5 at 660 nm (OD660). Four ml of this suspension

was transferred to a test tube (15?150 mm) with a stopper. An

equivalent volume of hexane was gently layered over the buffer.

This test tube was vigorously vortexed for 5 min, with care taken

to avoid emulsification. The OD660 of the initial and the residual

buffer layers were measured, and the degree of hydrophobicity of

the yeast cell surfaces (HD) was calculated from the equation:

HD %ð Þ~100 I{Rð ÞI

Where I and R are the OD660 of the initial and the residual

layers, respectively.

4. CGH on array
Genomic DNA was labeled and hybridized against GeneChip

Yeast Genome 2.0 Array from Affymetrix (Santa Clara, CA),

which covers all S. cerevisiae S288C genes [28]. Labeled

fragments were prepared from 200 to 500 ng of genomic DNA

with the BioPrime DNA Labeling System (Invitrogen). The

hybridization and detection steps were performed at the IGBMC

Microarray and Sequencing Platform (Illkirch, France). Two

arrays were used for each strain. Intensity data of perfect match

probes were obtained with apt1.12.0 Affymetrix software, after

RMA background subtraction and quantile normalization [29].

After filtering for probes with insufficient signal, the final number

of probes used for the analysis was 38863. Signal intensities were

scaled across arrays and log ratios were calculated using S288C as

a reference. The log ratios were averaged by groups of three

consecutive probes, to reduce probe to probe variation and

facilitate analysis with DNAcopy. The best results were obtained

after RMA background subtraction and quantile normalization of

array data. Array Data were analyzed with the package DNAcopy

[30] and R software version 2.15.1 [27]. A custom script was used

to associate the mean log ratio calculated per chromosome

segment with each ORF it contained. Gene clustering was

performed with Cluster 3.0 [31], using a filter of 0.5 minimum

difference in log ratio between all strains, and limiting missing data

to six strains. Uncentered correlation and the centroid clustering

were chosen as parameters, and dendrograms were drawn with

TreeView. Gene ontology enrichment analysis was performed

with Gene Codis 3.0 available at http://genecodis.cnb.csic.es/

analysis [32].

Figure 2. Clustering of flor strains with InStruct population
structure inference software for K = 9 populations. Each color
corresponds to one inferred ancestral group. The proportion of each
colors gives the proportion of the corresponding ancestral genome in
the genome of each strain. The name of the isolated population is
shown at the top of each cluster.
doi:10.1371/journal.pone.0108089.g002
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The full data set has been deposited at the NCBI Gene

Expression Omnibus (GEO) with GEO accession number

(GSE55925) http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc

=GSE55925.

5. Ploidies
For the analysis of cell DNA content, yeast cells were prepared

in 96 well plates as described previously [33]. DNA content per

cell was determined with an BD Accuri C6TM flow cytometer.

However, Syber Green was used instead of Sytox Green because

of the minimum variation observed with this fluorescent dye [34].

Both dyes give sharper peaks than propidium iodide, which has

been used in most studies until now, and provide a more accurate

evaluation of ploidy [34,35]. By4741 and By4742 were used as

haploid references and S288C and By4743 were used as diploid

references.

Results

1. Diversity of flor strains from various countries
We collected 142 flor stains from various countries. The 64

French strains from Jura were characterized previously by pulsed

field gel electrophoresis and inter delta typing [8]. The other flor

strains were provided by research groups from Spain (40 strains

from the Jerez region and three strains from the Cordoba region),

Italy (29 strains from Sardinia) and Hungary (6 strains from the

Tokaj region). We evaluated the diversity of these 142 flor strains

from polymorphisms detected at 12 microsatellite loci and were

able to differentiate 131 genotypes. We compared these strains

with 497 strains isolated from other sources (wine, palm wine,

sake, oak bark) genotyped previously [22,36] and 35 strains

sequenced recently [37]. Flor strains clustered into one main group

in a neighbor joining tree (Figure 1), with the exception of two

Spanish flor strains isolated from Cordoba. Interestingly, subclus-

ters formed inside the main group of flor strains according to

geographical origin: three clusters of Jura strains, two clusters of

sherry wine strains (Jerez 1 and 2), and one main cluster of

Sardinian strains. In addition, Jura strains were grouped according

to the cellar from which they were isolated. One Jura flor strain,

MAA52, did not cluster with the other flor strains, and was thus

considered as a wine strain.

To confirm the global structure observed from microsatellite

typing, we used the software InStruct to detect population

structure and assign the various flor strains to a particular origin.

