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Cellular/Molecular

HuR Mediates Changes in the Stability of AChR 3-Subunit
mRNAs after Skeletal Muscle Denervation

Olivier R. Joassard,' Guy Bélanger,' Jennifer Karmouch,? John A. Lunde,' Anu H. Shukla,' Angele Chopard,'

Claire Legay,”> and Bernard J. Jasmin'

Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H
8M5, Canada, and 2CESEM, CNRS UMR 8194, University of Paris Descartes, F75270 Paris Cédex, France

Acetylcholine receptors (AChRs) are heteromeric membrane proteins essential for neurotransmission at the neuromuscular junction.
Previous work showed that muscle denervation increases expression of AChR mRNAs due to transcriptional activation of AChR subunit
genes. However, it remains possible that post-transcriptional mechanisms are also involved in controlling the levels of AChR mRNAs
following denervation. We examined whether post-transcriptional events indeed regulate AChR 3-subunit mRNAs in response to dener-
vation. First, in vitro stability assays revealed that the half-life of AChR -subunit mRNAs was increased in the presence of denervated
muscle protein extracts. A bioinformatics analysis revealed the existence of a conserved AU-rich element (ARE) in the 3'-untranslated
region (UTR) of AChR B-subunit mRNA. Furthermore, denervation of mouse muscle injected with a luciferase reporter construct
containing the AChR B-subunit 3'UTR, caused an increase in luciferase activity. By contrast, mutation of this ARE prevented this
increase. We also observed that denervation increased expression of the RNA-binding protein human antigen R (HuR) and induced its
translocation to the cytoplasm. Importantly, HuR binds to endogenous AChR B-subunit transcripts in cultured myotubes and in vivo,
and this binding is increased in denervated versus innervated muscles. Finally, p38 MAPK, a pathway known to activate HuR, was induced
following denervation as a result of MKK3/6 activation and a decrease in MKP-1 expression, thereby leading to an increase in the stability
of AChR B-subunit transcripts. Together, these results demonstrate the important contribution of post-transcriptional events in regu-
lating AChR B-subunit mRNAs and point toward a central role for HuR in mediating synaptic gene expression.
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~

Muscle denervation is a convenient model to examine expression of genes encoding proteins of the neuromuscular junction,
especially acetylcholine receptors (AChRs). Despite the accepted model of AChR regulation, which implicates transcriptional
mechanisms, it remains plausible that such events cannot fully account for changes in AChR expression following denervation. We
show that denervation increases expression of the RNA-binding protein HuR, which in turn, causes an increase in the stability of
AChR B-subunit mRNAs in denervated muscle. Our findings demonstrate for the first time the contribution of post-
transcriptional events in controlling AChR expression in skeletal muscle, and points toward a central role for HuR in mediating
synaptic development while also paving the way for developing RNA-based therapeutics for neuromuscular diseases. j

/Signiﬁcance Statement

acetylcholine receptors (AChRs) on the surface of the postsynaptic
membrane. AChRs are well characterized heteromeric transmem-
brane proteins made up of four constitutive subunits (2 o, 1 8, and 1
) and one variable y subunit that switches to &€ during muscle de-
velopment to form adult AChRs (Mishina et al., 1986; Duclert and

Introduction
Transduction of the acetylcholine signal at the neuromuscular junc-
tion (NM]J) to trigger muscle contraction relies on a high density of
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Changeux, 1995; Missias et al., 1996). Over the last 3 decades, con-
siderable efforts have been invested to understand how the highly
localized expression of AChRs within the postsynaptic apparatus
occurs (Sanes and Lichtman, 2001). Overall, such an accumulation
of AChRs may be seen as a two-step process. First, myogenesis is
initially marked by a rapid burst of AChR synthesis with the subse-
quent clustering of these newly synthesized AChR:s at sites of nerve-
muscle contacts. Second, once the synaptic contacts are established,
expression of AChRs becomes restricted to synaptic regions of mus-
cle fibers with active repression in extrasynaptic compartments
(Willmann and Fuhrer, 2002). The molecular mechanisms regulat-
ing expression of AChRs during myogenesis, synapse formation,
and at adult NMJs are well understood and thought to mostly in-
volve transcriptional regulatory pathways (J. Tang et al., 1994; Bessis
etal., 1995; Koike et al., 1995; Duclert et al., 1996; Tansey et al., 1996;
Altiok et al., 1997; Burden and Yarden, 1997; Fischbach and Rosen,
1997; Sandrock et al., 1997; Schaeffer et al., 1998; Massari and Murre,
2000; Macpherson et al., 2006; H. Tang et al., 2006).

Nerve transection, causing skeletal muscle denervation, has
been widely used as a convenient experimental system to also
study AChR gene regulation. Thus, skeletal muscle denervation
markedly increases the level of a-, 8-, 8-, and y-subunit mRNAs
(Evans et al., 1987; Goldman et al., 1988; Witzemann, 1989) to
different extent depending on the specific muscle, animal species
and AChR subunits considered. Such increases in AChR expres-
sion in denervated muscle occurs in extrasynaptic regions of
muscle fibers and they have largely been attributed also to in-
creased transcriptional rate resulting in a dramatic increase in
AChR synthesis which causes acetylcholine supersensitivity
(Lomo and Westgaard, 1975; Merlie et al., 1984; Buonanno and
Merlie, 1986; Neville et al., 1998).

Despite the overall model of AChR gene regulation which
primarily implicates transcriptional mechanisms, it has been
proposed that such molecular events cannot fully account for the
changes seen in the levels and localization of synaptic mRNAs in
muscle cells (Chakkalakal and Jasmin, 2003) and that therefore,
other mechanisms are likely involved and essential in regulating
AChR expression. The central objective of the current study was
to explore whether post-transcriptional mechanisms, operating
at the level of mRNA stability, contribute to the changes in AChR
mRNAs seen in denervated muscle. In our work, we also exam-
ined the putative involvement of the RNA-binding protein (RBP)
human antigen R (HuR) in controlling AChR mRNA stability in
skeletal muscle. Given the central role of the AChR B-subunit in
agrin-induced cytoskeletal anchoring, AChR aggregation (Friese
et al., 2007; Borges et al., 2008), and stabilization of newly form
AChR clusters (Rudell and Ferns, 2013), and furthermore, con-
sidering the fact that the AChR B-subunit has been shown to be
essential for AChR assembly (Quiram et al., 1999), perhaps even
constituting a rate-limiting factor in the assembly of pentameric
AChRs (Claudio et al., 1989; Saedi et al., 1991), we chose to focus
our effort on this specific AChR subunit.

