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Grape Polyphenols Prevent Fructose-Induced Oxidative Stress and Insulin Resistance in First-Degree Relatives of Type 2 Diabetic Patients

 

T

he Western diet, dominated by ultraprocessed products rich in saturated fats and sugar, including high-fructose corn syrup, and poor in micronutrients [START_REF] Monteiro | The impact of transnational "big food" companies on the South: a view from Brazil[END_REF], is a major contributor to the worldwide "diabesity" epidemic. In addition to contributing to calorie overconsumption, the unique metabolism of fructose [START_REF] Tappy | Fructose and metabolic diseases: new findings, new questions[END_REF] and its marked effect on systemic oxidative stress (3) could give it a pivotal role in the pathophysiology of insulin resistance (IR) and the metabolic syndrome [START_REF] Dekker | Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome[END_REF].

The "French Paradox," defined as a low incidence of coronary heart disease despite consumption of a diet rich in saturated fat [START_REF] Lorgeril | Effect of a mediterranean type of diet on the rate of cardiovascular complications in patients with coronary artery disease. Insights into the cardioprotective effect of certain nutriments[END_REF], has stimulated interest in investigating whether grape polyphenols (PPs) may offer antioxidant-consequential health benefits [START_REF] Zern | Cardioprotective effects of dietary polyphenols[END_REF][START_REF] Terra | Grape-seed procyanidins prevent lowgrade inflammation by modulating cytokine expression in rats fed a high-fat diet[END_REF][START_REF] Pinent | Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines[END_REF] including improved insulin sensitivity [START_REF] Napoli | Red wine consumption improves insulin resistance but not endothelial function in type 2 diabetic patients[END_REF], although this effect remains debated [START_REF] Cordain | Influence of moderate chronic wine consumption on insulin sensitivity and other correlates of syndrome X in moderately obese women[END_REF]. If this outcome were to be confirmed in humans, then supplementation of highly processed foods with grape PPs may prove to be a promising strategy to stem the tide of chronic metabolic diseases, which, furthermore, would be quite easy to implement, since PPs are currently marketed in the form of dyes and tannins that can be used safely in relatively large amounts in sugary foods [START_REF] Goll€ Ucke | Recent applications of grape polyphenols in foods, beverages and supplements[END_REF].

We thus designed a randomized doubleblinded controlled study to assess the clinical efficacy of nutritional amounts of grape PPs in counteracting the metabolic effects of high-fructose diet (HFrD) to substantiate the hypothesis that by neutralizing oxidative stress, grape PPs can prevent fructose-induced IR.

RESEARCH DESIGN AND METHODSdForty-three first-degree relatives of type 2 diabetic patients were recruited by advertisement in the diabetes departments of Montpellier and Lyon university hospitals and allocated to supplementations with grape PPs or placebo (PCB) (Supplementary Fig. 1). Volunteers were aged between 30 and 65 years, with BMIs between 25 and 35 kg/m 2 and waist circumference .80 cm for women and .94 cm for men; consumed ,30 g/day alcohol; and had a sedentary lifestyle [START_REF] Voorrips | A physical activity questionnaire for the elderly[END_REF]. All subjects had blood pressure ,140/90 mmHg and normal ferritinemia (75-300 ng/mL) and thyroid function; hepatic enzymes (g-glutamyl transpeptidase, alanine aminotransferase [ALT], and aspartate aminotransferase [AST]) were three or less times the normal values, serum creatinine was #150 mmol/L, high-sensitivity C-reactive protein (hs-CRP) ,8 mg/L, and fasting plasma glucose ,110 mg/dL.

Five subjects were enrolled but dropped out for difficulties during blood withdrawal (one PCB) or for personal reasons (two PCB and two PP) not linked to secondary effects regarding study protocol. The study was approved by the ethics committee of Montpellier. All participants gave written informed consent.

Anthropometry and body composition measurements

Standing height was measured using a stadiometer. Body weight and hip and waist circumferences were measured in the fasting state before metabolic analysis. Body composition was evaluated by bioelectrical impedance (BodyStat). Blood pressure was measured after a 15-min rest period using an automated blood pressure device with participants in the recumbent position. A minimum of four blood pressure measurements was taken 2 min apart.