InStruct [26] is an alternative program to Structure [38] that

takes into account partial self-fertilization and inbreeding;

therefore, it is well suited for such an analysis because a high

rate of inbreeding has been inferred from Fis values for yeast

populations [22,39,40]. We selected groups of strains with

sufficient members, reducing our strain set to 520, with the aim

of limiting spurious clustering caused by an unbalanced effectives

of the different origins. When evaluating the optimal number of

ancestral lineages, DIC decreased sharply up to 9 and then

continued to decrease up to 14, whereas a high variability

appeared between 9 and 14 ancestral populations (FigureS1);

therefore, K = 9 is the most probable partition inferred by

InStruct. At K = 9, flor strains were assigned to two specific

clusters (different from wine) (Figure 2). It is noteworthy that the

separation of flor and wine clusters from strains of other origins

already occurred at K = 3 (Figure S2).

The possible relationship between the different groups of flor

strains can also be evaluated from the Fst genetic distance between

each population. The neighbor-net network obtained with

Splittree [41] from this distance matrix (Figure 3) separates clearly

wine, flor and other strains into different groups, as suggested by

InStruct. Interestingly, French and Hungarian flor populations are

present at the end of the branches, whereas Lebanese and Spanish

groups are the most basal.

Figure 3. Neighbor net representing the differentiation between populations measured by Fst distance matrices.
doi:10.1371/journal.pone.0108089.g003
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2. Ploidies of flor strains
Flor strains have been described as aneuploid [13,42] and

variations in ploidy may explain differences in the properties of flor

strains. We measured the DNA content per cell of 70 strains,

which indicated that almost all strains were diploid, except three

Spanish flor strains: F25 and Fino 1.28 that were triploid and

Manzanilla X that was 2.6n (Table 1).

3. Comparative Genome Hybridization on array
Aneuploidy and gene amplification have been hypothesized as

major sources of variation explaining adaptation to flor media

[12]. We searched for a shared pattern of deletion or amplification

specific to flor strains. We hybridized the genomic DNA of 11

strains of yeast to 2.0 Affymetrix chips using S288C as a reference.

We tested six flor strains representing the four countries (LRJura

from cluster ‘‘Jura 1’’, P3 from cluster ‘‘Jura 3’’, CECT11758 and

My138 from cluster ‘‘Jerez 1’’, TA12CUB from Hungary, and

FloraNero from Sardinia) and four French wine strains (Eg25 and

UHA13 isolated in Alsace, the haploid spore V5 from the

champagne strain CIVC8130, and Eg8). The wine strain Eg8, a

Saccharomyces *S. kudriavzevii hybrid, displays substantial aneu-

ploidy [33] and was therefore chosen to verify our ability to detect

large chromosomal imbalance. In addition, this strain has a

Table 1. Ploidy of flor strains from various countries (Spain, Italy, Hungary, and France) estimated from the DNA content measured
in Flow cytometry.

Strain Ploidy CV % Strain Ploidy CV %

Spain France

FINO 7.7 1.9 8.0 ARC42 2.0 4.3

FINO 11.3 2.1 7.8 ARC44 2.0 5.0

FINO 1.282 2.9 4.6 ARC46 2.0 6.3

Manzanilla-II 1.9 6.1 BAE52 2.1 8.0

Manzanilla-III 2.0 7.9 CAW24 2.1 5.0

Manzanilla-VI 2.0 9.0 CBA13 2.1 12.6

Manzanilla-VIII 2.1 9.2 CBB01 2.0 4.4

Manzanilla-X 2.6 4.2 CBB52 2.0 4.3

My138 1.9 6.6 CBD05 2.1 6.9

My91 1.9 6.9 CBD55 2.1 4.5

F25 2.9 5.0 GUF54 2.0 9.5

1682-S4 2.0 4.2 LRJura 2.0 5.4

CECT11761 2.0 4.7 MAC51 1.9 8.7

CECT11764 2.0 4.8 MAD51 2.1 5.7

G1 2.0 5.2 MAE53 2.1 5.2

Italy MAE54 2.1 5.0

2D 2.0 8.3 MAF53 2.0 5.7

FloraNero 2.1 6.1 MAF54 2.0 5.0

A33 1.9 7.7 P3 2.0 7.1

A41 2.0 6.3 PIA64 2.1 5.2

A51 2.1 7.7 PII31 2.0 4.8

A9 2.0 8.4 PII33 2.0 6.5

M23 2.1 4.8 PIN34 2.0 6.5

M3 1.9 13.0 PIO32 2.0 5.5

M38 2.1 7.9 SAA52 g 2.0 7.2

M39 2.1 7.7 SAA55 2.0 6.1

M4 2.1 4.6 SAC56 2.1 6.7

M49 2.1 4.6 XRG25 2.1 5.5

M66 2.1 5.4

M8 2.1 6.4 Hungary

V23 2.2 7.7 T19CUB 2.0 6.3

V5sard 2.1 8.5 T8CUB 2.0 5.5

V63 2.0 5.6 TA12CUB 2.1 8.9

V75 2.0 4.9 TR5CUB 2.0 5.1

V80 2.0 4.9 TS12CUB 2.2 7.4

V9 2.0 5.0

doi:10.1371/journal.pone.0108089.t001
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microsatellite profile indicating that the S. cerevisiae moiety of its

genome belongs to the flor yeast group.