Materials and Methods

Animal care. Seven-week-old female C57BL/6 mice, purchased from
Charles River Laboratories, were maintained in the Animal Care and
Veterinary Service of the University of Ottawa under a constant 12 h
light/dark cycle with food and water ad libitum. Experiments were ap-
proved by the University of Ottawa Institutional Animal Care and User
Committee and were performed in accordance with the established
guidelines of the Canadian Council on Animal Care.

Hindlimb surgical denervation and tissue removal. For denervation,
mice were anesthetized <2-3% isoflurane. The left sciatic nerve was
sectioned and, to avoid reinnervation, a 2-3 mm segment was removed.
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Table 1. Oligonucleotide primers used for PCR analysis

Gene Primer sequences 53’

AChE (Ache; NM_001290010.1) Fwd: CGGAGGCTCTCATCAATACTGG
Rev: GGGACCCCGTAAACCAGAAAG
Fwd: CATCATCGCTCACCCCAC

Rev: ACGGTCCACAACCATGGC
Fwd: CCCTGTATGCCTCTGGTCGT
Rev: ATGGCGTGAGGGAGAGCAT
Fwd: GGGTGTGAACCACGAGAAAT
Rev: CCTTCCACAATGCCAAAGTT
Fwd: CAGAGGTCATCAAAGATGC
Rev: ATCCCACTCATGTGATCTAC
Fwd: TCACATAAGGCTAACACCCAG
Rev: GGAATTCGAGGCATATTATGA
Fwd: CGCCGCTAGAGGTGAAATC
Rev: CCAGTCGGCATCGTTTATGG

Primers were designed using Primer 3 software from gene sequences obtained from GenBank. Primer specificity was
determined using a BLAST search.

AChR B-subunit (Chrnb1; NM_009601.4)
B-Actin (Actb; NM_007393.3)

GAPDH (Gapdh; NM_008084.3)

HuR (Elavi1; NM_010485.3)

Myogenin (Myog; NM_031189.2)

18S ribosomal RNA (Rn18s; NR_003278.3)

The skin was then closed with sterile clips. The contralateral leg remained
innervated and served as a control. Three days after denervation, mice
were killed and tibialis anterior (TA) muscles were excised and immedi-
ately frozen in liquid nitrogen or, embedded in Tissue-Tek OCT Com-
pound (Sakura Finetek) and frozen in melting isopentane precooled with
liquid nitrogen. All muscles samples were stored at —80°C for subse-
quent analyses.

RNA isolation and RT-qPCR. Total RNA was extracted from TA mus-
cles using TriPure isolation reagent (Roche Diagnostics) as per the man-
ufacturer’s recommendations. TriPure-extracted RNA was treated for
1 h with DNase I (Invitrogen) to eliminate possible genomic DNA con-
tamination. Real-time quantitative PCR was performed on reverse tran-
scribed RNA using the QuantiTect SYBR Green PCR kit (Qiagen) on an
MX3005p real-time PCR system (Stratagene). The selected forward and
reverse primer sequences are listed in Table 1. All reactions were per-
formed in duplicate. AllmRNAs of interest used the same cycling param-
eter: the thermal conditions consisted of an initial denaturation step at
95°C for 10 min, followed by 40 cycles of denaturation at 95°C for 15s,
annealing at 60°C for 30 s, and extension at 72°C for 30 s, and a final
melting curve. Given that skeletal muscle denervation differentially af-
fects the expression levels of house-keeping genes (Nakao et al., 2015),
the expression of the gene of interest in the denervation experiments was
normalized using the geometric mean of multiple reference genes
[glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S ribosomal
RNA and B-actin] as previously recommended (Vandesompele et al.,
2002). Otherwise, 18S ribosomal RNA was used as housekeeping gene for
the in vitro experiments.

In vitro stability assays. Proteins extraction and mRNA degradation
assays were performed as described previously (Chakkalakal et al., 2008).
Briefly, proteins were extracted from 3 d denervated or control TA mus-
cles using 500 pl of a homogenization buffer (10 mmol L ! Tris, pH 8.0,
10 mmol + L ™' KCl, 1.5 mmol + L' MgCl,, 2.5% IGEPAL CA-630)
containing protease inhibitor complete mini-tablets as per the manufac-
turer’s recommendations (Roche Diagnostics). Protein extracts were
centrifuged for 10 min at 3500 X g. After discarding the supernatant,
pellets were subsequently vortexed and incubated on ice for 20 min in
100 pl extraction buffer (20 mmol - L ! Tris, pH 8.0, 450 mmol - L ™"
NaCl, 10 mmol + L' EDTA, and protease inhibitor complete mini-
tablets). After incubation, the pelleted fractions were centrifuged at
14,000 X g for 10 min and the supernatants (enriched in nuclear and
cytoskeletal fractions) were collected and used for in vitro stability assays.

The RNA used in these assays was isolated from 3-d-old differentiated
C2C12 myotubes using TriPure reagent (Roche Diagnostics). Degrada-
tion assays were performed by adding 0.2 g+ ul ~! of total RNA from
C2C12 cells to 0.25 g * ul ™' of TA muscle protein extracts and by
incubating these two components into a degradation buffer (10 mmol -
L' Tris pH 7.4, 10 mmol - L “1TKOAc, 2 mmol - L ! MgOAc, 2 mmol
L !'DTT, 0.l mmol-L ! Spermine, 1 mmol L “LATP, 0.4 mmol-L !
GTP, 10 mmol - L ! Phosphocreatine, 40 U/ml creatine phosphokinase,
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80 U SUPERNasin) for 20 min at 37°C. Time 0 was taken as RNA incu-
bated in the degradation buffer without protein extracts. The reactions
were stopped at different time intervals by addition of 250 ul of Trizol.
The RNA was then precipitated with isopropanol in the presence of 1 ul
of glycogen RNA grade (R0551, Thermo Fischer Scientific) as a carrier.
The amount of AChR B-subunit and 18S transcripts remaining at each
time point was determined by RT-qPCR analysis. Values were then plot-
ted on a semi-logarithmic scale as a function of time. Four separate
experiments were conducted, using four different TA muscle extracts.
Half-life values were then determined relative to appropriate controls for
each individual experiment. Relative half-life values were averaged and
compared between samples.