Study design

Each subject was studied on three occasions: 1) at the beginning of the study, 2) after 8 weeks of supplementation with 2 g/day grape PPs or PCB, and 3) after 9 weeks of supplementation with grape PPs or PCB while subjects also had ingested 3 g fructose/kg fat-free mass/day as a 20% fructose solution with the three main meals during the 6 days preceding the final test date (Supplementary Fig. 2). Subjects were assigned to the grape PP or PCB supplementation groups by randomization in blocks of four individuals each, sequentially allocated to grape PPs and PCB using a randomization list that was drawn up for each of the two recruiting centers. Grape PPs (Supplementary Table 1) or identical-looking PCB (microcrystalline cellulose, Avicel; UNITHER pharmaceuticals, Bordeaux, France) capsules (333.33 mg grape extract/PCB per capsule) were to be taken daily: three during breakfast and three at dinner. Evaluation of compliance ($80% of the capsules taken) was done before starting the tests by counting the number of returned capsules after 4, 8, and 9 weeks from baseline. Volunteers were instructed to avoid polyphenol-rich foods and to follow a balanced, isoenergetic diet, which was controlled by a food diary during the 3-day period preceding each test and assessed with GENI software (Micro 6, Villers-les-Nancy, France). Intake of dietary polyphenols was further evaluated using phenol explorer (version 1.5.7; INRA, Clermont-Ferrand). Subjects were advised to avoid vigorous physical activity during the 6 days preceding each test.

Hyperinsulinemic-euglycemic clamp

Investigations were performed after an overnight fast. Insulin sensitivity was assessed using the hyperinsulinemic-euglycemic clamp as previously described [START_REF] Laville | Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle[END_REF], with a 1 mUI z kg 21 z min 21 insulin infusion for 120 min. Glucose infusion rate (GIR) was calculated during the final 30 min of the clamp. All subjects underwent a two-step insulin clamp (0.2 and 1 mUI z kg 21 z min 21 ). However, owing to regulatory issues, only the 19 subjects in Lyon (10 PP and 9 PCB) received an initial 4-h [6,6-2 H 2 ]glucose (Eurisotop, St. Aubain, France) infusion to determine basal endogenous glucose production and its inhibition during the 0.2 mU z kg 21 z min 21 insulin infusion [START_REF] Ducluzeau | Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes[END_REF]. During the clamp, blood samples were drawn every 10 min to monitor blood glucose concentration using a glucose meter (ACCU-CHEK Performa). Fasting hepatic insulin sensitivity index was calculated according to the methodology of Matsuda et al. [START_REF] Matsuda | Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp[END_REF].

Muscle biopsies

Before the clamp, a percutaneous biopsy of the vastus lateralis was obtained under local anesthesia (lidocaine 2%) either with Weil Blakesley pliers in Lyon [START_REF] Ducluzeau | Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes[END_REF] or using a 5-mm Bergstrom needle in Montpellier [START_REF] Thomas | Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans[END_REF]. A muscle sample was immediately frozen in liquid nitrogen and stored at 2808C for further analysis. For the 19 subjects in Montpellier (10 PP and 9 PCB), 80 mg muscle was permeabilized to study mitochondrial respiration and 50 mg were incubated for 15 min in PBS at 308C in the presence or absence of human insulin (1 mmol/L) (Umuline RAPIDE; Lilly France) to study molecular mechanisms of insulin signaling.

Analytical procedures

Plasma glucose was measured by the glucose oxidase method (AU2700 Olympus; Beckman Coulter, O'Callaghan's Mills, Co. Clare, Ireland) and nonesterified fatty acids via an enzymatic method (Wako, Neuss, Germany). Hepatic enzymes (AST, ALT, and g-glutamyl transpeptidase), total cholesterol, HDL cholesterol, and triglycerides were determined using spectrophotometric methods (AU2700 Olympus; Beckman Coulter), and LDL cholesterol was calculated using the Friedewald formula; LDL size was determined by electrophoretic migration on polyacrylamide gel (Spirale, Dijon, France).

Plasma insulin was measured by radioimmunoassay (BI-Insulin IRMA kit; Cis Bio, Gif sur Yvette, France). Plasma concentrations of leptin, ghrelin, adiponectin, and resistin were evaluated by ELISA (R&D System), and cytokines, including interleukin (IL)-1a, IL-1b, IL-6, IL-4, tumor necrosis factor-a, and interferon-g, were determined using multiplex Biochip Technology from Randox Laboratories (Crumlin, U.K.). The concentration of hs-CRP was determined by immuno-turbidimetry (Randox).