A first analysis carried out with different normalization methods

dedicated to Affymetrix arrays (RMA, GCRMA, MAS5) indicated

that 1606, 834, and 218 probe sets, respectively varied significantly

between strains after correction for multiple tests (adj. p. value ,

0.01). Although we were able to detect the main aneuploidies of

Eg8, the high gene to gene variation in hybridization necessitated

the use of a sliding window smoothing over three genes to reduce

noise [33]. This explains why we used directly the signal of PM

probes. We then chose to evaluate variation in copy number by

detecting discontinuities of log ratios along the chromosomes with

the Rpackage DNAcopy [30]. The hybridization patterns of each

strain and discontinuities detected with DNA copy outputs for flor

strain My138 and wine strain UHA13 are presented in Figure 4;

other karyotypes are shown in Figure S3. As expected, aneuploi-

dies were detected for S. cerevisiae x S. kudriavzevii hybrid Eg8

[33], and for the wine strain Eg25, isolated in Alsace. The

microsatellite profile of Eg25 suggests that it is also present in the

flor cluster. This strain has three main aneuploidies: two at

chromosome III (there is only one copy of YCL073C to

YCL036W, encompassing HMLALPHA1, but three copies of

YCR028W to YCR102W, encompassing HMRA1 and 2) and one

at chromosome XVI (from YPL278C to YPL094C). The anomaly

of chromosome XVI involves a trisomy of the left arm of the

chromosome starting at YPL094C, close to the promoter of SSU1
(YPL092W)[43].

In contrast with these aneuploid strains, we did not find

substantial aneuploidy in the six flor strains tested. A low

hybridization signal for chromosome I suggested the presence of

only one copy in the CECT11758 strain, making it the only flor

strain with a typical aneuploidy. Interestingly, a low hybridization

signal at each subtelomeric region leading to an inverted U

hybridization profile occurred in three of the six flor strains tested

(TA12CUB, P3, and FloraNero), suggesting divergent alleles or

missing genes in these regions.

For all strains, the hybridization signal of several genes was

lower than that of the reference strain S288C. This suggests either

the existence of divergent genes or genes with a low number of

copies. We defined three thresholds to differentiate regions with

zero, one, two or three copies: 21, 20.38 and +0.3, taking into

account the average values observed for aneuploidies of

CECT1158, Eg25 and Eg8 strains (Chromosome I of

CECT11758, chromosome III and XVI of Eg25 and chromo-

somes IV, V, VIII and XVI of Eg8) and the dispersions around

this average ratio. Accordingly, we divided regions with a low

hybridization signal into two categories according to their log

ratio: log ratio between 20.38 and 21, indicating one copy, and

regions with hybridization signal lower than 21, indicating no

copies. The gene lists corresponding to these thresholds are shown

in Table S2, and the results of the comparison of these lists is

shown in Table S3. We performed a clustering of the log ratio

profiles, which revealed three main clusters (Figure 5). Interest-

ingly, the global clustering separates flor and wine strains,

suggesting that flor strains share copy number variation (CNV)

profiles.

Cluster A (Figure 5A) contains 109 genes with a low hybrid-

ization signal. Twenty-four genes were apparently missing in all

strains (flor and wine), and another 24 were missing in eight out of

the nine strains. Among these genes, the cluster containing ASP3–
1/YLR155C and YLR157W–E that was missing in all strains, and

the neighboring genes ASP3–3/YLR158C, ASP3–4/YLR160C,
YLR161W, and YLR162W that were missing in the genome of

four flor strains, were detected previously in wine isolates [44,45].

A second block of 15 genes from HPF1/YOL155C to AAD15/

YOL166C on the left subtelomeric zone of chromosome XV,

including the ferric enterobactin transporter ENB1, and the

hexose transporter HXT11/YOL156W, is also missing among

wine strains [44,45]. We also observed the loss of a block of seven

genes on chromosome VII, including MAL13/YGR288W and

MAL11/YGR289C which are involved in maltose metabolism,

and another cluster located on the left end of chromosome X

containing an isomaltose a-glucosidase IMA5/YJL216C, three

other genes REE1/YJL217W, YJL218W and the hexose trans-

porters HXT9/YJL219W. Two other subtelomeric regions detect-

ed in wine strains analyzed previously by other groups [44,45]

were missing: a region containing eight genes from HXT13/
YEL069C to YEL075W–A and another containing five genes

from IMA3/YIL172W to YIL169C. CUP1–2/YHR54C was

missing in all flor strains (except FloraNero), and in the wine

Figure 4. Karyoscope obtained with DNAcopy, showing variations in hybridization signal along the chromosome for flor strain
My181 and wine strain UHA13. Chromosomes are colored in blue (uneven numbers) or dark blue (even numbers). Mean segment level estimated
by DNAcopy is shown as a red line. The red arrow indicates the YKL221W/MCH2 and YKL222C region, and the orange arrow indicates the PHO12 and
IMD2 region.
doi:10.1371/journal.pone.0108089.g004
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strain Eg25, and CUP1–1/YHR053C was present in only two of

the six flor strains.