Plasmid preparation and electrotransfer of plasmid DNA. Escherichia
coli strain DH5a was transformed with the plasmids 3’-untranslated
region (UTR)-AChR B-subunit WT or 3'UTR-AChR B-subunit muted-
AU-rich element (ARE) into pmirGLO luciferase vector using the heat
shock method. Point mutations were performed with the QuikChange
mutagenesis kit (Stratagene), according to the manufacturer instruc-
tions. The resulting mutations were confirmed by sequencing. Plasmid
DNA was prepared using the Qiagen Mega-prep kit guidelines. Briefly,
transformed bacteria colonies were selected for ampicillin resistance on
LB growth plates. After selection and inoculation of a single colony in LB,
the culture was grown for 12-16 h at 37°C under vigorous shaking. After
assessment of their purity in a 1% agarose gel electrophoresis, the bacte-
rial cells were harvested by centrifugation and the pellet was resuspended
in the appropriate buffers. The suspension was then placed on a column
and allowed to drain by gravity flow. After several washes, the plasmid
DNA was eluated and precipitated with isopropanol. Mixed gently, the
precipitated plasmid DNA was immediately centrifuged and the ob-
tained pellet was washed with ethanol. Finally, the DNA pellet was air
dried and redissolved in 500 ul of 0.9% saline solution. Plasmid DNA
concentration was measured using a spectrophotometer (Pharmacia
GeneQuant) at 260 nm.

Under isoflurane anesthesia, TA muscles of mice were injected with 30
ul of the solution containing either the 3'UTR-AChR B-subunit WT or
the 3"UTR-AChR B-subunit mutated-ARE constructs. The injected so-
lution contained a concentration of DNA equal at 1 ug + ul . Thirty
seconds after injection, six pulses (20 ms, 50 mA) were delivered to the
muscles using an electroporator. In these experiments, a 3-galactosidase
¢DNA plasmid (pCMV B-galactosidase containing the cDNA of the E.
coli B-galactosidase gene driven by the cytomegalovirus CMV enhancer
and early promoter elements) was coinjected and used to monitor trans-
duction efficiency and to normalize the luciferase data. Mice were then
allowed to recover for 7 d before denervation.

Luciferase reporter assays. The activity of luciferase was determined
using the Luciferase Reporter Assay kit (Promega) according to the man-
ufacturer’s instructions. Briefly, 300 ul of 1X Passive Lysis Buffer was
added to powdered TA muscles and homogenized at 4°C. Homogenates
were subjected to three freeze—thaw cycles and centrifuged at 10,000 X g
for 10 min at 4°C. Measurements were performed using a luminometer
(Lumat LB 9507; Berthold Technologies).

B-Galactosidase activity assays. The B-galactosidase activity was as-
sayed using the B-Galactosidase Enzyme Assay System from Promega,
according to the manufacturer’s instructions. Briefly, 50 ul of assay 2X
buffer (2 mmol - L ™' MgCl, 100 mmol - L ™" B-mercaptoethanol, and
1.33 mg - ml ~! o-nitrophenyl-B-p-galactopyranoside) were added to 20
ul of homogenates on a 96-well plate. The plate was then incubated at
37°C for 1 h. The reaction was stopped by adding 150 pl of 1 mol - L ™!
sodium carbonate solution to each well. The absorbance of the samples
was measured at 420 nm with a plate reader (Synergy, BioTek). Absor-
bance was plotted by linear regression against a 3-galactosidase standard
curve.

Protein isolation and immunoblotting. Proteins were extracted from
powdered TA muscles by homogenization at 4°C in 1X Passive Lysis
Buffer (Promega). Homogenates were centrifuged at 12,000 X g for 20
min at 4°C, and the resulting supernatants collected and stored in ali-
quots at —80°C. Total protein content was measured using the bicin-
choninic acid protein assay kit (Pierce BCA Protein Assay kit, Thermo
Fischer Scientific) with bovine serum albumin as a standard. For Western
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blotting, equal amounts of proteins (30 ug) were loaded on 10% SDS-
polyacrylamide gels. Proteins were transferred onto 0.2 wm nitrocellu-
lose membranes. Systematically, gel loading and transfer efficiency were
ascertained by Ponceau S and Coomassie Blue staining, respectively.
Membranes were then blocked with 5% skim milk in PBS containing also
0.05% Tween to avoid nonspecific binding, and they were incubated
overnight at 4°C with primary antibodies. Blots were probed using
antibodies (1:1000) directed against B-actin, HuR (Santa Cruz Biotec-
hnology), phospho-p38 (Thr180/Tyr182), total p38 and phospho-
MKK3(S189)/MKK6(S207; Cell Signaling Technology), total MKK3/6
(R&D Systems), MKP-1 (Millipore), MKP-5 and lamin A+C (Abcam),
and a-tubulin (Sigma-Aldrich). After washing with PBS containing
0.05% Tween, membranes were incubated with anti-mouse IgG light-
chain-specific horseradish peroxidase-conjugated secondary antibody
(Jackson ImmunoResearch Laboratories). After 3 X 5 min washes with
PBS with 0.05% Tween, chemiluminescent signals were revealed using
ECL reagents (Pierce ECL Western Blotting Substrat, Thermo Fischer
Scientific). The x-ray films (Thermo Fisher Scientific) were finally
scanned and quantified with Image] analysis software (National Insti-
tutes of Health). B-Actin or a-tubulin served to verify equal protein
loading among samples.

Subcellular fractionation. Control and 3 d denervated TA muscles were
powdered in liquid nitrogen with a mortar and pestle. Subcellular frac-
tionation was performed as previously described (Dimauro et al., 2012)
with tubulin and lamin A+C used as cytoplasmic and nuclear fraction
markers, respectively.

Immunofluorescence. TA muscle cross-sections (10 wm) were cut using
a microtome at —20°C and processed for immunofluorescence with the
HuR (Santa Cruz Biotechnology) and laminin (Sigma-Aldrich) antibod-
ies. Cross-sections were also stained with AlexaFluor 488-coupled
a-bungarotoxin (B13422, Life Technologies) to visualize AChRs. The
MOM Immunodetection Kit (Vector Laboratories) was used to localize
the primary antibodies. Slides containing tissue sections were mounted
with Vectashield mounting medium (Vector Laboratories). Tissue sec-
tions were visualized using a Zeiss Axiolmager.M2 fluorescent micro-
scope and high-resolution images were acquired using ImageJ (NIH).

RNA immunoprecipitation. RNA immunoprecipitation (RNA-IP) was
performed as recently described (Amirouche et al., 2013a). Briefly, cul-
tured C2C12 myotubes were crosslinked with 1% formaldehyde in PBS
for 10 min at room temperature. The reaction was stopped with a wash in
ice-cold PBS. Equal amounts of whole-cell extracts were immunopre-
cipitated with Protein A agarose-bound rabbit anti-HuR antibody beads
(Sigma-Aldrich) or rabbit IgG (Santa Cruz Biotechnology) as control.
The beads were washed with modified RIPA buffer supplemented with
protease and phosphatase inhibitors (Roche Diagnostics) and heated to
70°C for 1 h to reverse crosslinking. RNA was extracted from the immu-
noprecipitates using Tripure Reagent (Roche Diagnostics). Real-time
RT-qPCR was performed as described above. RIP assays using TA inner-
vated and denervated muscles were performed as previously described
(Nechama et al., 2008).

