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Introduction

Exercise training influences a wide range of cognitive

processes, one of the principal pathways being through neu-

rotrophic factors (NFs)1, which is a family of proteins respon-

sible for growth, differentiation, and survival of neurons2.

Brain derived neurotrophic factor (BDNF) is the most preva-

lent growth factor in the central nervous system and its mod-

ulation by (chronic or acute) exercise has been extensively

described in both adult humans3 and animals. Exercise in-

creases BDNF levels not only in the brain, but also in blood

and through its high-affinity receptor, tyrosine kinase type 2

(TrkB), it activates the cAMP response element-binding pro-

tein (CREB) transcription factor which is responsible for the

hippocampal expression of several genes required for learning

and memory4. Similarly, increased phosphorylated CREB

(pCREB) has been reported in lymphocytes from depressive

patients in response to antidepressant treatment5. 

The use of peripheral blood mononuclear cells (PBMCs)

has been recognized as an appropriate cellular model to inves-

tigate the possible effect of the activation of proplastic signal

transduction cascades induced by exogenous stimuli6. How-

ever, to our knowledge, the effect of BDNF on CREB activa-

tion in PBMCs has never been investigated in exercise training

studies. Moreover, insulin-like growth factor-1 (IGF-1) medi-

ates the exercise-induced increase in BDNF, neurogenesis, and

cognitive performance7.

Low levels of BDNF are found in patients with neurodegen-

erative diseases and different psychiatric disorders including de-

pression, post-traumatic stress disorder, schizophrenia,

obsessive-compulsive disorder, autism, bipolar disorder, addic-

tion, and attention-deficit hyperactivity disorder. Moreover, sev-

eral antidepressant, antipsychotic, and euthymic drugs, as well

as electroconvulsive therapy and transcranial magnetic stimu-

lation, have been found to increase BDNF levels8. As many neu-

ral programs that shape behavior become established during
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adolescence9, any lifestyle factor that increases BDNF and IGF-

1 during this developmental period could play a role in the reg-

ulation and growth of neurons and in the prevention of different

psychiatric and neurological disorders during childhood and

adolescence. The aim of this work was to study whether exercise

training causes an increase in NFs in childhood.

Materials and methods

Participants and data collection

Nine trained and seven sedentary male adolescents, matched

in age (14.0±2.2 years), were recruited for the study. All

trained adolescents were cyclists and had participated in reg-

ular sport activities for an average of five training sessions and

nineteen hours per week for more than three years. By contrast,

the sedentary subjects had not taken part in any regular exer-

cise other than the usual physical exercise program included

in the educational curriculum which comprises sport activities

for two hours, twice a week; volunteers who exceeded these

limits were excluded from the study. All the participants were

non-smokers, free from any known illnesses, and provided

written informed consent prior to participation. This study

complies with the World Medical Association Declaration of

Helsinki - Ethical Principles for Medical Research Involving

Human Subjects. The experimental protocol was approved by

the Committee on Ethics in Research of the Faculty of Medi-

cine, University of Valencia, Spain.

Biochemical measurements

Venous blood samples were taken in the morning between

9:00 a.m. and 10:30 a.m. after an overnight fast and following

a fifteen-minute rest in a supine position. To avoid changes in

blood parameters induced by physical performance, the cyclists

did not train or compete for at least 24 hours before the blood

extractions. All blood samples were collected in vacutainers

from a superficial vein of the antecubital fossa. Plasma (EDTA)

and serum were immediately separated (1,500xg, 15 minutes,

RT) and stored at -20ºC until testing. Peripheral blood mononu-

clear cells were also isolated using Ficoll tubes (BD Vacutainer®

CPTTM). After washing the cells, the pellet was resuspended in

lysis buffer (Hepes 20 mM, pH 7.4; NaCl 100 mM; TritonX100

1%; NaF 50 mM; β-glycerophosphate 10 mM; PMSF 1 mM;

sodium ortovanadate and protease inhibitor cocktail), sonicated,

centrifuged (13,000xg, 10 minutes at 4ºC) and stored at -20ºC

until testing. The protein contents of the extracts were quantified

in duplicate by using the Bradford method10, and BSA standard.