In addition to the set of genes showing low hybridization, some

genes showed moderately low hybridization, as exemplified by two

subtelomeric clusters. The first cluster includes AAD4/YDL243C,
HXT15/YDL245C, MPH2/YDL247W, SOR2/YDL246C, COS7/
YDL248W, YDL247W–A, which was only present in wine strain

UHA13. Interestingly this region was noted as giving a high

amplification signal for wine strains, thus differentiating wine

strains from strains of another origin [46] A second cluster,

PEX22/YAL055W, GPB2/YAL056W, YAL056C–A, CNE1/
YAL058W, ECM1/YAL059W, YAL059C–A, BDH1/YAL060W,
BDH2/YAL061W and, GDH3/YAL062W, showed moderately

low hybridization for five out of six strains, whereas other wine

strains presented a hybridization log ratio close to 0 for this region.

Cluster B (Figure 5B) contains genes that are either missing or

present with a low copy number in the genome of flor strains. One

cluster of seven genes is located close to the right end of

chromosome XV and contains several genes involved in iron

import into the cell. These include the siderophore retaining

proteins FIT2/YOR382C and FIT3/YOR383C, the siderophore

Ferric reductase FRE5/YOR384W, and genes with other func-

tions: YOR381W–A, YOR385W, PHR1/YOR386W, and

YOR387C. A second subtelomeric cluster contains PAU3/

YCR104W, ADH7/YCR105W, and RDS1/YCR106W, AAD3/

YCR107W and a third cluster located at the right end of

chromosome XIII contains YMR320W, YM321C and SNO4/
YMR322C. The low hybridization of genes from the first and

second clusters was detected previously by Caretto et al. [45] in the

genome of two clinical isolates.

The presence of several clusters with low hybridization signals in

subtelomeric regions is puzzling. These clusters explain the typical

‘‘inverted U’’ observed in Figure 4 (and in Figure S3) for several

chromosomes of three flor strains: TA12CUB, P3 and in

particular, FloraNero.

Figure 5. Hierarchical clustering of array CGH profile. Main clusters of gene with inter strain variability. A. Genes with a low
hybridization signal for most strains. B. Cluster of genes with a low hybridization signal specifically for flor strains. C. Clusters of genes potentially
amplified (Log ratio.0.3) in comparison with S288C.
doi:10.1371/journal.pone.0108089.g005
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Table 2. FLO11 promoter and ORF polymorphisms, and hydrophobicity of the various flor strains.