Cell culture, plasmids, and transfection. Mouse C2C12 muscle cells
(American Type Culture Collection) were plated in DMEM supple-
mented with 20% fetal bovine serum (MultiCell, Wisent), 1% penicillin-
streptomycin (P/S), and 1% r-glutamine (Thermo Fischer Scientific) at
37°C and 5% CO, in air in 6-well culture dishes. At ~20-30% conflu-
ency, C2C12 myoblasts were transfected with si-HuR (kindly provided
by Dr Imed Gallouzi, Department of Biochemistry, Goodman Cancer
Center, McGill University, Montreal, QC, Canada) using jetPRIME
(Polyplus transfection, VWR). This transfection was repeated 24 h fol-
lowing the first transfection when cells were at ~50—60% confluency.
When cells reached 90-95% confluency, differentiation was induced for
3 d in a medium containing DMEM, 2% horse serum (PAA) and 1% P/S.
To study the stability of the transcript, cells were treated with the tran-
scriptional inhibitor actinomycin D (5 pg - ml ~'; Invitrogen Life Tech-
nologies) and harvested at 2, 4, 6, or 8 h.

Myotubes were treated for 1 h with SB203580 (S8307, Sigma-Aldrich)
or anisomycin (A9789, Sigma-Aldrich), both at the concentration of 10
wmol - L~ to either inhibit or activate p38 MAPK, respectively. Control
cells were incubated with dimethylsulfoxide (D5879, Sigma-Aldrich). In
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significantly different from WT ARE denervated and WT ARE innervated, respectively.

parallel experiments, myotubes were treated for 24 h with Calcitriol
(71820, Cayman Chemical; at the concentrations of 1, 20, and 100 nmol
- LY. Control cells were incubated with ethanol. Then, cells were
treated with actinomycin D (5 ug * ml 1) for 2, 4, 6, or 8 h to inhibit
transcription.

In separate experiments, C2C12 myoblasts at 50% confluency were
transfected for 4 h with an expression plasmid containing MKK6-EE or
pcDNA3.1 (kindly provided by Dr Alex MacKenzie, Apoptosis Research
Center, Children’s Hospital of Eastern Ontario Research Institute). At
90-95% confluency, C2C12 cells were differentiated into myotubes for
3d, and then treated with actinomycin D (5 g+ ml ~'). Data are from 3/4
independent culture dishes.

Statistical analysis. All values are expressed as mean * SEM. Unpaired
t tests, as well as one-way ANOVA with Fisher’s post hoc tests were used to
determine whether differences between the different group means were
significant. Statistical analyses were performed using StatView v5.0 (SAS
Institute). The a-level of significance was set at 0.05 for all comparisons.

Results

Skeletal muscle denervation increases AChR B-subunit mRNA
stability via an ARE

To determine whether the stability of AChR B-subunit mRNAs is
altered in denervated muscles, we used short-term denervation as
an experimental model system. We first examined the levels of

several mRNAs 3 d postdenervation in mouse TA muscles. In this
context, we show that denervation induces a ~ 2.1-fold increase
(p <0.001) in the levels of AChR B-subunit mRNA (Fig. 1A). As
control mRNAs for the effects of denervation, we also examined
AChE and myogenin mRNAs. As expected, AChE mRNA levels
decreased by ~ 50% after denervation (p < 0.001), whereas those
encoding myogenin increased by ~ 86% (p < 0.01; Fig. 1A),
consistent with previous studies (Eftimie et al., 1991; Witzemann
and Sakmann, 1991; Maltin et al., 1993; Michel et al., 1994).

To test whether denervation causes a change in the stability of
AChR B-subunit mRNAs, we performed in vitro stability assays
(Chakkalakal et al., 2008). The use of such an approach is war-
ranted in this case as treatment of mice with actinomycin D (an
approach to study changes in mRNA stability widely used with
cultured cells, see below for example) is fraught with difficulties
including premature death of the animals shortly (few hours)
after actinomycin D injection as previously discussed (Ross,
1995). For the in vitro stability assays, total RNA from 3 d differ-
entiated C2C12 myotubes was isolated and incubated with pro-
tein extracts obtained from innervated or 3 d denervated TA
muscles for different time intervals in a degradation buffer. The
amount of AChR B-subunit mRNAs remaining at each time
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point was subsequently determined by RT-qPCR and used to
calculate mRNA decay kinetics. In these assays, we observed that
AChR B-subunit mRNAs decay at a slower rate in the presence of
protein extracts from denervated TA muscle compared with in-
cubation with protein extracts from innervated muscles (Fig. 1B).
Quantitative assessment of half-life values revealed that AChR
B-subunit mRNAs degraded at approximatively twice the rate
(p < 0.01) in the presence of innervated muscle protein extracts
indicating that denervation causes an increased in their stability
(Fig. 1B). As a control, the analysis of 18S transcripts did not
reveal any difference (p > 0.05) in the rate of degradation upon
incubation with innervated or denervated TA muscle protein ex-
tracts (data not shown). These results demonstrate therefore, that
in addition to transcriptional events, an increase in mRNA sta-
bility also contributes to the abundance of AChR B-subunit tran-
scripts in denervated muscles.

Because stabilizing sequences are often located in the 3'UTR
of transcripts, we screened the sequence of the AChR B-subunit
mRNA for known motifs involved in RNA stabilization/degrada-
tion. Specifically, the mouse AChR B-subunit transcript is 2151
nucleotides (nt) long, contains 1506 nt of coding sequence and a
3'UTR that is 531 nt long. Bioinformatics analysis using the on-
line resource AREsite (Gruber et al., 2011) revealed that the
B-subunit of the mouse AChR mRNA contains one ARE in its
3'UTR (Fig. 1C) making it an excellent candidate for controlling
the stability of this transcript. In addition, sequence comparison
across human, orangutan, rat, cow, and mouse revealed that this
ARE found in the AChR B-subunit transcript, is conserved across
multiple species.

To evaluate the contribution of the ARE in regulating the
abundance of the AChR S-subunit mRNA upon denervation, we
first generated a wild-type and an ARE-mutated form of the
mouse full-length 3'UTR and inserted each one of these down-
stream of a luciferase reporter gene (3'UTR WT ARE and 3'UTR
AARER, respectively) driven by a constitutively active promoter.
The mutated form contains three point mutations in the ARE
element (Fig. 1D). We then injected/electroporated mouse TA
muscles with luciferase constructs containing either the 3"UTR
WT ARE or the 3'UTR AARER, and denervated 7 d later. To
monitor transduction/electroporation efficiency, luciferase ac-
tivity was normalized to 3-galactosidase activity. Our results, ex-
pressed as a ratio of luciferase to 3-galactosidase activity, revealed
a ~ 2-fold increase (p < 0.001) in luciferase activity at 3 d post-
denervation with the wild-type B-subunit 3'UTR construct
(Fig. 1E). By contrast, mutations of the ARE prevented the
denervation-mediated increase in luciferase activity (p < 0.01)
thereby highlighting the critical role of the ARE in mediating changes in
AChR B-subunit mRNA expression in denervated muscle.