Plasma BDNF levels were measured using an ELISA kit

(CYT306, ChemiKine TM, Millipore, Temecula, CA) follow-

ing the manufacturer’s instructions. Serum IGF-1 levels were

measured by an automated chemiluminescent assay system

(IMMULITE 2000®, Siemens, Diagnostic Products Corp., Los

Angeles, CA). Hemoglobin (Hb), total cholesterol (TC), high-

density lipoprotein cholesterol (HDL-C), low-density lipopro-

tein cholesterol (LDL-C), triglyceride (TG), fasting blood

glucose (FBG), and iron levels were also determined according

to standard laboratory operating procedures.

CREB and pCREB were measured by Western blotting in

PBMC lysates. The lysates (40 μg) were separated by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins

were then transferred to PVDF membranes, which were incu-

bated overnight at 4ºC with CREB and pCREB primary antibod-

ies (1:800, Cell Signaling). Subsequently, the membranes were

incubated in a secondary antibody for one hour at room temper-

ature. One of the samples of each membrane was only incubated

with the secondary antibody to guarantee specificity. Specific

proteins were visualized by using the enhanced chemilumines-

cence procedure as specified by the manufacturer (Amersham

Biosciences, Piscataway, NJ). Autoradiographic signals were as-

sessed by using a scanning densitometer (BioRad, Hercules,

CA). The protein levels of α-tubulin (1:1,000. Sigma-Aldrich)

were determined in all the experiments as a housekeeping protein

marker. The determination of CREB activation was calculated

by the following equation: pCREB/total CREB.

Body composition and energy expenditure

In order to asses nutritional status, each child’s weight,

height, tricipital and subscapular skinfolds, using a standard-

ized technique, and body mass index (BMI) calculations were

performed. The z-score for age (based on the WHO Growth

Reference, 2007), height, and BMI were calculated and the

percentage of body fat (% fat) was recorded following the

Slaughter equation11. The percentage of lean mass (% lean

mass) was calculated by subtracting total weight from fat

Sedentary (n=7) Trained (n=9) 

Age (years) 13.4±2.2 14.4±2.1 

Weight (kg) 47.4±16.7 62.0±8.5 

Height (z-score) 0.3±0.4 1.2±1.0* 

BMI (z-score) -0.3±1.2 0.7±0.9 

%Fat 18.1±9.5 10.6±1.8 

%Lean mass 81.9±9.5 89.4±1.8 

RHR (bpm) 70.7±10.1 57.5±6.4* 

TC (mg/dl) 172.9±29.4 145.1±25.9 

HDL-C (mg/dL) 68.6±12.1 57.4±8.4 

LDL-C (mg/dL) 93.6±27.6 86.1±22.3 

TG (mg/dL) 84.7±52.8 61.8±20.2 

FBG (mg/dL) 90.7±13.4 92.3±8.3 

Hb (g/dL) 14.0±1.5 14.1±1.0 

Iron (μg/dL) 94.0±32.6 95.6±24.2 

TEE (kcal/day) 1,951.7±539.2 2,745.0±411.0*

PAEE (kcal/day) 590.5±122.1 945.3±286.9*

Table 1. Characteristics of the subjects. Mean (±SD) results of

BMI, body mass index; %Fat, percentage of body fat; %Lean mass,

percentage of body lean mass; RHR, resting heart rate; TC, total cho-

lesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low

density lipoprotein cholesterol; TG, triglyceride; FBG, fasting blood

glucose; Hb, hemoglobin; TEE, total energy expenditure in a regular

day without training session; PAEE, physical activity energy expen-

diture (over 3 METs) in a regular day without training session

(*p<0.05).
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weight. All subjects were monitored according to the pubertal

development Tanner scale12.