Cluster Strain FLO11 diversity Hydrophobicity replicates

Promoter Flo11p length mean per strain mean per Cluster

Jura 1 BAE52 del 3.2 3.2 3.7±0.38

CAH54 del 3.2 3.2

CAW22 del 4.2 4.2

CAW24 del 4.2 4.2

CAX22 del 3.5 3.5

LRJura del 3.8 3.8 91.3±2.8 3

PIA64 del 3.2 3.2 93.5±4.4 2

PIN34 del 3.6 3.6 88.4±8.0 3

SAC56 del 3.5; 4.2 3.9

XRG22 del 3.8 3.8 90.0±2.7 3

Jura 2 MAC51 del 3.6; 4 3.8 3.6±0.18 94.7±0.8 2

MAD51 del 3.5 3.5

MAI53 del 3.5 3.5

XRA22 del 3.7 3.7 92.8±3.3 3

XRC21 del 3; 3.7 3.35

SAC53 del *ND

Jura 3 GUF55 WT 4.7 4.7 4.7±0.41 90.5±6.6 3

GUF51 WT 5.0 5 88.9±5.3 3

CBB52 WT 4.5 4.5

CAV23 WT 4.7 4.7 90.7±4.8 2

P5 WT 4.7 4.7 89.9±7.9 2

CBD04 WT 4.8 4.8

GUE51 WT 4.8 4.8

GUG55A WT 4.9 4.9

CBA13 WT 5.0 5.0

SAA52G WT 6.0 6.0 94.7±1.8 2

CBD05 WT 4.5; 5 4.8

CBE05 WT 4.5; 5 4.8

CAV21 WT 3.7; 4.5 4.1

ARC41 WT 4.5; 5 4.8 76.8±3.0 3

SAA55 WT *ND

Jerez 2 CECT11758 del 4.5; 3.8 4.15 3.7±0.68 95.3±0.6 2

CECT11759 del 2.7 2.7 92.4±2.8 3

CECT11760 del 4.5; 3.8 4.15

CECT11763 del *ND 94.1±0.8 3

ET7 del 3.7 3.7 88.8±3.6 3

Jerez 1 480-SL del 3.5 3.5 3.8±0.50 92.1±3.4 3

481-SL del 4.8; 2.7 3.75 94.0±3.7 3

CECT11756 del *ND

CECT11757 del *ND

CECT11762 del *ND

CECT12765 del 4.2 4.2

CECT1882 del 5; 4 4.5

My138 del 3.3 3.3 95.3±0.7 2

My91 del 3.3 3.3

Sardinia 1043 del 2.5 2.8±0.52 88.4±10.8 3

FloraNero del 3.4 91.8±5.4 3

M25 del 2.5 35.4±5.5 3
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Few functional categories were associated with these genes.

Genes involved in maltose metabolism were significantly affected

(GO:0000023: maltose metabolic process, p. value = 4.6 e26), as

well as other hexose transporters. Nine of these genes encode

proteins that are located in plasma membrane (GO:0016021:

integral to membrane, p. value = 0.0062), including several

involved in iron uptake.

In addition to gene loss, gene amplification may also drive

adaptation in response to a selective constraint [47]. We analyzed

genes showing a higher hybridization signal for tested strains than

for the reference control (Figure 5C); however, we found that only

three genes were amplified in some, but not all, flor strains. These

included MCH2/YKL221W and YKL222W that were amplified

in LRJura, My138, CECT11758 and FloraNero strains (red

arrows in Figure 4 and blue square in Figure 5), and FRE2/
YKL220W in LRJura, My138, and CECT11758. The hybridiza-

tion signal indicated that these genes were present in four copies in

My138, LRJura and CECT11758, and three copies in FloraNero.

Five other genes, YAR064W, YAR068W, YHR214W, PHO12,
IMD2 showed a high hybridization signal in three flor strains

(LRJura, My138, and CECT11758). A second cluster of genes

including YHR213W–A, YHR213W–B, YHR214W–A,

YHR214W, YHR214C–D, YHR214C–E, PHO12/YHR215W,
IMD2/YHR216W (red arrow) showed a high hybridization signal

in the V5 strain, which was described previously for the wine

strains EC1118 and ICV D254 [45]. The average log ratio in this

region suggests three copies for LRJura, My138, and four copies

for V5. Another cluster of six genes, located at the extremity of the

left arm of chromosome XVI, containing the genes SAM4/
YPL273W, SAM3/YPL274C, FDH2/(YPL275W, YPL276W),
YPL277C, YPL278C was amplified in the genome of three strains

(wine and flor): P3, Eg25 and V5. Dunn et al. observed previously

the amplification of this region in several wine strains [44].

Another subtelomeric cluster encompassing YFL062C to

YFL068W presented a high hybridization signal in strain My138

(log ratio 0.48). This was also the case for strains CECT11758,

TA12CUB, FloraNero and V5; however, the log ratio for these

strains was below 0.3 (between 0.23 to 0.24), thus the genes were

not considered as amplified. Interestingly, except for the cluster

containing YHR073W to YHR081W that was amplified only in

TA12CUB, all the clusters containing amplified genes were

subtelomeric.

4. Variability in velum production and FLO11
polymorphism

The ability to develop a velum is an essential trait of flor yeast

and requires high hydrophobicity at the surface of yeast cells. This

trait has been related previously to polymorphisms of the FLO11
gene [18]. Two modifications have been reported to enhance

FLO11 expression. These comprise a 111 bp deletion inside the

ICR1 non coding RNA located in the FLO11 promoter and an

increase in the size of the central part of FLO11. We investigated

both these phenomena. First, the amplification of a fraction of

ICR1 ncRNA enabled us to detect the presence of the 111 bp

deletion in the genome of 36 flor strains from the four countries,

including 18 strains from the Jura 3 cluster. The cluster 2 of

Spanish flor carried the wild type allele (wt) (Table 2, Figure 1).

Three strains from Hungary carried both mutated and wt alleles.

We sequenced the PCR amplification products of three strains

originating from France (LRJura), Hungary (T8CUB), or Spain

(CECT11757). Comparison of the resulting sequences with those

described previously [18,48] showed that these strains had the

same deletion (Figure 6) as Spanish and Sardinian flor strains. The

sequencing of this locus in two strains carrying the wild type allele,

one from Jura (CAV21) and one from Hungary (TR05CUB),

revealed a sequence devoid of deletion and similar to S288C.