Western blots

Muscle samples were homogenized in a lysis buffer containing 30 mmol/L HEPES, 40 mmol/L NaCl, 5 mmol/L EDTA, 2 mmol/L EGTA, and 210 mmol/L sucrose with phosphatase and protease inhibitors and centrifuged for 10 min at 10,000g. Primary antibodies used included phospho-Akt (Ser473) (cat. no. 4060; Cell Signaling), total Akt (cat. no. 9171; Cell Signaling), and UCP3 (AB3044; Millipore). a-Tubulin (T6074; Sigma-Aldrich) was used as a loading control.

Protein carbonylation and determination of lipid oxidation in plasma, tissue, and urine

The Oxyblot Oxidized Protein Detection kit, purchased from Chemicon (Hampshire, U.K.), was used to define muscle protein carbonylation levels as previously described [START_REF] Bravard | Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice[END_REF]. Lipid peroxidation levels were measured as thiobarbituric acid-reactive substances (TBARS) in plasma and in tissue homogenates as previously described [START_REF] Feillet-Coudray | Oxidative stress in rats fed a highfat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems[END_REF] and as urinary F2-isoprostanes determined by gas chromatography-mass spectrometry (Thermofinnigan, Courtaboeuf, France) [START_REF] Mas | Quantification of urinary F2-isoprostanes with 4(RS)-F4tneuroprostane as an internal standard using gas chromatography-mass spectrometry Application to polytraumatized patients[END_REF]. F2-isoprostanes concentrations are reported in relation to urinary creatinine (Beckman Coulter). plasma and/or tissue total and manganese superoxide dismutases (SOD and MnSOD, respectively) were measured as previously described [START_REF] Feillet-Coudray | Oxidative stress in rats fed a highfat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems[END_REF].

Determination of antioxidant activities in plasma and tissues

Mitochondrial function and respiration

Mitochondrial respiratory variables were analyzed in situ on fresh permeabilized skeletal muscle fibers of subjects recruited in Montpellier as previously described [START_REF] Thomas | Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans[END_REF]. Basal (V 0 ) and maximal (V max ) respiration rates were recorded in the presence of pyruvate/malate (10 mmol/L) or palmitoyl-L-carnitine (40 mmol/L). Respiration rates were expressed in micromoles of O 2 per minute per gram of muscle fibers.

Citrate synthase activity

Muscle extracts were homogenized in 10 mmol/L Tris HCl (pH 7.4). Citrate synthase activity was measured with 0.5 mmol/L oxaloacetate, 0.3 mmol/L acetyl-CoA, 0.1 mmol/L 5,59-dithiobis 2-nitro-benzoic acid, and 100 mmol/L Tris HCl (pH = 8.0). Enzyme activity was monitored by recording the changes in absorbance at 412 nm over 2.5 min at 378C as suggested by Srere [START_REF] Srere | An eclectic view of metabolic regulation: control of citrate synthase activity[END_REF], normalized to tissue weight, and expressed as micromoles per minute per gram of tissue.

Gene expression analyses

Microarray analysis. RNA profiling in muscle biopsies was performed using a Human GE 4344K v2 Microarray kit (Agilent Technologies, Massy, France). Briefly, 200 ng total RNA isolated from frozen muscle samples was labeled using the Low Input Quick Amp Labeling kit 

RESULTS

Subjects' characteristics, adherence to the study protocol, and adverse events Thirty-eight subjects completed the study and were included in the per-protocol analysis. They were aged 31-65 years, with BMIs between 25.1 and 36.5 kg/m 2 and waist circumference 80-118 cm for women and 94-113 cm for men. At baseline, the groups did not differ in terms of anthropometric measures; food, energy, nutrient and PP intake; or levels of plasma lipids and glucose or urinary F2-isoprostanes (Table 1). According to participants' own reports and results of physical examination and laboratory parameters, no adverse events occurred in either supplementation group. Since decreased intestinal absorption of iron has been reported with high intakes of PPs, plasma ferritin was measured both at inclusion and at the end of the study. No significant decrease in this parameter was noted, and no subject was below the normal threshold values at the beginning or end of the study.

Effects of 8-week grape PP supplementation Surprisingly, after 8 weeks of supplementation we noted a decrease in urinary F2isoprostanes and in muscle TBARS in the PCB group that was not found in the grape PP group, with no effects on the other parameters measured (Table1).