Denervation increases expression of HuR and promotes its
nuclear-cytoplasmic translocation
Because AChR 3-subunit mRNAs decay at a slower rate in dener-
vated muscle and that the ARE serves as an essential element in
regulating transcript levels, we sought to identify a RBP that
could play a key role in such a process. In this context, it has been
shown that the ubiquitously expressed protein HuR is important
in differentiating, cultured muscle cells by interacting with ARE
contained in the 3"UTR of transcripts, such as MyoD and myo-
genin (Figueroa et al., 2003; van der Giessen et al., 2003). Based
on this, we therefore wondered whether denervation affects HuR
expression.

Using RT-qPCR, we first observed an increase (~44%) in
HuR mRNA levels (p < 0.01) following 3 d of denervation of
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mouse TA muscles (Fig. 2A). To complement this analysis, we
also measured by Western blotting, the levels of HuR protein.
Our results show that HuR protein is also increased (~38%; p <
0.05) after denervation (Fig. 2A). During myogenesis, it is known
that HuR is cleaved by caspase 3 leading to the production of a
cleavage product (HuR-CP1) known to promote accumulation
of HuR in the cytoplasm (Beauchamp et al., 2010). Furthermore,
skeletal muscle denervation results in an increase in caspase-3
protein and enzymatic activity (Siu and Alway, 2005, 2006).
Thus, we also examined whether denervation increases HuR-CP1
protein level. Western blotting experiments revealed that the lev-
els of HuR-CP1 are significantly increased (p < 0.05) 3 d after
denervation (Fig. 2B).

Increased cytoplasmic levels of HuR have been shown to cor-
relate with its increased activity in ARE-mediated mRNA stability
(Wang et al., 2000). To determine whether HuR protein is redis-
tributed to the cytoplasm after denervation to potentially in-
crease the stability of AChR B-subunit mRNAs, we conducted
subcellular fractionation experiments and Western blotting on
both nuclear and cytoplasmic fractions. The relative purity of the
nuclear and cytoplasmic fractions was first evaluated by monitor-
ing the presence of lamin A+C (expressed in nuclei) and tubulin
(found in the cytoplasm; Fig. 2C). In these experiments, we noted
that HuR protein levels were increased in both nuclear and cyto-
plasmic fractions after denervation. In fact, we observed a ~2.4-
fold (p < 0.05) and a ~2-fold (p < 0.05) increase in HuR in the
cytoplasmic and nuclear fractions, respectively (Fig. 2C). Al-
though there is a global increase in the expression of HuR, there
appears to be a greater increase in the cytoplasmic fraction as
shown by analysis of the cytoplasmic/nuclear ratio in denervated
versus innervated muscles (Fig. 2C), suggesting that HuR be-
comes enriched in the cytoplasm after denervation. Together,
these results suggest that the stability of AChR -subunit mRNAs
is increased after denervation as a result of an increase in both
HuR expression and in its cytoplasmic accumulation.

To complement these findings, we also performed immuno-
fluorescence experiments using TA muscle cross-sections stained
with antibodies against HuR. The data also revealed an accumu-
lation of HuR in the cytoplasm of muscle fibers 3 d following
denervation (Fig. 3A), reinforcing the notion that HuR translo-
cates to the cytoplasm after denervation. Colabeling of AChR
with a-bungarotoxin confirmed an increase in the expression
level of AChRs in extrasynaptic regions of denervated muscle
fibers (Fig. 3B). Interestingly, we observed excellent extrasynaptic
colocalization between AChR and HuR, especially in smaller per-
haps more atrophied muscle fibers, indicating enhanced expres-
sion of AChRs in fibers with high levels of HuR.

HuR interacts with AChR B-subunit mRNAs
To determine whether HuR controls the stability of AChR
B-subunit mRNAs, we first examined whether HuR binds to
AChR B-subunit transcripts in cultured muscle cells. To test this
potential HuR-AChR B-subunit mRNA interaction, we per-
formed RNA-IP experiments with myotubes. After formalde-
hyde crosslinking and HuR or IgG (used as a negative control)
immunoprecipitation, coimmunoprecipitated RNAs were iso-
lated and mRNA levels were determined by RT-qPCR. Our re-
sults show that in cultured differentiated muscle cells, HuR binds
to endogenous AChR B-subunit mRNAs (p < 0.01; Fig. 4A).
Based on these results, we also examined whether HuR binds
to AChR B-subunit mRNAs in vivo. Given that the increased HuR
expression after denervation is associated with an increased sta-
bility of AChR B-subunit mRNAs, we sought to also demonstrate
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that the interaction between HuR and AChR B-subunit mRNAs
is increased in denervated muscle. To this end, we first cross-
linked roughly chopped innervated and denervated muscles with
formaldehyde. Equal amounts of whole muscle-cell extracts were
then immunoprecipitated with Protein A agarose-bound anti-
HuR antibody beads or IgG as control. Western blotting revealed
the purity of the fraction after immunoprecipitation with the
anti-HuR antibody (Fig. 4B, top). After crosslink reversal, the
extent of interaction between HuR and AChR B-subunit mRNAs
was analyzed by RT-qPCR. As shown in Fig. 4B, HuR does inter-
act with AChR B-subunit mRNAs in innervated skeletal muscle
(p <0.01). Importantly, the binding of HuR to AChR B-subunit
transcripts is significantly higher (~45%, p < 0.05) in denervated
versus innervated muscles.

In separate experiments, we examined whether HuR func-
tionally regulates levels of AChR B-subunit mRNAs and their
stability. For this, we used a siRNA directed against HuR (si-
HuR) and transfected C2C12 myoblasts with this construct. The
same transfection was repeated 24 h later, and cells were then
allowed to differentiate for 3 d. Silencing HuR was very efficient
because it induced an ~80% decrease (p < 0.001) in HuR pro-
tein levels (Fig. 4C). In these cells, we noticed a significant (p <
0.001) reduction in the levels of AChR B-subunit mRNAs
(Fig. 4C).

To complement these experiments, we also determined the
half-life of AChR B-subunit mRNAs in muscle cells transfected
with the si-HuR construct. For this, we added the transcriptional
inhibitor actinomycin D to cells after their transfection and dif-
ferentiation. Then, the relative abundance of AChR B-subunit
mRNAs was monitored at 0, 2, 4, 6, and 8 h. Quantitative deter-

mination of half-life values revealed that AChR B-subunit
mRNAs degraded at ~2.3 times the rate (p < 0.001) in the pres-
ence of si-HuR (Fig. 4D). As a control, 18S transcript decay rates
in the same cultured myotubes were not affected (p > 0.05; data
not shown). Altogether, these data indicate that by binding to the
transcript, HuR positively regulates expression of AChR
B-subunit mRNAs and their stability.