We amplified the core region of Flo11p for 59 strains and

obtained DNA fragments for 53 strains, with sizes varying from

2.5 to 6 kb. We did not obtain amplification for four Spanish

strains and two Jura strains. The mean size for wine strains was

2.9 kb, similar to Hungarian flor strains at 3.0 kb. The core region

of Flo11p was longer in other flor groups, including Jura 1 and 2 at

3.6 kb and Jerez 1 and 2 at 3.7 kb.Jura 3 cluster strains had the

longest Flo11p core region (4.8 kb). We obtained a mean value of

2.8 kb for three Sardinian strains. The size of the variable central

core of FLO11 was evaluated previously [48] with a different

primer pair for Sardinian strains. These primers were closer to the

Table 2. Cont.

Cluster Strain FLO11 diversity Hydrophobicity replicates

Promoter Flo11p length mean per strain mean per Cluster

Hungary T19CUB del 2.0 3.0±0.62

T8CUB del 3.3

TS12CUB del 2.4 93.9±1.2 3

TA12CUB WT del 3.5 94.8±0.9 3

TP32CUB WT del 3.0 95.0±2.0 3

TR05CUB WT del 3.5

Spanish Flor 2 G1 WT 2.2 2.2 2.2 10.0±7.8 3

Wine Cluster MAA52 WT 2.4 2.4 2.9±0.81

MTF2-K1 WT 2.4 2.4 8.7±7.0 3

RM11 WT 3.8 3.8

Lab S288C WT 3.2 16.7±5.8 3

del: presence of the deletion in ICR1, WT: Wild type allele. The size of the core region of Flo11p alleles is given, as well as the mean size per strain. The mean size of
Flo11p per cluster is given with standard variation. Hydrophobicity was measured according to Ishigami et al. [17], and is expressed as mean of replicates +/2 standard
deviation. The number of replicates is given in the last column.
*ND: could not be amplified.
doi:10.1371/journal.pone.0108089.t002
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central variable core of Flo11p than those used in our study;

therefore, we recalculated the mean size obtained with our primers

as 3.4 kb for the 22 genotyped strains, which is similar to most flor

yeast groups, and lower than the size measured for Jura 3 cluster

strains. This indicates that most flor strains contain a deletion in

ICR1 and have a core region of Flo11p that is longer than that of

wine strains. Strains of the Jura 3 cluster have a particular

combination of FLO11 alleles with a full length ICR1 and a very

long core region.

We measured cell hydrophobicity and velum formation to

examine the effect of FLO11 polymorphism on phenotype

(Table 2). We measured the hydrophobicity of 28 strains, and

found highly significant differences both between strains (p. value

of a one factor ANOVA ,2 e216) and groups (p. value of a

Kruskal Walis Test = 4.63 e25). As expected, the flor and the

‘‘non-flor’’ group, including K1 wine strains, the Spanish flor 2 G1

strain and the reference strain S288C, showed the largest

differences in hydrophobicity. We also found significant differenc-

es between the three Sardinian strains and the ‘‘non-flor’’ group (p.

value of Kruskal Walis Test = 0.00034) but not with other flor

yeast. The hydrophobicity of Jura 3 cluster strains was similar to

that of other flor groups.

We assessed the ability of 29 strains to produce a velum by

cultivating them on Fornachon’s media. All strains of clusters Jura

1, Jura 2 and Jerez 2 produced a velum (Table 3). The growth of

strains of clusters Jerez 1, Jura 3, Sardinia, and Hungary was

variable. Five out of six strains from the Jura 3 cluster, and several

strains from Hungary (TR05CUB, TP32CUB, TA12CUB,

TS12CUB) either produced a thin velum or no velum at all.

Wine strains and the two atypical Spanish flor strains were unable

to develop a velum in this media. We previously correlated velum

thickness and color in Jura flor yeast with genetic group assessed

by interdelta typing [8]. Almost all of the strains analyzed in this

prior study were genotyped; therefore, we were able to evaluate

the correlation between genetic structure revealed by microsatel-

lite typing and the ability to produce a velum for these strains. The

correlation between microsatellite structure and the production of

thin velum in Jura 3 cluster strains (p. value of x2 test,6.7 e210

and 1.0 e207 for color and thickness respectively, for 55 strains)

was substantially higher than that we obtained previously between

velum production and delta clusters (p. value of x2 test,0.0007

and 0.0076 for color and thickness respectively) [8].

Discussion

Flor strains are found in several countries in Europe; however,

until now no global approaches had been undertaken to compare

strains from various vineyards. We showed previously that Jura

flor strains carry a specific allele of ITS1, which differs from that

characterized in Spanish strains [5,8], suggesting the existence of

separate populations. In addition, a previous study on Spanish flor

yeast revealed that flor yeast are genetically isolated from wine

fermentation yeast during the aging process [7], suggesting that

flor strains represent a separate family of Saccharomyces cerevisiae.