Muscle protein carbonylation as well as antioxidative capacities, i.e., plasmatic vitamin E, blood glutathione-to-GSSG ratio, erythrocyte SOD, and the muscle enzymatic activities of catalase, glutathion peroxydase (GPx), SOD, and MnSOD, remained unaffected (Supplementary Table 3). No significant effects of grape PP supplementation were found on plasma cytokines (IL-1a, IL-1b, IL-6, IL-4, tumor necrosis factor-a, and interferon-g), on the main adipokines (adiponectin, leptin, and resistin), or on ghrelin (Supplementary Table 4). Importantly, insulin action, as measured by hyperinsulinemic clamps, was unaffected (Table 1).

Metabolic consequences of HFrD

Fructose load's main effects are described in Table 1. After 6 days of HFrD, a significant increase of 300 g body wt was found in the PCB group with no alteration in body composition. HFrD increased fasting triglycerides ~30% in both groups, with a parallel decrease in fasting HDL cholesterol. A decrease in plasma LDL cholesterol associated with a decrease in LDL particle size (P , 0.01, Table 1) was noted only in the PCP group and not in the PP group. Neither in the PCB nor in the grape PP group did HFrD change plasma cytokine, plasma adipokines, or plasma ghrelin levels (Supplementary Table 4).

Effects of HFrD on oxidative stress and protective effect of grape PP supplementation

HFrD significantly increased urinary F2isoprostanes (Fig. 1A) and muscle TBARS (Fig. 1B) in the PCB group, whereas grape PP supplementation protected against this induction of oxidative stress markers. At the end of the fructose load, the level of muscle protein carbonylation was significantly higher in the PCB group compared with the grape PP group (Fig. 1C). Antioxidative capacities, i.e., plasmatic vitamin E, blood glutathione-to-GSSG ratio, erythrocyte SOD, and the muscle enzymatic activities of catalase, GPx, SOD, and MnSOD, remained unaffected during the fructose load in both groups (Supplementary Table 3).

Effects of HFrD on IR and protective effect of grape PP supplementation A 20% reduction of the fasting hepatic insulin sensitivity index was noted after HFrD (Table 1), associated with an 11% reduction in GIR in the PCB group (Table 1). Grape PP supplementation fully blunted this fructose effect. Digging deeper in the insulin-signaling pathway, we evaluated the levels of phosphorylation of skeletal muscle Akt at serine 473, a critical residue in response to insulin, in the presence and absence of human insulin in a subset of 12 subjects (5 PCB and 7 PP). We found a 53% decrease in the phosphorylated Akt-to-Akt ratio under insulin-stimulated conditions that nevertheless did not reach the level of statistical significance (P = 0.07). This trend was not observed in the grape PP group (Supplementary Fig. 3). The fructoseinduced changes of GIR during the clamp were negatively correlated with changes in urinary F2-isoprostanes (r = 20.39, P = 0.02), suggesting a link between IR and oxidative stress in response to fructose (Supplementary Fig. 4).

Effects of grape PP supplementation and of HFrD on transcriptomic profile and gene expression

Skeletal muscle transcriptomic profile was not significantly modified by the 8-week grape PP supplementation, with only 66 probes differentially regulated between both groups (P , 0.01 with moderated t test) (Supplementary Table 5). We did not reveal function or pathway enrichment in this small set of genes using functional profiling tools such as Babelomics or DAVID. In contrast, HFrD was accompanied by a differential regulation of 277 genes in skeletal muscle between the two groups (Supplementary Table 6). Functional profiling analysis enlightened a specific enrichment in mitochondrial genes including respiratory chain electron transport and oxidative phosphorylation (OXPHOS) (Fig. 2A). Importantly, most of these differentially regulated genes were downregulated in response to HFrD in the PCB group, while grape PP supplementation counteracted this effect (Supplementary Table 6).

Reverse transcriptase-quantitative PCR and Western blots further confirmed grape PPs' protective effect against the aftermath of HFrD on key skeletal muscle mitochondrial genes and proteins, as shown in Fig. 2 for CKMT2 (Fig. 2B), CPT1B (Fig. 2C), and UCP3 mRNA expression (Fig. 2D). A significant decrease was also noted for the mRNA of peroxisome proliferator-activated receptor g coactivator (PGC)-1a, a central regulator of mitochondrial biogenesis and function (223% [Fig. 2E]). Regarding UCP3, the fructose-induced reduction in mRNA levels in the PCB group was associated with a trend for a decrease in UCP3 (59% reduction, P = 0.08) (Supplementary Fig. 5). All of these effects were prevented by grape PP supplementation.