P38 MAPK signaling regulates AChR B-subunit mRNA stability
in vitro

An important question raised by the findings described above
deals with the signaling events through which HuR regulates the
stability of AChR B-subunit mRNAs. Previous work in motor
neurons showed that anisomycin, an activator of p38 MAPK,
causes a p38-dependent cytoplasmic accumulation of HuR (Fa-
rooq et al., 2009). Given this and our results implicating HuR in
controlling the stability of AChR B-subunit mRNAs after dener-
vation, we hypothesized that p38 MAPK activation in denervated
muscles could increase the stability of AChR B-subunit mRNAs.
To examine this, we first treated C2C12 myotubes with either an
activator (anisomycin) or an inhibitor (SB203580) of p38 MAPK
signaling. As shown in Fig. 5A, anisomycin (10 wmol - L") in-
creased (p < 0.001) by >40% the levels of AChR B-subunit
mRNAs. By contrast, inhibition of p38 MAPK with SB203580 (10
pmol - L™") decreased (p < 0.001) expression of AChR
B-subunit transcripts (Fig. 5A). We also performed stability as-
says using actinomycin D and the activator or inhibitor of p38
MAPK. In this case, our results show that the stability of AChR
B-subunit mRNAs is decreased (p < 0.01) following p38 MAPK
inhibition, whereas p38 MAPK activation increased (p < 0.1)
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HuR colocalizes with AChRs in denervated muscle fibers. A, Representative TA muscle cross-sections stained with antibodies against HuR and laminin to depict the sarcolemma. Solid

white arrows show HuR accumulation in nuclei and arrowheads represent HuR accumulation in cytoplasm. B, Representative TA muscle cross-sections stained with antibodies against HuR and
labeled with ce-bungarotoxin to identify AChRs. Solid white arrows point to colocalization between HuR and AChR accumulation in extrasynaptic regions of denervated fibers. n = 4 mice per group.

Scale bar, 100 pm.

transcript stability. Indeed, mRNA half-life measurements
showed that AChR B-subunit mRNAs degraded at ~1.6 time
faster (p < 0.01) after p38 MAPK inhibition while we observed
a ~ 1.4-fold longer half-life (p < 0.05) upon incubation of cells
with anisomycin.

To confirm these results, we also treated myotubes with in-
creasing doses of calcitriol (1, 20, and 100 nmol - L"), another
activator of p38 MAPK (Buitrago et al., 2006; 2013; Ronda et al.,
2007), for 24 h. Our results show a dose-dependent increase in
the phosphorylation status of p38 MAPK (Fig. 5B). Moreover,
calcitriol increased (p < 0.05) by ~20% the endogenous levels
of AChR B-subunit mRNAs. Finally, stability assays using actino-
mycin D showed an increase (~1.9-fold, p < 0.001) in the
stability of AChR B-subunit mRNAs. Altogether, these find-
ings obtained with a different p38 MAPK activator nam-

ely calcitriol, corroborate our data using anisomycin presented
above.

MKK3/6-p38 MAPK regulates AChR B-subunit mRNA stability

Based on these results, we wondered whether there was a change
in p38 MAPK activation after denervation. Western blotting re-
vealed that p38 MAPK is indeed activated (>50%, p < 0.01) after
denervation (Fig. 6A), leading us to further examine the role of
p38 MAPK signaling in controlling the stability of AChR
B-subunit mRNAs. First, and to uncover upstream signaling
events involved in the activation of p38 MAPK induced by dener-
vation, we examined expression of the kinases MKK3 and MKK6
which are known to phosphorylate p38 MAPK at threonine 180
and tyrosine 182. Interestingly, we saw after 3 d of denervation,
an increase in the activity of MKK3 and MKKG6 ( p < 0.05; Fig. 6B)
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HuR binds and stabilizes endogenous AChR 3-subunit transcripts in cultured myotubes and in vivo. A, RIP assays show that HuR interacts with endogenous AChR 3-subunit mRNAs in

cultures myotubes. 185 rRNA and IgG were used as controls. B, RIP experiments were performed using innervated (Inn) and denervated (Den) muscles. A representative Western blot confirming the
quantity ofimmunoprecipitated HuR is shown (top, Inputand IP). Data show the amount of AChR 3-subunit mRNAs in eachimmunoprecipitate. Data are mean == SEM (n = 4per group). *p << 0.05,
**p < 0.01: significantly different from innervated group and the corresponding IgG group, respectively. , D, Stability of AChR B-subunit mRNAs in myotubes transfected with si-HuR. Represen-
tativeimmunoblot (€, left) and quantification (€, middle) of HuR protein content and endogenous mRNA levels of AChR B-subunit (C, right) after si-HuR transfection. 185 was used as a housekeeping
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suggesting that such increases could sustain the increase in p38
MAPK phosphorylation seen after denervation.

To evaluate whether MKKG6 increases the stability of AChR
B-subunit mRNAs, we also transfected C2C12 cells with a
MKKG6-EE constitutively active mutant causing sustained activa-
tion of p38 MAPK signaling. Upon overexpression of MKK6-EE,
we not only noted an increase (~73%, p < 0.01) in the phosphor-
ylation of p38 MAPK as expected, but also we observed an in-
crease in AChR B-subunit mRNA levels (~46%, p < 0.05; Fig.
6C). To determine whether constitutively active p38 MAPK reg-
ulates the stability of AChR B-subunit mRNAs, we also measured
the degradation rate of these transcripts in transfected myotubes
using actinomycin D. Under these conditions, we observed an
increase (~86%, p < 0.05) in the stability of AChR B-subunit
mRNAs in muscle cells transfected with the constitutively active
MKKG6-EE mutant.

Finally, skeletal muscle is highly enriched in kinase phospha-
tases MKP-1 (Misra-Press et al., 1995) and MKP-5 (Theodosiou
et al.,, 1999), known to be critical negative regulators of p38
MAPK signaling. Their contributions to the regulation of p38
MAPK after skeletal muscle denervation is currently unknown.
In attempts to gain additional insights into upstream molecules
engaged in p38 MAPK activation after denervation, we focused
our attention on these two important kinase phosphatases. Anal-
ysis of denervated versus innervated muscles revealed a decrease
(~30%, p < 0.05) in MKP-1 expression after denervation (Fig.
6D) with no changes in MKP-5 protein levels (Fig. 6E). Together,

these results suggest that the increased activation of p38 MAPK
signaling induced by skeletal muscle denervation is at least partly
due to the activation of the MKK3 and 6, and a concomitant
reduction in the expression of MKP-1.