In this study, we used microsatellite typing, InStruct clustering

and population analysis to reveal for the first time that most flor

strains share the same unique origin. Lebanese and Spanish strains

showed the most basal position within the population structure;

therefore, it is difficult to infer the origin of flor yeast. Interestingly,

a flor yeast population was recently characterized in Georgian

aged wines produced by the ‘‘Kakhetian’’ method [49]. Nonethe-

less, it is still possible that all flor strains have a Mesopotamian

origin because wine making is an ancient process in Georgia and

this country is close to origin of vine domestication. However, the

comparison of a larger number of strains is necessary. The position

Figure 6. Alignment of 278 bp of ICR1 containing the deletion of 111 bp described by Fidalgo et al. [18]. The first sequences were
obtained from Genbank and correspond to Spanish and an Italian flor strains [18,48] that carry this deletion. The Spanish strain CECT11758, the
Hungarian strain T8CUB and the Jura strain LRJura share the same deletion. The alleles of the Jura strain CAV21 and the Hungarian strain TR05CUB are
similar to that of S288C.
doi:10.1371/journal.pone.0108089.g006
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of the Jura strains at the end of the branch of the population Fst

network suggests that Jura flor strains have a lower diversity than

Spanish or Italian populations, indicating that this vineyard

received strains from other vineyards. This can be seen also from

InStruct clustering: Spanish flor strains are mostly mosaics of two

origins (at K = 9), with a third origin for some strains, whereas half

of Jura strain are associated with only one cluster. Hungarian

strains are closely related to the Jura population as shown by the

network and InStruct output. The second Spanish flor cluster is

associated with some rum strains as seen from the individual tree

and these strains share ancestry according the InStruct output

(three individuals at the right of the Spanish flor strain cluster).

Wine is a much harsher environment than must for yeast cells

during flor aging. During alcoholic fermentation, yeast cells

metabolize almost all fermentable sugars and assimilate most

nitrogen sources (except proline) and vitamins. As a result, wine

contains a high concentration of alcohol (starting from 13% v/v in

Jura, and 14–15% in Sardinia and Spain) and a low nitrogen and

vitamin content. In addition, yeast cells have an aerobic biofilm

lifestyle, and use glycerol and ethanol as carbon sources. Many

experiments have shown how yeast are able to adapt to particular

environmental conditions [50–53] through various adaptive

genetic changes [54,55]. The intense stressful conditions of flor

aging to which flor yeast cell are subjected for years of growth may

drive such adaptation.

Aneuploidy is a mechanism that fuels adaptation to environ-

mental changes [15,50]. Comparative Genome Hybridization on

array (aCGH) has enabled the exploration of gene copy number

variations. This technique revealed that wine yeast share a

genomic signature [44,45]. Aneuploidies have also been detected

in the genome of flor yeast [12,13] and proposed as a motor for

adaptation. In addition, recent studies show that gene duplication

or loss is specific of certain lineages, suggesting that it can offer a

shortcut to evolutionary adaptation [47]. A recent aCGH study

examined the genetic constitution of strains of different origins

including one flor yeast [56]. The array technology and data

processing method used in this study differs from that used here;

nonetheless, findings for the triploid flor strain GB-FlorC are

Table 3. Growth of the various strains on Fornachon’s media. Intensity of velum formation is scored from 0 (no velum) to 4 (thick
velum).

Microsatellite Duration Incubation (days)

cluster Strain 2 4 6 8 10

Jura 1 BAE52 2 4 4 4

LR 1 4 4 4

PIN34 2 3 3 fell

MAC51 4 4 4 4

Jura 2 GUF55 1 1 1 0

MAD 51 4 4 4 fell

MAI53 4 4 4 4

Jura 3 ARC41 0 0 0 0 0

CAV21 0 0 0 0 0

CBD04 0 0 0 0

GUG55 0 4 4 4 4

GUE 51 1 0 0 1

P5 0 0 1 1 0

Jerez 1 480 SL 0 0 0 0

481 SL 4 4 4 0

MY138 0 3 3 2

Jerez 2 CECT11758 0 0 1 1

CECT11763 0 4 4 4

ET7 0 0 1 1

Sardinia 1043 0 0 0 0 0

Flora Nero 0 1 3 3 3

M25 0 0 0 0 0

Hungary T19CUB 0 3 3 3 4

T8CUB 2 4 4 4 4

TR05CUB 0 0 0 0 0

TP32CUB 0 1 0 1 0

TA12CUB 0 0 0 1 1

TS12CUB 0 0 0 0 0

Spanish Flor 2 G1 0 0 0 0 0

Lab S288C 0 0 0 0 0

doi:10.1371/journal.pone.0108089.t003
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similar between the two studies: Ibanez et al. found that the genes

YKL221W/MCH2 and YKL222C were among 81 genes showing

a log ratio greater than 0.5 with S288C used as a reference strain.