Effects of HFrD on skeletal muscle mitochondrial function and protective effect of grape PP supplementation

Mitochondrial function was evaluated by oximetry on permeabilized muscle fibers. Both V 0 and V max rates for pyruvate (Fig. 3A andB) and palmitoyl-L-carnitine (Fig. 3C andD) were decreased in the PCB group by HFrD, while they were significantly increased in the grape PP group. Furthermore, in the PCB group mitochondrial function variation was associated with insulin response, as evidenced by a strong negative correlation between V max palmitoyl-L-carnitine change during fructose load and GIR fluctuation (r = 20.97, P , 0.001); this relationship was not found in the grape PP group (Supplementary Fig. 6A andB). When results were corrected for mitochondrial content (citrate synthase activity), fructose had no effect on basal respiration rate (Fig. 3A andC), whereas V max remained decreased (Fig. 3B andD), indicating a joint effect on mitochondrial density and function.

Figure 2dDifferentially regulated biological pathways in response to HFrD and protective effects of grape PP supplementation on fructose-induced alterations of mitochondrial genes and a major transcription factor of mitochondrial biogenesis. A: Analysis of the 277 differentially regulated probes in response to fructose load between both groups was performed with Babelomics (http://babelomics.bioinfo.cipf.es/index.html). Only biological processes with adjusted P value ,0.05 and fold enrichment .2 are displayed. Change in mRNA levels of skeletal muscle CKMT2 (B), CPT1B (C), and UCP3 (D) and regulation of PGC-1a mRNA (E), expressed by reference to hypoxanthine guanine phosphoribosyl transferase mRNA abundance, at baseline (white bars), after 8 weeks of PCB or grape PP supplementation (gray bars), and after 6 days of HFrD with PCB/PP supplementations (black bars). Transcript levels were measured by reverse transcriptasequantitative PCR as described in RESEARCH DESIGN AND METHODS (11 PCB and 12 PP) CONCLUSIONSdThe main finding of the current study is the demonstration that 9 weeks of supplementation with nutritional doses of grape PPs protects against fructose-induced oxidative stress and IR. Microarray analysis demonstrated that expression of many oxidative and mitochondrial genes, including OXPHOS genes and CPT1, was reduced in response to HFrD in skeletal muscle. A potential contribution to this observation in IR may be inferred from other studies reporting that expression of OXPHOS genes is decreased and multiple energy metabolism genes' expression is altered in the context of type 2 diabetes in humans [START_REF] Sreekumar | Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment[END_REF][START_REF] Patti | Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1[END_REF][START_REF] Debard | Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients[END_REF] and that a decrease in CPT activity, which transports long-chain acyl-CoA into the mitochondria, may lead to intracellular lipid accumulation triggering IR [START_REF] Zhang | Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance[END_REF]. We further demonstrated that fructose has detrimental effects on mitochondrial respiration when either pyruvate or palmitoyl-L-carnitine was used as a substrate. This effect appears to be related both to variations in mitochondrial density as reflected by the lack of reduction in mitochondrial basal respiration by fructose when data were corrected for mitochondrial content (citrate synthase activity) and to altered function as exemplified by the decreased V max rate corrected for mitochondrial density in response to fructose. Fructose impairment of mitochondrial gene expression and mitochondrial function could result from altered expression of PGC-1a, a critical transcriptional regulator of nuclear-encoded mitochondrial genes whose reduced expression and activity has been related to IR and was suggested to be a primary feature of prediabetes pathophysiology [START_REF] Patti | Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1[END_REF]. As oxidative stress participates in skeletal muscle mitochondrial dysfunction, including altered biogenesis [START_REF] Bonnard | Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice[END_REF], it is tempting to speculate that fructoseinduced mitochondrial alterations were related to oxidative stress. Our data demonstrating that grape PP supplementation prevents both oxidative stress in the presence of fructose and the downfall of mitochondrial function with maintenance of mitochondrial gene expression at normal levels in skeletal muscle support this hypothesis.