Discussion
Transcriptional events have been described as the most impor-
tant mechanism for regulating AChR mRNAs during myogenic
differentiation and at the NM]J. Indeed, during muscle differen-
tiation, AChR promoters are activated through E-boxes (Prody
and Merlie, 1991, 1992; Jia et al., 1992; Simon et al., 1992; J. Tang
etal., 1994; Bessis et al., 1995; Duclert and Changeux, 1995; Mas-
sari and Murre, 2000), which interact with myogenic factors to
control transcription (Piette et al., 1990; Macpherson et al., 2006;
H. Tang et al., 2006). At the mature NM]J, it was first suggested
that neuregulin (NRG), which binds to ErbB receptors on the
postsynaptic membrane, activates AChR gene transcription via
the transcription factor GABP, which in turn binds to a regula-
tory element in AChR promoters termed the N-box (Schaeffer et
al., 1998, 2001). However, mice lacking NRG/ErbB signaling ex-
press synaptic AChR genes (Escher et al., 2005), indicating that
NRG signaling to muscle is not essential for AChR gene transcrip-
tion. This, is turn, suggests the existence of parallel, yet elusive
signaling pathways to control AChR gene transcription at the
mature NM]J.

For years, denervation has been widely used as a model to
study AChR gene regulation (Evans et al., 1987; Goldman et al.,
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Figure 5.

p38 MAPK signaling regulates AChR 3-subunit mRNA stability in vitro. A, Levels of AChR B-subunit mRNA in 3 d differentiated myotubes treated with the activator of p38 MAPK,

anisomycin, or its inhibitor, SB203580 (left) for 1 h. Stability of AChR B-subunit mRNAs in 3 d differentiated and drug-treated myotubes also treated with actinomycin D (5 g - ml ") for 2, 4,6,
and 8 h (middle). AChR B-subunit mRNA half-life was measured and is shown on the right. B, Representative immunoblots of p38 phosphorylation (p-p38) and total p38 protein content (left), and
quantification of the ratio p-p38/total p38 (bottom) after 24 h of calcitriol treatment (1, 20, and 100 nmol - L " of 3d differentiated myotubes. Levels of AChR B-subunit mRNA in 3 d differentiated
myotubes treated for 24 h with calcitriol (20 nmol - L ). 185 was used as housekeeping gene. Stability of AChR B-subunit mRNAs in 3 d differentiated and drug-treated myotubes also treated with
actinomycin D (5 g - ml ~ ") for 2, 4, and 6 h (right). AChR B-subunit mRNA half-life was measured and is shown in the table below.*p << 0.05, **p << 0.01, ***p < 0.001: significantly different
from control group. Data are presented as percentage of control SEM (n = 3—4 independent experiments).

1988; Witzemann et al., 1989). Under these conditions, it has also
been reported that transcriptional mechanisms regulate AChR
gene expression (Schaeffer et al., 2001; Méjat et al., 2003; Kum-
mer et al., 2006). Despite the abundant literature showing the
importance of transcription in denervation-induced increases in
AChR expression which occurs predominantly in extrasynaptic
regions of muscle fibers (Hartzell and Fambrough, 1972; our
study), such findings do not rule out that other mechanisms can
also be involved. In fact, there is currently a lack of information
on the role of post-transcriptional mechanisms in regulating syn-
aptic mRNAs in muscle. Using multiple approaches, we show for
the first time that denervation causes an increase in the stability of
AChR B-subunit mRNAs. Moreover, we describe the critical role
of the ARE located in the 3"UTR of AChR B-subunit mRNAs in
controlling their stability. Such findings are in agreement with
indirect evidence obtained by Tsay and Schmidt (1989) showing
discordance between transcription and AChR mRNA abundance
in denervated muscles (Duclert and Changeux, 1995), and with
the notion that it takes more than transcription to regulate the
levels and localization of synaptic mRNAs in muscle (Chak-
kalakal and Jasmin, 2003). Collectively, these data allow us to
propose a model in which upon denervation, there is a burst of
transcription of genes encoding AChR B-subunits that is accom-

panied by an increase in the stability of AChR B-subunit mRNAs
as to maximize their expression.

Of relevance, our results show that the AChR B-subunit
3'UTR contains only one ARE which appears to play a critical
role in mediating changes in AChR -subunit mRNA expression.
AREs are known to be key in mediating mRNA decay (Barreau et
al., 2005; von Roretz et al., 2011b; Schoenberg and Maquat, 2012)
and it has been estimated that ~8% of mRNAs contain AREs
(Bakheet et al., 2006), which demonstrates their importance
(Chen and Shyu, 1995; Matoulkova et al., 2012). To mediate their
effects on mRNA stability, AREs require interactions with specific
RBPs. RBPs can either stabilize or destabilize target transcripts.
For instance, AUF-1, TTP, TIA-1, and KSRP are known to typi-
cally destabilize mRNAs whereas the Hu family members HuB,
HuC, HuD, and HuR, have marked effects in stabilizing tran-
scripts (Apponi et al., 2011; von Roretz et al., 2011b). The reason
that stimulated our interest in HuR is that this RBP is ubiqui-
tously expressed including in muscle (Ma et al., 1996; Gallouzi et
al., 2000; van der Giessen et al., 2003). Furthermore, previous
work showed that HuR stabilizes MyoD, myogenin, and p21
mRNA levels (Figueroa et al., 2003; van der Giessen et al., 2003),
and AChE transcripts in muscle cells (Deschénes-Furry et al.,
2005).
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Figure 6.

Denervation induces p38 MAPK signaling and regulates AChR B-subunit mRNA stability. A, Representative immunoblots of p38 phosphorylation (p-p38) and total p38 protein content