The YHR215W/PHO12 gene, which is amplified in LRJura and

My138, was also included in this list. In addition, for the flor strain

GB-FlorC, half of all genes with a log ratio lower than 20.7 were

also included in the list of genes with a low hybridization signal of

flor strains analyzed here. Our investigation has two limits: (1) we

cannot exclude the possibility that some genes were missed by our

data analysis; and (2) our findings are limited to comparison with

the S288C genome; therefore, we did not take into account genes

detected specifically in wine yeast such as A, B, and C regions

identified in EC1118 [57]. Our aCGH analysis and that of Ibanez

et al. [56] do not support the view that many gene amplification

events must occur to enable the adaptation of yeast to the flor

aging environment. We hypothesize that the substantial differenc-

es observed previously [12] originate partially from differences in

ploidy between the two Spanish strains and that these differences

are a specific feature of this pair of strains as opposed to a general

adaptive pattern. However, recent observations show that

aneuploidies appear in the first steps of adaptation [58], but are

subsequently replaced by other mutations, probably because of the

cost of aneuploidy. Pulsed field gel electrophoresis to examine the

genetic variability of wine and flor yeast has also revealed the

importance of aneuploidy in yeast adaptation. It is possible that

the numerous variations observed with this technique result from

translocations, which can also generate new phenotypes as shown

previously for SSU1 [59], or from specific gene clusters such as

those detected in EC1118 [57]. Such clusters may be inserted at

different loci with a variable number of copies [60,61]. However,

we successfully identified amplified genes shared by flor yeasts,

including two genes: YKL221W/MCH2 and YKL222C. MCH2 is

a putative monocarboxylic acid transporter with homology with

mammalian transporters, although its involvement in monocar-

boxylic acid transport has not been shown experimentally [62].

Nonetheless, a recent study showed that this gene is important for

yeast survival during the second phase of alcoholic fermentation

(during alcohol accumulation) [63]. In addition, Zara et al. found

that succinic, lactic and acetic acids could not provide consistent

growth as a sole carbon source under aging conditions [64]. The

role of YKL222C is also unknown; however, a recent overexpres-

sion screen to identify genes involved in endocytic trafficking,

suggested a role for Ykl222cp in the early endosome or during

endocytosis [65].

Several genomic regions showed a low hybridization signal

indicating that these regions are missing or contain variations

hampering hybridization. One of the most puzzling aspects was

the location of most of these events in subtelomeric regions, which

was observed previously by other groups [44,45,56]. The low

number of copies of several genes in contrast with the amplifica-

tion of other genes suggests translocation between subtelomeric

regions. Indeed, several translocations have been shown to play a

key role in the adaptation of yeast to selective pressure [15],

especially in the response of wine yeast to sulfite exposure [59,66].

Unfortunately, we were unable to detect directly translocation

events from our data. In addition, linkage analysis has revealed

that these regions play a key role in defining individual

quantitative variation and thus in the adaptation of natural

populations [67].

Polymorphism of FLO11 is also a key feature of flor strains. The

global hydrophobicity of flor cells is determined by the level of

FLO11 expression and Flo11p length [18,48]. Our results are in

line with these findings we correlated flor yeast population

structure data with FLO11 polymorphisms. We detected the

111 bp deletion, first observed by Fidalgo [18], in Spanish, Italian,

Hungarian, and French strains, suggesting that it is extremely old.

Only two Hungarian strains were heterozygote at this locus

indicating that this deletion has probably been selected for by most

flor strains. As a result, the wild type allele has nearly disappeared

from flor strains, except in particular groups such as the Jura 3

cluster. Thus, various adaptive strategies enabling yeast cells to

overcome the stressful conditions of flor aging co-exist, similar to

what has been observed in experiments of adaptive evolution [54].

In conclusion, our results reveal that flor yeast are a unique

family. Flor strains are mainly diploids, with some polyploid

Spanish strains. We detected a shared pattern of amplification for

two genes in four out of six flor strains (MCH2 and YKL222w) and

identified genomic regions with low hybridization to probes based

on the S288C genome. These regions were mainly located in

subtelomeric regions, which may be associated with a high level of

divergence and thus explain adaptation to flor aging. In addition,

FLO11 polymorphisms suggest that several alternative strategies

can lead to adaptation to flor aging. Further investigation is

required to unravel the mechanisms of flor yeast adaptation, in

particular studies involving genome sequencing.
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cluster.

(TIFF)

Figure S3 Karyoscope obtained with DNAcopy, showing
variations in hybridization signal along the chromosome
for 8 other strains: 5 flor strains P3, FloraNero, LRJura,
CECT11758, TA12CUB, 2 wine strains Eg25, V5, and
aneuploidy hybrid Saccharomyces cerevisiae*S.kudriav-
zevii Eg8. Chromosomes are colored in blue (uneven numbers)

or dark blue (even numbers). Mean segment level estimated by

DNAcopy is shown as a red line. The red arrow indicates the

YKL221W/MCH2 and YKL222C region, and the orange arrow

indicates the PHO12 and IMD2 region.
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