The total energy expenditure (TEE) and physical activity

energy expenditure (PAEE) were evaluated by calorimetry. For

this purpose, the subjects wore a SenseWear Armband® (Body-

Media) for three ordinary days (not including a training ses-

sion) before the blood collection. Total energy expenditure was

defined as the total kcal consumed per day, whereas PAEE was

defined as the kcal consumed over three METs.

Statistical analysis

Data are shown as mean ± standard deviation (SD). The

comparisons between the sedentary and trained subjects were

performed using the unpaired Student’s t-test. Statistical sig-

nificance was defined as p<0.05.

Results

Table 1 shows the morphological and metabolic characteristics

of the subjects. There were no differences in age, weight, BMI

z-score, % fat, % lean mass, TC, HDL-C, LDL-C, TG, FBG, Hb,

or free iron. However, statistically significant differences were

observed in the z-score of height, resting heart rate (RHR), TEE,

and PAEE between the sedentary and trained groups.

Figure 1A shows a significant increase in plasma BDNF lev-

els in the trained adolescents when compared with the sedentary

subjects (1,815.3±948.6 pg/mL vs 570.7±516.8 pg/mL). We

also found a significant increase in serum IGF-1 levels in the

trained adolescents when compared with the sedentary subjects

(654.0±207.5 μg/mL vs 421.3±146.8 μg/mL) (Figure 1B).

No effect of the increase in peripheral BDNF induced by train-

ing was found in the activation of CREB in PBMCs (Figure 2).

Consequently, this finding and our other results described above

show that exercise training increases plasma BDNF and serum

IGF-1 levels in adolescents.

Discussion

It has been previously noted that exercise is involved in the

maintenance of the synaptic structure4, axonal elongation13, and

neurogenesis14 through the induction of NFs in animal models4,7.

Figure 1. Peripheral neurotrophic factors in sedentary and trained adolescents. Mean (±SD) results of BDNF plasma levels (A) and IGF-

1 serum levels (B) of sedentary (n=7) and trained adolescents (n=9). (*) indicates p<0.05 and (**) indicates p<0.01 vs sedentary group.

Figure 2. Activation of CREB in PBMCs. Mean (±SD) results of

CREB activation (pCREB/total CREB) in PBMCs of sedentary (n=7)

and trained adolescents (n=9).
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To our knowledge, this is the first report that investigates

the effect of exercise training on peripheral NFs in healthy ado-

lescents15. We found a significant increase in both the BDNF

and IGF-1 levels in the trained subjects.

Although levels of BDNF and IGF-1 change according to age,

body weight, and BMI16, in the current study, there were no sig-

nificant differences in age and body-composition parameters be-

tween the two groups. It has been shown that peripheral BDNF

levels can also be decreased in psychiatric and neurological dis-

orders8 but the medical doctors involved in this study did not de-

tect any disorder in any of the boys we studied. Thus, the changes

reported in NFs can be attributed to the exercise training itself.

The higher plasma levels of BDNF induced by exercise did

not modify the CREB activation in PBMCs. One limitation of

this work is the missing assessment of CREB activation in spe-

cific PBMCs sub-populations, because it is known that the per-

centage of individual cell populations may vary in response to

exercise17. Therefore, although there is a release of BDNF in

the different subtypes of PBMCs18-19 the mechanism by which

mononuclear cells activate CREB remains unclear. Even

though in vitro experiments have demonstrated that exogenous

BDNF is a potent inducer of CREB activation in T lympho-

cytes5, we did not observe this phenomenon in vivo in PBMCs.

The role of the most important NFs (BDNF and IGF-1) in

adolescence, a critical period of central nervous system devel-

opment, remained unclear. However, we have demonstrated the

increase of these neuroplasticity-related proteins due to exercise

training during this stage. Overall, our results emphasize the

significance and impact of exercise in adolescence, when many

neural programs that shape behavior become established.

We are aware of some limitations in our study; for instance,

the sample size is small and this limitation may decrease the

strength of our statistical analysis. Consequently, more re-

search is needed to extend our conclusions.
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