The protective effect of grape PPs on muscle oxidative stress and mitochondria was associated with maintenance of insulin sensitivity in the face of fructose overload. We found a negative correlation between fructose-induced changes of urinary F2isoprostanes and GIR during the clamp, suggesting a link between oxidative stress and fructose-induced IR. Similarly, there was a strong negative correlation between the decrease in GIR and V max palmitoyl-L-carnitine variations during fructose overload (r = 20.97), powerfully supporting a direct association between fructoseinduced decreased skeletal muscle mitochondrial function and IR. Therefore, by promoting mitochondrial biogenesis, reducing oxidative stress, and facilitating the uncoupling of oxidative metabolism, grape PPs may help maintain high levels of substrate oxidation while limiting free radical production, explaining their protective effect with respect to fructose-induced IR.

Major adipokines and hormones were not affected by grape PP supplementation, which is somewhat different from what is seen in animal models with grape seed procyanidin modulating CRP and adiponectin plasma levels in rats fed a hyperlipidic diet [START_REF] Terra | Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats[END_REF]. This may suggest that, in the current study, grape PPs acted directly on metabolic tissues (skeletal muscle and liver) without systemic changes in regulating factors.

Whatever the mechanism, the protective effect of grape PPs on IR and oxidative stress was not associated with a reduction of fasting plasma triglycerides, indicating that it failed to impact the metabolic steps involved in hepatic de novo lipogenesis. Surprisingly, HFrD was associated with a decrease in LDL cholesterol in the PCB group only. Nevertheless, LDL particles in this group were more atherogenic as testified by a decrease in small-dense LDL size that was counteracted by grape PPs [START_REF] Rizzo | Small, dense lowdensity-lipoproteins and the metabolic syndrome[END_REF].

Even though resveratrol accounts for a very small portion of the grape PPs used in the present work, our results present similarities with the metabolic effects of this compound. Indeed, as for the latter, grape PPs were able to prevent diet-induced IR and potentially weight gaindeffects that could be mediated by a control of mitochondrial biogenesis and respiration secondary to PGC-1a activation [START_REF] Baur | Resveratrol improves health and survival of mice on a high-calorie diet[END_REF][START_REF] Lagouge | Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha[END_REF]. We also obtained results similar to those of the clinical study of Timmers et al. [START_REF] Timmers | Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans[END_REF] using resveratrol, including the upregulation of mitochondrial genes with an improved function and increased PGC-1a level favoring mitochondrial biogenesis; using the hyperinsulinemic-euglycemic clamp, we further complement the results of these authors showing an 11% improvement in homeostasis model assessment index after resveratrol [START_REF] Timmers | Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans[END_REF]. Grape in itself is a panoply of polyphenols consisting mostly of anthocyanins and flavonols, including quercetin [START_REF] Chuang | Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases[END_REF], much of which has also demonstrated multiple metabolic health benefits [START_REF] Zern | Cardioprotective effects of dietary polyphenols[END_REF][START_REF] Terra | Grape-seed procyanidins prevent lowgrade inflammation by modulating cytokine expression in rats fed a high-fat diet[END_REF][START_REF] Pinent | Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines[END_REF]. Even though the dose of 2 g/day polyphenols used in the current study can be regarded as a high dose, it remains nevertheless compatible with the supply of a diet rich in red grapes, other fruits and vegetables, and eventually red wine.

By nature, the use of a polyphenol mixture does not enable us to identify clearly what components of the grape extract are causing any of the observed effects.

We would further like to recall that grape PPs are already used by the food industry in the form of dyes and tannins, notably in sugary foods [START_REF] Goll€ Ucke | Recent applications of grape polyphenols in foods, beverages and supplements[END_REF]. Our results constitute a basis for considering further work studying the effects of direct addition of PPs to foods containing fructose.

In conclusion, 9 weeks of grape PP supplementation secures an unwavering metabolic state in healthy overweight/ obese first-degree relatives of type 2 diabetic subjects faced with a 6-day fructose overload, preventing liver and muscle IR while bearing no adverse effects. Future studies should investigate the effects of grape PP coadministration with processed food rich in fructose and their potential role in counteracting the metabolic syndrome.