(top), and quantification of the ratio p-p38/total p38 (bottom). **p << 0.01: significantly different from the innervated group. B, Representative immunoblots of MKK3/MKK6 phosphorylation
(p-MKK3 and p-MKK6) and total MKK3/MKK6 protein content (top) and quantification of the ratio p-MKK/total MKK (bottom). ce-Tubulin was used as a loading control for protein quantification.
*p < 0.05: significantly different from the innervated group. C, Stability of AChR B-subunit mRNAs in myotubes after transfection with the constitutively active mutant MKK6-EE. Representative
immunoblots and quantification of p-p38 and total p38 protein content and levels of endogenous AChR 3-subunit mRNAs (left). 185 was used as housekeeping gene. Transfected myotubes were
treated with actinomycin D (5 g - ml ~ ") for2, 4,6,and 8 h (top, right) and AChR B-subunit mRNA half-life was measured and is shown in the table below. *p << 0.05 and **p << 0.01: significantly
different from pcDNA3.1 control group. D, Representative immunoblots of MKP-1 (top) and quantification of MKP-1 protein content (bottom). Protein levels of MKP-1 were standardized against
ac-tubulin. The same membrane was used for MKP-1and ce-tubulin. *p << 0.05: significantly different from the innervated group. E, Representative immunoblots of MKP-5 (top) and quantification
of MKP-5 protein content (bottom). Protein levels of MKP-5 were standardized against 3-actin. The same membrane was used for MKP-5 and [3-actin. Values are mean = SEM (n = 4 -8 per

group).
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HuR belongs to the Elav-like protein family containing three
conserved RNA recognition motifs (Venigalla and Turner, 2012).
It is known that HuR shuttles between the nucleus and cytoplasm
as myogenic differentiation proceeds (Fan et al., 1997; Peng et al.,
1998; Figueroa et al., 2003; van der Giessen et al., 2003). By bind-
ing to ARE-containing mRNAs in the nucleus, HuR escorts tran-
scripts through nuclear pores thereby providing protection
during and after export to the cytoplasm (Fan and Steitz, 1998).
During myogenesis, HuR is cleaved by caspases generating HuR-
CP1 which binds to and blocks the HuR import factor
transportin-2 (von Roretzetal., 2011a), thus facilitating accumu-
lation of HuR in the cytoplasm (Beauchamp et al., 2010). Here,
we observed an important increase in HuR following denerva-
tion. Additional experiments further revealed that denervation
promotes the nuclear-cytoplasmic transport of HuR.

This novel post-transcriptional mechanism that we describe
here, may be essential to ensure adequate expression of B-subu-
nits and hence, of fully formed AChRs. In the absence of HuR,
denervated fibers may not be able to synthesize sufficient AChRs
to cause ACh supersensitivity, necessary for reinnervation, espe-
cially because AChR B-subunits may be rate-limiting in the as-
sembly of AChRs (Claudio et al., 1989; Saedi et al., 1991).
Similarly, one can also envisage that because HuR is important
during myogenic differentiation (Figueroa et al., 2003; van der
Giessen et al., 2003), its absence would impact synapse formation
by limiting the ability of developing muscle fibers to express suf-
ficient levels of AChRs. Given that the AChR - and 8-subunit
mRNAs also contain at least one ARE binding site, one could
easily envisage a model of post-transcriptional coregulation of at
least these AChR-subunits following denervation. Nevertheless,
this coregulation via HuR would be limited to the -, -, and
8-subunits which raises the possibility that additional post-
transcriptional mechanisms may be involved in controlling ex-
pression of the a- and &- subunits.

During myogenic differentiation, phosphorylation of p38
MAPK increases (Galbiati et al., 1999; Zetser et al., 1999; Baeza-
Raja and Munoz-Canoves, 2004), leading to transcriptional acti-
vation of MyoD and MEF2A and C (Ornatsky et al., 1999; Zetser
et al., 1999). Furthermore, pharmacological activation of p38
MAPK in motoneurons causes a cytoplasmic accumulation of
HuR (Farooq et al., 2009) with subsequent stabilization of target
transcripts. We wondered whether p38 MAPK was activated after
skeletal muscle denervation. As expected, we show increased
phosphorylation of p38 MAPK postdenervation (Evertsson et al.,
2014). In addition, we demonstrate that this activation of p38
MAPK signaling promotes changes in the stability of AChR
B-subunit mRNAs. Such findings raise the question as to the
nature of the signaling events involved in the increase of p38
MAPK in denervated muscle. We report for the first time that the
p38 MAPK denervation-induced phosphorylation is associated
with activation of MKK3/6 and with a concomitant decrease in
MKP-1 expression. Previous work has shown that MKP-1 ex-
pression is also decreased in hindlimb muscle unloading (Misra-
Press et al., 1995; Bey et al., 2003) and that muscle atrophy is
associated with MKP-1 deficiency (Wu et al., 2006). Together, it
appears therefore that denervation triggers an activation of up-
stream kinases while also inhibiting a known phosphatase, the
cumulative impact being an activation of p38 MAPK signaling
and redistribution of HuR.

Based on our results, we can depict a model of regulation in
which the stability of AChR B-subunit mRNAs is increased by
HuR following denervation via interaction with an ARE located
in the 3'UTR. Denervation causes both an increase in the expres-
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Figure 7. Model of post-transcriptional regulation of AChR 3-subunit mRNAs following
denervation. Skeletal muscle denervation increases the phosphorylation of p38 MAPK through
activation of MKK3/6 and inhibition of MKP-1. p38 MAPK activation causes in turn an increased
expression of HuR and its phosphorylation thereby promoting greater cytoplasmic localization
of HuR. By interacting with the 3"UTR of AChR 3-subunit mRNAs, HuR stabilizes the transcript
which results in an increase in AChR 3-subunit mRNA levels following denervation.

sion of HuR and in its nuclear-cytoplasmic export. Such translo-
cation of HuR involves p38 MAPK whose activation levels are
modulated following denervation by two pathways: an activation
of upstream kinases and reduced expression of MKP-1 (Fig. 7).
Remaining questions, therefore, concern the mechanisms by
which denervation causes activation of MKK3/6 and inhibition of
MKP-1, and whether such signaling changes play a role in other
adaptive changes seen in denervated muscles. In this context,
Fn14, the receptor of the tumor necrosis factor-related weak in-
ducer of apoptosis (TWEAK), a muscle-wasting cytokine, is
markedly increased after denervation (Mittal et al., 2010). Inter-
estingly, TWEAK activates p38 MAPK in myotubes (Li et al.,
2009) via MKK3/6, suggesting a link between denervation,
TWEAK/Fn14, and MKK3/6/p38 MAPK. Given the well estab-
lished role of calcium on AChR expression (Klarsfeld et al., 1989;
Huang et al., 1994), one could also envisage a contribution of
altered calcium dynamics as a trigger for activating p38 signaling
in denervated muscle.
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Our results do not preclude that the enhanced stability of
AChR B-subunit mRNAs after denervation involves additional
RBPs and/or micro-RNAs (Briata et al., 2005; Linker et al., 2005;
Amirouche et al., 2013b). Therefore, the results presented here
are only the beginning if the ultimate goal is to gain a full under-
standing of post-transcriptional events involved in controlling
the stability of AChR B-subunit transcripts and other AChR sub-
unit mRNAs. In this context, studying the expression and local-
ization of RBP in skeletal muscle with a particular emphasis on
the NM]J will not only yield novel findings related to events con-
trolling the formation and maintenance of this synapse, but in
addition, such studies could lead to the development of RNA-
based therapeutics for neuromuscular disorders.
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