Figure

  Figure 3dProtective effects of grape PP supplementation against HFrD-induced mitochondrial dysfunction. Mitochondrial functional adaptations at baseline (white bars), after 8 weeks of PCB or grape PP supplementation (gray bars), and after 6 days of HFrD with PCB or PP supplementation (black bars). A and C: Mitochondrial V 0 without ADP in the presence of pyruvate or palmitoyl-L-carnitine (V 0 ) (micromoles O 2 per minute per gram of fibers) (seven PCB and nine PP) on the left, and on the right, basal measures of respiration are divided by citrate synthase activity to correct for mitochondrial content. B and D: ADP-stimulated mitochondrial V max rate (micromoles O 2 per minute per gram of fibers) (seven PCB and nine PP) in the presence of pyruvate or palmitoyl-L-carnitine on the left, and on the right, V max is divided by citrate synthase activity to correct for mitochondrial content. *P , 0.05 for statistical pre-and postintervention comparisons within each group via the Wilcoxon signed rank sum test. #P , 0.05 for intergroup comparisons by Mann-Whitney U tests. Correlations were established with Spearman rank correlations tests; data are means 6 SEM.

Table 1dSubjects '

 1dSubjects characteristics at baseline and throughout study exploration visits

	(CY3) from Applied Biosystems, and mi-					
	croarrays were hybridized and scanned					
	following the manufacturer's instruc-					
	tions. The data were normalized using					
	the Agilent FE one-color scenario (Gene-					
	Spring GX software). After filtration, sta-					
	tistical analysis was performed on 26,220					
	probes with the Limma package (21). The					
	dataset is available from the GEO data-					
	base (GSE35764).						
	RT real-time PCR. First-strand cDNAs					
	were synthesized from 500 ng skeletal					
	muscle. Total RNA and real-time PCR					
	assays were performed as previously					
	described (22). Values were normalized					
	using hypoxanthine guanine phosphori-					
	bosyl transferase. RT-PCR primer sequen-					
	ces are listed in Supplementary Table 2.					
	Statistical analysis Statistical analysis was performed with PCB JMP 9.0.0 software, with data expressed	Baseline Grape PPs	Post-8 weeks of supplementation PCB Grape PPs	Post-6 days of fructose after 8 weeks of supplementation PCB Grape PPs
	N as means 6 SEM. To overcome the non-18		20	18	20	18	20
	Men/women (N/N) normal distribution of most parameters, 7/11		11/9	7/11	11/9	7/11	11/9
	Age (years) we analyzed data using a repeated-48.4 6 2.0	49.7 6 1.9	48.4 6 2.0	49.7 6 1.9	48.4 6 2.0	49.7 6 1.9
	Weight (kg) measures general linear model; when sig-81.1 6 2.4	82.6 6 2.8	81.0 6 2.4	83.0 6 2.7	81.3 6 2.4*	83.0 6 2.7
	BMI (kg/m 2 ) nificance was reached (P , 0.05), we 29.1 6 0.7	29.3 6 0.6	29.0 6 0.6	29.4 6 0.6	29.1 6 0.6*	29.4 6 0.6
	Fat mass (%) confirmed results with Mann-Whitney U 35.2 6 1.8	31.2 6 2.1	35.3 6 1.8	31.4 6 2.1	34.9 6 1.9	31.9 6 2.1
	Waist circumference (cm) test for comparisons between the PCB and 98.2 6 2.1	100.1 6 1.8	98.1 6 2.3	99.6 6 1.8	98.5 6 2.3	99.8 6 1.7
	hs-CRP (mg/L) grape PP groups at each time point (base-2.4 6 0.6	2.5 6 0.4	2.3 6 0.6	2.1 6 0.3	2.2 6 0.7	2.6 6 0.5
	AST (units/L) line, post-8 weeks of PCB/grape PP sup-23.1 6 1.8	26.0 6 1.9	22.8 6 1.8	24.2 6 1.7	22.3 6 1.6	25.3 6 1.8
	ALT (units/L) plementation, and post-6 days of fructose 28.4 6 4.6	34.0 6 4.9	26.8 6 4.9	31.3 6 4.3	28.8 6 4.1	36.0 6 5.2
	g-glutamyl transpeptidase (units/L) combined with PCB/grape PP supple-27.8 6 2.9	30.2 6 4.4	26.7 6 2.8	29.2 6 3.9	29.2 6 2.9	34.4 6 7.6
	Systolic blood pressure (mmHg) mentation) and with Wilcoxon signed 121.6 6 3.3	115.4 6 2.5	117.9 6 3.4	114.3 6 2.1	116.2 6 3.3	112.3 6 2.0
	Diastolic blood pressure (mmHg) rank sum for within-group (pre-and 72.2 6 2.3	70.4 6 1.4	70.1 6 2.0	71.5 6 1.1	69.6 6 1.9	70.7 6 1.4
	Triglycerides (mmol/L) postinterventions) comparisons. Correla-1.07 6 0.07	1.19 6 0.13	1.07 6 0.10	1.25 6 0.12	1.42 6 0.17*	1.66 6 0.22*
	Total cholesterol (mmol/L) tions were evaluated using Spearman 5.49 6 0.20	5.28 6 0.16	5.41 6 0.23	5.27 6 0.16	5.18 6 0.18*	5.25 6 0.21
	HDL cholesterol (mmol/L) rank correlation tests. Statistical signifi-1.52 6 0.11	1.36 6 0.05	1.52 6 0.10	1.33 6 0.06	1.41 6 0.11*	1.27 6 0.06*
	LDL cholesterol (mmol/L) cance was considered for P values 3.49 6 0.17	3.38 6 0.14	3.40 6 0.20	3.37 6 0.15	3.12 6 0.14*	3.24 6 0.14
	LDL size (nm) ,0.05 with no adjustment for multiple 25.8 6 0.1	25.5 6 0.1	25.8 6 0.1	25.6 6 0.1	25.5 6 0.1*	25.4 6 0.1
	Fasting glucose (mmol/L) comparisons.	5.3 6 0.2	5.4 6 0.1	5.3 6 0.2	5.5 6 0.1	5.4 6 0.1	5.4 6 0.1
	Fasting insulin (mU/L)	4.7 6 0.5	4.4 6 0.4	4.3 6 0.4	4.4 6 0.3	4.6 6 0.4	4.4 6 0.4
	HbA 1c (%)	5.4 6 0.1	5.4 6 0.1	5.4 6 0.1	5.5 6 0.1	5.4 6 0.1	5.4 6 0.1
	GIR (mg/kg/min)	6.85 6 0.55	6.03 6 0.43	7.38 6 0.57	6.39 6 0.48	6.57 6 0.55*	6.40 6 0.51
	Basal endogenous glucose						
	production (mg/kg/min)	2.08 6 0.07	2.10 6 0.05	2.14 6 0.06	2.09 6 0.03	2.31 6 0.15	2.11 6 0.06
	Endogenous glucose production						
	at low insulin: mean t 90-120 min						
	(mg/kg/min)	0.44 6 0.11	0.38 6 0.13	0.75 6 0.24	0.65 6 0.13	0.70 6 0.20	0.65 6 0.16
	Fasting hepatic insulin						
	sensitivity indexx	13.6 6 2.6	10.9 6 1.0	11.9 6 1.5	11.4 6 0.7	9.6 6 0.9*	11.4 6 1.1
	Urinary F2-isoprostanes						
	(pmol/mmol creatinine)	520 6 43	494 6 37	463 6 39*	513 6 42	543 6 43*	473 6 33
	TBARS (nmol/g tissue) †	35.8 6 4.8	27.2 6 3.5	26.3 6 2.1*	28.0 6 3.0	36.6 6 6.8*	33.2 6 3.6
	Caloric intake (kcal)x	1,858 6 64	1,978 6 133	1,780 6 126	2,044 6 125	1,746 6 100	1,912 6 123
	Protein intake (g)	89.7 6 5.6	86.5 6 5.9	87.1 6 6.2	93.4 6 5.6	84.7 6 5.6	85.5 6 5.0
	Carbohydrate intake (g)x	195.1 6 18.9	207.6 6 16.3	190.8 6 17.8	212.2 6 14.4	172.6 6 10.9	194.6 6 15.7
	Fat intake (g)	80.9 6 6.0	83.9 6 6.8	72.8 6 5.2	88.4 6 5.8	74.2 6 4.8	85.2 6 5.8

Data are means 6 SEM unless otherwise indicated. At baseline, there were no significant differences between groups (18 PCB and 20 PP). *Significant difference before (8 week post-PPs/PCB) and after (8-9 weeks) fructose load (P , 0.05) within each group via the Wilcoxon signed rank sum test. xFasting hepatic insulin sensitivity was calculated as follows: 100/hepatic glucose output (mg z kg 21 z min 21 ). Values do not take fructose overload into consideration. †Muscle TBARS were available for only eight PCB and eight PP volunteers.
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  . *P , 0.05 for statistical pre-and postintervention comparisons within each group via the Wilcoxon signed rank sum test; Mann-Whitney U test was used for intergroup comparisons. Data are means 6 SEM. AU, arbitrary units.
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